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Abstract
We present Travi-Navi – a vision-guided navigation system that
enables a self-motivated user to easily bootstrap and deploy in-
door navigation services, without comprehensive indoor localiza-
tion systems or even the availability of floor maps. Travi-Navi
records high quality images during the course of a guider’s walk
on the navigation paths, collects a rich set of sensor readings, and
packs them into a navigation trace. The followers track the nav-
igation trace, get prompt visual instructions and image tips, and
receive alerts when they deviate from the correct paths. Travi-
Navi also finds the most efficient shortcuts whenever possible. We
encounter and solve several challenges, including robust tracking,
shortcut identification, and high quality image capture while walk-
ing. We implement Travi-Navi and conduct extensive experiments.
The evaluation results show that Travi-Navi can track and navigate
users with timely instructions, typically within a 4-step offset, and
detect deviation events within 9 steps.

Categories and Subject Descriptors
H.5.2 [Information interfaces and presentation]: User interface
– User-centered design; C.3.3 [Special-Purpose and Application-
based Systems]: Real-time and embedded systems

General Terms
Design, Experimentation, Performance

Keywords
Indoor navigation, Image direction, Self-deployable system

1. INTRODUCTION
There are many situations in real life, including business, social,

and personal scenarios, where people have a strong need for nav-
igation services. For instance, a shop owner may want to direct
customers to his shop. At a social gathering, early arriving guests
may want to guide latecomers. People have for a long time resorted
to non-technical solutions in these situations. For example, shop
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owners post flyers with their addresses or briefly describe routes to
attract customers, and latecomers can call friends for landmarks.
Such approaches, however, have various shortcomings. For in-
stance, customers need to find the addresses and follow a sequence
of landmarks, which may not be a trivial task. If the building floor-
plans are unavailable or hard to read, the trip can be frustrating. Lo-
cating floorplans can also be troublesome in gigantic malls. More-
over, customers may take wrong turns when no one is around to
guide them. When customers want to visit multiple shops, it is not
easy to plan trips and minimize detours.

On the other hand, despite extensive research into indoor local-
ization, the wide deployment of indoor localization and navigation
systems have yet to be realized. Prior schemes attempted to build
full blown localization systems before publishing location services.
For instance, WiFi fingerprinting-based localization systems need
to sample signal strengths and construct radio maps in advance [7,
36]. Such approaches require intensive initial efforts to bootstrap
localization services. With the lack of pre-deployed comprehensive
indoor localization and navigation services, we ask the following
question: Can we enable users to easily bootstrap their own in-
door navigation services by themselves without dependency on a
pre-deployed localization system or even the availability of floor
maps?

In this paper, we provide an affirmative answer through the sys-
tematic design and implementation of Travi-Navi – a vision-guided
navigation system that enables a user to easily deploy his own in-
door navigation services. Inspired by our own navigation expe-
riences, in Travi-Navi, a guider records landmarks (pathway im-
ages, sensor readings, radio signals, etc.) along a path and shares
them with followers. Using the guider’s directions, our applica-
tion runs on the follower’s mobile device and automatically guides
the follower by presenting pathway images and indicating turns,
etc. Travi-Navi implicitly leverages the follower’s visual recogni-
tion capability by providing them pathway images to correct slight
direction ambiguity and enhance navigation experiences.

The Travi-Navi design naturally avoids the dependency on any
pre-deployed localization services or even the floor maps but faces
particular challenges. (1) Pathway images contain rich visual in-
formation for followers but rapidly drain the battery power. Images
taken during a walk can get blurred due to camera shake. How to
control energy usage while at the same time ensuring the image
quality remains an important issue to address. (2) As the guider’s
trace only covers the sampled path while most areas are uncharted,
it is very hard to accurately track followers on the guider’s trace
and generate synchronized directions. Providing correct directions
at right time is important as both incorrect and untimely directions
may lead to wrong turns. We expect our system to alert users in
a timely manner when they veer off the correct path. (3) As users



may visit multiple destinations, a friendly navigation system is ex-
pected to intelligently plan routes. The navigation traces are inde-
pendently provided by different guiders without coordination, so it
is challenging to find efficient shortcuts among the traces. Ideally,
our system should be able to guide users along the optimal path
among the available traces to the destinations.

Based on prior research efforts, we have devised several sensor
fusion techniques to address the above challenges. (1) To ensure
high quality navigation images, we predict image quality based on
motion hints from step detection, heading direction and rotation
measurement. In particular, we infer stable shooting time using
accelerometer readings and trigger image capture to ensure image
quality and avoid blurred images. (2) To accurately track a fol-
lower and generate synchronized directions, we incorporate both
magnetic field distortions and WiFi fingerprint sequences to com-
plement IMU (Inertial Measurement Unit) sensor based dead reck-
oning and thereby accurately project the follower onto the guider’s
trace. (3) To find shortcuts and plan routes, we detect overlapping
segments and crossing points of multiple traces shared by possi-
bly different guiders. In particular, we detect overlapping segments
by measuring their similarity of magnetic field signals and WiFi
fingerprint sequences. We identify crossing points by exploiting
the mutual trends of average gross distances between sequences of
WiFi fingerprints: as a user gets closer to a crossing point, we ob-
serve a decreasing trend in average gross distance and an increasing
trend when the user moves away. Thus, provided multiple naviga-
tion traces to multiple destinations, our application can automati-
cally find shortcuts, weave the traces to form a holistic trace, and
guide users to destinations with minimum detours.

We consolidate the above techniques and implement Travi-Navi
on the Android platform. The sensor data collection, tracking, and
navigation instruction generation are performed in real time. We
conducted extensive experiments under various conditions (e.g.,
day and night, work day and weekend) and navigated users using
Travi-Navi in both an office building and a large shopping mall. In
experiments, Travi-Navi showed promising results with accurate
and timely instructions (within a 4m offset) and prompt deviation
alerts (within 9m).

The contributions of this work are not limited to the application
centric design of Travi-Navi that enables users to easily deploy their
own navigation services without pre-deployed localization systems.
Rather, we see more potential as an effective crowdsourcing so-
lution to gradually build up general purpose indoor localization
systems. Realizing the challenge of constructing massive loca-
tion database to bootstrap the localization services, many recent
schemes have proposed crowdsourcing the data collection [29, 32,
35]. However, it is hard to find a sustainable incentive mechanism
and to ensure data quality in these crowdsourcing schemes. Travi-
Navi naturally alleviates such challenges, since users of Travi-Navi
are self-motivated and traces collected by guiders can be verified
by the followers. With enough penetration of such systems, we can
aggregate navigation traces and gradually build up comprehensive
indoor localization and navigation systems.

