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Abstract—HTTP video streaming, such as Flash video, is
widely deployed to deliver stored media. Owing to TCP’s reliable
service, the picture and sound quality would not be degraded
by network impairments, such as high delay and packet loss.
However, the network impairments can cause rebuffering events
which would result in jerky playback and deform the video’s
temporal structure. These quality degradations could adversely
affect users’ quality of experience (QoE). In this paper, we
investigate the relationship among three levels of qualityof
service (QoS) of HTTP video streaming:network QoS, application
QoS, and user QoS (i.e., QoE). Our ultimate goal is to understand
how the network QoS affects the QoE of HTTP video streaming.
Our approach is to first characterize the correlation between
the application and network QoS using analytical models and
empirical evaluation. The second step is to perform subjective
experiments to evaluate the relationship between application QoS
and QoE. Our analysis reveals that the frequency of rebuffering
is the main factor responsible for the variations in the QoE.

I. I NTRODUCTION

HTTP video streaming is widely used in delivering stored
multimedia content. In particular, Adobe’s Flash video (FLV)
plays an important role in storing and streaming videos via
HTTP over TCP. YouTube is clearly the most successful
system [20] for video sharing and video-on-demand service
based on FLV. This kind of “streaming” is different from
the traditional UDP-based streaming offered in, for example,
Windows Media and Real Media, because it is not necessary
for the video streaming server and client to synchronize.
Moreover, the client could watch an incompletely downloaded
video clip by its progressive download [4] technology. The
reliable features of TCP also free the video codec from
handling packet losses, and the picture quality is not degraded
due to missing frames. Moreover, the web server does not
require additional software or plugins to support the video
streaming function.

However, TCP throughput could be reduced by various
kinds of impairments in network paths, such as packet loss
and reordering. When the TCP throughput is lower than the
playback rate, the video playback will pause and wait for
new video data. This disruption could greatly impact the
user-perceived quality, which is also known as the quality of
experience (QoE). In general, the QoE can be affected by
other factors, such as the quality of video and sound and
the smoothness of playback, which could be cataloged into
a protocol stack to form a conceptual relationship between

quality of service (QoS) and QoE [23], [29]. In this paper, we
construct a similar protocol stack shown in Figure 1, but our
focus is not on spatial (i.e., picture) quality at the application
QoS layer. Instead, we propose atemporal structure of video
as the application QoS for HTTP video streaming and use it
to analyze how the QoE is affected by the network QoS (i.e.,
network path quality).
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Fig. 1: Three levels of QoS considered in this paper.

To characterize the relationship between the network QoS
and application QoS, previous works [17], [27] performed
analytical studies to model the video streaming performance
using TCP. An algorithm was proposed to estimate the receiver
buffer requirement based on the model in [17]. Moreover,
empirical studies were conducted to investigate how network
conditions affect the application QoS by recording application
metrics during the video playback [28], [16]. Their evalua-
tions, however, were only based on Windows Media. In this
paper, we adopt both analytical and empirical approaches to
study the correlation between the network QoS and application
QoS. In particular, we use a set ofapplication performance
metrics (APM) for the study: (1) Initial buffering time, (2)
mean duration of a rebuffering event, and (3) rebuffering
frequency. On the other hand, the network QoS can be mea-
sured based on active measurement (e.g., OneProbe [19] and
YouTube Video Speed History [2]) or passive measurement
(e.g., [9], [7]).

Moreover, the QoE is usually expressed using aMean
Opinion Score (MOS) of 1 (“Bad”) to 5 (“Excellent”) [14]. It
could be obtained from subjective or objective measurement.
ITU-T Recommendation P.911 [15] provides the reference for
carrying out subjective measurement of audiovisual materials,
and VQEG [1] provides detailed test plans for evaluating video
quality in a subjective way. However, PSNR (Peak-Signal-to-
Noise-Ratio) and MSE (Mean Square Error), which are exam-



ples of the objective approach, only evaluate the spatial quality
of videos, therefore not suitable for HTTP video streaming.In
this paper, we perform subjective experiments to evaluate how
the application QoS correlates with the QoE. Based on the
correlation results for the network and application QoS, we
are then able to correlate the network QoS with QoE which
can be effectively visualized using a radar chart [8].

