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Abstract—Estimating the number of RFID tags is a funda-
mental operation in RFID systems and has recently attracted
wide attentions. Despite the subtleties in their designs, previous
methods estimate the tag cardinality from the slot measurements,
which distinguish idle and busy slots and based on that derive
the cardinality following some probability models. In order to
fundamentally improve the counting efficiency, in this paper we
introduce PLACE, a physical layer based cardinality estimator.
We show that it is possible to extract more information and infer
integer states from the same slots in RFID communications. We
propose a joint estimator that optimally combines multiple sub-
estimators, each of which independently counts the number of
tags with different inferred PHY states. Extensive experiments
based on the GNURadio/USRP platform and the large-scale
simulations demonstrate that PLACE achieves approximately
3∼4× performance improvement over state-of-the-art cardinality
estimation approaches.

I. INTRODUCTION

Radio Frequency IDentification (RFID) technologies [19]
have been developing rapidly in recent years. Due to the low
cost and small form factor of RFID tags, RFID technology
is widely used to label a large number of items and support
inventory management [24], item tracking [14], access control
[3], etc.

Counting the number of tags is a fundamental operation.
Knowing the tag cardinaltiy can facilitate many primary op-
erations in RFID systems such as tag identification [25] and
tag searching [27]. An estimation with guaranteed accuracy
normally suffices for the practical purposes. As such, many
probabilistic counting methods [4, 8, 10, 11, 15, 16, 26, 29]
trade the estimation accuracy for the execution time. Previous
works typically measure the states of f communication slots,
where each tag responds in one random slot. The slot state can
be binary if we distinguish busy and idle slots, or it can be
ternary if we further differentiate singleton and collision slots.
Thus, the tag responses in f slots can be represented with a
f × 1 binary or ternary sequence, with zeros representing idle
slots. Intuitively, when a larger number of tags participate, we
expect more tag responses and consequently fewer idle slots in
the response sequence. Despite the subtleties in design details,
previous methods estimate the tag cardinality by examining
the state of each slot in the response frame and following a
probability model to derive the cardinality.

For instance, one previous work EFNEB [8] uses the first
busy slot to estimate, while ZOE [29] computes the ratio of
zero entries over f slots and derives the tag cardinality. The

most recent work [4] advocates the importance of two-phase
estimation, and approaches theoretical optimal performance
with the binary responses. As only 1 bit or slightly more
information is extracted from each slot, previous methods
need substantial number of slot measurements to guarantee
an estimation accuracy.

In this paper, we present PLACE, a Physical LAyer Car-
dinality Estimation scheme which extracts more informa-
tion from each tag response slot, thereby achieving higher
estimation efficiency. Unlike previous methods which only
distinguish binary or ternary states in each slot, we show
that it is possible to detect the number of concurrent tag
responses and thus infer integer states from the same slot at
RFID physical layer.

To illustrate the possibility of detecting integer slot states,
Fig. 1 plots real received signals when 0, 1, 2, and 3 tags
respond in the same slot (where Fig. 1(a)-(d) depict time
domain signal strengths and Fig. 1(e)-(h) depict I-Q plane
signal constellation maps). These traces are collected with
our measurement testbed including the GNURadio/USRP2
platform and WISP tags (testbed settings detailed in Section
II). While straightforward measurement of signal strength
levels in time domain can only tell busy or idle state of
the slot, we observe from Fig. 1(e)-(h) that if k tags reply
at the same time, 2k symbol clusters are clearly formed in
the corresponding constellation map. This is because each tag
takes one of the two states by either reflecting or absorbing
radio waves from the RFID reader. Such observation inspires
us to detect the exact number of concurrent tag responses in
each slot. Ideally, we can infer the number of responding tags
from the number of clusters formed, and thereby extend the
binary or ternary sequence to an integer sequence.

Although simple in concept, the implementation of phys-
ical layer estimation entails many practical challenges. (1)
Accurate and efficient estimation of the symbol clusters is
non-trivial. In particular, the symbol clustering and counting
operation has to be accommodated into the time frame of
each RFID slot. In this paper, we design a slot state detection
algorithm that divides the I-Q plane into grids and derives
the symbol clusters based on the symbol densities of grids.
The proposed SSDA algorithm takes only millisecond time in
comparison with general clustering algorithms that may take
hundreds of seconds. (2) Novel cardinality estimator needs to
be designed to make the best use of sequences of integer-
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(a) RN-16 signal of noise
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(b) RN-16 signal of 1 tag
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(c) RN-16 signal of 2 tags
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(d) RN-16 signal of 3 tags
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(e) noise, 1 cluster
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(f) 1 tag, 2 clusters
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(g) 2 tags, 4 clusters
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(h) 3 tags, 8 clusters
Fig. 1. Tag response signals and their corresponding constellation maps.

Fig. 2. Our testbed with a GNURadio/USRP2 platform and 4 WISP tags.

state transmission slots instead of previous busy/idle slots.
The proposed PLACE scheme combines multiple estimations
obtained from each integer slot state and uses an optimal joint
estimator such that the overall variance is minimized. (3) Due
to noises in practical RFID transmissions, the cluster estima-
tion output inherently contains errors. We run full experiments
to understand such errors and analyze the impact on final
cardinality estimation accuracy. Our analysis and experiments
show that the developed probabilistic estimators in PLACE
tolerate the error level from practical measurements.