2. OVERVIEW

2.1 A usage example
Figure 1 illustrates a usage scenario of Travi-Navi, where a restau-

rant owner provides a navigation trace to customers.
When the restaurant owner (as a guider) arrives at an entrance

of the mall (e.g., entrance C in Figure 1), he turns on Travi-Navi
and collects navigation traces. As he holds the mobile phone in an
upright position and walks to the restaurant, Travi-Navi captures
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Figure 1: A usage scenario of Travi-Navi. McD collects traces
along aisles in blue, and those by H&M are in red. A shortcut
(with a red dashed line) between McD and H&M is identified
from two guiders’ traces.

pathway images and samples WiFi fingerprints and IMU sensors.
Travi-Navi automatically processes all sensor data and packs them
into a navigation trace. If there are many entrances (e.g., entrances
A, B, D, and E), the guider may want to survey multiple paths from
each entrance. As it does not need to cover every corner inside the
mall, the trace collection load is still light. We note that the primary
scenarios of Travi-Navi are planar applications (i.e., navigation on
single floors). For shopping malls with multiple floors, the guider
may treat lift lobbies and staircases as entrances. We plan to navi-
gate users across multiple floors in our future work.

A customer (as a follower) downloads the traces and navigates to
the restaurant. Travi-Navi locks on to the customer at the entrance
(i.e., entrance B in Figure 1). As the customer naturally holds his
mobile phone in his hand and moves forward, Travi-Navi tracks his
progress on the guider’s trace by comparing instant sensor readings
(IMU sensor and WiFi signals) against the navigation trace. Travi-
Navi shows the guider’s pathway images and the directions (see UI
in Section 4.1). The customer may download multiple traces for
different destinations (e.g., the restaurant and the nearby shop in
Figure 1). In such a case, Travi-Navi is able to identify a shortcut
depicted as a red dashed line.

2.2 Design challenges
Our design avoids dependency on pre-deployed localization ser-

vices or floorplans. Unlike general-purpose localization schemes,
which try to locate users on to the floorplan, our design needs to
only track the follower with respect to the guider’s pathway and
give timely directions. As a result, a guider (e.g., the restaurant
owner) can easily survey the possible routes connecting followers
to the destination. We see that the route contains necessary infor-
mation for navigation purposes, and the guider can skip the other
areas on the floor.

Such a substantially relaxed requirement for trace collection en-
ables a guider to easily deploy his own navigation service. Yet,
it makes locating users on the floorplan very challenging and ren-
ders most convention localization schemes infeasible. For instance,
WiFi fingerprint based localization schemes cannot accurately lo-
cate users, as the WiFi fingerprints only cover a small portion of the
whole floor. Thus, given a WiFi fingerprint, localization schemes
cannot determine whether it is on the pathway or uncharted areas.
Conventional trilateration localization methods cannot be applied
to locate users either, since the location of WiFi access points can-
not be determined solely based on a route trace. Even with an ex-
haustive site survey of the whole floor, current localization schemes
cannot ensure a high localization accuracy to differentiate pathways
(e.g., two close corridors with a distance <5m). Deploying dedi-
cated infrastructure [1, 34] can indeed improve localization accu-
racy but it incurs a substantial deployment cost. As a result, many



basic requirements in navigation become challenging to fulfill with
route traces.

Our design explores the possibility of leveraging visual recog-
nition compatibility of the followers to assist navigation. This al-
lows the active involvement of followers rather than to have them
passively following directions of mobile devices. Provided path-
way images, followers can easily take correct pathways from many
nearby pathways, which may not be possible if we resort to local-
ization systems. As guiders capture images while they walk, the
images can easily get blurred. One naive approach might be to first
capture many frames regardless of image quality and later filter out
these blurred ones, which incurs high energy cost in image capture
as well as high computational overhead in image processing. To
solve this problem, we infer the optimal time to capture the image
with accelerometer readings and trigger image capture to ensure
image quality.

Our system intelligently identifies shortcuts and plans optimized
routes for users visiting multiple destinations. The trip planning
would be trivial if the floorplans and accurate localization services
are immediately available. However, as navigation traces are inde-
pendently provided by different guiders without coordination (e.g.,
the blue trace to the restaurant and the red trace to the nearby shop
in Figure 1), we need to design efficient and robust methods to
merge the traces so as to find shortcuts. Unlike trip planning on
floorplans, our design aims to determine the relative positions be-
tween route traces rather than their absolute locations on the floor.

3. Travi-Navi DESIGN

3.1 Functional Architecture
Figure 2 sketches the functional architecture. In the following,

we briefly describe the key components.
Motion engine. Travi-Navi builds on prior research into IMU

sensor (i.e., accelerometer, gyroscope, and compass) based dead-
reckoning. It adopts a simple yet robust step detection method
based on the rising edges of filtered accelerometer readings. It
detects turns using a virtual bounding pathway that is more ro-
bust to sensor noise than inferences from instant heading changes.
More importantly, the motion engine also outputs motion hints to
assist image capture to reduce power consumption and ensure im-
age quality.

Trace packing. Travi-Navi captures pathway images and sam-
ples WiFi and IMU sensors as guiders walk along pathways to
destinations. It employs lightweight motion hints to indicate the
best time for image capture to reduce power consumption. It auto-
matically packs sensor data into navigation traces, where they are
step-indexed by the relative positions to the beginning of the trace.
The navigation traces can be shared directly to users or via a cloud
server.

Navigation engine. With a guider’s navigation trace, the nav-
igation engine processes a user’s instant sensor readings and gen-
erates navigation instructions. It first locks on users to the trace,
typically at the entrances, using WiFi fingerprints. As entrances
are typically distant to one another (>20m), Travi-Navi can confi-
dently lock on users. As users walk towards a destination, it incor-
porates WiFi fingerprints and magnetic field distortions to comple-
ment IMU-based dead-reckoning. It accurately tracks users with
respect to the guider’s trace and generates corresponding position-
indexed pathway images and instructions. If users want to visit
multiple destinations, it automatically detects shortcuts and plans
routes.

Note that the motion engine and the trace packing module are
common to both the guider and the follower applications. There
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Figure 2: Architecture of the Travi-Navi system. The motion
engine is common to both the guider and the follower.

is a slight difference in sensor data collection. Guiders need to
scan WiFi fingerprints at higher frequencies, whereas followers
may scan WiFi less frequently to save energy. The navigation en-
gine is solely used by followers.

3.2 Vision-guided navigation
Humans have superior visual recognition capability. Provided

pathway images, a follower can easily differentiate two pathways
that are close to each other and identify the correct one. Our sys-
tem leverages the wide adoption of cameras on mobile devices to
provide intuitive visual directions to followers.

Motion hints for image capture. As images are captured while
walking, the pathway images may get blurred due to camera shake.
To capture a clear image, one may capture image frames at a high
rate and filter out the blurred ones, which involves extensive com-
putations and high power consumption. To solve this problem, we
design a simple and effective method to predict image quality be-
fore capturing pathway images to reduce power consumption and
ensure image quality. The idea is inspired by the observation of the
correlation between image quality and different walking phases.
Figure 3 shows the consecutive frames taken during one walking
step. Due to body vibration and subsequent camera shake, the first
few images are blurred, while the last few are sharper. When we ex-
amine a sequence of frames taken during several steps, we observe
alternating image qualities exhibiting periodic patterns. We aim to
capture only sharp pathway images and display them to users.