Section II first highlights the related works. Section III ad-
dresses the correlation between network QoS and application
QoS, whereas section IV measures the correlation between
QoE and application QoS. In section V, we then measure the
correlation between the network QoS and QoE by combining
the two sets of correlation results and use a radar chart to
visualize the results. We discuss other issues which may affect
the QoE in section VI and finally conclude this paper in section
VII.

II. RELATED WORK

Previous works on correlating network QoS and QoE mainly
concern the picture/audio quality or VoIP performance. Hands
and Wilkins [11] studied how the network loss and burst size
affected the video streaming quality, and subjective measure-
ment and MPEG-1 videos were used in their experiments.
Verscheure et al. [26] investigated the impact of data loss
on the quality of MPEG-2 video. Zhou et al. [30] used the
objective approach, E-model and the approach proposed in
[26] to measure how the perceived quality of VoIP and MPEG-
2 video streaming were affected in IPv6. Tasaka and Watanabe
[24] performed subjective experiment and used a multiple
regression approach to estimate the QoE, and their focus was
on the video and audio synchronization. Unlike these works,
we study the correlation based on the temporal quality of
HTTP streaming videos.

Huynh-Thu et al. evaluated the correlation between the tem-
poral aspect and the perceived quality in [12], and proposed
temporal quality metrics in [13]. The artifacts they addressed
are frame freezing and low frame rate. The occurrence of
these artifacts is due to the loss of video frames caused by
packet loss events. However, lost packets will be retransmitted
in HTTP video streaming.

Varga et al. [25] presented experiment results on how
network QoS was correlated with user-perceived quality of
Internet applications. They considered various applications, in-
cluding video streaming, but they did not quantify the results.
Wang et al. [28] proposed performance metrics for UDP-based
Windows media streaming to evaluate the performance under
different network conditions. However, the correlation ofthe
perceived quality and performance metrics was not reported.

III. N ETWORK QOS AND APPLICATION QOS

In this section, we investigate the relationship between
the network QoS and application QoS. Network QoS is the
network path performance between a server and a client,
including the round-trip time (RTT), packet loss rate, and
network bandwidth. Application QoS, on the other hand,
reflects the performance from an application point of view. In

the ensuing discussion, we propose three APMs to quantify the
application QoS for HTTP video streaming. We then correlate
both QoS using analytical modeling and empirical evaluation.

A. Application performance metrics

We propose three APMs to quantify the application QoS
for HTTP video streaming, and these metrics represent the
temporal structure of a video playback, regardless of the video
content.

1. Initial buffering time (denoted byTinit): This metric
measures the period between the starting time of loading
a video and the starting time of playing it.

2. Mean rebuffering duration (denoted byTrebuf ): This
metric measures the average duration of a rebuffering
event.

3. Rebuffering frequency (denoted byfrebuf ): When the
amount of buffered video data decreases to a low value,
the playback will pause, and the player will enter into a
rebuffering state. This metric measures how frequent the
rebuffering events occur.

Figure 2 plots the time series of the video playhead time
(i.e., the current position of the video) and the amount of video
buffered byFlashTrack, our implementation of a customized
Flash video player which will be presented in section III-D.
The solid line refers to the video playhead time, and the
dotted line to the amount of buffered video. The circles on
the dotted line correspond to the empty-buffer events which
occur whenever the amount of buffered video falls to a low
value. The video playback pauses until the buffer is refilled.
Therefore, the video playhead time stops increasing for a
period of rebuffering after the onset of an empty-buffer event.
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Fig. 2: Time series of the video playhead time and the amount of videodata
buffered at the player.

B. Modeling the APMs

We construct a simple model to correlate network QoS with
the three APMs. To simplify the model, we make the following
assumptions:

1. The network bandwidth, RTT, and packet loss rate are
constant during the video download.

2. The client does not interact with the video during the
playback, such as pausing and forward/backward seeking.



3. The average bitrate of cross traffic between the server and
the client is constant.

4. The fluctuation of video bitrate is not large.
5. The video buffer must be filled up before exiting the

initial buffering and rebuffering states, and its size is
smaller than the video’s length.

