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Abstract
The location and context switching, especially the in-

door/outdoor switching, provides essential and primitive in-
formation for upper layer mobile applications. In this paper,
we present IODetector: a lightweight sensing service which
runs on the mobile phone and detects the indoor/outdoor en-
vironment in a fast, accurate, and efficient manner. Con-
strained by the energy budget, IODetector leverages pri-
marily lightweight sensing resources including light sensors,
magnetism sensors, celltower signals, etc. For universal ap-
plicability, IODetector assumes no prior knowledge (e.g.,
fingerprints) of the environment and uses only on-board sen-
sors common to mainstream mobile phones. Being a generic
and lightweight service component, IODetector greatly ben-
efits many location-based and context-aware applications.
We prototype the IODetector on Android mobile phones
and evaluate the system comprehensively with data collected
from 19 traces which include 84 different places during one
month period, employing different phone models. We fur-
ther perform a case study where we make use of IODetector
to instantly infer the GPS availability and localization accu-
racy in different indoor/outdoor environments.

Categories and Subject Descriptors
C.2.4 [Computer Communication Networks]: Dis-

tributed Systems – Distributed Applications; C.3.3 [Special-
Purpose and Application-based Systems]: Real-time and
embedded systems

General Terms
Design, Implementation, Measurement
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1 Introduction
Current mobile phones are becoming important platforms

that serve the ubiquitous sensing and communication needs
of people [16]. The sensing and communication modules
on mobile phones are usually developed to provide location
and context-aware services. However, they may have het-
erogenous availabilities and perform differently in different
environments. An effective indoor/outdoor detection scheme
can provide primitive environment information for a variety
of mobile applications, and thus potentially improve the per-
formance of mobile phones. For example, in location-based
applications, people usually source GPS for an accurate loca-
tion reference when they are in the outdoor environment. In
contrast, GPS performs poorly without line-of-sight paths to
satellites when mobile devices are inside buildings [5, 30].
In mobile data services, mobile phones normally observe
more WiFi Access Points (APs) with strong signals inside
buildings whereas it is unlikely to have good WiFi connec-
tions in outdoor environments. Therefore, knowing indoor
or outdoor can help to make smarter decisions on whether
to turn on GPS or to perform AP scanning. In the context
and activity recognition applications, the knowledge of the
surrounding indoor/outdoor environment potentially leads to
more accurate recognition.

Although many applications may benefit from accurate
and prompt indoor/outdoor information, the research study
towards generic indoor/outdoor detection surprisingly lacks.
Many location related works simply assume a clear pre-
knowledge on the indoor/outdoor environment has been
known, but such an assumption hardly holds in practice. The
unavailability or performance degradation of GPS is some-
times used to infer the indoor/outdoor environment, yet such
an approach suffers from low accuracy, high energy con-
sumption, and long response time.

In this paper, we present the Indoor/Outdoor Detector
(IODetector): a generic and light-weight service for the in-
door/outdoor detection for mobile applications. Constrained
by the energy budget on mobile phones, we primarily make
use of three types of lightweight sensors, i.e., light sensor,
cellular module, and magnetism sensor. Through one month
experiment, we observe that the light intensity, the cell tower
signal, and the intensity of magnetic field all individually
exhibit distinct patterns in the indoor and outdoor environ-
ments. Those patterns turn out to be viable for an accurate
classification of the ambient environments. More precisely,



light signals exhibit distinct patterns when they are captured
inside and outside buildings respectively. The reason behind
is that the natural and man-made light sources contain inher-
ent difference in nature. The received signal strength from a
cell tower by a mobile phone changes dramatically from the
outdoor to indoor environments as the dividing walls block
the line-of-sight paths between the mobile phone and the cell
tower. The intensity of magnetic field varies significantly
across different places inside buildings due to the ambient
electric appliances and steel structures while remains much
less fluctuated across an outdoor environment. Motivated by
those facts and observations, we target at achieving the in-
door/outdoor detection by exploiting the three lightweight
sensing resources.