We quantify image qualities using the detectable image features
(such as edges and corners) extracted by computer vision tech-
niques. Intuitively, given the same shooting target, a larger number
of detectable features indicate sharper images. For instance, the
feature extraction algorithm detects 315 keypoints in the first frame
(Figure 3(a)) and 405 keypoints in the last frame (Figure 3(f)), re-
spectively. Figure 4 plots the number of features in each frame
against the differential of the accelerometer magnitude. When a
user steps down, we observe a spike in the differential of the ac-
celerometer magnitude. In the figure, right after the user steps
down, the image qualities drop mainly due to body vibration. Gen-
erally, the images taken during the sharp turnings are similarly
blurred due to the rotational motion of the camera, though image
quality soon recovers after the user finishes a turn.

In Travi-Navi, we predict an optimal time for image capture
by exploiting the average-crossing point on the rising edge of ac-
celerometer magnitude. At such instants, mobile devices are gen-
erally stabilized during a step. Thus, Travi-Navi can automatically
trigger image capture while a guider is walking. In addition, Travi-
Navi also measures orientation and rotation changes and avoids
capturing images during rapid turns. We note that although the
low quality images are not captured, Travi-Navi does record the
turns and inform users during navigation. In addition, when the
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Figure 3: Consecutive frames during one walking step (taken by Samsung Galaxy S2).
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Figure 4: Image quality drops when user steps down.

guider finishes turning (normally a 5-step duration) and high image
quality is again ensured, Travi-Navi quickly resumes image capture
without missing the start of new pathways.

Usage of captured images. The clear images captured in a
guider’s trace serves two purposes. The primary purpose is naviga-
tion guidance, which implicitly exploits a follower’s visual recog-
nition capability to help navigation. To this end, pathway images
and sensor signals are step-indexed in a guider’s trace. Travi-Navi
tracks followers with respect to the guider’s trail and present proper
pathway images to followers during navigation.

Since indoor environments exhibit distinct visual features (e.g.,
ambient color, geometric shapes, etc) [6], smart mobile devices
may infer a follower’s position on a guider’s trail by comparing
an image taken by the follower against the guider’s images. Thus,
when a follower (e.g., a Google Glass user) can easily take images
during a trip, Travi-Navi may also incorporate images into the user
tracking process. A mobile phone user is unlikely to take images
continuously. However, the user may want to take pictures and re-
trieve the most similar images from the guider’s traces. Then, the
user can select and confirm the image of the pathway the user is
actually on and start the navigation from there.

Image matching and retrieval. We extract image features of lo-
cal geometric shapes as well as ambient colors and carry out image
matching. Image matching operates in a pipeline. First, discrim-
inative points are extracted for each image, called keypoints [19,
27, 20, 18]. The keypoints in each image can be viewed as vi-
sual “words” describing the image [17]. Similar visual “words” are
clustered to form a “dictionary”. Then, each image is described
with a histogram, measuring the frequency of each word in the dic-
tionary. We compute the similarity of two images by comparing
their histograms. The histograms of images are represented with
fixed-sized vectors whose length equals the dictionary size (i.e.
200) as shown in Figure 5.

To retrieve the most similar images, Travi-Navi incorporates color
histograms (describing ambient colors) to extend the keypoint his-
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Figure 5: Image feature histogram.

tograms (describing local geometric shapes). As images taken on
each pathway capture similar ambiences, Travi-Navi clusters the
images taken on the same pathway into one group. Travi-Navi la-
bels image groups with pathway segment IDs and trains the linear
support vector machine (SVM) as an image classifier. Travi-Navi
also adds image shooting angles inferred from device orientation to
image matching. In practice, the pathway images may appear sim-
ilar and in this case Travi-Navi may fail to differentiate them accu-
rately. Travi-Navi can enrich the diversity by incorporating other
sensing modalities such as WiFi and magnetic field measurements.

3.3 Lock-on, tracking and deviation handling
Lock-on at entrances. When a follower enters a mall and starts

Travi-Navi, Travi-Navi first needs to lock on to the follower. As the
entrances of buildings (e.g., malls) are generally distant (>20m),
it is likely to observe distinct WiFi signals at different entrances.
Thus, Travi-Navi scans WiFi signals and compares them against
the WiFi signals in guider’s trace and locks on to the follower at
the entrance. For shopping malls with multiple floors, guiders may
not collect traces directly from mall entrances. Instead, they may
collect the traces from lift lobbies or staircases, i.e., entrances to
the floor. Lifts and staircases can be reliably identified using WiFi
coverage information and accelerometer readings [32]. We discuss
how we lock on to users in uncharted areas in §3.4.

Tracking follower. Travi-Navi adopts the particle filter [25] to
track the user’s progress on the guider’s trails. After locking on the
user at an entrance, Travi-Navi generates particles spread around
the entrance to approximate the user’s location. Each particle rep-
resents a possible position of the user and is updated according to
IMU sensor based dead-reckoning [11, 16, 25, 32, 33]. Each parti-
cle is weighted according to the measurements of multiple sensing
modalities. As such, the less likely particles are gradually filtered
out and the centroid of the particles approximate the actual position
of a follower. We describe the step detection and heading measure-
ment techniques for completeness.
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Figure 6: Orientation measurement. Travi-Navi projects the
gyroscope measurements to the ground plane.
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Figure 7: Two walking paths with overlapping segments and
corresponding magnetic field measurements.

Dead-reckoning: Travi-Navi uses the weighted moving average
to filter out noise in accelerometer readings. It tracks the average
and variance of accelerometer magnitude. Stationary and walking
states are differentiated using an empirical threshold on variance.
To detect steps, it searches rising edges of accelerometer magni-
tude. For heading measurement, as users naturally hold mobile
phones, the device heading generally aligns with walking direc-
tions. However, due to the severe magnetic field distortion inside
buildings, the compass does not always point the heading direc-
tion [9, 39]. As the gyroscope is immune to magnetic field dis-
tortion and can measure rotations by integrating angular velocities,
we leverage the gyroscope and fuse it with compass [38]. We have
observed that natural holding gestures tend to tilt up phones, which
may misalign the device reference frame and the world coordinate
system as illustrated in Figure 6.

We have found that when a user holds a phone with a 45◦ angle to
the earth surface and takes a 90◦ turn, the gyroscope only measures
60◦ around the rotation axis. We project the rotation measurement
to the world coordinate system to measure the actual turning angles
leveraging the gravity sensor [21].

To compensate for the differences in step length and heading
measurement noise, a zero mean gaussian noise is added to each
particle’s step length and the measured heading directions in dead-
reckoning. If Travi-Navi detects steps, each particle is then updated
to a new location. After that, each particle is weighted according
to the follower’s instant WiFi signal as well as magnetic field read-
ings. Travi-Navi measures the centroid of weighted particles to ap-
proximate a follower’s position. The weighted particles are resam-
pled after weight normalization. The tracking process is repeated
until the user reaches the destination.

