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_Abstract—HTTP video streaming, such as Flash video, is quality of service (QoS) and QoE [23], [29]. In this paper, we
widely deployed to deliver stored media. Owing to TCP's relable  construct a similar protocol stack shown in Figure 1, but our
service, the picture and sound quality would not be degraded focus is not on spatial (i.e., picture) quality at the apgiion

by network impairments, such as high delay and packet loss. .
However, the network impairments can cause rebuffering evets QoS layer. Instead, we proposdemporal structure of video

which would result in jerky playback and deform the video's as the application QoS for HTTP video streaming and use it
temporal structure. These quality degradations could advesely to analyze how the QoE is affected by the network QoS (i.e.,
affect users’ quality of experience (QOE). In this paper, we network path quality).

investigate the relationship among three levels of qualityof

service (QoS) of HTTP video streamingnetwork QoS, application

QoS, and user QoS (i.e., QOE). Our ultimate goal is to understand
how the network QoS affects the QoE of HTTP video streaming.
Our approach is to first characterize the correlation betwea

the application and network QoS using analytical models and
empirical evaluation. The second step is to perform subjeéte

experiments to evaluate the relationship between applicain QoS

and QoE. Our analysis reveals that the frequency of rebuffeng

is the main factor responsible for the variations in the QOE.

User QoS (QoE)
(MOS - Mean Opinion Score)

Application QoS ‘
(Application Performance Metrics)

Network QoS
(RTT, Bandwidth, Packet Loss---)

Fig. 1: Three levels of QoS considered in this paper.
I. INTRODUCTION

HTTP video streaming is widely used in delivering stored To characterize the relationship between the network QoS
multimedia content. In particular, Adobe’s Flash videoVlfL and application QoS, previous works [17], [27] performed
plays an important role in storing and streaming videos vanalytical studies to model the video streaming performanc
HTTP over TCP. YouTube is clearly the most successfuking TCP. An algorithm was proposed to estimate the receive
system [20] for video sharing and video-on-demand servibaffer requirement based on the model in [17]. Moreover,
based on FLV. This kind of “streaming” is different fromempirical studies were conducted to investigate how networ
the traditional UDP-based streaming offered in, for examplconditions affect the application QoS by recording appiica
Windows Media and Real Media, because it is not necessangtrics during the video playback [28], [16]. Their evalua-
for the video streaming server and client to synchronizgons, however, were only based on Windows Media. In this
Moreover, the client could watch an incompletely downlahdepaper, we adopt both analytical and empirical approaches to
video clip by its progressive download [4] technology. The study the correlation between the network QoS and appicati
reliable features of TCP also free the video codec fro@oS. In particular, we use a set application performance
handling packet losses, and the picture quality is not dkggta metrics (APM) for the study: (1) Initial buffering time, (2)
due to missing frames. Moreover, the web server does moean duration of a rebuffering event, and (3) rebuffering
require additional software or plugins to support the videfoequency. On the other hand, the network QoS can be mea-
streaming function. sured based on active measurement (e.g., OneProbe [19] and

However, TCP throughput could be reduced by varioduTube Video Speed History [2]) or passive measurement
kinds of impairments in network paths, such as packet logsg., [9], [7]).
and reordering. When the TCP throughput is lower than theMoreover, the QoE is usually expressed usingViaan
playback rate, the video playback will pause and wait faDpinion Score (MOS) of 1 (“Bad”) to 5 (“Excellent”) [14]. It
new video data. This disruption could greatly impact theould be obtained from subjective or objective measurement
user-perceived quality, which is also known as the qualfty 6TU-T Recommendation P.911 [15] provides the reference for
experience (QoE). In general, the QoE can be affected bgrrying out subjective measurement of audiovisual malteri
other factors, such as the quality of video and sound aadd VQEG [1] provides detailed test plans for evaluatingwid
the smoothness of playback, which could be cataloged irjaality in a subjective way. However, PSNR (Peak-Signal-to
a protocol stack to form a conceptual relationship betwe&vise-Ratio) and MSE (Mean Square Error), which are exam-



