THE HONG KONG POLYTECHNIC UNIVERSITY
Department of Electronic and Information Engineering

Computer Programming (ENG236) - Homework 3

A. By using Visual Studio .NET, implement all member functions of the class RecordManager based on the class
specification as given below. Note that the class RecordManager should instantiate an array of objects of class
Record in the heap. The relationship between RecordManager and Record is shown in the diagram below:

Record

\ﬁ\\

A pointer of
P - HEAP

RecordManager keeps—
the address of the \
array of objects of
class Record in the
heap

™~ RecordMdnager

STACK

The implementation of the class Record has been given below. You are only required to implement all member

functions of the class RecordManager. When you have finished implementing those member functions, you

should develop a console application such that it will:

1. Create an object of the class RecordManager in the heap with input parameters to be your surname (e.g.
Chan) and the maximum number of Record objects (e.g. 10) you want to create in the system.

2. Call the member functions of RecordManager one by one so that the correct implementation of these
member functions can be shown. You can call the functions any way you want as long as they can show
their implementation meets all the requirements in the specification.

/1 The classes Record and RecordManager are defined bel ow.

/1 The class Record has been inplenented. You are required to inplenent the
/1 menber functions of RecordManager

[l (Wrds started with $ refer to the menber variables as stated in the

/1 private sections)

class Record
{
public:
Record () {vacant = true;}
// When an object of Record is instantiated, do the following
// Svacant = true
char * getID() {return studentID;}
// Return the string S$studentIDI]

int getmarks () {return marks;}
// Return the student's S$Smarks
bool getvacant () {return vacant;}

// Return the state of S$vacant, i.e. true or false
void setID(char * id) {strncpy(studentID,id,10);}
// Copy the string id[] to $studentID[]

void setmarks (int mk) {marks = mk;}

// Set S$marks = mk

void setvacant (bool wvac) {vacant = vac;}

// Set the state of $vacant = vac

private:

}s

char studentID[10]; // Keep the studentID of a student
int marks; // Keep the marks obtained by a student
bool wvacant; // True 1f the record is empty, false if

// the record is used

class RecordManager

{

public:

RecordManager (char * name, int num);
// When the object is instantiated, do the following

// Copy the string name[] to SuserName][]

// SrecordNum = num

// Create an array of num objects of the class Record in the heap.
// The content of the class Record can be found above.

// The pointer of the array should be saved in $pRecordArr

~RecordManager () ;
// Delete all records in the heap

bool findRecord(char *id);
// Find if a non-empty Record object with $studentID[] the same as id[].
// If yes, return true, else return false

int addRecord(char *id, int mk);

// Find if a non-empty Record object with $studentID[] the same as id[].
// If yes, copy mk into the $marks field of that Record object.

// If no, find an empty Record object (with $vacant flag equal to true).

// Set the $vacant flag of that Record object to false

// Copy id[] into the $studentID[] field of that Record object

// Copy mk into the $marks field of that Record object

// Return -1 if no empty Record object can be found, return 1 if an old
// Record object is updated; otherwise return 0

bool delRecord (char *id);

// Find a non-empty Record with $studentID[] the same as id[].

// Set the S$vacant flag of that Record object to true

// Return false if there is no Record object having $studentID[] the same
// as 1d[]; otherwise return true

int showRecord(char *id, int *pmk, int arrIndex);

// Return by reference the content of Record[arrIndex] through the two

// input parameters id and pmk, i.e. to show the values of $studentID[]
// and Smarks of Record[arrIndex] using pass by reference.

// If Record[arrIndex] 1is vacant, return -1; else return 0

private:
char userName[80]; // Store the username
int recordNum; // Keep the number of records
Record * pRecordArr; // Keep the pointer that points to the array in
heap
bi
B. By using Visual Studio .NET, develop a static library, namely RecordManager.lib, based on the class

specification as given in part A.