Magnetic signal weighting: Next, we describe how Travi-Navi
weights each particle according to observed magnetic field read-
ings. Although the magnetic directed dead-reckoning suffers se-
vere errors inside buildings, the magnetic distortions are stable and
provide discriminative power [9, 32]. Figure 7 shows the walking
paths of two guiders with overlapping pathway segments, and the
magnetic field distortions observed on the trails. We see that the
magnitude of magnetic field varies along the trails. The patterns of
the common segment are very similar, which confirms the stability
of the magnetic field [9, 32].

 0

 5

 10

 15

 20

 25

 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18W
iF

i f
in

ge
rp

rin
t 

di
st

an
ce

 (
dB

m
)

Fingerprint index

User 1
User 2
User 3
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Leveraging the distinctive patterns of the magnetic field, Travi-
Navi finds the most similar subsequence of magnetic measurements
on the guider’s trace to track a follower. Travi-Navi uses the dy-
namic time warping (DTW) algorithm [28] to compare the sequence
similarity to compensate for the difference in speeds between the
guider and the follower. DTW searches for the best alignment that
minimizes the total cost using standard dynamic programming and
the cost is defined as the difference of aligned magnetic magni-
tudes. When particles need to be updated, their weights are set
according to their DTW costs via a Gaussian kernel. In particular,
for the ith particle, its weight is set as follows:

weightim = e−
di
k (1)

where di is the DTW cost and k is a tunable parameter.
In our experiments, we observed that the magnetic field read-

ings may exhibit similar patterns on distant pathway segments. A
longer walking trail enriches diversity and improves discernibility.
As followers are tracked on a step basis, the gain from further in-
creasing the monitoring window (e.g., > 5steps) becomes marginal.
We balance the computation overhead and discernibility by setting
an empirical 5-step window.

WiFi signal weighting: With WiFi signal strength measurements,
Travi-Navi gives greater weights to the more likely particles and
iteratively filters out the less probable ones. We denote the user’s
and the guider’s WiFi fingerprints as Fu

t = (Ru
1 , R

u
2 , . . . , R

u
n) and

F g
t = (Rg

1, R
g
2, . . . , R

g
n), where Rj

i is the RSSI of the ith AP
observed by j at time t. In practice, we set -99dBm to the RSSI
of undetectable APs. The distance between fingerprints Fu and
F g is measured by [35]

Dis(Fu, F g) =
1

n

n∑
k=1

|Ru
k −Rg

k|. (2)

Similarly, we measure the geographical distance (i.e., Euclidian
distance) of dead-reckoning positions between Pu and P g by

Dis(Pu, P g) = ||Pu − P g||. (3)

Figure 8 plots the WiFi distance Dis(F1, Ft) of three differ-
ent walks along the same pathway. We see that the distances of
WiFi fingerprints to the first fingerprint gradually increase as the
users walk farther. Due to signal noise, larger distances may not
always mean farther locations (e.g., Dis(F1, F4) > Dis(F1, F7)
for user 1). Based on this trend, however, we see that within a
small number of steps (e.g., 5 steps) larger distances of WiFi fin-
gerprints generally indicate farther locations on a pathway. In other
words, the geographic distance and WiFi signal distance should be
correlated on a pathway. Based on this observation, Travi-Navi
weights the particles with the correlation of the Euclidian distances
and the WiFi fingerprint distances. Let

−→
D i

Euc = {Dis(P i, P g
t )}

and
−→
D i

WiFi ={Dis(P i, P g
t )}, (1 ≤ t ≤ m) denote the Euclidian
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Figure 9: The more probable particle is weighted higher based
on the correlation of Euclidean and WiFi distance.
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Figure 10: Turn detection. Travi-Navi detects turns if the user
walks through the virtual bounding pathways.

distances and WiFi distances from the ith particle to the guider’s m
dead-reckoning positions and associated WiFi fingerprints, respec-
tively. Then, the ith particle is weighted as follows

weightiw =

{
Corr(

−→
D i

Euc,
−→
D i

WiFi) , if > 0
0 , otherwise

(4)

As illustrated in Figure 9, a particle closer to a user’s real posi-
tion would be weighted higher than a distant one, as the distances
from the more probable particle would be more correlated to the
measured WiFi distances. Note that the use of correlation as a sim-
ilarity metric naturally incorporates multiple WiFi fingerprints, en-
hancing robustness against WiFi signal strength fluctuations.

Magnetic and WiFi Fusion: In Travi-Navi, we assign equal weights
to magnetic and WiFi signals and multiply the two weights to fuse
them as follows

weighti = weightim · weightiw

We note that one may evaluate the reliability of magnetic and
WiFi signals, e.g., by measuring their variation over time, and as-
sign different weights accordingly. Such a weighting strategy may
improve the tracking accuracy compared with the current equal
weighting method. In practice, the current method provides suf-
ficient tracking accuracy for the purpose of Travi-Navi. To reduce
power consumption, a follower may reduce the WiFi sampling rate
and accordingly reduce the weight of WiFi measurements. If the
WiFi scan is saved, particles are weighted using only magnetic sig-
nals. If query pathway images are captured, we may assign higher
weights to the retrieved pathway accordingly. It should be noted
that the optimal weighting strategy remains as an open question.

Deviation detection and handling. If followers deviate from
the correct path, Travi-Navi should be able to detect the devia-
tion events and promptly alert the followers. Additionally, follow-
ers may intentionally take short detours to avoid obstacles. We
detect deviations using two simple intuitions. First, if there are
mismatched turns between a guider’s trace and a follower’s dead-
reckoning, Travi-Navi changes the tracking state to a pre-alert state.
Second, if the user indeed deviates, the centroid position of par-
ticles will not change much, which is substantially different from
normal walking. Thus, we conclude a deviation event when observ-
ing mismatched turns and no or slight centroid position changes for
a few steps.

Turn detection: Many methods detect turns by measuring instant
heading changes during a walk, which often results in false detec-
tions due to sensor noise. Based on the observation that the path-
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Figure 11: Traces with crossing shortcuts.

ways and corridors are generally long, straight and narrow areas,
we attempt to confine dead-reckoning trails with virtual bounding
pathways, as depicted in Figure 10. In particular, Travi-Navi builds
a 4-step wide virtual bounding pathway with the direction of the
first two steps (to take into consideration body swing rhythm) [5].
Travi-Navi tests whether a user walks through the virtual bounding
pathway after updating the user’s position. If the user deviates from
the original direction and walks outside the virtual bounding path-
way, Travi-Navi detects turns and builds a new virtual bounding
pathway with the heading direction of the last two dead-reckoning
steps; otherwise Travi-Navi considers the user to be walking with-
out turning. Virtual bounding pathway based detection is more ro-
bust to the noise in heading measurements. In wide areas, e.g.,
parking lots, users tend to take short paths and their dead-reckoning
trails can be confined with several concatenated virtual bounding
pathways. The pathway images are more helpful in wide open ar-
eas, as the users can easily identify the scenes.