1) Initial buffering time and mean rebuffering duration:
The estimates (in seconds) of the initial buffering time and
mean rebuffering duration can be computed by

T̂init =
Bfull × λ

β
, (1)

T̂rebuf =

{
0, if β ≥ λ,
(Bfull −Bempty)λ/β, otherwise,

(2)

whereBfull is the size (in seconds of video) of the video
buffer, Bempty (< Bfull) is the remaining length of the
buffered video that triggers an empty-buffer event,λ is the
video’s bitrate (in bits/s), andβ is the average TCP goodput
(in bits/s) for the video streaming.̂Trebuf = 0 for β ≥ λ
because the rebuffering event occurs only when the average
TCP goodput is less than the video’s bitrate.

To estimate the average TCP goodput, we employ the
throughput model for a TCP Reno flow [21], given by

s(p) =
1

R
√

2bp

3
+ T0min

(
1, 3

√
3bp

8

)
p (1 + 32p2)

, (3)

wheres(p) is the packet sending rate per RTT,p is the packet
loss rate,b is the number of packets that are acknowledged by
an ACK, R is the RTT, andT0 is the retransmission timeout.
As a result, the estimated average TCP goodput for the given
RTT and loss rate isβ = s(p) ×M × 8/R, whereM is the
size of the data packets sent from the server.

While the throughput model can estimate the TCP packet
sending rate, the TCP goodput is also affected by the available
bandwidth which affects both the packet loss rate and RTT
experienced by the TCP flow. In particular, when the packet
sending rate is greater than the available bandwidth, the net-
work path will become congested, thus increasing the queueing
delay of TCP packets or even discarding some packets due
to buffer overflow. To compute the goodput, we resort to
OneProbe [19] to measure the RTT and loss rate for the
network path with a particular bandwidth configuration.

2) Rebuffering frequency: Given a video’s length ofl (in
seconds), the rebuffering frequency estimate is given by

f̂rebuf =

{
0, if β ≥ λ,
nrebuf/l, otherwise,

(4)

where

nrebuf =

⌈
l′

brebuf

⌉
, (5)

l′ = l−Bfull/

(
1−

β

λ

)
, (6)

brebuf = (Bfull −Bempty) /

(
1−

β

λ

)
. (7)

When the average TCP goodput is less than the video’s
bitrate, we will encounternrebuf empty-buffer events during
the video playback given by Equation (5), wherel′ is the
remaining length of the video (in seconds) upon the onset
of the first empty-buffer event, andbrebuf is the length of
the played video (in seconds) before the next empty-buffer
event. Whenβ ≪ λ (i.e.,β/λ ≈ 0), the maximum rebuffering
frequency is given by

max(frebuf ) =
1

l

⌈
l −Bfull

Bfull −Bempty

⌉
. (8)

From Equation (8), the maximum rebuffering frequency only
depends on the video length and buffer size, and is independent
of the TCP goodput.

C. Measuring the APMs from clients

We have implemented a customized Flash video player,
named FlashTrack, to compute the actual APMs based on the
status of video playbacks obtained from the client. FlashTrack
uses the FlashNetstream class to record the buffer status
and current playhead time every 0.25 seconds, and special
events, such as empty buffer. We have used the property
BufferTime in theNetstream class to adjust the size of
the player buffer. The buffer must be filled up before starting
the playback or after the rebuffering event. In our experiments,
we setBufferTime to 3 seconds, because we have observed
that it is the value possibly used by YouTube.

D. Testbed experiments

Figure 3 shows the testbed setup for evaluating our model
for the correlation between network QoS and application QoS.
A web server was installed with Ubuntu 10.04 (kernel 2.6.32-
22) and Apache 2.2.14 to host video clips for a client to
download and play using FlashTrack. The client ran Ubuntu
9.04, Firefox 3.6.8, and Flash Player 10.1. The TCP congestion
avoidance algorithm for both machines were configured as
“Reno.” A Click router [18] was installed between the server
and the client to emulate different network bandwidths, packet
loss rates and RTTs.

Web server
Client

Browser
Video Clip

FlashTrack

BW, RTT,

Packet Loss

Click Router
Cross Traffic Sink Cross Traffic Source

Fig. 3: A testbed setup for evaluating the correlation between network QoS
and application QoS.