PLACE is comprehensively evaluated on our testbed built
with the GNURadio/USRP platform and WISP tags. We
perform large-scale simulations to compare with state-of-the-
art cardinality estimation schemes. Experiment and simula-
tion results demonstrate that PLACE achieves approximately
3∼4× performance improvement.

II. BACKGROUND

A. Problem description

Following previous works [4, 8, 10, 11, 15, 16, 24–27, 29],
we consider a large-scale RFID system consisting of a number
of RFID tags covered by one RFID reader. The RFID systems
may use lightweight passive RFID tags or powerful active tags.

We exclusively study the RFID communications working
at the 900MHz UHF band. Current commodity RFID systems
adopt the frame-slotted Aloha model, where a frame is divided

into a number of slots. Each of RFID tags randomly chooses
one slot in the frame to reply. As a result, one slot might be
idle, if no tag responds in the slot; or busy, if at least one tag
responds. Instead of replying with a 96-bit tag ID [1], which
is used in identification-based counting method [25], each tag
only needs to reply with a RN16 sequence in probabilistic
cardinality estimation approaches.

Suppose the actual tag cardinality is t, and our estimation is
t̂. A user-specified accuracy requirement (ε,δ) can be specified
as follows:

Pr{|t̂− t| ≤ εt} ≥ 1− δ. (1)

For instance, if the actual number of tags is 1000 and a
user specifies the requirement as (5%,1%), then the estimation
result is expected to be within the interval [950,1050] with a
probability ≥ 99%. An ideal estimation approach is expected
to meet the estimation accuracy with the minimum execution
time.

Many works try to improve the cardinality estimation effi-
ciency [4, 8, 10, 11, 15, 16, 26, 29]. Despite the differences
in design details, these works estimate the tag cardinality by
measuring the slot states and differentiating idle and busy
slots, where each tag randomly selects a slot and sends a short
message. For instance, EFNEB [8] infers the tag cardinality
from the position of the first busy slot. ZOE [29] computes
the ratio of idle and busy slots and thereby derives the tag
cardinality. ART [16] measures the average run of busy slots
to estimate the tag cardinality. Above approaches [8, 16, 29]
adopt the two-phase estimation, where in the first phase the
system parameters are optimized to ensure high estimation
efficiency in the second phase. One most recent work [4] gives
an in-depth analysis and explicitly emphasizes the importance
of the two-phase design. To the best of our knowledge,
all existing works do not leverage the RFID physical layer
information. They only extract binary information from each
short slot in the frame.
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B. Initial observation from our software defined testbed

To explore the possibility of cardinality estimation with
PHY layer information of RFID transmissions, we set up
a testbed with the GNURadio/USRP software defined radio
and the WISP tags as depicted in Fig. 1. We use one USRP
RFX900 daughterboard working at the 900MHz UHF band
to down-convert the radio signals to the base band. After the
down-conversion, the physical layer symbols are transferred
to a laptop via a gigabit ethernet link for digital processing.
The physical layer sampling rate of the software defined RFID
reader is set to 4 million samples per second (MS/s). Thus, the
software reader samples 4000 physical symbols every 1ms. At
the physical layer, the USRP reader can retrieve the in-phase
and quadrature components of each received symbol, which
corresponds to a sample at the I-Q plane.

For each RN16 transmission, a commodity tag needs to
send a preamble prior to the RN16 payload. The transmission
time of an RN16 varies from 0.02ms to 8ms, depending on
the backscatter link frequency (BLF) as well as the coding
scheme (e.g., FM0, Miller-4) [1]. In our software testbed, the
WISP tags are programmed to encode the RN16 messages
with Miller-4 and backscatter at 64kbps, which takes around
2ms.

We collect more than 200 physical layer traces when dif-
ferent number of tags concurrently transmit RN16 messages.
In Fig. 1, we present 4 instances of received RN16 slots
with different number of responding tags. In Fig. 1(a)-(d),
for illustration purposes, we intercept the first 600 samples
(corresponding to preambles of RN16) of the approximately
8000 samples of each trace. Fig. 1(a)-(d) plot the magnitudes
of received symbols. Fig. 1(a) measures the background noise
when no tag transmits in the slot. When one tag backscatters
its RN16 by reflecting or absorbing radio signals, as shown
in Fig. 1(b), the received signal strength at the reader may
vary depending on the message content. Current commodity
readers set an empirical magnitude threshold to decode the
backscattered message. When 2 tags transmit simultaneously,
we observe the tag collisions as in Fig. 1(c). In such a case,
commodity readers cannot reliably decode the tag collisions,
since the threshold based method no longer works. We cannot
differentiate the number of colliding tags when more than 2
tags transmit together as in Fig. 1(c) and Fig. 1(d), by solely
examining the magnitude of received signals.