Deviation handling: When Travi-Navi detects a possible devia-
tion event with a detection window of 4 steps, it immediately marks
the deviating position and reflects the change in UI by changing
the guiding arrow from a solid to dashed lines. It also displays
the dead-reckoning trail to inform the user. Followers may inten-
tionally take short detours to avoid obstacles and return to correct
routes. If the particles revive in a short amount of time, Travi-Navi
resumes user tracking and transits to the navigation state. Travi-
Navi confirms a deviation event with a detection window of 6 steps.
Once a deviation event is confirmed, it prompts the user and shows
instructions to guide the user back to the deviating position. Mean-
while, it also shows the pathway image of the deviating position.

Travi-Navi does not assume the user will truly follow the in-
structions to walk back. The user may continue the exploration.
Travi-Navi tries to relock on to the user by continuing the particle
filtering process as the user walks. When the particles reconverge
on the guider’s trail indicating that the user has returned to the cor-
rect path, it prompts the user regarding the successful relock on and
continues the navigation.

3.4 Finding shortcuts
A navigation service should be able to find shortcuts and plan

trips for users. We identify two situations in which we may find
shortcuts for users.

Case 1: Find shortcuts from multiple traces with overlapping
segments. Users may want to visit multiple places (e.g., a restau-
rant after shopping). As illustrated in Figure 7(a), a user wants
to visit shops at location B and C starting from entrance A. The
user downloads two traces (A-B and A-C), and navigates to B first.
Now to visit C, Travi-Navi needs to find the shortcut and navigate
the user from B to C directly.
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Figure 12: Magnetic field readings on common pathways are
similar and can be used to detect shortcuts.

Case 2: Find shortcuts from crossing traces. Multiple guiders’
trails may only cross each other and lack long overlapping seg-
ments. This case is more common for self-helping users such as
car finders. Figure 11(a) depicts such cases where GT1 and GT2
are two crossing traces from different guiders, and ST shows a self-
helping user trace. In ST, the user visits a shop at H and then an-
other shop at K. To navigate the user back to entrance E, ideally we
would guide the user to crossing point F and then to E.

The task of finding shortcuts would become simple if the navi-
gation traces to multiple destinations can be properly merged. The
key is to accurately find the overlapping segments (for Case 1) and
the crossing points (for Case 2).

Finding overlapping segments. One intuitive approach to merge
the guiders’ traces is through trace replay – to emulate the naviga-
tion process of one guider on another guider’s trace. However, this
approach does not work well. First, the different signals prior to the
overlapping segment (due to the different starting points) will drive
divergent particle distribution. It therefore negatively affects the
convergence of particles when it comes to the overlapping portion.
Consequently, the identified overlaps will be much shorter than the
actual overlapping segments. Short overlaps may even be missed.
Secondly, the particle filtering, especially before particle conver-
gence, involves relatively high computation. Unlike user tracking,
which amortizes the computation over the whole navigation pro-
cess, Travi-Navi needs to efficiently merge the traces in shortcut
detection. Prior methods detect distinguishable signal landmarks
inside buildings (e.g., unique WiFi fingerprints, motion patterns) as
anchors to correct dead-reckoning drifts and align traces. However,
as reported, such landmarks may be few in number and not always
detectable [32, 35, 29].

Travi-Navi adopts lightweight trace merging algorithms to ef-
ficiently find overlapping segments and reliably merge multiple
traces, even if no landmarks can be found. In particular, we design
a magnetic signal based detection and WiFi signal based verifica-
tion process.
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Figure 13: “V”-shaped trend of WiFi fingerprint distances at
crossing points.

Magnetic field based detection: As in the tracking case, we also
apply Dynamic Time Warping (DTW) [28] to counter for possibly
warped magnetic signal sequences, except that here, DTW is ap-
plied to the whole sequence. To reduce the computation and mem-
ory overhead involved in processing the data sampled at the highest
rate, we perform a 10-fold downsampling, i.e., averaging over 10
samples, without affecting the shapes of two magnetic sequence
outlines.

Figure 12(a) plots the cost matrix of DTW after the downsam-
pling for matching the two magnetic sequences shown in Figure 7(b).
The line in Figure 12(a) highlights the minimum cost warping of
the two sequences. In the upper-right corner of the figure, we ob-
serve a “y”-shaped turn (highlighted in yellow) on the minimum
cost line. This is because after the branch point the magnetic fields
exhibit distinct patterns and no good matches can be found between
the two sequences. Figure 12(b) plots the costs involved in each
warping alignment along the minimum cost line. We see that due
to the lack of good matches, the costs immediately increase after
the branch point. Also, unlike other narrow short spikes due to
noise, the tallest spike remains high for a relatively long period.
Travi-Navi sets empirical thresholds for the cost and window size
to detect the branch point.

WiFi based verification: Travi-Navi performs post verification
using a sequence of WiFi observations to ensure correct detec-
tion of overlapping segments. If DTW indeed finds correct over-
lapped segments, the WiFi fingerprints observed on one guider’s
trace would be very similar to those observed on the other.

In Travi-Navi, guiders perform frequent WiFi scans whereas fol-
lowers may scan less frequently. We compensate for different WiFi
scan speeds on different devices by pairing WiFi scans at the clos-
est positions when calculating the average WiFi signal distances.
Evidently, the average distance between all WiFi pairs is small for
correct alignment. However, if the segments are misaligned, the
average distance will be large. The more misaligned, the larger
the average distance. Through experiments, we have decided on
an empirical threshold (10dBm) to determine a good alignment.
Note that, unlike the tracking case where a single WiFi fingerprint
is utilized, here we have to rely on a sequence of WiFi scans for
robustness.

For overlapping segments with opposite directions, Travi-Navi
can detect the overlaps by reversing one of the two traces and apply
the above detection method.

Finding crossing points. Since the crossing traces only have
small overlapping areas, the above overlapping segment detection
methods cannot detect crossing points. While the traces contain
WiFi fingerprints, they cover only a very small portion of the whole
indoor radio environment. We cannot confirm a crossing point by
testing if some fingerprints in one trace are localized on another
trace with conventional WiFi localization techniques [7]. We note



that the small distance in WiFi fingerprints is necessary but not suf-
ficient to identify shortcuts.

Recognizing that closer positions should show more similar WiFi
fingerprints as evidenced in Figure 8, and further inspired by [29]
in which the trend of AP signal strengths is used to detect WiFi-
Marks, we design a crossing point detection method by comparing
the trend of average gross distances of fingerprints in one trace to
the fingerprints in the other. Figure 11 depicts an example of two
crossing traces GT1 and GT2. Two guiders sample WiFi finger-
prints as they walk along GT1 and GT2, respectively. We calculate
the average gross distance – the average of the pair-wise WiFi dis-
tances to a window of consecutive fingerprints in the other trace,
e.g., the average WiFi distance of one fingerprint on GT1 to those
on GT2. Pair-wise WiFi distance is calculated using Eq. 2.