Translating such an idea into a practical indoor/outdoor
detection service entails a wide range of challenges, as the
three aforementioned sensing resources show distinct pros
and cons in different surrounding environments. The ambi-
ent light intensity may vary over time and is potentially in-
fluenced by various factors (e.g., people movement, phone
pose, and cover of sight). The absolute cell tower signal
strength may vary significantly at different places and across
different mobile phone models, making it difficult to con-
fidently set a uniform rule for the indoor/outdoor classifi-
cation. The magnetometer readings are error-prone with-
out careful calibrations. We develop practical solutions and
address above challenges in IODetector. In particular, we
extract unique identifiable indoor lighting features to de-
tect the indoor/outdoor environment, and leverage particu-
lar light intensity patterns to improve the detection accuracy
(§3.2). We exploit the abrupt period of the cell tower signal
strength rather than its absolute value to distinguish the in-
door/outdoor context that is invariant across different places
and phone models. We track the cellular signals from mul-
tiple visible cell towers so as to enhance the robustness of
the indoor/outdoor detection (§3.3). We take advantage of
the magnetic disturbance inside buildings and make use of
the movement status from accelerometers to ensure the de-
tection performance (§3.4).

We constructively combine the three sensing components
and develop an extensible indoor/outdoor detection frame-
work. By taking other ambient sensing readings and eval-
uating the confidence levels of three sensing units, we in-
tellectually aggregate their detection results and guarantee
optimized reliance on those sensing units. The developed
IODetector then works as an underlying service module that
can be invoked by upper-layer applications to provide instant
indoor/outdoor information (§3.5).

We implement and evaluate IODetector with the Android
platform using different mobile phone models. We test
IODetector in 19 traces including 84 different sites in our
campus and city areas, and demonstrate quite encouraging
results with various scenarios. Since IODetector only relies
on lightweight sensors, the low energy cost allows continu-
ous tracking of indoor/outdoor state transitions. In particular,
we perform a case study and show that we can utilize IODe-
tector to cheaply and accurately infer the current availability
and accuracy of the GPS module for mobile phones.

The rest of this paper is organized as follow. In §2, we

first detail the background and motivation of this work. We
describe the technical solutions of IODetector in §3. We
present the evaluation results in §4 and review related works
in §5. Finally, we conclude the paper in §6.

2 Background and motivation
The indoor/outdoor detection can provide essential and

primitive information for upper-layer mobile applications.
For example, before turning on GPS, one may first check
whether it is outside a building to ensure the GPS per-
formance. Another example is that before searching for
WiFi access points, one may check whether it is inside or
near buildings and adapt the scanning strategy accordingly.
Many other applications, including automatic image annota-
tion [24], context and activity recognition [10], indoor local-
ization [7], may also rely on the indoor/outdoor knowledge
for a proper working scheme. If the detection overhead (de-
pending on the application profile) is sufficiently small, most
location and context-aware applications will greatly benefit
from such indoor/outdoor detection.

While practically useful, the problem of indoor/outdoor
detection has not been thoroughly studied yet. Existing lo-
calization and tracking applications may indirectly infer the
ambient environment with the availability and accuracy of
the GPS signal. It is well known that localization and track-
ing systems perform poorly in the indoor environment as the
line-of-sight paths to GPS satellites are blocked. The un-
availability of GPS signals and the the decreasing number
of the visible satellites can thus infer the indoor environ-
ment [25]. Typical GPS modules, however, draw substantial
amount of energy and take minutes to warm up and conduct
the GPS satellite scanning on mobile phones [30]. As a re-
sult, detecting indoor/outdoor environments solely with GPS
can be slow and inefficient. There are some other works re-
lying on dedicated devices to assist the ambient environment
detection. The deployment cost of such infrastructure-based
approaches significantly limits the flexibility and scalability
for general purpose detection [27]. On the other hand, some
recent works study the problem of logical localization by
sensing the surrounding environment [4, 19]. By painstak-
ingly fingerprinting ambient signals (e.g., sound, floor color,
user movement, etc), the mobile phones can learn the ambi-
ent environment through an intensive site survey. A central
server is normally needed to store such ambient fingerprints
and answer queries from users. Such an approach is unlikely
to be generalized to deal with universal indoor/outdoor de-
tection. Many works in image processing and pattern recog-
nition study the problem of the indoor/outdoor image clas-
sification and automatic image tagging [23, 24, 28]. Such
approaches cannot directly be applied to our problem, since
they require explicit, manual input from users.