When we examine the physical symbols in the I-Q plane
as depicted in Fig. 1(e)-(h), however, we see that the symbols
exhibit distinct clustering patterns, depending on the number
of colliding tags. Fig. 1(e) plots the physical layer symbols
that are measured when no tag transmits. If there is no noise,
all physical layer symbols overlap at one point in the I-Q
plane. In practice, due to background noise, the symbols will
be dispersed. As the noise generally follows the Gaussian
distribution, the symbols are still clustered and concentrated
around one centroid point as in Fig. 1(e). When 1 tag backscat-
ters alone, 2 clusters emerge in the I-Q plane as in Fig. 1(f).
Each cluster represents one possible transmission state, i.e.,
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(a) Physical layer symbols.

4 8 12 16 20 24

3

6

9

12

15

18

21

Grid X

G
r
id

 Y

 

 

0

100

200

300

400

500

600

700

800

(b) Filtered grid density matrix.
Fig. 3. An illustrative example of Slot State Detection Algorithm (SSDA).

idle or backscattering. We notice that a few samples locate
in a narrow band between the two clusters, because the tag
takes very short time to transit between the two transmission
states. When 2 tags transmit simultaneously, we find that the
I-Q plane contains 4 clusters as in Fig. 1(g). This is because
we have 4 possible transmission states when 2 tags transmit
simultaneously. In Fig 1(h), we see that the number of clusters
doubles as one more tag joins in the transmission. Comparing
Fig. 1(g)-(h) with Fig. 1(c)-(d), we see that the clustering
pattern of physical layer symbols in the I-Q plane contains
substantially richer information that allows us to derive the
number of colliding tags in each slot.

III. SLOT STATE DETECTION ALGORITHM

From the initial experiments, we see that it is possible to
infer the number of colliding tags by clustering the physical
symbols in the I-Q plane. Traditional clustering algorithms,
however, are inadequate to serve our purpose for at least
two reasons. First, many clustering algorithms (e.g., k-means
[13]) require a priori knowledge of the number of clusters.
Obviously, such algorithms cannot be directly used since the
number of clusters is exactly the unknown that we need to
derive. Second, although some clustering algorithms (e.g., DB-
SCAN [6]) do not require the priori knowledge of the cluster
number, they typically incur high computational overhead. In
particular, DBSCAN incurs a computation overhead of O(l2),
where l denotes the number of input samples. In our system,
we need to cluster thousands of symbols in at most 2ms, i.e.,
the RN16 slot length.

In this section, we propose a slot state detection algorithm
(SSDA) to efficiently process the physical layer symbols
and accurately measure the number of colliding tags in the
slot. The proposed SSDA method only incurs a computation
overhead of O(l). Intuitively, SSDA leverages the fact that
samples in one cluster follow a 2-D Gaussian distribution due
to channel noise, and consequently we expect a peak grid for
each cluster. Thus, we measure the density of samples in each
small grid and count the number of clusters by searching the
local maximum in the I-Q plane. The input to SSDA is the
physical symbols sampled in one slot. The output of SSDA is
the number of responding tags in the slot. The whole process
of SSDA contains the following three steps:

Step 1: Calculate the sample density in the I-Q plane. We
first find the min and max values of both in-phase and quadra-
ture components over all the physical symbols, represented
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Fig. 4. Detection accuracies of SSDA with different system parameters.

with complex numbers. We then divide the rectangular area
into small grids, whose size is set to 0.01×0.01. We calculate
the symbol density of each grid by counting the number of
symbols within the corresponding grid.

Step 2: Filter out the noise grids. We set an empirical
threshold to differentiate all grids into signal grids and noise
grids. If the density of a grid is above the threshold, the grid is
considered as a signal grid; otherwise, we filter out the noise
grid. Fig. 3 depicts how the raw samples of physical symbols
in Fig. 3(a) are filtered to obtain the density matrix in Fig. 3(b).
A constant threshold cannot work well since the grid densities
may vary, depending on the number of samples as well as the
number of clusters that are formed in the I-Q plane. Thus, we
propose to use a percentage threshold PT as follows. Suppose
there are l data samples in one slot. We set the grid density
threshold to be PT × l for a percentage threshold of PT .

Step 3: Calculate the number of responding tags. We count
the number of clusters C by counting the number of the local
maximums of sample density in the I-Q plane. In principle, if
k tags collide together in a slot, we should observe C = 2k

clusters. Due to noise, we have C ≤ 2k in practice. Thus, we
compute the number of responding tags k as dlog2 Ce.

In the following, we study the impact of two key system
parameters in SSDA – the percentage threshold, and the num-
ber of physical samples collected in one slot. The empirical
percentage threshold of SSDA influences detection accuracy
in practice: a high threshold may miss the cluster peaks, while
a low threshold cannot adequately filter out noise grids.

The number of samples collected in one slot is determined
by the slot duration and the sampling rate. As the C1G2
standard supports different combinations of backscatter link
frequencies and modulation schemes, we can reduce the slot
duration with higher link frequencies and coding rates, so as
to reduce the transmission time and the computation overhead
involved in SSDA.