ples of the objective approach, only evaluate the spatialityu the ensuing discussion, we propose three APMs to quangfy th
of videos, therefore not suitable for HTTP video streaming. application QoS for HTTP video streaming. We then correlate
this paper, we perform subjective experiments to evaluate hboth QoS using analytical modeling and empirical evalumatio
the application QoS correlates with the QoE. Based on the o )
correlation results for the network and application QoS, we Application performance metrics
are then able to correlate the network QoS with QoE whichWe propose three APMs to quantify the application QoS
can be effectively visualized using a radar chart [8]. for HTTP video streaming, and these metrics represent the
Section Il first highlights the related works. Section lll-adtemporal structure of a video playback, regardless of tHewi
dresses the correlation between network QoS and applicatawntent.
QoS, whereas section IV measures the correlation betweeh. Initial buffering time (denoted by7;,.:): This metric
QoE and application QoS. In section V, we then measure the measures the period between the starting time of loading
correlation between the network QoS and QoE by combining a video and the starting time of playing it.
the two sets of correlation results and use a radar chart t@. Mean rebuffering duration (denoted byT,.y,r): This
visualize the results. We discuss other issues which magaff metric measures the average duration of a rebuffering
the QoE in section VI and finally conclude this paper in sectio  event.
VII. 3. Rebuffering frequency (denoted by f,ev.r): When the
amount of buffered video data decreases to a low value,
the playback will pause, and the player will enter into a
Previous works on correlating network QoS and QoE mainly  rebuffering state. This metric measures how frequent the
concern the picture/audio quality or VoIP performance. ¢fan rebuffering events occur.
and Wilkins [11] studied how the network loss and burst size Figure 2 plots the time series of the video playhead time
affected the video streaming quality, and subjective mesasu(i.e., the current position of the video) and the amount déwi
ment and MPEG-1 videos were used in their experimentsuffered byFlashTrack, our implementation of a customized
Verscheure et al. [26] investigated the impact of data lo§$ash video player which will be presented in section IlI-D.
on the quality of MPEG-2 video. Zhou et al. [30] used th&@he solid line refers to the video playhead time, and the
objective approach, E-model and the approach proposedditted line to the amount of buffered video. The circles on
[26] to measure how the perceived quality of VolP and MPEGhe dotted line correspond to the empty-buffer events which
2 video streaming were affected in IPv6. Tasaka and Watanalmeur whenever the amount of buffered video falls to a low
[24] performed subjective experiment and used a multiplalue. The video playback pauses until the buffer is refilled
regression approach to estimate the QoE, and their focus Wéwerefore, the video playhead time stops increasing for a
on the video and audio synchronization. Unlike these workseriod of rebuffering after the onset of an empty-bufferrgve
we study the correlation based on the temporal quality of
HTTP streaming videos.

II. RELATED WORK

Huynh-Thu et al. evaluated the correlation between the tem- @ . E“ﬁemd video
. L. o mpty—buffer Events
poral aspect and the perceived quality in [12], and proposed £ 75|\ == Video Playhead Time %
temporal quality metrics in [13]. The artifacts they addezs S S
are frame freezing and low frame rate. The occurrence of % g
these artifacts is due to the loss of video frames caused by T 50 -
. . > Q

packet loss events. However, lost packets will be retrattsdi g 15 &
in HTTP video streaming. o 25 ' E

Varga et al. [25] presented experiment results on how s
network QoS was correlated with user-perceived quality of > ]
Internet gpplications._They consider_ed various qppbm;l;i in- 00 50 100 150 200 0
cluding video streaming, but they did not quantify the resul Wall Clock Time /s

W‘_'ng etal. [28] proposgd performance metrics for UDP-basgg. 2: Time series of the video playhead time and the amount of vitita
Windows media streaming to evaluate the performance undeifered at the player.

different network conditions. However, the correlationtog
perceived quality and performance metrics was not reported ,
B. Modeling the APMs
I1I. N ETWORK QOS AND APPLICATION QOS We construct a simple model to correlate network QoS with

In this section, we investigate the relationship betweeghe three APMs. To simplify the model, we make the following
the network QoS and application QoS. Network QoS is tfessumptions:
network path performance between a server and a clientl. The network bandwidth, RTT, and packet loss rate are
including the round-trip time (RTT), packet loss rate, and constant during the video download.
network bandwidth. Application QoS, on the other hand,2. The client does not interact with the video during the
reflects the performance from an application point of viaw. | playback, such as pausing and forward/backward seeking.