In this work, we propose IODetector, a lightweight
indoor/outdoor detection framework, which independently
runs on each mobile phone and provides generic service to
upper-layer applications. As a basic component which might
be frequently invoked by many applications on energy-
constrained mobile phones, IODetector needs to meet sev-
eral stringent design requirements.

• High accuracy. As a generic framework that many
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Figure 1. Three indoor/outdoor environment types and
the representative scenes.

other applications would potentially rely on, IODetec-
tor should accurately detect the indoor/outdoor environ-
ment.

• Prompt response. IODetector should promptly distin-
guish the indoor/outdoor environment. An outdated de-
tection result may be less valuable for many instanta-
neous applications.

• Energy efficiency. Being a generic service running
on the mobile phones with constrained energy budgets,
IODetector should be energy efficient, and better use
only inexpensive sensing resources on mobile phones.

• Universal applicability. IODetector should avoid rely-
ing on a priori knowledge or site survey, special sensors
or explicit user feedback to ensure wide applicability.

Before we present the design of IODetector in detail, we
formally define the indoor/outdoor environment types stud-
ied in this paper. To provide fine-grained context informa-
tion for upper-layer applications, we classify the environ-
ment into three categories, i.e. outdoor (outside a building),
semi-outdoor (close to or semi-open building), and indoor
(inside a building). Figure 1 illustrates representative scenes
for those three different environment types. The reason to
introduce the category of semi-outdoor is mainly due to po-
tential application needs. For instance, GPS may not neces-
sarily perform well even if it is outdoor. The reason is that
the number of visible line-of-sight satellites might be insuf-
ficient in many semi-open environments. In such cases, we
may not prefer to launch the GPS component. On the con-
trary, the situation could become different for other types of
applications. One typical example is that mobile phones nor-
mally can find WiFi APs in indoor environments. Yet in most
semi-outdoor environments, mobile phones may still detect
a number of APs with good connections. Additionally, Some
rooms with large window could be treated as semi-outdoor,
since it is possible to receive good GPS signal in such envi-
ronment, although it can be less accurate as in fully outdoor
environments. Thus, the designed IODetector does not sim-
ply output a binary result (i.e., indoor or outdoor) for upper-
layer applications. Instead, it provides finer grained classi-
fication on the indoor/outdoor scenes and thus better meets
different application needs.
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Figure 2. System architecture of IODetector.

3 System design
In this section, we first introduce the system architecture

and the design details for each component in IODetector.
Then we specify how to aggregate the outputs obtained from
each component to construct a comprehensive and effective
indoor/outdoor detector.
3.1 System overview

Figure 2 illustrates the system architecture of IODetec-
tor. To meet stringent design requirements, IODetector uti-
lizes a series of lightweight sensors for the indoor/outdoor
detection. IODetector primarily makes use of three types of
lightweight detectors: light detector, cellular detector, and
magnetism detector. Light detector adopts light sensors to
capture ambient light signals to determine the surrounding
environment type. It also utilizes other two lightweight sen-
sors, the proximity sensor and the system time clock, to as-
sist the detection. Cellular detector detects the attenuation of
cellular signals caused by obstacles (e.g., walls). It normally
indicates the entrance/exit of the device to/from an indoor
environment. Magnetism detector exploits the dramatic dis-
turbance of magnetic field inside or in the vicinity of build-
ings during the movement of the mobile phone. It thus can
distinguish the indoor/semi-outdoor environments from the
outdoor environment. Note that each component of IODetec-
tor shows unique advantages and disadvantages in different
environmental contexts. They process the sensor data and re-
port the respective partial detection results. IODetector then
aggregates those results and generates a final decision, which
is provided to upper layer applications through a service in-
terface. In the rest of this section, we will describe the design
details of each component.