Figure 13 shows the average of gross WiFi distances between
WiFi fingerprints in the portions near the crossing point of the two
user traces shown in Figure 11(b). We clearly see the “V”-shaped
turning of the trend. It is important that such trends should be mu-
tual, i.e., the same trend should exist when checking fingerprints
on one trace against those on the other, and vice versa. When two
paths meet at a “T” crossing point, Travi-Navi cannot identify the
shortcut by detecting the mutual decreasing-and-increasing trends
in WiFi fingerprint distances. In practice, however, since the two
paths are likely to join and form overlapping segments, Travi-Navi
can detect such shortcuts leveraging magnetic readings.

Navigation instruction on shortcuts. Once overlapping seg-
ments or crossing points among multiple traces are found, we can
merge them by grafting one trace to another trace. The only sub-
tlety of navigation on shortcuts is that certain trace segments may
need to be played in reverse.

User lock-on from uncharted areas. A follower may not start
Travi-Navi at entrances and want to navigate from uncharted ar-
eas using a guider’s trace. In this case, the follower may first
walk around and record a walking trace. Travi-Navi reuses the
above shortcut identification modules to detect whether the fol-
lower’s walking trace has any overlapping segments or crossing
points with the guider’s trace. Once Travi-Navi confirms that the
follower is on the guider’s trail, it can lock on the follower and
starts navigation.

4. SYSTEM EVALUATION
In this section, we present the evaluation of key functional com-

ponents of Travi-Navi. We then evaluate Travi-Navi in representa-
tive indoor environments for a better understanding of Travi-Navi’s
effectiveness and limitation.

4.1 Implementation
We implement Travi-Navi on the Android platform (version 4.2.2).

The current version of Travi-Navi involves 6k lines of Java imple-
menting all the functional modules of functional architecture (Fig-
ure 2). We adopt the OpenCV library (version 2.4.6) written in C
to implement the image processing and image matching via JNI.
In particular, we adopt the ORB algorithm [27] as it is orders of
magnitude faster than SURF and SIFT [19] and can extract im-
age features in real time on mobile devices (e.g., Samsung Galaxy
S2 with one dual-core 1.2GHz processor). We adopt the bag-of-
visual-words algorithm [17], which uses k-means to cluster image
features. For image classification, we adopt the linear SVM with
the default optimal parameter setting of OpenCV [4]. The image
resolution is set to 320×240 which balances the image quality and
the processing overhead. Each image is saved as a JPEG file and
the file size is around 20KB. We enable the auto-focus in image
capture. Travi-Navi packs the guider and the user functional mod-

Figure 14: A user trying out Travi-Navi (Left), and the UI snap-
shot of our Travi-Navi client (Right).

ules into one application and reuses the common modules. All ex-
perimental results were obtained via online processing on mobile
devices and visualized offline if not specified otherwise.

The user interface presents navigation instructions as illustrated
in Figure 14. The center of the UI shows guider’s pathway image.
As the follower moves forward, Travi-Navi tracks the follower and
updates the guider’s pathway image accordingly. In addition to the
pathway image, Travi-Navi also presents the turning instructions
(i.e., turn right by 40 degrees at the next turn, presented as→ 40)
and the number of remaining steps to the next turn (i.e., 6 steps,
presented as ↑ 6). In addition, it also measures the instant heading
direction (blue arrow) and presents the guider’s heading direction
on the path (purple arrow).

4.2 Evaluation
We tested Travi-Navi on a variety of Android mobile devices

(Samsung Galaxy S2, S4, Note3, HTC Desire, and HTC Droid In-
credible 2). Due to limited availability, Travi-Navi has not yet been
evaluated on wearable devices such as Google glass.

We conducted experiments on both an office building floor and
the first floor of a large shopping mall with a testing area of about
1900m2 and 4000m2 during different times of day. The lighting
conditions during business hours allow guiders to capture bright
pathway images. The guiders record traces with mobile phones
held in an upright attitude and capture pathway images using back
cameras as they walk to destinations. As the surroundings can be
occluded, guiders need to find a less crowded time to capture path-
way images. Followers naturally hold mobile phones and follow
navigation instructions. For the purpose of this evaluation, Travi-
Navi recorded the followers’ traces as well. Overall, we collected
12 navigation traces covering all the main pathways of the testing
areas’ entrances. The total length of navigation traces was about
2.8km. We recruited 4 volunteer followers who walked many times
on different routes, with a total walking distance of around 10km
in the experiments.

4.2.1 Motion hints
Image quality. Images taken by guiders during the walk provide

visual guidance to users. Due to camera shack, the images could
become blurred. We evaluate whether motion hints could improve
the image quality. We use the number of detectable ORB features in
images as the quality metric to quantify the image quality. Gener-
ally, computer vision techniques can detect more features in sharper
images than blurred ones. We also tested other image quality met-
rics (e.g., the maximum value of Laplacian transformation), which
are highly correlated with our metric but more subject to image
noise.
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We walked along the same route and captured images with/without
the assistance of motion hints, respectively. We measured the num-
ber of features in the images captured during walks inside the of-
fice building. Figure 16 plots the CDFs of the number of features
with/without the assistance of motion hints. The results show that
the motion hints can predict better shooting opportunities and ef-
fectively capture sharper pathway images.

Pathway image retrieval. Smart mobile devices may roughly
infer a user’s location (e.g., pathway-level localization) using im-
age matching techniques. We integrate the local geometric shapes
described using ORB features and the ambient color histograms to
form image features. We capture images triggered by motion hints
at each step on the trail from A→ B→ · · · → F in our office build-
ing as depicted in Figure 15. We label the images with the pathways
(i.e., A→ B, B→ C, . . . , E→ F) and train the linear SVM. SVM
training takes several seconds on mobile devices (Samsung Galaxy
S2) but we note that it only involves a one-time training cost. A
guider may train the SVM using a server and share the SVM clas-
sifier with users to classify images in real time on mobile phones.

Users take images on pathways and query Travi-Navi for their
locations. Before triggering image capture, Travi-Navi consults the
shooting angle by looking up the instant device orientation. If the
device is facing either the floor or ceiling, Travi-Navi does not per-
form image capture or matching, and inform the users to adjust the
shooting angle. In the experiment, each of the 4 users took 25 path-
way images to query locations. In Figure 17, we found that Travi-
Navi achieves pathway-level localization with reasonably high ac-
curacy by combining the ORB feature and a color histogram. The
accuracy on path C → D is lower. Examining the images on the
path, we found that the lower accuracy is mainly due to the line of
sight blockage. Travi-Navi needs to capture a query image with a
substantial portion that has not been occluded to retrieve the correct
image in the navigation trace.