3. The average bitrate of cross traffic between the server andWhen the average TCP goodput is less than the video’s
the client is constant. bitrate, we will encounter.,..;,,; empty-buffer events during

4. The fluctuation of video bitrate is not large. the video playback given by Equation (5), whdrfeis the

5. The video buffer must be filled up before exiting theemaining length of the video (in seconds) upon the onset
initial buffering and rebuffering states, and its size isf the first empty-buffer event, antl..;.s is the length of
smaller than the video’s length. the played video (in seconds) before the next empty-buffer

1) Initial buffering time and mean rebuffering duration: event. Whens < A (i.e., 8/ = 0), the maximum rebuffering

The estimates (in seconds) of the initial buffering time anfdequency is given by

mean rebuffering duration can be computed by 1 I — B
rebu = S |l=— 8
T = BraxA 1) e frevns) ! {Bfull - Bempty] ®)
B _ From Equation (8), the maximum rebuffering frequency only
T . - 0, if 5> )‘ 2) depends on the video length and buffer size, and is indepénde
rebuf Buy — B A th
(Bfuil = Bempty) A/ 8,  otherwise, of the TCP goodput.

where By,,;; is the size (in seconds of video) of the vide
buffer, Bempty (< Bpruu) is the remaining length of the

buffered video that triggers an empty-buffer evektis the We have implemented a customized Flash video player,
video’s bitrate (in bits/s), and is the average TCP goodput”amed FlashTrack, to compute the actual APMs based on the

(in bits/s) for the video streamin@ —0for g > ) Status of video playbacks obtained from the client. FlaabRr

because the rebuffering event occurs only when the averdfieS the FlasiNet streamclass to record the buffer status.

TCP goodput is less than the video’s bitrate. and current playhead time every 0.25 seconds, and special
To estimate the average TCP goodput, we employ tR¥ENtS. such as empty buffer. We have used the property

throughput model for a TCP Reno flow [21], given by Buf f er Ti me in the Net st r eam class.to adjust the size qf
the player buffer. The buffer must be filled up before startin

T. Measuring the APMs from clients

s(p) = 1 ) the playback or after the rebuffering event. In our experitag
R 232 + Tymin (1’ 3 %) p(1+32p2) we s_et_Buf ferTimeto 3 seconds, because we have observed
that it is the value possibly used by YouTube.

wheres(p) is the packet sending rate per RTTis the packet p Tegthed experiments
loss ratep is the number of packets that are acknowledged byFigure 3 shows the testbed setup for evaluating our model

an ACK, R is the RTT, and[j is the retransmission timeout. . 2
. for the correlation between network QoS and application.QoS
As a result, the estimated average TCP goodput for the given . i
. : web server was installed with Ubuntu 10.04 (kernel 2.6.32-
RTT and loss rate i = s(p) x M x 8/R, whereM is the . . ;
. 22) and Apache 2.2.14 to host video clips for a client to
size of the data packets sent from the server.

download and play using FlashTrack. The client ran Ubuntu

Wh”e the throughput model can estimate the TCP pa_cl&g. 4, Firefox 3.6.8, and Flash Player 10.1. The TCP congesti
sending rate, the TCP goodput is also affected by the availab " . . : !
oidance algorithm for both machines were configured as

bandwidth which affects both the packet loss rate and RT, y . .
. . eno.” A Click router [18] was installed between the server
experienced by the TCP flow. In particular, when the packet . . .
. ; . . and the client to emulate different network bandwidths kpac
sending rate is greater than the available bandwidth, tite ng
. . . 0ss rates and RTTSs.
work path will become congested, thus increasing the quguel
delay of TCP packets or even discarding some packets due BW RTT

to buffer overflow. To compute the goodput, we resort to R Packet Loss

OneProbe [19] to measure the RTT and loss rate for the o @
network path with a particular bandwidth configuration. @ \] U E
Browser
er