Table I lists the network QoS parameters emulated by the
Click router. The bandwidth was chosen between 1 Mbits/s
and 15 Mbits/s to emulate the bandwidth of common home
users, while 100 Mbits/s was chosen to serve as a control.
The choices for RTT represent the local, inter-continent, and
transoceanic paths. We also varied the round-trip packet loss
rate from 0% to 8% to investigate the impact of packet



loss. Moreover, we introduced background cross traffic to the
forward path of the web server using D-ITG [5]. The cross
traffic was a TCP flow with packet size drawn from Pareto
distribution of shape 1.2 and exponential inter-departuretime
with mean 500 ms, and had the average bitrate of around 100
kbits/s.

TABLE I: The network QoS parameters emulated by the Click router.

Network QoS Parameters

Network bandwidth (Mbits/s) 1, 5, 10, 15, 100
RTT (ms) 0, 25, 50, 75, 100
Round-trip packet loss rate (%) 0, 2, 4, 6, 8

For every set of parameters, we ran FlashTrack from the
client to download a video clip from the web server for three
trials. The browser’s cache folder was first cleared, and the
private mode of the Firefox was used to ensure that the video
will not be saved to the local cache after quitting the browser.
The video clip was extracted from the movie tailer of “The
Twilight Saga: New Moon” which belongs to the type of
“Movies, movies tailers” stated in the VQEG test plan. Table
II summarizes the specification of the video clip.

TABLE II: A specification of the video used in the testbed experiments and
QoE assessment.

Items Parameters

Video length 87 seconds
Video format H.264
Audio format ACC
Resolution 864×480
File size 10.6 MBytes
Frame rate 23.97 fps
File format FLV

Figure 4 shows the histograms of the actual APMs mea-
sured by FlashTrack under different network QoS parameters
specified in Table I. The results are the averages from three
independent trials. The bars with different grey levels repre-
sent different emulated bandwidths. The x-axis is the delay,
whereas the y-axis is the packet loss rate. As shown in Figure
4, all three APMs increase with the packet loss rate and delay,
but decrease with the network bandwidth. As shown in Figures
4(a) and 4(c), the distributions ofTinit and Trebuf exhibit
similar patterns. Moreover, Figure 4(b) shows thatfrebuf is
significantly reduced by the network path with high bandwidth
and low packet loss rate.frebuf reaches near the maximum
value, which is obtained from Equation (8), when the delay is
larger than 50 ms with loss rate greater than 4%.

We now compare the three APMs estimated by our model
with the actual APMs obtained by FlashTrack. To obtain the
(round-trip) packet loss rate and RTT for Equation (3), we ran
OneProbe [19] from the client to measure the network path
between the web server and itself. OneProbe was executed
three seconds after launching FlashTrack with a periodic probe
rate of 2 Hz for 60 seconds. Based on OneProbe measurement,
we computed the median RTT and average packet loss rate
which are the parameters for estimating the TCP goodput.

Figure 5 shows the cumulative distribution function (CDF)
of relative errors between the APM estimates and actual
APMs. We compute the relative errors by(x̂ − x)/x, where
x̂ and x are the APM estimates and the actual APMs,
respectively. As shown, more than 90% of the rebuffering
frequency estimates have errors less than 50%, while over
75% of rebuffering duration estimates and over 60% of initial
buffering time estimates have errors less than 50%. The larger
error in the initial buffering time estimates is probably due to
a small congestion window at the beginning of the connection
which limits the packet sending rate. However, the TCP
throughput model assumes that the flow has already been in
the steady state, thus overestimating the TCP goodput.

−1.2 −0.5 0 0.5 1.2
0

0.2

0.4

0.6

0.8

1

Relative Error

C
D

F
 

 

f
rebuf
T

init
T

rebuf

Fig. 5: The CDF of relative errors between the APM estimates and actual
APMs.

We have further investigated the rebuffering frequency by
using our analytical model. As will be seen later, the rebuffer-
ing frequency is the major factor affecting the QoE. Figure
6 shows the rebuffering frequency for different buffer sizes
and goodput-to-bitrate ratio (β/λ) with l = 87 seconds (same
as the length of the video clip for the previous experiment).
As shown, the rebuffering frequency decreases withβ/λ and
Bfull, because a small buffer is used up quickly especially for
a small TCP goodput (or large bitrate). WhenBfull is greater
than 10 seconds, the rebuffering frequency stays at a low level
(even ifβ/λ is small), because the maximum rebuffering event
is bounded by the video length.