In order to reveal the signal features with different envi-
ronments, we empirically study the patterns of light signal,
cell tower signal and magnetism signal in different environ-
ments for 2 weeks. All of the signals are collected in 31 dif-
ferent environments under different weather conditions, in-
cluding sunny, cloudy and rainy days, and at different times
of the day. The studied sites include indoor offices, homes,
stores, outdoor campus, some downtown areas, etc. For each
site, we collect light signal 6 times, magnetism signal 4 times
and cell tower signal 4 times on average with different sam-
pling rates. The light signal is collected with different ori-
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Figure 3. Mobile phone light sensor readings in different
scenes.

entations of the light sensor and the cell tower signal is col-
lected when the user walks from outdoor to indoor and vise
versa.

3.2 Light detector
In outdoor and semi-outdoor environments, the sunlight

is the primary light source in the daytime. In the indoor
environment, however, we normally rely on artificial light
sources (e.g., fluorescent lamps). In this subsection, we
study how to take advantage of various light sources for the
indoor/outdoor detection.

3.2.1 Light intensity measurement
Our primary observation for light detector is that the light

intensity inside buildings is typically much lower than that
in either the outdoor or semi-outdoor environment even in
cloudy or rainy days. Such a phenomenon can still be ob-
served when the light sensor is rotated towards the ground.
The major reason is that the intensity of sunlight within the
visible spectrum is normally much higher than that from or-
dinary lighting lamps. In addition, light sensors can also de-
tect the light in the invisible spectrums (e.g., infrared and
ultraviolet). As a result, even when the brightness of sun-
light and artificial light looks similar, the luminous flux from
sunlight is much higher than that from artificial light sources
during the daytime. Therefore, the indoor environment can
be accurately distinguished from the outdoor/semi-outdoor
environment by using the observed light intensity.

To verify the statement above, we conduct a set of experi-
ments. We measure the light intensities in different environ-
ment types under different weather conditions. In Figure 3,
we plot the light sensor readings from three different types
of mobile phones (HTC Desire S, HTC Sensation G14, and
Samsung Galaxy S2 i9100). Current Android platform, how-
ever, only provides coarsely quantized light sensor readings
for upper-layer applications. For instance, Samsung Galaxy
S2 i9100 only provides five quantized levels (10, 100, 1000,
10000, and 160000), and the light intensity will be rounded
to the closest quantized level. From Figure 3, we can see that
readings of the light intensity from all three mobile phones
are discrete and coarse. Yet the readings still show clear and
consistent transition behaviors in the experiments. When the
user moves outside of the office at 30sec, the light sensor
readings increase significantly at all the three mobile phones.
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Figure 4. Outdoor and indoor light variation throughout
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0 2 4 6 8 10 12 14 16 18
0

2000

4000

6000

Time (seconds)

Li
gh

t i
nt

en
si

ty
 (

Lu
x)

Figure 5. Light intensity during the rotation in the out-
door environment.

To further investigate the effectiveness to utilize the light
intensity to distinguish the indoor environment, we further
collect light intensities in three different environments using
three TelosB motes in a cloudy and rainy day. Since it is flex-
ible to achieve a fine-grained control of the light sensors on
the TinyOS platform, we can record instant light intensities
during the entire experiment. We note that the results and
observations obtained in this experiment can also be used to
improve the system performance. On one hand, recent works
have shown that mobile phones can be directly connected to
the sensor motes [10]. On the other hand, we believe that
the light signal intensity fidelity obtained with the cheap on-
board sensor on TelosB can be easily achieved if we unlock
the full access to the light sensor on the Android OS plat-
form. In this experiment, the sampling rate of the light sensor
is set to be one sample per second. From Figure 4, the light
intensities in both the outdoor and semi-outdoor scenarios
are above 2000Lux and much higher than that in the indoor
environment in the daytime (from 8:00AM to 17:00PM). We
also find that during the night (from 20:00PM to 5:00AM),
the outdoor light intensity is much smaller than indoor light
intensity. In addition, the light intensities in the indoor and
outdoor environments are both relatively stable. This obser-
vation is consistent with the indoor lighting standards and
measurements [2], which shows that in the vast majority of
cases the indoor light intensity is within the interval from
100Lux to 1000Lux.