By using the static library you developed in part B, develop a console application in Visual Studio .NET such that
it will first give a welcome message to the user and ask the user to enter his/her surname as well as the maximum
number of records to be kept in the system. It will then repeatedly show the following menu:

St udent record namnagenent system
1. Add Record

2. Edit Record

3. Delete Record

4. Show Al Records

5. Quit

. If the user chooses 1, your program should allow the user to enter a student ID number (e.g. 01234567d)

and his/her marks (e.g. 80).

. If there is no record in the system with the same studentID, a new record will be created and these
data will be saved into the record. A message “The record of studentID is created.”
should be shown, where studentID is the input of the user.

. If there is no empty record to save the data, a warning message “No empty record is found.
Please free up a record to store the data.” should be shown.

. If there is already the record of studentID, do NOT update the marks but a warning message “The
record of studentID exists.” should be shown.

Get back to the main menu after finishing the above operation.

. If the user chooses 2, your program should allow the user to enter a studentID number (e.g. 01234567d)

and his/her marks (e.g. 80).

. Your program will compare the number with all records in the system. The one that matches will
have its marks modified with the marks the user entered. @A message “The record of
studentID has been modified.” should be shown, where studentID is the input of the
user.

. If no matching is found, a warning message “The record of studentID is not found.”
should be shown, where studentID is the input of the user.

Get back to the main menu after finishing the above operation.

. If the user chooses 3, your program should allow the user to enter a student ID number.

. Your program will compare the number with all records in the system. The one that matches will be
deleted. A message “The record of studentID has been deleted.” should be shown,
where studentID is the input of the user.

. If no match is found, a warning message “The record of studentID is not found.”
should be shown, where studentID is the input of the user.

Get back to the main menu after finishing the above operation.

. If the user chooses 4, your program should show the data of all records in the following format:
StudentID Marks
01234567d 50
02345678x 75
04123456x 48
05123456d 60

Get back to the main menu after finishing the above operation.

. If the user chooses 5, a message “Goodbye xxxxxxxx!!!” where xxxxxxxx is the surname of the
user, should be shown. All the data that have been created in the heap should be deleted; and then the
program will quit.

When doing the computation as mentioned above, it is compulsory to use the member functions of your library
whenever applicable.

Instructions

1. Use a new project for each question. It means that your files should be contained in 3 projects.
2. Try to explain your program as clear as possible using comments.
3. The program structure will be an important part. Never try to write your program with a single main () function.

/* *\
| Homework 3 -- Part A |
| Project name: HW3PA |
| Test program for the recordManager object. |
| This is for testing the member functions

| findRecord, addRecord, delRecord and showRecord. |
| |
| Usage: partA |
| Version: 1 |
| Date: Dec. 3, 2005 |
* */

finclude <iostream>
//#include <string.h>
using namespace std;

// (Words started with $ refer to the member variables as stated in the private sections)

class Record

{

public:
Record () {vacant = true;}
char * getID() {return studentID;}
int getmarks () {return marks;}
bool getvacant () {return vacant;}
void setID(char * id) {strncpy(studentID,id,10);}
void setmarks (int mk) {marks = mk;}
void setvacant (bool vac) {vacant = vac;}
private:
char studentID[10]; // Keep the studentID of a student
int marks; // Keep the marks obtained by a student
bool vacant; // True if the record is empty, false if

// the record is used

}i

class RecordManager
{
public:
RecordManager (char * name, int num);
~RecordManager () ;
bool findRecord (char *id);
int addRecord(char *id, int mk);
bool delRecord(char *id):;
int showRecord(char *id, int *pmk, int arrIndex);

private:
char userName[80]; // Store the username
int recordNum; // Keep the number of records

Record * pRecordArr; // Keep the pointer that points to the array in heap
}i

RecordManager: :RecordManager (char * name, int num)
// When the object is instantiated, do the following

// Copy the string name[] to S$SuserName[]

// SrecordNum = num

// Create an array of num objects of the class Record in the heap.
// The content of the class Record can be found above.