2) Rebuffering frequency: Given a video’s length of (in Client Click Rout Web
. . . . IC ou
seconds), the rebuffering frequency estimate is given by Cross Traffic Smk Cross Traffic Source o
N — 0, it 5= ?" 4 Fig. 3: A testbed setup for evaluating the correlation between odtoS
frebuf n /1 ( ) .
rebuj/ ,  otherwise, and application QoS.
where
v Table | lists the network QoS parameters emulated by the
Npebuf = { 2 -‘ , (5) Click router. The bandwidth was chosen between 1 Mbits/s
rebuf and 15 Mbits/s to emulate the bandwidth of common home
' = 1—Bypu/ (1 — é) (6) users, while 100 Mbits/s was chosen to serve as a control.
A)7 The choices for RTT represent the local, inter-continentl a
b _ (B B ] B ) transoceanic paths. We also varied the round-trip paclest lo
rebuf = (Bru = Bempiy) / (1= SV rate from 0% to 8% to investigate the impact of packet



loss. Moreover, we introduced background cross traffic & th Figure 5 shows the cumulative distribution function (CDF)
forward path of the web server using D-ITG [5]. The crossf relative errors between the APM estimates and actual
traffic was a TCP flow with packet size drawn from ParetdPMs. We compute the relative errors by — x)/x, where
distribution of shape 1.2 and exponential inter-departime & and x are the APM estimates and the actual APMs,
with mean 500 ms, and had the average bitrate of around I@8pectively. As shown, more than 90% of the rebuffering
kbits/s. frequency estimates have errors less than 50%, while over
75% of rebuffering duration estimates and over 60% of ihitia

TABLE I: The network QoS parameters emulated by the Click router. buffering time estimates have errors less than 50% Theﬂarg

Network QoS Parameters error in the initial buffering time estimates is probablyecio
Network bandwidth (Mbits/s) 1, 5, 10, 15, 100 a small congestion window at the beginning of the connection
RTT (ms) 0, 25, 50, 75, 100 which limits the packet sending rate. However, the TCP

Round-trip packet loss rate (%) 0,2, 4,6, 8 throughput model assumes that the flow has already been in

the steady state, thus overestimating the TCP goodput.
For every set of parameters, we ran FlashTrack from the

client to download a video clip from the web server for three 1
trials. The browser’'s cache folder was first cleared, and the
private mode of the Firefox was used to ensure that the video 0.8l
will not be saved to the local cache after quitting the brawse
The video clip was extracted from the movie tailer of “The o6l ""
Twilight Saga: New Moon” which belongs to the type of &)
“Movies, movies tailers” stated in the VQEG test plan. Table ~ © g 4/
Il summarizes the specification of the video clip.
0.2t
TABLE II: A specification of the video used in the testbed experiments a
QOE assessment. 9
-1.2 -0.5 0 0.5 1.2
Iltems Parameters Relative Error
Video length 87 seconds ) ) )
Video format  H.264 Fig. 5: The CDF of relative errors between the APM estimates andahctu
Audio format  ACC APMs.
Resolution 864480
File size 10.6 MBytes

Frame rate 23.97 fps We have further investigated Fhe rebuffering frequency by
File format FLV using our analytical model. As will be seen later, the redwuff
ing frequency is the major factor affecting the QoE. Figure

Figure 4 shows the histograms of the actual APMs meg_shows the rebt_Jffering frequenqy for different buffer size
sured by FlashTrack under different network QoS parameté&ad goodput-to-bitrate ratig3( \) with I = 87 seconds (same
specified in Table I. The results are the averages from thi@® the length of the video clip for the previous experiment).
independent trials. The bars with different grey levelsreep AS Shown, the rebuffering frequency decreases with and
sent different emulated bandwidths. The x-axis is the deldysui» Pecause a small buffer is used up quickly especially for
whereas the y-axis is the packet loss rate. As shown in Fig@é&mall TCP goodput (or large bitrate). Wheh.,; is greater
4, all three APMs increase with the packet loss rate and delfJ2n 10 seconds, the rebuffering frequency stays at a los¥ lev
but decrease with the network bandwidth. As shown in Figurf&/en if3/X is small), because the maximum rebuffering event
4(a) and 4(c), the distributions GF,,,;; and Ty.p,; exhibit 1S bounded by the video length.
similar patterns. Moreover, Figure 4(b) shows thfat,, s is
significantly reduced by the network path with high bandtvidt
and low packet loss ratef,..;,; reaches near the maximum We have performed a subjective assessment to measure QoE
value, which is obtained from Equation (8), when the delay &f Flash video perceived by users and to quantify how the
larger than 50 ms with loss rate greater than 4%. QoE is influenced by the application QoS (i.e., the APMs).

