THE HONG KONG POLYTECHNIC UNIVERSITY

Department of Computing

Computer Programming (ENG236)   Programming Test 2
A. Instructions

1. Log in your computer using the account name group3 and password group130 under CF004 - xx (This Computer), where xx is a number.  Do NOT log in to your usual account.  You should be able to find the folder e:\eie222\group3\ in your computer.  Under this folder, create the folder yyyyyyyy, where yyyyyyyy stands for your student ID number (omitting the last letter ‘D’).  All your projects should be stored under this folder, i.e. e:\eie222\group3\yyyyyyyy\.  Note: this folder location MUST be strictly followed.  Do NOT use the default folder suggested by Visual Studio on creating projects.
2. You must write down your full name and student ID on the first line of each cpp file in a comment. Marks will be deducted if you fail to do so.

3. Except for your PC, no other electronic devices (including your mobile phones) and software are allowed in this test. You must turn off your mobile phone during the test.
4. Any documents/books in hard copies could be consulted during the test, but you cannot share them with others.

5. What to submit:

· Part 1: Only the pt2part1.cpp file
· Part 2: A zipped file (named pt2part2a.zip) for the project folder that contains the main() function in (A) and a zipped file (named pt2part2b.zip) for the project folder that contains the main() function in (B)

· Part 3: Only the pt2part3.cpp file
6. Starting at around 6:20pm, you could upload your files to the WebCT which will stop accepting submission at 6:30pm (the WebCT time). No extension will be provided.
B. The Programming Task

A GROCERY_LIST object consists of a number FOOD_ITEM objects. An implementation of the GROCERY_LIST object is to use an array of pointers created in the heap and each pointer is used to point to a FOOD_ITEM object which is also stored in the heap. Moreover, we may create a GROCERY_LIST object in the heap. The figure below depicts the relationship among the GROCERY_LIST object, FOOD_ITEM objects, array of pointers, and pointer to a GROCERY_LIST object.

[image: image1.emf]STACK

HEAP

FOOD_ITEM 

objects

GROCERY_LIST 

object

An array of pointers to 

FOOD_ITEM objects

A pointer to a 

GROCERY_LIST 

object


Consider the classes FOOD_ITEM and GROCERY_LIST below:

// A class for food items put on a grocery list

class FOOD_ITEM

{

public:

      // constructor


FOOD_ITEM(char name[], unsigned int aPrice) 

      {

          strcpy_s(itemName, name);

          price = aPrice;

      };    

      // set the name of a food item


void setName(char name[]) 

      {

          strcpy_s(itemName, name);

      };   


      // return the name of a food item

      char *getName() 

      {

          return itemName;

      };                      

      // set the price of a food item


void setPrice(unsigned int aPrice) 

      {

          price = aPrice;

      };   


      // return the price of a food item

      unsigned int getPrice() 

      {

          return price;

      };      

      // print the name and price of a food item

      // use a tab to separate the name and the price.

      void printItemNamePrice() const 

      {

          cout << itemName << '\t' << price << endl;

      };                  

private:

      // the food item's name


char itemName[80];  

      // the food item’s price

      unsigned int price;                                     

};

// A class for grocery lists

class GROCERY_LIST 

{

public:

   // A constructor to set numberOfFoodItems to 0 and to create in the 

   // heap an array of 100 pointers to FOOD_ITEM objects. The pointer 

   // to the array is stored in pArray.

   GROCERY_LIST();

   // A destructor to remove all the heap memories occupied by a    

   // GROCERY_LIST object and all the FOOD_ITEM objects pointed to 

   // by a GROCERY_LIST object.

   ~GROCERY_LIST();

   // Add a FOOD_ITEM object to the next available slot (in the 

   // array of) a GROCERY_LIST object. The first item is stored in 

   // the first element of the array. The FOOD_ITEM object must be 

   // created first and then stored in a GROCERY_LIST object. The

   // function must first check whether there is enough space to

   // add the new food item. If not, return a simple error message:

   // “Error: Not enough space for this request!”

   void AddFoodItem(FOOD_ITEM * newItem);

   // Print out the names and prices of all FOOD_ITEM objects 

   // stored in a GROCERY_LIST object. Each item is printed on 

   // a new line.

   void PrintGroceryList();

   // Get the number of FOOD_ITEM objects stored in a 

   // GROCERY_LIST object.

   int GetnumberOfFoodItems() const;

private:

   // the number of FOOD_ITEM objects stored in the GROCERY_LIST 

   unsigned int numberOfFoodItems; 

   // a pointer to the first element of the array created in the heap.