We carry out trace-driven evaluations to study the influence
of the two system parameters. We sample the physical symbols
at 4MS/s on our testbed and the slot duration is 2ms. We
intercept varied portions of the symbols as input to SSDA.
We use an interception rate IR to represent the intercepted
portion, e.g., an interception rate IR of 10% means only the
first 10% of samples are processed by SSDA. We program
the WISP tags and let different number of tags concurrently
send RN16 messages in each slot. We record the number of
responding tags as the ground truth and measure the detection

accuracy. The accuracy is defined as the ratio of correctly
detected slots to the number of tested slots.

Fig. 4(a) plots the detection accuracy with the varied
percentage threshold ranging from 1% to 4%. We measure
the detection accuracy with 5 different interception rates. In
the figure, we find that a small percentage threshold (e.g.,
<0.5%) leads to low detection accuracies, because noise grids
cannot be filtered out. With the same interception rate, a
percentage threshold within [0.5%,1.5%] consistently achieves
high detection accuracies. More importantly, we find that
the detection accuracy is less sensitive to the change of the
percentage threshold within [0.5%,1.5%]. Once the percentage
threshold exceeds 2.0%, the detection accuracy decreases
as the threshold increases. This is because with a higher
threshold, some peak grids with relatively lower grid densities
would be accidentally filtered out. Thus, we set the percentage
threshold PT to 1%.

We study the impact of interception rates on the detection
accuracy. Fig. 4(b) plots the detection accuracy with different
interception rates. In the figure, we see that with PT=1% and
IR=100%, SSDA can achieve the detection accuracy of above
95%. Moreover, the detection accuracy remains above 95%
as long as the interception rate is larger than 50%. In other
words, SSDA only needs half of the physical symbols sampled
within one slot, to accurately count the number of responding
tags. As long as the interception rate is higher than 30%, our
detection algorithm can achieve 90% detection accuracy. The
experiment results imply that we can potentially reduce the
slot duration to further reduce the transmission time.

IV. ESTIMATION ALGORITHM

As we can differentiate multiple slot states with SSDA,
we can devise several estimators for different slot states.
For instance, we can estimate the tag cardinality with the
fraction of singleton slots, double-tag-collision slots, triple-
tag-collision slots, etc. Finally, we design an optimal joint
estimator by combining estimations from these subestimators
so that the overall variance is minimized.

A. Estimation protocol

In each slot, each of t tags generates a random integer r
using a uniform hash function. We denote the index of the
right-most zero in the binary representation of r as R. As in
the previous schemes [15, 29], a tag will respond if R ≥ θ,
where θ is a parameter specified by the reader. Therefore, the
probability p that a tag will respond in a slot is as follows

p = 2−θ. (2)
Suppose Xk (k = 0, 1, 2, ...) is defined as an indicator of k

tag responses in a slot, i.e., Xk = 1, if k tags are in the slot;
Xk = 0, otherwise.

For each k, Xk follows the Bernoulli distribution, and the
probability of observing k responses in a slot is

Pr{Xk = 1} =

(
t

k

)
pk (1− p)t−k ≈ λk

k!
e−λ, (3)

where λ = pt is the load factor.
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Thus, the expectation E[Xk] and variance σ2
Xk

are

E[Xk] =
λk

k!
e−λ , σ2

Xk
=
λk

k!
e−λ(1− λk

k!
e−λ). (4)

We define X̄k = 1
m

∑m
i=1Xk,i as the arithmetic average

of m observations. Then, the expectation and variance of X̄k,
denoted as E[X̄k] and σ2

X̄k
, are as follows

E[X̄k] = E[Xk] =
λk

k!
e−λ , σ2

X̄k
=

1

m
σ2
Xk

(5)

Since different k values will produce different estimations
of t with different variances, we give the following theorem
which provides the optimal combination of multiple sub-
estimators.

Theorem 1: Suppose t̂0, t̂1, ..., t̂k are k + 1 estimations for
t with variances σ2

0 , σ
2
1 , ..., σ

2
k, respectively. For the weighting

scheme
∑k
i=0 wi = 1 and 0 ≤ wi ≤ 1, the joint estimator

t̂ =
∑k
i=0 wit̂i has a variance of σ2

t̂
=
∑k
i=0 w

2
i σ

2
i . The

optimal weights wi (i = 0, 1, ..., k) for each sub-estimator
that minimizes σ2

t̂
is

w∗i =
1/σ2

i∑k
j=0 1/σ2

j

, i = 0, 1, ..., k, (6)

and the minimum variance is

σ2
t̂,min

=
1∑k

i=0 1/σ2
i

. (7)

Proof: To minimize σ2
t̂
, we define the following Lagrange

multiplier

L(w0, w1, ..., wk, β) =

k∑
i=0

w2
i σ

2
i + β(

k∑
i=0

wi − 1),

where the term
∑k
i=0 wi−1 incorporates the weight constraint∑k

i=0 wi = 1.
We let the partial derivatives of L over wi (i = 0, 1, ..., k)

and β be 0. Thus, we have
∂L

∂wi
= 2wiσ

2
i + β = 0 , i = 0, 1, ..., k

∂L

∂β
=
∑k
i=0 wi − 1 = 0.