// The pointer of the array should be saved in $pRecordArr

strcpy (userName, name) ;
recordNum = num;
pRecordArr= new Record[num];

RecordManager: : ~RecordManager ()
// Delete all records in the heap
{
delete [] pRecordArr;
cout <<"Destructor of RecordManager object runs." <<endl;

}

bool RecordManager::findRecord(char *id)
// Find if a non-empty Record object with S$studentID[] the same as id[].
// If yes, return true, else return false

{

for (int i=0; i<recordNum; i++)

if ((!pRecordArr[i].getvacant()) && (strcmp(id, pRecordArr([i].getID())==0))
return true; // if current record is not vacant and its ID is the same
as the given ID, return true
}
return false;

}

int RecordManager::addRecord(char *id, int mk)

// Find if a non-empty Record object with S$studentID[] the same as id[].
// If yes, copy mk into the S$marks field of that Record object.

// If no, find an empty Record object (with $vacant flag equal to true).
// Set the $vacant flag of that Record object to false

// Copy 1id[] into the $studentID[] field of that Record object

// Copy mk into the S$marks field of that Record object

// Return -1 if no empty Record object can be found, return 1 if an old
// Record object is updated; otherwise return 0

int i, count=0; //count stores the number of empty records
for (i=0; i<recordNum; i++) //Go through the whole pRecordArr

{

if (pRecordArr[i].getvacant()) count++; // If the current record is vacant,
count ++
}
if (count == 0 && (!findRecord(id))) // No record and no vacant slot
return -1;
else

{
if (findRecord(id)) // The record exists

{
for (i=0; i<recordNum; 1i++)
if (strcmp(id, pRecordArr[i].getID()) ==0) // Look for the record
and update the mark
pRecordArr[i].setmarks (mk) ;
return 1; // BAn odd record is updated.
}
else // Record does not exist but vacant slot exists
for (int 1i=0; i<recordNum; i++)
{
if (pRecordArr([i].getvacant()) // Fill in the ID, mark and change
vacant to false

pRecordArr[i].setID(id);
pRecordArr[i].setmarks (mk) ;
pRecordArr[i].setvacant (false);

return 0; // Leave immediately after filling in

}

bool RecordManager::delRecord(char *id)

// Find a non-empty Record with $studentID[] the same as id[].

// Set the $vacant flag of that Record object to true

// Return false if there is no Record object having $studentID[] the same
// as 1d[]; otherwise return true

if (findRecord(id)) // When the record is found
{
for (int i=0; i<recordNum; i++) // Go thorugh the whole pRecordArr
if ((strcmp(pRecordArr[i].getID(), 1id)==0))
{
pRecordArr[i].setvacant (true) ; // change vacant to true
return true; // Once found, set it to vacant and LEAVE

}
else
return false; // Record not found

}

int RecordManager::showRecord (char *id, int *pmk, int arrIndex)

// Return by reference the content of Record[arrIndex] through the two
// input parameters id and pmk, i.e. to show the values of $studentID[]
// and S$marks of Record[arrIndex] using pass by reference.

// If Record[arrIndex] is vacant, return -1; else return 0

5

if (pRecordArr[arrIndex].getvacant())

return -1; // if the requested record is vacant, return -1
else // put the student ID and marks to reference *id and *pmk
{

strcpy(id,pRecordArr[arrIndex].getID());

*pmk=pRecordArr[arrIndex] .getmarks () ;

return 0;