IV. T HE QOE MEASUREMENT

We have performed a subjective assessment to measure QoE
of Flash video perceived by users and to quantify how the
QoE is influenced by the application QoS (i.e., the APMs).
To this end, we have implemented a platform using Flash
to emulate video playback under various levels of APMs as
shown in Table III. We divide each APM into three levels (low,
medium, and high) which are based on the 25th, 50th, and
75th percentiles of the actual APMs (obtained by FlashTrack)
reported in section III-D.

Instead of delivering the video in real time, we simulate the
rebuffering events by pausing and resuming the video, during
which a message “buffering . . . ” and the current buffering
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TABLE III: Three levels of application performance based on the APMs.

APMsLevel
Tinit frebuf Trebuf

Low 0− 1 seconds 0− 0.02 0− 5 seconds
Medium 1− 5 seconds 0.02− 0.15 5− 10 seconds
High > 5 seconds > 0.15 > 10 seconds

progress are shown on the interface. The advantage of this
approach (over generating video playback in real time) is
to minimize the variations (e.g., network conditions) among
different subjects during the QoE measurement. To minimize
the subjective bias, the player’s interface, similar to common
video sharing web sites, includes a progress bar showing the
video playhead time, buffered video length, and video’s length.

Each subject participating in the subjective assessment was
required to fill in their basic personal information (e.g., gender
and age) and watched the same video clip specified in Table
II for 30 rounds, which include all the possible combinations
of APM levels (33 = 27) and three replications to validate
the reliability of the subjects’ scoring. The replicationswere
based on the APM levels randomly selected from all the 27
possibilities. After each round, the subject was asked to give
a score immediately, and the whole experiment did not last
more than an hour to avoid burdening the subject. Due to
this time limitation, the duration of each round was limited
to 120 seconds. Therefore, the subjects may not watch the
video completely in every round. Finally, the sequence of

video playback was randomly shuffled by a pseudo random
function (Math.random in Flash) to mitigate the possible
ordering bias resulted from the watching sequence.

After excluding three outliers who produced unreliable
scores, we have successfully examined ten subjects: seven
of them are male and three of them are female. Their ages
ranged between 23 and 35. All of them were non-experts in
evaluating video quality. For each combination of the APM
levels, we use the scores obtained from the ten subjects to
compute a MOS and therefore obtain 27 MOSes to represent
the QoE of the Flash video. An ANOVA analysis reveals that
the rebuffering frequency is the only main factor influencing
the MOS. Users are generally annoyed by the video pausing
due to the rebuffering events. Moreover, there is no interaction
of variables. As a result, a higher rebuffering frequency will
generally lower the user-perceived quality. The effects ofthe
initial buffering and mean rebuffering duration, on the other
hand, are not significant, because users are generally willing
to tolerate a longer start-up delay for a better video-watching
experience.

We have performed a regression analysis to acquire a
relationship between QoE and application QoS. As shown
in Equation (9), the coefficients of the three APMs are all
negative, thus a higher level of APMs giving a lower MOS.

MOS= 4.23− 0.0672Lti − 0.742Lfr − 0.106Ltr, (9)

whereLti, Lfr and Ltr are the respective levels ofTinit,
frebuf , andTrebuf . We use 1, 2, and 3 to represent the “low”,
“medium”, and “high” levels, respectively.

To minimize the variability caused by the video content,
only one video clip is used in the subjective experiment. We
performed pilot studies on four other video clips of different
content—-sports game, news, TV comedy show and music
video. Figure 7 plots the MOS against the three levels of
rebuffering frequency. The result shows that the level of
rebuffering frequency is negatively correlated with the MOS,
which is consistent with our previous findings. Quantifying
the correlation of various video types will be our future work.

V. CORRELATING QOE WITH NETWORK QOS

We now describe our methodology for correlating QoE
of HTTP video streaming with network QoS. Specifically,
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we first estimate the three APMs for a given network QoS
(measured by OneProbe) using our model presented in section
III-B. With the three APM estimates, we then look up their
levels according to Table III and finally obtain the correspond-
ing MOSes to represent the user-perceived performance under
the network path quality. Moreover, we use the radar chart
proposed in [8] to inspect the correlation between the QoE and
network QoS. For the network QoS parameters, the bandwidth
varies from 1 Mbit/s to unlimited, delay from 0 ms to 100 ms,
and packet loss rate from 0% to 8%.