4.2.2 User tracking and navigation
User lock-on. Travi-Navi locks on users at entrances by compar-

ing observed WiFi fingerprints against those in navigation traces.
We collected WiFi fingerprints at 6 entrances of the shopping mall.
The number of observable WiFi APs varied from 6 to 13 at the en-
trances. The geographic distance between the entrances closest to
each other was around 20m. We randomly selected one WiFi fin-
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Figure 17: Pathway image retrieval performance.

gerprint at each entrance and computed the WiFi distances to the
other fingerprints at the same or different entrances. The experi-
ment results are plotted in Figure 18, which shows the maximum
WiFi distance to the fingerprints collected at the same entrance and
the minimum WiFi distance to fingerprints collected at different en-
trances. We found that the WiFi fingerprint distances at the same
entrance were substantially smaller than to fingerprints at different
entrances. This gap allows Travi-Navi to lock on to users at the en-
trances (separated by >20m) with 100% accuracy. We also tested in
our office building at the main entrance and 4 emergency exits on
the same floor (separated by >25m) and achieved correct lock-ons
as well.

Tracking follower. Travi-Navi tracks a follower’s progress on
the guider’s trace and gives directions. We measured the tracking
error to evaluate the promptness of instructions and tested whether
Travi-Navi can navigate users to their destinations. A guider col-
lected navigation traces in the office building following the trails
plotted in Figure 15. The guider took 202 steps and 2min to walk
the trail (A→ F), with a total length of around 150m. In practice,
a guider (e.g., restaurant owner) should take the most convenient
path for followers (e.g., customers). To obtain the ground truth, the
guider taps the mobile phone to record timestamps when the guider
reaches the checkpoints depicted as green and red dots in Figure
15.

Travi-Navi navigated the 4 followers starting from A to F. We
note that the followers were not informed of the navigation routes,
the final destination, or the checkpoint locations. In the experi-
ments, all the followers successfully reached the destination un-
der the direction of Travi-Navi. During the navigation, Travi-Navi
recorded timestamps along with the instructions presented to users.
Meanwhile, a shadow person followed behind the volunteers and
recorded the timestamps when the volunteers arrived at checkpoints.

We measured the tracking errors by the offset between the in-
structions presented to followers and the instructions recorded by
the guider at each checkpoint. The offset results are shown in Fig-
ure 19, in the unit of steps as instructions are updated on a step ba-
sis. The experiment results show that Travi-Navi has small tracking
errors within 4 steps. We carried out a user study with the 4 users
after they reached the destination. According to our user study, user
1 and user 2 specified the direction as “almost synchronized”, while
user 3 and user 4 experienced slightly delayed and early directions,
respectively. As users normally took around 0.6s per step, the time
offset of instructions was within 3s for all users.

Deviation detection. Travi-Navi should quickly detect deviation
events and notify users. In the experiment of deviation detection,
Travi-Navi navigates the 4 volunteering followers from A to F as
in the previous user tracking experiment. To measure the effective-
ness of deviation detection, we intentionally asked the 4 users to
deviate at 4 bifurcating points depicted as red dots and follow the
pathways indicated as red arrows in Figure 15. Travi-Navi enters
the pre-alert stage with a detection window of 4 steps and confirms
a deviation with a detection window of 6 steps. Thus, we set the
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ent users at 4 turns.
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Figure 23: Crossing point detection re-
sults.

deviation detection window to be 6 steps. Travi-Navi recorded the
instructions (including deviation alerts if any) presented to users.

We present the steps that users took before Travi-Navi alerted
the users in Figure 20. We found that Travi-Navi detected the devi-
ation events within 9 steps. We also measured deviation detections
that were false positives. We walked along the trail from A to F
for 4 rounds (approximately 600m in total) and observed only 3
false alarms. Note that in Travi-Navi, we set a deviation detection
threshold of 6 steps. When we decrease the threshold, Travi-Navi
triggers more false alarms, while in return being more prompt in
detecting deviation events.

4.2.3 Shortcut identification
We examine whether Travi-Navi can accurately identify short-

cuts among guiders’ traces.
Overlapping segments. We collect 100 walking traces with dif-

ferent overlapping segment lengths and conduct shortcut identifi-
cation. As a user may only want to be navigated to a small num-
ber of destinations, Travi-Navi only needs to reliably identify the
shortcuts among a dozen traces. We note that two walking trails of
opposite directions may also have overlapping segments. To solve
this problem, Travi-Navi reverses one of the two traces and identi-
fies overlapping segments with opposite walking directions (§3.4).

Figure 21 plots the success rates with varying overlapping lengths.
We found that Travi-Navi achieved a 90% success rate when the
overlapping length was around 6m, and detected all overlapping
segments when the length was 10m. The success rate decreased as
the overlapping length became shorter. We also measured the false
detection rates by matching traces with varying lengths against non-
overlapping traces. In the figure, shorter traces tend to have higher
false detection rates. When the trace length was 6m, the false de-
tection rate decreased to 8% and no false detection was observed
when the length reached 10m.

Among the correctly detected overlapping segments, we plot the
CDF of differences between the actual overlapping segment length
and the detected one in Figure 22. We found that about 50% of
detected overlapping segments are within 3 steps and all detection

errors are within 9 steps. Considering the corridor widths in prac-
tice, such accuracies are sufficient for shortcut detection.

Crossing points. We evaluate Travi-Navi’s performance in de-
tecting crossing points with the mutual trends in WiFi fingerprint
distance. To conduct the experiment, we scanned WiFis at 3 cross-
ing points (CP-A, CP-B, and CP-C) indicated by “+” in Figure 15.
In addition, we also scanned WiFi at a “T”-shaped crossing point
(CP-D). To study the detection performance with different WiFi
scan frequencies, we first collected one WiFi fingerprint every 1m
(i.e., 1sample/1m), and downsampled WiFi fingerprints to emulate
lower scanning frequencies. Figure 23 plots the success rates of
detecting the crossing points. We found that the detection rates at
the “+” crossing points were above 80% with 1 WiFi scan per 3m.
Travi-Navi cannot detect “T”-shaped shortcuts, since such a cross-
ing point does not exhibit decreasing-and-increasing trends mutu-
ally (§3.4). In practice, however, two paths meeting at “T”-shaped
crossing points are likely to join and form overlapping segments,
and Travi-Navi can reliably detect the overlapping shortcuts lever-
aging magnetic readings.

4.2.4 Energy consumption
As guiders collect navigation traces with IMU, WiFi, and cam-

eras, it incurs relatively high power consumption. We measure the
power consumption on various models of mobile phones using the
Monsoon power monitor [3]. The power monitor directly supplies
power to the phones and accurately tracks the current and voltage.
To accurately measure the power consumption of Travi-Navi, we
first turn off all background services and applications. The WiFi
module was turned on and the screen brightness was set to auto-
adjustment mode. All the sensor modules (e.g., IMU and WiFi)
were sampled and processed in real time. As we need to wire the
phones for measurement, we have to make the phones stationary.
We synthetically triggered image capture and updated pathway im-
ages in Travi-Navi every 0.6s.