In practical scenarios, the mobile phone does not neces-
sarily face to the sun and the phone may be dynamically ro-
tated. To examine the robustness of our method, we record
the detected light intensity when rotating a TelosB mote in
Figure 5. The light sensor initially faces to the sun and
is gradually rotated until being towards an opposite direc-
tion. Figure 5 shows that even when the light sensor is op-
posite to the sun, the light intensity is relative high as well,
e.g., around 3000Lux. Compared with the light intensity ob-
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served in the indoor scenario as shown in Figure 4, we can
still distinguish them easily. Therefore, the detection of the
light intensity is robust to the mobile phone dynamics.
3.2.2 Detection process in light detector

Since mobile phones may be placed in pockets or bags,
the light sensors may not be always available . We use prox-
imity sensors on mobile phones to detect the presence of
nearby objects which may block the light sensor. We as-
sociate a confidence level CL ∈ [0,1] for the detection result.
Different light signals will lead to different detection confi-
dence levels.

Figure 6 summarizes the work flow of the light detector
component. We denote L to be the detected light intensity.
The light detector first queries the proximity sensor to check
whether the light sensor is currently available for accurate
detection. If the light sensor is available, the light intensity L
is then compared with a threshold σ1. If L > σ1, light detec-
tor confirms an outdoor/semi-outdoor environment detection
with a high level confidence CL = 1; if L ≤ σ1, it needs to
further differentiate whether it is an indoor environment or
an outdoor/semi-outdoor environment at night. To this end,
light detector refers to the system clock. If the clock indi-
cates a daytime, the detector infers the environment to be in-
door with a high confidence. If not, light detector compares
L to a threshold σ2. If σ2 < L ≤ σ1, it indicates an indoor
environment with a confidence level CL = σ1−L

σ1
; if L ≤ σ2,

the mobile phone is in an outdoor/semi-outdoor environment
with a confidence level CL = σ2−L

σ2
.

From Figure 4, the sunlight intensity in both daytime and
night is distinguishable from that of indoor lights. According
to our empirical study, we set the threshold σ1 to 2000Lux
and σ2 to 50Lux.

In addition to the light intensity, we also observe that the
indoor fluorescent light powered by the alternating current
(AC) power exhibits a periodical pattern. We measure the
frequency of indoor fluorescent light flicker and find that the
flicker of indoor fluorescent light intensity is relatively stable
in various conditions [17]. This pattern can be further used
to classify indoor/outdoor environment. By using FFT, we
can extract the frequency of light flicker. If the frequency
matches the AC power frequency, it highly indicates an in-
door environment. We leave the details of the approach for
future elaboration due to the page limitation.

Light detector is designed to differentiate the indoor en-
vironment from outdoor/semi-outdoor environments. High
light intensity normally indicates outdoor/semi-outdoor en-

vironments; while extremely low light intensity suggests an
indoor environment. The limitation of the light detector is
that the light signal is not always available. In addition, we
cannot confidently distinguish the outdoor and semi-outdoor
environments by merely using light sensors.

3.3 Cellular detector
Mobile phones maintain connections to nearby cell tow-

ers to support the primary functionality, i.e., the telephone
calls. The marginal energy consumption of collecting re-
ceived cellular signal strength (RSS) is thus negligible. Pre-
vious works utilize the information about visible cell towers
and their signal strength for localization and tracking [29].
Such approaches, however, suffer from low accuracy due to
various factors. One primary issue is the dividing wall effect,
which refers to the fact that the dividing wall significantly
blocks the cellular signal and hence leads to dramatic signal
strength drop when people get into indoor environment. Un-
like the localization work where the dividing wall effect is
undesired, in this paper, we embrace and exploit the result-
ing cellular RSS variations for indoor/outdoor detection.