We solve the equations as follows
w∗i =

1/σ2
i∑k

j=0 1/σ2
j

, i = 0, 1, ..., k.

β∗ = − 2∑k
i=0 1/σ2

i

.

Thus, we have the minimum variance of t̂ as follows

σ2
t̂,min

=

k∑
i=0

w∗2i σ
2
i =

1∑k
i=0 1/σ2

i

.

B. Computing the number of rounds m

In practice, m estimation rounds have to be repeated to
further reduce σ2

t̂,min
and meet the requirement in Eq.(1). In

the following, we analyze the minimum value of m.

Let Y =
t̂− t
σt̂,min

. Since t is often a large number, according

to the law of large number, Y follows the standard normal
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distribution. Thus, we can derive

Pr{− εt

σt̂,min
≤ Y ≤ εt

σt̂,min
} ≥ 1− δ. (8)

Eq.(8) is equivalent to
εt

σt̂,min
≥ c, (9)

where c meets the following condition

1− δ = erf(
c√
2

), (10)

and erf() represents the Gaussian error function.
Since σ2

t̂,min
is a function of m, we first compute σ2

t̂,min
.

According to Eq.(7), σ2
t̂,min

is a function of σ2
k. Because t̂k

is a function of X̄k, the relationship between σ2
k and σ2

X̂k
can

be explicitly expressed.
Suppose t̂k = fk(X̄k) is expressed with the Taylor expan-

sion centered on E[X̄k]:
fk(X̄k)− fk(E[X̄k]) ≈ f ′k(E[X̄k])(X̄k − E[X̄k]). (11)

Since we have fk(E[X̄k]) = E[fk(X̄k)], we derive from
Eq.(11) that

V ar[fk(X̄k)] ≈ {f ′k(E[X̄k])}2V ar[X̄k]. (12)
We represent Eq.(12) as follows

σ2
k = α2

kσ
2
X̄k
, (13)

where

αk =
dtk
dX̄k

∣∣∣∣
E[X̄k]

=
1

dX̄k/dtk

∣∣∣∣
E[X̄k]

=
k!teλ

λk(k − λ)
. (14)

Combining Eq.(4), Eq.(5), Eq.(7), Eq.(13), and Eq.(14), we
obtain the expression of σ2

t̂,min
as follows:

σ2
t̂,min

=
t2

mg(λ)
, (15)

where g(λ) is

g(λ) =

k∑
i=0

(i− λ)2

i!eλ/λi − 1
(16)

After obtaining σ2
t̂,min

, we can derive the number of inde-
pendent measurements m to meet the accuracy requirement
by substituting Eq.(15) into Eq.(9):

m ≥ c2

ε2g(λ)
. (17)

We see that g(λ) depends on k which is the maximum
number of detectable colliding tags in one slot. Fig. 5 measures
m with different k to meet different (ε,δ)-accuracy require-
ments. We fix ε to 0.01 and specify δ to 1%, 10%, and
20%, respectively. In the figure, we find that regardless of the
accuracy requirement, PLACE needs to perform fewer rounds
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of estimation with the increased k. This is because PLACE
is able to augment the joint estimator with more independent
sub-estimators. Nevertheless, the marginal gain of detecting
more tags in each slot gradually decreases as k increases. As
the slot state detection accuracy decreases when more tags
collide together, we combine 4 sub-estimators in practice.

We further tune λ to maximize g(λ) and minimize m. In
order to find the optimal λ∗ to maximize g(λ) and minimize
m, we plot g(λ) against λ in Fig. 6. We see that g(λ) reaches
the maximum value with λ∗ ≈ 5.2.

C. Two-phase Counting Algorithm

We adopt the two-phase estimation design [4]. In the first
rough estimation phase, we adjust the threshold θ∗ so that the
load factor λ̂ approaches 5.2; in the second phase, we repeat m
independent estimation rounds with the optimal threshold θ∗.
The weights that are necessary to compute the final estimation
t̂ are derived from λ̂ obtained in the first phase.

In the first rough estimation phase, the reader issues a θ
value and measures the fraction of each slot state, i.e., X̄k

(k = 0, 1, 2, 3). We denote the fraction of slots with more
than 3 concurrent responses as X̄4+. From Eq.(5), we have

E[X̄4+] = 1−
3∑
k=0

E[X̄k] = 1− e−λ
3∑
k=0

λk

k!
. (18)

Fig. 7 plots E[X̄k] (k = 0, 1, 2, 3, 4+) with different λ.
From this figure we observe that when λ is around 5.2,
E[X̄k] (k = 0, 1, 2, 3) can be very small and hence cannot be
accurately measured with a small number slots (e.g., 32 slots).
In contrast, E[X̄4+] spans a relatively large range and can
be a good indicator of λ. In addition, E[X̄4+] monotonically
increases with λ, which allows us to quickly converge to the
optimal λ using the binary search method.

In particular, in each query round, we measure E[X̄4+]
and compute λ̂ according to Eq.(18). If λ̂ is smaller than 3,
indicating a large θ value, we decrease θ in the next query
round; if λ̂ is larger than 7, indicating a small θ value, we
increase θ in the next query round; once λ̂ is in the range
[3, 7], we terminate the rough estimation phase and set θ∗ and
λ̂ to the corresponding values in the last query round. Based
on the above rules, the reader starts a query round with θ = 16
and adopts a binary search method for θ in the range of [0, 32].