We now compare the three APMs estimated by our modgb this end, we have implemented a platform using Flash
with the actual APMs obtained by FlashTrack. To obtain the emulate video playback under various levels of APMs as
(round-trip) packet loss rate and RTT for Equation (3), we rsshown in Table Ill. We divide each APM into three levels (low,
OneProbe [19] from the client to measure the network pathedium, and high) which are based on thé"2%0", and
between the web server and itself. OneProbe was execul&d percentiles of the actual APMs (obtained by FlashTrack)
three seconds after launching FlashTrack with a periodibgr reported in section IlI-D.
rate of 2 Hz for 60 seconds. Based on OneProbe measuremenistead of delivering the video in real time, we simulate the
we computed the median RTT and average packet loss ragbuffering events by pausing and resuming the video, durin
which are the parameters for estimating the TCP goodput.which a message “buffering ...” and the current buffering

IV. THE QOE MEASUREMENT



[11 Mbit/s []1 Mbit/s [11 Mbit/s
5 Mbits/s []5 Mbits/s 15 Mbits/s
15 Mbits/s 15 Mbits/s 15 Mbits/s
100 Mbits/s| 100 Mbits/s 100 Mbits/s|

64 2N Delay /ms 4, Delay /ms R
Loss rate /96 0 Lossrate /% © O Loss rate /%° 0
(a) Tinit- (b) f'rebuf- (C) T’rebuf-
Fig. 4: The three APMs under different network path quality.
15 video playback was randomly shuffled by a pseudo random

function (Vat h. randomin Flash) to mitigate the possible
ordering bias resulted from the watching sequence.

After excluding three outliers who produced unreliable
scores, we have successfully examined ten subjects: seven
of them are male and three of them are female. Their ages
ranged between 23 and 35. All of them were non-experts in
evaluating video quality. For each combination of the APM
levels, we use the scores obtained from the ten subjects to
compute a MOS and therefore obtain 27 MOSes to represent

15 the QOE of the Flash video. An ANOVA analysis reveals that
the rebuffering frequency is the only main factor influemcin
Fig. 6: The rebuffering frequency estimates for a 87-second vidipouader the MOS. Users are generally annoyed by the video pausing
different buffer sizes and goodput-to-bitrate ratios. due to the rebuffering events. Moreover, there is no inteac
of variables. As a result, a higher rebuffering frequencl wi
TABLE Ill: Three levels of application performance based on the APMSgeneraIIy lower the user-perceived quality. The effectshef

o Frebus

APMs initial buffering and mean rebuffering duration, on the esth
Level Tinit Frebuf Trcbuf hand, are not significant, because users are generallyagyilli
Low 0 — 1 seconds 0 — 0.02 0 — 5 seconds to tolerate a longer start-up delay for a better video-wiatgh
Medium 1 -5 seconds 0.02-0.15 5— 10 seconds experience.
High > 5 seconds > 0.15 > 10 seconds

We have performed a regression analysis to acquire a
relationship between QoOE and application QoS. As shown
in Equation (9), the coefficients of the three APMs are all

progress are shown on the interface. The advantage of thigyative, thus a higher level of APMs giving a lower MOS.
approach (over generating video playback in real time) is

to minimize the variations (e.g., network conditions) amon MOS = 4.23 — 0.0672L; — 0.742L r — 0.106L¢y,  (9)
different subjects during the QoE measurement. To minimigghere 1,,,, Ly, and Ly, are the respective levels dF,,;,
the subjective bias, the player’s interface, similar to owmn Frebusr @NdTrepu . We use 1, 2, and 3 to represent the “low”,
video sharing web sites, includes a progress bar showing #gadium”, and “high” levels, respectively.
video playhead time, buffered video length, and video'gitn o minimize the variability caused by the video content,
Each subject participating in the subjective assessmesit Wily one video clip is used in the subjective experiment. We
required to fill in their basic personal information (e.gender performed pilot studies on four other video clips of differe
and age) and watched the same video clip specified in Tagtghtent__sports game, news, TV comedy show and music
Il for 30 rounds, which include all the possible combinationyideo. Figure 7 plots the MOS against the three levels of
of APM levels §° = 27) and three replications to validaterepuffering frequency. The result shows that the level of
the reliability of the subjects’ scoring. The replicationsre  repuffering frequency is negatively correlated with the $10
based on the APM levels randomly selected from all the Zhich is consistent with our previous findings. Quantifying

possibilities. After each round, the subject was asked ¥e githe correlation of various video types will be our future Wor
a score immediately, and the whole experiment did not last

more than an hour to avoid burdening the subject. Due to

this time limitation, the duration of each round was limited V. CORRELATING QOE WITH NETWORK QOS

to 120 seconds. Therefore, the subjects may not watch théVe now describe our methodology for correlating QoE
video completely in every round. Finally, the sequence of HTTP video streaming with network QoS. Specifically,
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we first estimate the three APMs for a given network QoS Delay Oms
(measured by OneProbe) using our model presented in section  Fig. 8: The radar chart mapping network QoS with QoE.