In this paper, we choose to look at the cell tower signal
over other wireless signals (e.g., WiFi) mainly due to the fol-
lowing considerations. First of all, cell tower signal is avail-
able with no additional energy cost since mobile phones have
to maintain connectivity to cell towers for basic communi-
cation, and cellular networks have almost universal cover-
age, both outdoor and indoor. Continuous scanning of other
wireless signals (e.g., WiFi), however, consumes much extra
energy and above all, doing so outdoors may lead to unnec-
essary energy consumption due to poor signal availability in
outdoor environments. Meanwhile, for those high frequency
band signals like 2.4GHz WiFi signal, because of the short
wavelength, they may severely suffer from the shielding ef-
fect of surrounding objects or even the human body itself
[36] which will bring in too much noise to the detection sys-
tem. On the contrary, the cell tower signal of much longer
wavelength can easily diffract around these objects. Thus
the shielding effect of human body is much weaker than the
dividing wall effect and will not mislead the system.

3.3.1 Associated cell tower signal strength
We aim to find the correlation between the RSS variations

of cellular signal and the surrounding environment transi-
tions. We first measure the cellular RSS in several repre-
sentative places such as offices and homes (indoor), corri-
dors and paths in the vicinity of building (semi-outdoor), and
plaza and football field (outdoor). We find that the absolute
value of the cellular RSS provides limited information for the
detection. It varies across different places, times, and phone
models. In contrast, the RSS variation within a short pe-
riod of time normally indicates the context transition. In our
experiments, we observe a significant variation of the cellu-
lar RSS when the ambient environment changes due to the
user mobility. For instance, when the user walks into an of-
fice building from the outside, the cellular RSS significantly
drops due to the dividing walls that block the line-of-sight
paths to cell towers. Therefore, we exploit the abrupt vari-
ation of the cellular signal strength rather than its absolute
value to distinguish the indoor/outdoor context that is invari-
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Figure 7. Cell tower signal strength variation for indoor/outdoor detection.

ant across different places and phone models.
To enhance the communication quality, mobile phones

usually connect to the cell tower with the strongest RSS. Fig-
ure 7(a) shows the RSS value from the connected cell tower
when the user walks out to the corridor, and returns back
to the office. The user walks outside at 30sec. We can see
that the RSS rises by approximately 15 dB. Then at about
90sec, the user comes back to the office and the RSS drops
back within ten seconds. Such a sharp cellular RSS varia-
tion can be used to detect the ambient environment changes.
On the other hand, since the antenna gain may vary across
different mobile phone models, it is hard to accurately map
different RSS values to different environments. Adopting the
RSS variation can avoid the detection error that would arise
if the absolute RSS value were used, especially when ap-
plied on diversified devices and environments. In short, our
cellular detector is independent of mobile phone models and
environments which ensures the universal applicability.

However, we notice that using RSS information of the
single associated cell tower suffers from two inherent lim-
itations. First, mobile phones may handover from one cell
tower to another. Such a handover normally introduces a
significant cellular RSS variation. In this case, the RSS vari-
ation may not necessarily imply an indoor/outdoor transition.
Second, due to the corner effect [31], the cellular RSS may
dramatically change in the semi-outdoor environment. For
example, in Figure 7(a), the RSS suddenly drops by about
15 dB at 50sec when the user turns around at a corner. The
corner effect usually happens in the semi-outdoor environ-
ment due to the change of the line-of-sight to cell towers.
3.3.2 Visible cell tower signal strength

A mobile phone is normally within the coverage range of
multiple cell towers and tethers to the one with the strongest
signal strength. Instead of using the single associated cell
tower, we take a full advantage of all visible cell towers to
improve the detection accuracy [37]. In particular, we mea-
sure the signal strengths of all of cell towers and track their
variations. Thereby we naturally solve the inherent handover
problem since the cell tower that the phone may connect to
is also among the observed cell towers. In addition, with a
rich set of RSS from multiple cell towers, we can mitigate
the problem of the corner effect. Actually, since the evident
corner effect usually indicates a semi-outdoor environment,

we can exploit such a property to refine the detection.
We denote the RSS from cell tower i at time t as Ri(t),