D. Impact of SSDA Errors and Enhancement

We analyze how the SSDA detection errors influence the
counting accuracy of PLACE.

We denote qij as the probability of detecting state i as state
j, where i, j = 1, 2, 3, 4+. Specifically, if i = j, qij indicates
the detection accuracy of state i. As empty slots (state 0) can
be accurately differentiated from busy slots by measuring the
signal strength, we only consider the detection accuracy of
state i, where i, j = 1, 2, 3, 4+. We use a detection rate matrix
Q = [qij ]4×4 to represent the overall detection performance
of SSDA.

We use a vector ~X = (X̄1, X̄2, X̄3, X̄4+)T to represent the
actual fraction of each state. As the detection results of SSDA
may contain some errors, we represent the measurement results
as ~XE = (X̄E

1 , X̄
E
2 , X̄

E
3 , X̄

E
4+)T . Based on the definition of

Q, we have ~XE = Q ~X . Thus, we can obtain ~X , which can
be used to generate an accurate estimation of t, as follows:

~X = Q−1 ~XE , (19)
where Q−1 is the inverse matrix of Q.

To estimate Q, we perform SSDA with our traces collected
from the software defined testbed, which is described in
Section II. We set the percentage threshold to be 1% and the
interception rate to be 30%. Fig. 8 plots the state detection
accuracy of SSDA. The x-axis of Fig. 8 is the ground truth
of each tag response state, and the y-axis represents the
detection results. We represent the measurement results with
Q as follows:

Q =


0.96 0.04 0 0
0.08 0.84 0.09 0

0 0.02 0.96 0.02
0 0 0.03 0.97

 .

From the above Q, we find the SSDA method achieves high
detection accuracies. For the detection errors, we find that state
k is more likely to be mistakenly detected as adjacent states.

In practice, Q can vary due to various factors, e.g., reader
transmission power, interference to tag responses, etc. To
understand the impact of Q on the overall estimation accuracy
of PLACE, we approximate Q with Q0 as follows:

Q0 =


1− q0 q0 0 0
q0 1− 2q0 q0 0
0 q0 1− 2q0 q0

0 0 q0 1− q0

 ,

where q0 can be specified according to empirical measurement
results. With Q0, we can study how different detection perfor-
mance of SSDA may impact the overall counting accuracy of
PLACE. We can recover ~X from ~XE according to Eq.(19) and
use ~X for tag cardinality estimation. We name the enhanced
PLACE with the error compensation as EPLACE.

To measure Q0 in practice, we can first identify k tags and
request them to respond together. Then, we can use k as the
ground truth and measure each entry in the kth row of Q0.

V. EVALUATION

In the following, we first compare SSDA with the bench-
mark clustering algorithm DBSCAN [6] in terms of the slot
state detection accuracy and the execution time. We then
compare PLACE with previous cardinality estimation schemes
including EFNEB [8], LoF [15], ZOE [29] and SRC [4].

6



1 tag 2 tags 3 tags 4 tags all
0

0.2

0.4

0.6

0.8

1
D

e
te

c
ti
o

n
 a

c
c
u

ra
c
y

 

 

Trace types

SSDA

DBSCAN

(a) Comparison of detection accu-
racy.

43 86 129 172 215

0.001

0.01

0.1

1

10

100

Trace index

O
p
e
ra

ti
o
n
 t
im

e
 i
n
 s

e
c
o
n
d
s

 

 

SSDA

DBSCAN

(b) Comparison of computational
overhead

Fig. 9. Performance comparison of DBSCAN and SSDA.

Finally, we evaluate the impact of SSDA detection errors on
the estimation accuracy as well as the compensation for the
errors.

A. SSDA Evaluation

Our traces are collected with the GNURadio/USRP testbed
and WISP tags as described in Section II. For the experimental
purpose, we program the WISP tags and control the number
of responding tags in each slot. We record the actual number
of responding tags (varying from 1 to 4) as the ground truth
in the experiment.

We expect an ideal slot state detection algorithm to effi-
ciently process the samples and accurately count the number
of responding tags. We compare the detection accuracy and
the execution time of the proposed SSDA with the benchmark
scheme DBSCAN. We set the interception rate IR to 30%
and the percentage threshold PT to 1% for SSDA.

In DBSCAN, a circular region centered on a point p with
radius ε is called ε-neighborhood of p. If at least T points fall
into ε-Neighborhood of p, p is called a core point. Otherwise
if q falls into the ε-neighborhood of another core point, we
call q border point. A noise point is a point that is neither a
core point nor a border point. If p is a core point and q is in ε-
neighborhood of p, we say q is directly density-reachable from
p. If q′ is directly density-reachable from q, and q is directly
density-reachable from p, we say q′ is indirectly density-
reachable from p via q, i.e, p → q → q′. DBSCAN groups
all density-reachable points into one cluster. In the experiment,
we specify the optimal parameters (ε=0.01, T=0.01×l), which
maximize the detection accuracy of DBSCAN. Although DB-
SCAN can be used to count the number of responding tags in
each slot, it incurs a computation overhead of O(l2), where l
denotes the number of input data samples.