A. Visualizing the correlation

Figure 8 shows the radar chart that maps network QoS to
QoE. The MOS is divided into three levels – greater than 1, 2
and 3, which are represented using different color levels. The
network path metrics with the same MOS level are bounded
into areas. SectorsAB, BC, andCA fix one of the network
path metrics to the “best” value – unlimited bandwidth, zero
packet delay and zero packet loss rate, respectively. The other
two metrics, on the other hand, vary within the sector. The
three axesA, B, andC in the chart extended from the center
of the circle vary one of the network metrics from the best to
the worst. Moreover, the values of axesA, B andC belong
to sectorsdd′, ee′, and ff ′ respectively. For example, in
sectorAd′, while the bandwidth is unlimited, the packet loss
rate increases from 0% to 8% in clockwise direction and the
packet delay increases from the center to the edge of the chart.
Therefore, we could observe how the two network metrics
interact with each other.

As shown in Figure 8, both packet loss rate and packet delay
are the dominating factors affecting the QoE. SectorAB of
the chart, which varies the packet loss rate and packet delay,
is mainly a dark color region (i.e., a low MOS). This effect is
also reflected in the large light color regions shown in sectors
CA (with zero packet loss rate) andBC (with zero packet
delay). However, a very small RTT (packet loss rate) could
partially compensate the low QoE due to the packet loss (high
packet delay). For example, a small region of semi-light color
region in sectorAd′ could still be seen even for high packet
loss rate.
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Fig. 8: The radar chart mapping network QoS with QoE.

B. Applications

We demonstrate how the quality of HTTP video stream-
ing can be predicted based on network QoS obtained from
our recent Internet measurement study. We have conducted
OneProbe measurement from a probing machine located at a
local university in Hong Kong to the Lenovo web server in
China between 26 August 2010 to 7 September 2010 (UTC).
Since OneProbe uses HTTP requests as probe packets to elicit
HTTP data response packets from remote web servers, we
expect that OneProbe can observe similar network path quality
experienced by the HTTP video streaming traffic. During the
measurement period, the measuring node performs one-minute
OneProbe measurement every ten minutes.

Figure 9 shows the time series of the median RTT and
average round-trip packet loss rate obtained from the two-
week network measurement. The solid (blue) line is the RTT,
and the green lines close to the x-axis is the average round-trip
packet loss rate. The grey-scale spectrum at the background
shows the MOS estimated by our model. The lighter color
in the spectrum represents a higher MOS score (i.e., better
QoE) for users in watching videos hosted by the web server.
We observe diurnal RTT and loss rate patterns throughout
the measurement period. Moreover, the MOS is dominated
by the packet loss rate, because the dark grey areas coincide
mainly with higher packet loss rate, particularly on 26 August
and 5 September when the packet loss rate reached around
5%. On the other hand, only sparse grey lines appear in the
RTT inflation periods, thus implying that the users could still
perceive an acceptable level of video quality.

VI. D ISCUSSION

In the previous sections, we consider the round-trip packet
loss rate for evaluating the application QoS. However, network
path asymmetry is a common phenomenon in the Internet, and
it introduces different impacts on the TCP performance [6].
We therefore investigate the effect of packet loss asymmetry
on the performance of HTTP video streaming by evaluating



Fig. 9: Time series of the HTTP video streaming’s MOS, and the RTT andpacket loss rate of the network path.

the APMs measured by FlashTrack under our testbed. To this
end, we configured the testbed with network bandwidth of 5
Mbits/s, RTTs of{25, 100} ms, and packet loss rate between
0% and 8% on a unidirectional path (forward or reverse path),
while keeping the loss rate in the opposite direction to zero.
Let A (f, r) be the measured APM under forward-path and
reverse-path packet loss rates off andr, respectively. We com-
pute the APM difference∆asy (A (p)) = A (p, 0) − A (0, p)
for a loss ratep.

Figures 10(a)-10(c) show the values of∆asy (Tinit),
∆asy (frebuf ), and ∆asy (Trebuf ) for different packet loss
rates. The solid line and the dashed line show the results
for RTTs of 25 ms and 100 ms, respectively. As shown, the
APM differences are all positive, meaning that the forward-
path packet loss introduces a more significant impact on the
application QoS. When packet loss occurs in the forward path,
the corresponding video data has to be retransmitted from the
server, thus reducing the TCP goodput. However, packet loss
in the reverse path affects mainly the ACK packets from the
client, and a lost ACK packet could be compensated by a suc-
ceeding ACK packet with a higher acknowledgement number.
Furthermore, the APM difference is more significant under the
higher RTT as a result of slower packet retransmissions.