}

int main ()
{
int Num=5, ret no;
bool ret bo;
RecordManager *Frank = new RecordManager ("Leung", Num) ;
char Id[10];
int Mark=0;
Frank->addRecord ("123456a", 22); // Test adding an empty record
Frank->addRecord ("123456c¢c", 23);
Frank->addRecord ("123456b", 2);
Frank->addRecord ("123456d", 3);
ret no=Frank->addRecord("123456e", 4);
cout<<"Adding to vacant record, return 0: "<<ret no<<endl;
ret no=Frank->addRecord("123456a", 1); // Test updating an odd record
cout<<"Updating an old record, return 1: "<<ret no<<endl;
ret no=Frank->addRecord("123456f", 25); // Test adding record to a fully occupied
array
cout<<"Array full, return -1: "<<ret no<<endl;
ret bo=Frank->findRecord("123456c"); // Test findRecord()
cout << "Test findRecord(), 123456c found, return 1l: "<<ret bo <<endl;
ret bo=Frank->findRecord("654321"); // Test findRecord()
cout << "Test findRecord(), 654321 not found, return 0: "<<ret bo <<endl;
ret bo=Frank->delRecord("123456¢c"); // Test delRecord()
cout << "Test delRecord(), 123456c found, return 1: "<<ret bo <<endl;
ret bo=Frank->delRecord("233333b");
cout << "Test delRecord(), 233333b not found, return 0: "<<ret bo <<endl;
if (Frank->findRecord("123456¢")) // Test findRecord() and delRecord()
cout << "This line should NOT be seen" <<endl;
cout<<"Test showRecord(), expect to see: "<<endl;
cout<<"Record 0\tStudent ID: 123456a\tMarks: 1"<<endl;
cout<<"Record 2\tStudent ID: 123456b\tMarks: 2"<<endl;
cout<<"Record 3\tStudent ID: 123456d\tMarks: 3"<<endl;
cout<<"Record 4\tStudent ID: 123456e\tMarks: 4"<<endl;
for (int i=0; 1i<Num;i++)
if (Frank->showRecord (Id, &Mark, i)==0) // Test showRecord()
{
cout<<"Record "<< 1 <<'\t';
cout<<"Student ID: "<< Id <<'\t';
cout<<"Marks: "<< Mark <<endl;
}
delete Frank; // Test Destructor

// Part B
// Project name: RecordManager
// The following is stored in the file Record.h
#include <iostream>
//#include <string.h>
using namespace std;
class Record
{
public:
Record () {vacant = true;}
char * getID() {return studentID;}
int getmarks () {return marks;}
bool getvacant () {return vacant;}
void setID(char * id) {strncpy(studentID,id,10);}
void setmarks (int mk) {marks = mk;}
void setvacant (bool vac) {vacant = vac;}

private:
char studentID[10]; // Keep the studentID of a student
int marks; // Keep the marks obtained by a student
bool vacant; // True if the record is empty, false if

6

// the record is used

}r

class RecordManager
{
public:
RecordManager (char * name, int num);
~RecordManager () ;
bool findRecord(char *id);
int addRecord(char *id, int mk);
bool delRecord(char *id);
int showRecord(char *id, int *pmk, int arrIndex);

private:
char userName[80]; // Store the username
int recordNum; // Keep the number of records

Record * pRecordArr; // Keep the pointer that points to the array in heap
}i

// The following can be stored in the file PartB.cpp
#include "Record.h"

RecordManager: :RecordManager (char * name, int num)
{

strcpy (userName, name) ;

recordNum = num;

pRecordArr= new Record[num];

}

RecordManager: : ~RecordManager ()
{
delete [] pRecordArr;
cout <<"Destructor of RecordManager object runs." <<endl;

}

bool RecordManager::findRecord(char *id)
{
for (int 1i=0; i<recordNum; i++)

{

if ((!pRecordArr[i].getvacant()) && (strcmp(id, pRecordArr[i].getID())

return true;
}
return false;

}

int RecordManager::addRecord(char *id, int mk)
{
int i, count=0; //count stores the number of empty records
for (i=0; i<recordNum; i++) //Go through the whole pRecordArr
{
if (pRecordArr[i].getvacant()) count++;
}
if (count == 0 && (!findRecord(id))) // No record and no vacant slot
return -1;
else
{
if (findRecord(id)) // The record exists
{
for (i=0; i<recordNum; i++)
if (strcmp(id, pRecordArr[i].getID()) ==0)
pRecordArr[i].setmarks (mk) ;
return 1; // BAn odd record is updated.
}
else // Record does not exist but vacant slot exists
for (int 1i=0; i<recordNum; i++)
{
if (pRecordArr[i].getvacant())
{
pRecordArr[i] .setID(id);
pRecordArr[i].setmarks (mk) ;
pRecordArr[i].setvacant (false);
return 0; // Leave immediately after filling in