Fig. 9(a) compares the detection accuracy of SSDA and
DBSCAN. We present the overall detection accuracy as well as
the accuracy for each case with different number of responding
tags. Fig. 9(a) shows the following results. First, the overall
accuracy of SSDA is comparable with that of DBSCAN.
Specifically, the overall accuracies of SSDA and DBSCAN
are 91.2% and 96.7%, respectively. Second, in the case when
4 tags respond together, SSDA achieves higher accuracy
compared with DBSCAN. This is because when 4 tags respond
concurrently, the I-Q plane becomes crowded with 16 clusters.
As a result, the inter-cluster distances become smaller and the
borders between neighboring clusters become blurred. Thus,
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Fig. 10. Comparison of operation time to meet different accuracy require-
ments among 5 schemes: EFNEB, LoF, ZOE, SRC and PLACE.

45000 50000 55000 60000
0

0.25

0.5

0.75

1

Estimation of tag cardinality

C
D

F

 

 

EFNEB

LoF

ZOE

SRC

PLACE

Fig. 11. CDF of estimation results of different schemes with the same amount
of execution time.

the border-based DBSCAN may cluster the neighboring clus-
ters together. In contrast, the centroid-based SSDA overcomes
this problem and derives the number of clusters by counting
the number of local maximums after filtering out noise. Since
the local maximums lie in the center of clusters, the distance
between the centers of two neighboring clusters tend to be
larger than the distance between their borders.

Fig. 9(b) compares the computational overhead of SSDA
and DBSCAN. The physical layer symbols are collected with
the USRP reader and the symbols are transferred to a laptop
for processing. We execute both algorithms on the laptop and
measure the execution time of two algorithms. The laptop is
equipped with an Intel qual-core 2.9GHz i7 processor and
15.4GB memory running 64-bit Ubuntu 13.04. In the figure,
the x-axis is the trace index and the y-axis is the operation
time in seconds, presented in the log scale. We find that SSDA
reduces the operation time compared with DBSCAN by orders
of magnitude. Specifically, the average operation time of
SSDA and DBSCAN is 1.3ms and 84.5s, respectively. SSDA
substantially outperforms DBSCAN mainly due to the fact that
while DBSCAN incurs O(l2) computational overhead, SSDA
only incurs O(l) overhead. In addition, while DBSCAN has
to perform computation-intensive operations such as multipli-
cation and square root calculation to calculate the distance
between physical layer symbols, SSDA only needs to perform
lightweight operations such as addition and comparison.

B. PLACE Evaluation

We perform extensive simulations to compare PLACE with
previous cardinality estimation schemes. As most of these
previous schemes do not tolerate noisy channels, we assume
no errors in slot state detection in the performance comparison.

We measure the overall execution time as the performance
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Fig. 12. Impact of q0 on estimation accuracy of PLACE.

metric, which counts both communication time and the com-
putation time. The communication time mainly consists of the
transmission time of reader’s command and tags responses.
The computation time is mainly consumed in the execution
of SSDA for each slot. We ignore the computation time for
benchmark schemes. In practice, as SSDA can be executed in
real time, the cluster counting operation (which takes 1.3ms)
can be executed in parallel with the signal sampling operation
for each RN16 reception (which takes 2ms) at physical layer.
Thus, SSDA incurs little extra time overhead.

Fig. 10 compares the overall operation time to meet different
estimation accuracy requirements. The actual tag cardinality
is 50000. In Fig. 10(a), we fix δ to 20% and vary ε, ranging
from 1% to 5%. From Fig. 10(a), we find that like benchmark
schemes, PLACE takes less time to meet the estimation ac-
curacy requirement of relaxed confidence intervals. Moreover,
PLACE takes much less operation time compared with the
benchmark schemes to meet the same accuracy requirement. In
particular, compared with the recent state-of-the-art work SRC
[4], PLACE only takes approximately 1/3 of execution time
across different accuracy requirements. In Fig. 10(b), when
we fix ε to 1% and vary δ from 1% to 10%, we also find that
PLACE substantially outperforms benchmark schemes.

We provide each estimation scheme the same amount of
execution time to estimate the number of 50000 tags. We
repeat the estimation process of each scheme for 100 times. In
Fig. 11, we plot the CDF of estimation results for each scheme.
From Fig. 11, we find that the estimation results of PLACE
are more concentrated on the actual tag cardinality. Moreover,
the tail of PLACE is much shorter than those of EFNEB,
LoF, ZOE and SRC, indicating smaller estimation variance of
PLACE. Specifically, according to the estimation results, pro-
vided the same amount of operation time, PLACE has 99 es-
timation results within the confidence interval [47500,52500],
while SRC, which performs best among the benchmarks, has
only 91 estimation results within the interval. According to
the experiment result, we find that given the same amount of
operation time, PLACE can estimate the tag cardinality more
precisely and accurately compared with other schemes.