1 ≤ i ≤ n. We track the RSS variation within a time inter-
val ∆, and denote the variation of cell tower i as Vi(t) =
Ri(t + ∆)− Ri(t). We refer N+(t) as the number of cell
towers whose RSS increases more than ν , i.e., N+(t) =
|{i|Vi(t)≥ ν ,0≤ i≤ n}|; we also denote by N−(t) the num-
ber of cell towers whose RSS decreases more than ν , i.e.,
N−(t) = |{i|Vi(t)≤−ν ,0 ≤ i ≤ n}|. In some cases, we will
also see that N+(t)+N−(t)

n < 1, since the RSS of many cell tow-
ers remains quite stable and the differences do not exceed ν .
We define N0(t) = n−N+(t)−N−(t) to represent the stabil-
ity of cell tower RSS. In our experiments, we set ∆ = 10sec
and ν = 15dB.

Intuitively, if a user moves from an indoor environment
to an outdoor environment, the RSS of cell towers will in-
crease, and vice versa. In addition, the more cell towers
whose RSS exhibits the same trend, the more confident the
detection will be. We correspond the detection results with
different confidence levels CC. Say that we find N0(t) = 1,
N+(t) = 1, N−(t) = 4, and n = 6, then the cellular detector
will confirm the ambient environment as the indoor environ-
ment with confidence level CC = N−(t)/n = 0.67. The cel-
lular detector will also report the confidence level for semi-
outdoor/outdoor environment as N+(t)/n = 0.17.

Figure 7(b) illustrates the RSS of multiple cell towers
when the user walks out to the corridor (at 45sec), and re-
turns to the office (at 90sec). In Figure 7(b), we see that the
RSS of all four cell towers rapidly climbs up, which implies
that the user has moved from indoor environment to the out-
side. At 90sec, the RSS of all 4 cell towers drops sharply,
which means that the user walks back to indoor office. Dur-
ing the period from 60sec to 70sec, the RSS of the associated
cell tower varies significantly, while other cell towers remain
relatively stable. In this case, the majority rule helps filter
out bursts and reduces detection errors.

We note that the visible cell towers are not necessarily
from the same GSM network operator. A phone may de-
tect cellular signals from multiple GSM networks which en-
sures sufficient number of visible cell towers. In our exper-
iment, mobile phones typically see 4∼6 cell towers at one
time. Figure 7(c) plots the detection precision of cellular de-
tector with the varying number of cell towers. We find that



0 25 50 75 100 125 150 175
20

30

40

50

60

In
te

ns
ity

 (u
T)

(a) Ambient magnetic field

0 25 50 75 100 125 150 175
0

50

100

150

Time (seconds)

V
ar

ia
nc

e

(b) Magnetic field variance

stand still

α

Indoor office Semi-outdoor corridor Outdoor campus

Figure 8. The variation of magnetic field intensity.

the detection precision increases as the number of visible cell
tower increases and it is satisfactory when the number of cell
towers is more than 4. Since mobile phones need to maintain
connections to cell towers, the energy consumption of cellu-
lar detector is almost negligible. The major limitation is that
the cellular detector may perform poorly without sufficient
number of visible cell towers in some cases.

3.4 Magnetism detector
Many steel structures and electric appliances disturb the

geomagnetic field and generate the electromagnetic fields in
the indoor environment [26]. The disturbance of the Earth’s
magnetic field inside buildings can be utilized as fingerprints
for the indoor localization [7]. However, such a localization
approach requires a labor-intensive fingerprinting and can-
not be applied for the indoor/outdoor detection directly. In
this section, we seek to explore useful characteristics of the
magnetic fields in different ambient environments that may
help to enhance the indoor/outdoor detection.

The magnetic field exhibits distinct patterns in in-
door/outdoor environments. In the indoor environment, the
Earth’s geomagnetic field varies at different positions due to
the disturbance of steel structures and electric appliances in-
side buildings. For instance, the intensity of the magnetic
field near the equator and near the pole varies from 0.25 to
0.65gauss ( i.e., 25 to 65µT ). In comparison, a strong refrig-
erator magnet has a field of around 100 gauss (two orders of
magnitude higher) [1]. Therefore, the intensity of magnetic
fields shows a high variance across different places near and
inside buildings than that in the open space.

