
1

THE HONG KONG POLYTECHNIC UNIVERSITY
Department of Electronic and Information Engineering

Computer Programming (ENG236) - Homework 3

A. By using Visual Studio .NET, implement all member functions of the class RecordManager based on the class

specification as given below. Note that the class RecordManager should instantiate an array of objects of class
Record in the heap. The relationship between RecordManager and Record is shown in the diagram below:

The implementation of the class Record has been given below. You are only required to implement all member
functions of the class RecordManager. When you have finished implementing those member functions, you
should develop a console application such that it will:
1. Create an object of the class RecordManager in the heap with input parameters to be your surname (e.g.

Chan) and the maximum number of Record objects (e.g. 10) you want to create in the system.
2. Call the member functions of RecordManager one by one so that the correct implementation of these

member functions can be shown. You can call the functions any way you want as long as they can show
their implementation meets all the requirements in the specification.

// The classes Record and RecordManager are defined below.
// The class Record has been implemented. You are required to implement the
// member functions of RecordManager
// (Words started with $ refer to the member variables as stated in the
// private sections)

class Record
{
public:
 Record() {vacant = true;}
 // When an object of Record is instantiated, do the following
 // $vacant = true
 char * getID() {return studentID;}
 // Return the string $studentID[]
 int getmarks() {return marks;}
 // Return the student's $marks
 bool getvacant() {return vacant;}
 // Return the state of $vacant, i.e. true or false
 void setID(char * id) {strncpy(studentID,id,10);}
 // Copy the string id[] to $studentID[]
 void setmarks(int mk) {marks = mk;}
 // Set $marks = mk
 void setvacant(bool vac) {vacant = vac;}
 // Set the state of $vacant = vac

HEAP

STACK

Record

RecordManager

A pointer of
RecordManager keeps
the address of the
array of objects of
class Record in the
heap

2

private:
 char studentID[10]; // Keep the studentID of a student
 int marks; // Keep the marks obtained by a student
 bool vacant; // True if the record is empty, false if
 // the record is used
};

class RecordManager
{
public:
 RecordManager(char * name, int num);
 // When the object is instantiated, do the following
 // Copy the string name[] to $userName[]
 // $recordNum = num
 // Create an array of num objects of the class Record in the heap.

// The content of the class Record can be found above.
 // The pointer of the array should be saved in $pRecordArr

 ~RecordManager();

// Delete all records in the heap

 bool findRecord(char *id);
 // Find if a non-empty Record object with $studentID[] the same as id[].
 // If yes, return true, else return false

 int addRecord(char *id, int mk);
 // Find if a non-empty Record object with $studentID[] the same as id[].

// If yes, copy mk into the $marks field of that Record object.
 // If no, find an empty Record object (with $vacant flag equal to true).

// Set the $vacant flag of that Record object to false
// Copy id[] into the $studentID[] field of that Record object
// Copy mk into the $marks field of that Record object
// Return -1 if no empty Record object can be found, return 1 if an old
// Record object is updated; otherwise return 0

 bool delRecord(char *id);
 // Find a non-empty Record with $studentID[] the same as id[].

// Set the $vacant flag of that Record object to true
// Return false if there is no Record object having $studentID[] the same
// as id[]; otherwise return true

 int showRecord(char *id, int *pmk, int arrIndex);

// Return by reference the content of Record[arrIndex] through the two
// input parameters id and pmk, i.e. to show the values of $studentID[]
// and $marks of Record[arrIndex] using pass by reference.
// If Record[arrIndex] is vacant, return -1; else return 0

private:
 char userName[80]; // Store the username
 int recordNum; // Keep the number of records
 Record * pRecordArr; // Keep the pointer that points to the array in
heap
};

B. By using Visual Studio .NET, develop a static library, namely RecordManager.lib, based on the class

specification as given in part A.

C. By using the static library you developed in part B, develop a console application in Visual Studio .NET such that

it will first give a welcome message to the user and ask the user to enter his/her surname as well as the maximum
number of records to be kept in the system. It will then repeatedly show the following menu:

 Student record management system:
1. Add Record
2. Edit Record

 3. Delete Record
 4. Show All Records

3

 5. Quit

 If the user chooses 1, your program should allow the user to enter a studentID number (e.g. 01234567d)

and his/her marks (e.g. 80).
 If there is no record in the system with the same studentID, a new record will be created and these

data will be saved into the record. A message “The record of studentID is created.”
should be shown, where studentID is the input of the user.

 If there is no empty record to save the data, a warning message “No empty record is found.
Please free up a record to store the data.” should be shown.

 If there is already the record of studentID, do NOT update the marks but a warning message “The
record of studentID exists.” should be shown.

Get back to the main menu after finishing the above operation.
 If the user chooses 2, your program should allow the user to enter a studentID number (e.g. 01234567d)

and his/her marks (e.g. 80).
 Your program will compare the number with all records in the system. The one that matches will

have its marks modified with the marks the user entered. A message “The record of
studentID has been modified.” should be shown, where studentID is the input of the
user.

 If no matching is found, a warning message “The record of studentID is not found.”
should be shown, where studentID is the input of the user.

Get back to the main menu after finishing the above operation.
 If the user chooses 3, your program should allow the user to enter a studentID number.

 Your program will compare the number with all records in the system. The one that matches will be
deleted. A message “The record of studentID has been deleted.” should be shown,
where studentID is the input of the user.

 If no match is found, a warning message “The record of studentID is not found.”
should be shown, where studentID is the input of the user.

Get back to the main menu after finishing the above operation.
 If the user chooses 4, your program should show the data of all records in the following format:

StudentID Marks
 01234567d 50
 02345678x 75
 04123456x 48
 05123456d 60
 : :
 : :

Get back to the main menu after finishing the above operation.
 If the user chooses 5, a message “Goodbye xxxxxxxx!!!”, where xxxxxxxx is the surname of the

user, should be shown. All the data that have been created in the heap should be deleted; and then the
program will quit.

 When doing the computation as mentioned above, it is compulsory to use the member functions of your library

whenever applicable.

Instructions

1. Use a new project for each question. It means that your files should be contained in 3 projects.
2. Try to explain your program as clear as possible using comments.
3. The program structure will be an important part. Never try to write your program with a single main() function.