We also consider the effect of different TCP variants on
the application QoS. While TCP Reno considered in the
previous sections is supported by most operating systems,
TCP Cubic [10] and Compound TCP [22] are the default
congestion avoidance algorithms used by Linux and Microsoft
Windows, respectively. These congestion avoidance algorithms
could improve the fairness and throughput by better estimates
of the TCP congestion window. Previous work [3] shows that
TCP Cubic outperforms Compound TCP and New Reno in
terms of goodput. To investigate the effect of TCP variants,
we carried out another set of experiments under the same
testbed except that TCP Cubic is used for both the client
and server. We compare the performance by computing the
APM difference∆c (A) = Ac−Ar, whereAc andAr are the
respective APMs measured by FlashTrack under TCP Cubic
and TCP Reno.

Figures 11(a)-11(c) show the APM differences of various
packet loss rates and RTTs under a constant bandwidth of
5 Mbits/s. We also repeated the experiments with RTTs
of {25, 100} ms. As shown, the advantage of using TCP

Cubic is not significant. For an RTT of 25 ms,∆c (Tinit)
shows approximately the same performance, except for some
performance gain when the loss rate increases to 8%. On
the other hand,∆c (frebuf ) slightly decreases at a low loss
rate. The performance of TCP Cubic is better when the delay
increases to 100 ms, but only less than 10 seconds of re-
duction in∆c (Tinit) and∆c (Trebuf ). Moreover,∆c (frebuf )
decreases when the loss rate is 2%, implying a reduction of
the rebuffering events. The TCP Cubic could maintain a larger
congestion window in the presence of occasional loss events.
Therefore, TCP Cubic receives a performance gain at loss rate
less than 6%. However, when the loss is too heavy, none of
the TCP variants can have a clear performance advantage.

VII. C ONCLUSIONS

In this paper, we studied how network path quality affects
QoE of HTTP video streaming. We addressed the problem by
dividing it into two subproblems: measuring the correlation
between the network QoS and application QoS, and measuring
the correlation between application QoS and QoE. In the
first subproblem, we proposed three application performance
metrics for HTTP video streaming and used both analytical
model and empirical evaluation to characterize their correla-
tion. In the second subproblem, subjective assessments were
conducted to correlate the MOS and the application QoS.

Our main finding is that network throughput is lowered by
packet losses and the RTT, thus increasing the rebuffering
frequency. We also identified the rebuffering frequency to
be the main factor responsible for the MOS variance. This
shows that the temporal structure, instead of spatial artifacts,
is also an important factor affecting the QoE. The QoE
could be improved by both network QoS or application QoS
management. Moreover, our approach allows us to inspect the
correlation between QoS and the QoE from different aspects,
and the approach could be easily applied to other application
environments.

ACKNOWLEDGMENTS

This work is partially supported by a grant (ref. no.
ITS/355/09) from the Innovation Technology Fund in Hong
Kong and a grant (ref. no. H-ZL17) from the Joint Universities
Computer Centre of Hong Kong.



0 2 4 6 8
0

10

20

30

40

Loss rate /%

∆ as
y(T

in
it) 

/s

 

 

Delay 25ms
Delay 100ms

(a) Initial buffering time.

0 2 4 6 8
0

0.1

0.2

0.3

0.4

Loss rate /%

∆ as
y(f

re
bu

f)

 

 

Delay 25ms
Delay 100ms

(b) Rebuffering frequency.

0 2 4 6 8
0

10

20

30

40

Loss rate /%

∆ as
y(T

re
bu

f) 
/s

 

 

Delay 25ms
Delay 100ms

(c) Mean duration of a rebuffering event.

Fig. 10: The APM differences under different asymmetric loss rates,bandwidth of 5 Mbits/s, and RTTs of{25, 100} ms.
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Fig. 11: The APM differences for two TCP variants under different round-trip loss rates, bandwidth of 5 Mbits/s, and RTTs of{25, 100} ms.
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