   FOOD_ITEM **pArray;      

}; 

Part 1
Start a new project and create a “pt2part1.cpp” file for this part.  In this project, your task is to implement all the public functions for the GROCERY_LIST class according to the specifications given in the comments. To save your time, you don’t need to include the comments given above. You must use the main() function below to test your implementation and must put all the codes in “pt2part1.cpp”.
int main()

{

   GROCERY_LIST *pGList = new GROCERY_LIST;

   pGList->AddFoodItem(new FOOD_ITEM("Rice", 10));

   pGList->AddFoodItem(new FOOD_ITEM("Beef", 20));

   pGList->AddFoodItem(new FOOD_ITEM("Cake", 30));

   pGList->PrintGroceryList();

   delete pGList;

   return 0;

}

The output will look like:

[image: image2.jpg]There are 3 itens on the grocery list:

Rice 10
Bocf 20
iCake 38

[Fress any key to continue . .




------------------------------- PASS line --------------------------

Part 2


Based on what you have done in Part 1, 
A. Create a new project for building a static library “LibFood.lib” only for the class FOOD_ITEM. After successfully building the library, create another new project “pt2part2a” that contains the codes in Part 1, except for the FOOD_ITEM codes, to test the library.
B. Create a new project for building a static library “LibGrocery.lib” only for the class GROCERY_LIST. After successfully building the library, create another new project “pt2part2b” that contains only the main() function in Part 1 to test the library.

-------------------------------CREDIT line -------------------------
Part 3
A.  Going back to Part 1,  besides using the codes in Part 1, we introduce a new public member function for the class GROCERY_LIST:

   // Delete an existing FOOD_ITEM object stored in the posth element
   // in the array. If the specified FOOD_ITEM object does not exist,

   // print out a message: “Error: the item does not exist!”. 

   // Otherwise, after the deletion (and removing its memory from

   // the heap), move the last FOOD_ITEM object to the posth element,

   // so that there will not be a gap in the array. Finally, update 

   // the number of food items on the grocery list.

   void DeleteFoodItem(unsigned int pos);

Implement the new function in a new project in a single cpp file “pt2part3.cpp”. You must check your codes using the main() function below:

int main()

{

   GROCERY_LIST *pGList = new GROCERY_LIST;

   pGList->AddFoodItem(new FOOD_ITEM("Rice", 10));

   pGList->AddFoodItem(new FOOD_ITEM("Beef", 20));

   pGList->AddFoodItem(new FOOD_ITEM("Cake", 30));

   pGList->PrintGroceryList();

   // test 1

   pGList->DeleteFoodItem(5);

   cout << "There are " << pGList->GetnumberOfFoodItems() 


   << " items on the grocery list:" << endl;

   pGList->PrintGroceryList();

   // test 2

   pGList->DeleteFoodItem(0);

   cout << "There are " << pGList->GetnumberOfFoodItems() 


   << " items on the grocery list:" << endl;

   pGList->PrintGroceryList();

   // test 3

   pGList->AddFoodItem(new FOOD_ITEM("Coke", 40));

   cout << "There are " << pGList->GetnumberOfFoodItems() 


   << " items on the grocery list:" << endl;

   pGList->PrintGroceryList();

   pGList->DeleteFoodItem(2);

   cout << "There are " << pGList->GetnumberOfFoodItems() 


   << " items on the grocery list:" << endl;

   pGList->PrintGroceryList();

   delete pGList;

   return 0;

}
The output will look like:

[image: image3.jpg]here are 3 items on
Rice 1

oot 20

ake 30

[There are 3 items on
Rice 10
Boof 20

ake 36
iThere are 2 items on
Cake 30
Beef 20
There are 3 items on
ake 30

of 20

oke 48

here are 2 items on
ake 30

of 20

not
the

the

the

the

grocery

grocery

grocery

grocery

grocery

ess any key to continue . .

Tist:

list:

list:

list:

list:




B. Recall that we have not tested the error message in AddFoodItem(). Introduce additional codes after test3 in the main() function above to validate that AddFoodItem() will print out the error message if attempting to add a new food item to a full array. 
--------------------------DISTINCTION line ----------------------
--- END ---

5

_1320497890.vsd
STACK


HEAP














FOOD_ITEM objects


GROCERY_LIST object


An array of pointers to FOOD_ITEM objects


A pointer to a GROCERY_LIST object