[1I-B. With the three APM estimates, we then look up their

levels according to Table Il and finally obtain the corresgo

ing MOSes to represent the user-perceived performance unBe Applications

the network path quality. Moreover, we use the radar chartwe demonstrate how the quality of HTTP video stream-
proposed in [8] to inspect the correlation between the Qak ajhg can be predicted based on network QoS obtained from
network QoS. For the network QoS parameters, the bandwigjfi recent Internet measurement study. We have conducted
varies from 1 Mbit/s to unlimited, delay from 0 ms to 100 mMSpneProbe measurement from a probing machine located at a

and packet loss rate from 0% to 8%. local university in Hong Kong to the Lenovo web server in
China between 26 August 2010 to 7 September 2010 (UTC).
A. Misualizing the correlation Since OneProbe uses HTTP requests as probe packets to elicit

) HTTP data response packets from remote web servers, we
Figure 8 shows the radar chart that maps network QOS dQnet that OneProbe can observe similar network pathtguali

QoE. The MOS is divided into three levels — greater than 1, herienced by the HTTP video streaming traffic. During the

and 3, which are represented using different color levet® T,e45rement period, the measuring node performs one-@ninut
network path metrics with the same MOS level are boundes},aprobe measurement every ten minutes.

into areas. Sectord B, BC, andC A fix one of the network Figure 9 shows the time series of the median RTT and

path metrics to the “best” value — unlimited bandwidth, Z€"Qverage round-trip packet loss rate obtained from the two-
packet delay and zero packet loss rate, respectively. THe¥ 0t eek network measurement. The solid (blue) line is the RTT,
two metrics, on the other hand, vary within the sector. The,q the green lines close to the x-axis is the average raimd-t
three axes, B, andC' in the chart extended from the centef, 5 et |oss rate. The grey-scale spectrum at the background
of the circle vary one of the network metrics from the best g, ,vs the MOS estimated by our model. The lighter color
the worst. Moreover, the values of axés B and C' belong i, the spectrum represents a higher MOS score (i.e., better
to sectorsdd’, ec’, and ff’ respectively. For example, in 5oE) for users in watching videos hosted by the web server.
sectorAd’, while the bandwidth is unlimited, the packet 10S$y,e observe diurnal RTT and loss rate patterns throughout
rate increases from 0% to 8% in clockwise direction and thge measurement period. Moreover, the MOS is dominated
packet delay increases from the center to the edge of the chgg 16 packet loss rate, because the dark grey areas coincide
Therefore, we could observe how the two network metriGRainly with higher packet loss rate, particularly on 26 Asgu
interact with each other. and 5 September when the packet loss rate reached around
As shown in Figure 8, both packet loss rate and packet delgy,  On the other hand, only sparse grey lines appear in the

are the dominating factors affecting the QoE. Sectd of RTT inflation periods, thus implying that the users could sti
the chart, which varies the packet loss rate and packet delgyrceive an acceptable level of video quality.