C. The Impact of SSDA Detection Errors on PLACE

To evaluate the impact of SSDA detection errors on the
estimation accuracy of PLACE, we measure the estimation
accuracy with the ratio of the estimated tag population t̂ over

the actual population t as in [15, 26, 29]. Ideally, the accuracy
should be 1, indicating a perfect estimation result.

We run the basic PLACE and the Enhanced PLACE
(EPLACE), which compensates for the errors and adjusts
the estimation results. We use q0 to represent the slot state
detection error. We average over 100 runs to obtain each
estimation result.

Fig. 12(a)-(c) plot the estimation accuracies of PLACE and
EPLACE, with q0 of 5%, 15%, and 25%, respectively. The
y-axis and x-axis represent the estimated number and the
actual number of tags, respectively. For illustration purposes,
we plot the ideal curve y = x. From Fig. 12(a)-(c), we find
that without the error compensation, the estimation errors of
the basic PLACE increase with both the number of tags and
the slot state detection errors. Fortunately, EPLACE is able
to compensate for the errors and achieve high accuracy. The
experiment results of Fig. 12(a)-(c) demonstrate that EPLACE
is able to leverage the knowledge about the detection errors
and adjust the estimation results accordingly.

In Fig. 12(d), we vary the error rate from 5% to 25%
and measure the corresponding estimation accuracy. We fix
the tag cardinality to 50000. We specify the (ε=5%,δ=1%)-
accuracy requirement, and provide PLACE the correspond-
ing execution time. From Fig. 12(d), we find that as q0

increases, the estimation accuracy of basic PLACE decreases
dramatically. In contrast, the estimation accuracy of EPLACE
remains relatively stable and fluctuates around 1. Although
EPLACE cannot achieve the ideal estimation accuracy of 1, the
estimation results are all within the targeted accuracy interval
of [0.95,1.05].

VI. RELATED WORK

Many probabilistic approaches have been proposed to im-
prove the cardinality estimation efficiency [4, 8, 10, 11, 15, 16,
26, 29]. Kodialam et al. propose the first probabilistic counting
scheme, Unified Probabilistic Estimator [10], which uses the
fractions of empty, singleton and collision slots to estimate
the tag population. Qian et al. propose the Lottery Frame
scheme [15] to reduce the frame size and avoid the problem
of replicated counting. Han et al. present the Enhanced First
Non-Zero Based estimator [8], which quickly locates the first
busy slot with the binary search. Zheng et al. design the
Probabilistic Estimating Tree scheme [26], where a binary
tree is used to organize the tags and assist the tag probing.
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Shahzad et al. propose the Average Run based Tag estimator
[16], which estimates the tag population with the average run
length of non-empty slots. Zheng et al. present the Zero-One
Estimator [29], where all tags respond in each slot with a
certain probability and the fraction of empty slots is used to
estimate the tag cardinality. Chen et al. [4] emphasize the
importance of the two-phase design and study the theoretical
limits of RFID counting efficiency. Gong et al. [7] efficiently
estimate the number of counterfeit tags. Liu et al. [12] estimate
the number of key tags. Unlike those works that only leverage
binary or ternary states extracted from each slot, we propose
a cardinality estimation scheme which infers the number of
colliding tags in each slot at RFID physical layer and thereby
improves the estimation efficiency.

Previous works try to read multiple RFID tags by recovering
tag collisions at physical layer [2, 9, 17]. Shen et al. [17]
propose to use software defined radios to recover collisions
of HF RFID cards. Khasgiwale et al. [9] decode the RN16
message of UHF RFID tags so as to improve the tag arbitration
efficiency. Some works [2, 5] present the theoretical analysis
on tag collisions and read a small number of tags in parallel.
Nevertheless, such deterministic identification schemes cannot
efficiently estimate the tag cardinality for large-scale RFID
systems. Inspired by those works, we present a probabilistic
estimation scheme which is able to extract and synthesize more
information from the RFID physical layer.

Many prior works study the problem of collecting data
from RFID devices. Yue et al. [21] present a data collection
scheme using the Bloom filter. BLINK [23] improves the
link layer performance with link quality measurement and
rate adaptation for RFID devices. Buzz [18] recovers tag
collisions at physical layer and collects data from RFID tags
in an efficient and reliable manner. Zanetti et al. [22] identify
RFID tags using the physical layer fingerprints. P-MTI [28]
identifies the missing tags by examining RFID collisions at
physical layer. Tagoram [20] tracks mobile tags by leveraging
the phase information available at commodity readers. The
common rationale of those works and PLACE is that careful
cross layer designs of RFID network stack may fundamentally
improve the operational efficiency of RFID systems.

VII. CONCLUSION

Estimating the number of RFID tags is a fundamental
operation in RFID systems. In this paper, we introduce a
physical layer based cardinality estimator to fundamentally
improve the estimation efficiency. We first propose a slot
state detection algorithm to accurately count the number of
responding tags in each slot. We then devise a joint estimator
to combine multiple sub-estimators each of which estimates
the tag population with the slot state measurement results.
Extensive evaluation results show that PLACE substantially
outperforms prior works.
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