}

bool RecordManager::delRecord(char *id)
{
if (findRecord(id)) // When the record is found
{
for (int 1=0; i<recordNum; i++) // Go thorugh the whole pRecordArr
if ((strcmp (pRecordArr[i].getID(), id)==0))
{

pRecordArr[i].setvacant (true); // change vacant to true
return true; // Once found, set it to vacant and LEAVE
}
}
else
return false; // Record not found

int RecordManager::showRecord(char *id, int *pmk, int arrIndex)
{
if (pRecordArr[arrIndex].getvacant())
return -1; // if the requested record is vacant, return -1
else // put the student ID and marks to reference *id and *pmk
{
strcpy (id, pRecordArr[arrIndex] .getID()) ;
*pmk=pRecordArr [arrIndex] .getmarks () ;
return 0;

/
| Homework 3 -- Part C |
| Project Name: HW3PC |
| Main program for the student record

| management system using class RecordManager |
| Users can create and modify a list of student |
| records by Adding, editing and deleting records. |
| We can also view all records in the list.

| Library needed: RecordManager.lib

| Header file needed: Record.h

| |
| |
| |
| |
\

Usage: PartC
Version: 1
Date: Dec. 3, 2005

#include "Record.h"

void menu(char *, int); // The recurrent menu
void getIDnMarks (char *, int *); // Get student ID and marks; pass by reference

int main()
{
char userName[80];
int recordNum;
cout<<"Welcome to the Student Record Management System.\n\n";
cout<< "Please enter your surname:";
cin>> userName;
cout<< "How many records do you want to create:";
cin>> recordNum;
menu (userName, recordNum) ;
return O;

}

void menu(char *userName, int recordNum)
{
RecordManager *User = new RecordManager (userName, recordNum) ;
int f reti; //for storing integer results from functions
int marks=0;
char choice, studentID[10];
do
(// ============ MENU ============
cout<<"\nStudent record management system:\n";
cout<<"1l. Add Record\n";
cout<<"2. Edit Record\n";

cout<<"3. Delete Record\n";
cout<<"4. Show All Records\n";
cout<<"5. Quit\n";

cout<<"Please enter your choice: ";

cin >> choice;
switch (choice)

{

case

{

U

getIDnMarks (studentID, &marks);
if (!User->findRecord(studentID)) // Cannot find the record
{
f reti=User->addRecord (studentID, marks); // Add a new record
if (f_reti==0)
cout<<"\nThe record of "<<studentID<<" is created.\n\n";
if (f reti == -1) // No empty slot to add
cout<<"\nNo empty record is found. Please free up a

record to store the data.\n\n";

case

case

case

}

else
cout<<"\nThe record of "<<studentID<<" exists.\n\n";
break;

l2l:
getIDnMarks (studentID, é&marks);

if (!User->findRecord (studentID)) // Cannot find the record
cout<<"\nThe record of "<<studentID<<" is not found.\n\n";

else
{
User->addRecord (studentID, marks); // Update record
cout<<"\nThe record of "<<studentID<<" has been modified.\n\n";
}
break;

'3': // Read in the student ID and delete the record

cout<<"Student number:";
cin>>studentID;
if (User->delRecord (studentID)) // Successful deletion
cout<<"\nThe record of "<<studentID<<" has been deleted.\n\n";
else
cout<<"\nThe record of "<<studentID<<" is not found.\n\n";
break;

l4|:
cout<<"\n\tStudentID\tMarks\n";

for (int i=0; i<recordNum; i++) // Check according to the indices
if (User->showRecord (studentID, &marks,i)==0) // will show

records if they are not vacant.

}

case

{

}

cout<<'\t'<<studentID<<'\t'<<marks<<endl;
break;

l5l:
cout<< "Goodbye "<<userName<<"!!!\n";

delete User; // quit and delete objects in the heap
break;

default: cout<<"\nInvalid input, please re-enter.\n\n"; break;

}

while

(choice != '5");

void getIDnMarks (char *ID, int *marks)

{

cout<<"Student number:";
cin>>ID;
cout<<"Marks:";
cin>>*marks;