is mainly a dark color region (i.e., a low MOS). This effect is

also reflected in the large light color regions shown in sescto VI. DiscussION

CA (with zero packet loss rate) andC (with zero packet In the previous sections, we consider the round-trip packet
delay). However, a very small RTT (packet loss rate) couldss rate for evaluating the application QoS. However, ngtw
partially compensate the low QoE due to the packet loss (highth asymmetry is a common phenomenon in the Internet, and
packet delay). For example, a small region of semi-lighocolit introduces different impacts on the TCP performance [6].
region in sectorAd’ could still be seen even for high packetVe therefore investigate the effect of packet loss asymymetr
loss rate. on the performance of HTTP video streaming by evaluating
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the APMs measured by FlashTrack under our testbed. To tigbic is not significant. For an RTT of 25 ma. (Tini)
end, we configured the testbed with network bandwidth of $hows approximately the same performance, except for some
Mbits/s, RTTs of{25,100} ms, and packet loss rate betweeperformance gain when the loss rate increases to 8%. On
0% and 8% on a unidirectional path (forward or reverse pathfie other handA. (fresuy) Slightly decreases at a low loss
while keeping the loss rate in the opposite direction to zen@te. The performance of TCP Cubic is better when the delay
Let A(f,r) be the measured APM under forward-path aniticreases to 100 ms, but only less than 10 seconds of re-
reverse-path packet loss ratesfadndr, respectively. We com- duction inA. (Ti,i) andA. (Trepus ). Moreover, A, (frepur)
pute the APM difference\,s, (A (p)) = A(p,0) — A(0,p) decreases when the loss rate is 2%, implying a reduction of
for a loss ratep. the rebuffering events. The TCP Cubic could maintain a large
Figures 10(a)-10(c) show the values df,,, (T;,;t), congestion window in the presence of occasional loss events
Agusy (frebus), and Agsy (Treouyr) for different packet loss Therefore, TCP Cubic receives a performance gain at loss rat
rates. The solid line and the dashed line show the resukss than 6%. However, when the loss is too heavy, none of
for RTTs of 25 ms and 100 ms, respectively. As shown, ttibe TCP variants can have a clear performance advantage.
APM differences are all positive, meaning that the forward-
path packet loss introduces a more significant impact on the VII. CONCLUSIONS

application QoS. When packet loss occurs in the forward,path In this paper, we studied how network path quality affects

the corresponding_video data has to be retransmitted frem OF of HTTP video streaming. We addressed the problem by
;Sne:\r/]ir'r:,l;sreedl;f%ngf:gggngig|0 O&%ukgswz\éekgtsa;fgg tlo e|\S/iding it into two subproblems: measuring the correlatio

. P y P %etween the network QoS and application QoS, and measuring
client, and a lost ACK packet could be compensated by a s e correlation between application QoS and QOE. In the
ceeding ACK packet with a higher acknowledgement numb?r. '

Furthermore, the APM difference is more significant under thIrSt _subproblem, we proposed 'Fhree application perforraa_\nc
. o metrics for HTTP video streaming and used both analytical
higher RTT as a result of slower packet retransmissions. . . . .
We al ider the effect of diff t TCP ant model and empirical evaluation to characterize their datre
€ aiso consider the eflect of dieren variants ol ‘n the second subproblem, subjective assessments wer

the application QoS. While TCP Reno considered in thceonducted to correlate the MOS and the application QoS.

previous sections is supported by most operating systems L .
TCP Cubic [10] and Compound TCP [22] are the default Our main finding is that network t_hrough_put is lowered b_y
. : . ; . cket losses and the RTT, thus increasing the rebuffering
congestion avoidance algorithms used by Linux and Micrtos . . .
Windows, respectively. These congestion avoidance algos requency._We also |dent|f|§d the rebuffering frgquency tp
' ' pe the main factor responsible for the MOS variance. This

could improve the faimess and throughput by better esemaspows that the temporal structure, instead of spatialaatsf

of the TCP congestion window. Previous work [3] shows tha : :
. IS also an important factor affecting the QoE. The QoE
TCP Cubic outperforms Compound TCP and New Reno In . L
. : ._—could be improved by both network QoS or application QoS
terms of goodput. To investigate the effect of TCP variants .
. . nianagement. Moreover, our approach allows us to inspect the

we carried out another set of experiments under the same : .
c?rrelatlon between QoS and the QoE from different aspects,

testbed except that TCP Cubic is used for both the cliennd the aporoach could be easily aoplied to other apolicatio
and server. We compare the performance by computing the bp Y app pp

APM differenceA. (A) = A.— A,, whereA,. and A, are the environments.
respective APMs measured by FlashTrack under TCP Cubic
and TCP Reno.

Figures 11(a)-11(c) show the APM differences of various This work is partially supported by a grant (ref. no.
packet loss rates and RTTs under a constant bandwidthl58/355/09) from the Innovation Technology Fund in Hong
5 Mbits/s. We also repeated the experiments with RTKong and a grant (ref. no. H-ZL17) from the Joint Universtie
of {25,100} ms. As shown, the advantage of using TCEomputer Centre of Hong Kong.
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