Figure 24 plots the working currents measured on the Samsung
Galaxy S2 in different working modes as an example. The current
was sampled at 5KHz using the power monitor and averaged over
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Figure 24: Power measurement with Samsung Galaxy S2.

every window of 0.1s. In Figure 24(a), the phone was in sleep mode
during the period from 0s to 20s. We woke up the phone at around
20s. We then unlocked the phone at around 25s. We launched
Travi-Navi at 40s and started the trace collection at 50s. The trace
collection finished at 180s. Similarly, Figure 24(b) plots the power
measurement when Travi-Navi was working in the follower mode
from 50s to 180s. We repeated the experiments 10 times and char-
acterized the power draws in different modes in Table 1. The guider
mode of Travi-Navi drew power at around 616.50mA and the ex-
pected battery life was 2.92h. The follower mode incurred less
power consumption at around 532.20mA and the expected battery
life was 3.38h for the SGS2 with an 1800mAh battery.

We measured the expected battery life of the Samsung Galaxy
Note3 with a 3200mAh battery and HTC Droid Incredible 2 with
a 1450mAh battery. The measurement results are presented in Ta-
ble 2. Powered by a large battery, the expected life of Note3 was
around 4.75h in guider mode, and 5.62h in follower mode, respec-
tively. The expected battery life of HTC Droid Incredible 2 was
3.14h in guider mode and 3.89h in follower mode, respectively. The
expected battery life time was shorter for the HTC Droid Incredible
2 compared with Note3, mainly because of its smaller battery.

The current version of Travi-Navi has not yet been extensively
optimized for energy efficiency. Travi-Navi may reduce the im-
age sampling rate to save energy and benefit from the energy effi-
cient mobile vision techniques [18]. When magnetic field distor-
tions exhibit sufficient discriminative patterns, Travi-Navi may dis-
able WiFi scans and weight particles solely with magnetic measure-
ments. Travi-Navi can also leverage the adaptive particle filtering
techniques (e.g., KLD-sampling [12]) to reduce power consump-
tion. Travi-Navi can benefit from energy efficient co-processor ar-
chitectures for sensor fusion as well [30].

Table 1: Power consumption measurements on Samsung
Galaxy S2 with an 1800mAh battery. We measure the average
power, the average current, and the expected battery life.

Mode Period Power Current Battery Life

Sleep 0s–20s 75.39mW 20.41mA 88.20h

Idle 20s–50s 676.49mW 183.15mA 9.83h

Guider 50s–180s 2276.35mW 616.50mA 2.92h

Follower 50s–180s 1965.13mW 532.20mA 3.38h

Table 2: Expected battery life measurements in different modes
on 3 models of mobile phones.

SGS2 Note3 Incredible2

Battery Capacity 1800mAh 3200mAh 1450mAh

Battery Life (Guider) 2.92h 4.75h 3.14h

Battery Life (Follower) 3.38h 5.62h 3.89h

5. RELATED WORK
Indoor localization is an extensively studied field. Many systems

such as Cricket [22] and PinPoint [37] achieve high position accu-
racy with dedicated hardware deployment. Many methods such
as Radar [7] and Horus [36] leverage existing WiFi infrastructure.
Some recent works explore the magnetic field for indoor localiza-
tion [9, 26]. All these methods require labor-intensive site surveys.
Participatory systems like PlaceLab [15], ActiveCampus [13], and
LiveLabs [2] evaluate localization in the real world. Leveraging
rich sensing modalities on smartphones, SurroundSense [6] infers
logical surroundings from ambient signatures.

Many crowdsourcing-based indoor localization systems [32, 8,
35, 25, 10, 23] lack incentives to attract enough participation es-
pecially when the services cannot provide benefits. Unlike those
works, Travi-Navi enables users to easily deploy their own nav-
igation services without comprehensive localization services and
thereby directly benefit from service deployment, while the crowd-
sourcing systems typically require huge number of volunteers who
may not directly benefit from participation.

Technique-wise, Travi-Navi draws strength from prior inertial
sensor based tracking [16, 35, 25], which typically assumes the
availability of floor maps and confine dead-reckoning drifts with
map constraints. Instead, Travi-Navi intelligently fuses magnetic
and WiFi signals to accurately track a user’s progress on a guider’s
navigation trace. Some works [32, 29] seek to construct indoor
maps and bootstrap localization services exploiting walking traces
shared by crowds. They identify various landmarks to merge user
traces, which is similar to one of the shortcut identification cases in
Travi-Navi.

Escort [10] navigates users to their friends inside buildings with-
out relying on accurate localization services. Escort corrects dead-
reckoning drifts leveraging crowd encounters and special audio bea-
cons. Riehle et al. [26] navigate blind users leveraging magnetic
distortions and give audio instructions. Unlike previous methods,
Travi-Navi augments indoor navigation with motion vision by pro-
viding followers with the guider’s pathway images. Travi-Navi
attempts to enable a user to easily bootstrap navigation services
without infrastructure support. Travi-Navi synthesizes radio and
magnetic signals to correct IMU based dead-reckoning drifts and
identifies shortcuts.

Recent advances in mobile sensing and computer vision open
new research opportunities. OPS [20] locates distant objects by
synthesizing GPS localization and images taken from different an-
gles with the Structure from Motion (SfM). TagSense [24] tags im-
ages with locations and activities inferred from smartphone sen-



sors. FOCUS [14] indexes crowdsourced videos via content-based
clustering with the complementary synergy of SfM and sensor hints.
GigaSight [31] proposes a framework for crowdsourcing videos
that enables deep content-based search. LiKamWa et al. [18]
analytically characterize energy consumption of image and video
capture and propose quality-energy tradeoff strategies. Travi-Navi
augments indoor navigation with mobile vision, and avoids un-
necessary power consumption and computation leveraging motion
hints inferred from IMU sensors.

6. CONCLUSION
This paper describes our attempts to design, implement, and eval-

uate Travi-Navi, a vision-guided indoor navigation system. The
key idea is to enable self-motivated users to easily deploy indoor
navigation services without assuming a comprehensive indoor lo-
calization service or even the availability of floor maps. We in-
corporate magnetic field distortion and WiFi signals in particle fil-
tering to ensure accurate user tracking. We further develop effec-
tive methods to detect shortcuts among overlapping and intersect-
ing navigation traces. We devise a method to automatically capture
high quality images while walking using motion hints. We implic-
itly leverage the users’ visual recognition capability by providing
them pathway images to correct slight direction ambiguity and en-
hance navigation experiences. Extensive experimental results and
feedback from user trials confirm the effectiveness of Travi-Navi.
We plan to further optimize Travi-Navi and reduce power consump-
tion in the future.
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