Figure 8 plots the magnetic field intensity and its vari-
ance in an example scenario in which a user walks outside of
the office, passing through a corridor. In particular, the user
walks from 0sec to 25sec, stops walking from 25sec to 50sec
inside the building, and then walks along the corridor from
50sec to 100sec. In the end, the user walks along the road. In
Figure 8(a), we find that the intensity of magnetic field in the
indoor environment varies dramatically. Figure 8(b) plots the
variance averaged over τ seconds to filter out noises. We find
that the variance is very high when the user moves (from 0sec
to 25sec). When the user is walking through the corridor, the
magnetic field intensity also shows significant variance. In
contrary, after the user comes outside after 100sec, the vari-

ance drops significantly. Therefore, by choosing a suitable
threshold α , we could distinguish the indoor/semi-outdoor
from the outdoor environment.

We vary the threshold α from 0 to 40 with step length 2
and statistically analyze the detection accuracy using the col-
lected data described in §3.1. If the threshold is small, most
indoor/semi-outdoor environments will be correctly classi-
fied, while many outdoor environments will be wrongly de-
tected as the indoor/semi-outdoor environment. On the other
hand, if the threshold is too large, most outdoor environ-
ments will be correctly classified but we will miss the detec-
tion of many indoor/semi-outdoor environments. Therefore,
we select an empirical threshold 18 to achieve a balance. In
our implementation, we first refer to accelerometer to detect
whether the mobile phone is moving. If so, magnetism detec-
tor samples the magnetism sensor, and uses the variance av-
eraged over τ = 10 seconds to detect the environment. When
the user stops walking (from 25sec to 50sec) the variance be-
comes very small. When the user is moving, we confirm the
detection of an indoor/semi-outdoor environment if the field
variance is larger than α; otherwise the detection result is an
outdoor environment. Since a larger τ yields a higher de-
tection robustness, we set the confidence level of magnetism
detector CM = τ/10.
3.5 Aggregated IODetector

Each of the three detectors shows unique advantages and
disadvantages. They best fit different scenarios. For in-
stance, the light detector can rapidly detect the ambient en-
vironment. The light detector, however, requires the mo-
bile phone to be exposed in the space. If the phone is in-
side pocket or bags, the light detector cannot provide accu-
rate detection results. The cellular detector needs sufficient
cell tower coverage to confidently detect the ambient context.
The detection response is also slower. The magnetism detec-
tor is only available when the user is moving around such that
the magnetic disturbance inside buildings can be exploited.
We call the three individual detectors as sub-detectors and
integrate them so as to output an arbitrated decision.

At first, we directly aggregate the instant detection results
of all three sub-detectors. We let each sub-detector report
a detection profile, i.e., a triplet of confidence levels for the
three possible environment types, and sum the confidence
levels from all three sub-detectors. The environment type
with the highest summed confidence level will be output as
the final detection result. Such a combination makes stateless
decision, i.e., the detection output is solely determined by the
current environment status and the instant sensor readings.
We call it stateless IODetector in the following.

Figure 9 shows the aggregation processing of stateless
IODetector. We denote the detection profile from the three
sub-detectors as [DL(t),CL(t)] (light), [DC(t),CC(t)] (cellu-
lar), and [DM(t),CM(t)] (magnetism), where D is the output
detection result from each sub-detector and C is the set of as-
sociated confidence levels for the three possible environment
types. As described in §3, each individual sub-detector out-
puts the possible environment types and associate confidence
levels for them. For example, each detection profile of light
detector can be denoted as [DL,CL] = {(indoor, CL,indoor),
(semi-outdoor, CL,semi−outdoor), (outdoor, CL,outdoor)}. For
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Figure 9. Stateless IODetector.

each possible environment type, we sum the confidence lev-
els from the three sub-detectors and obtain the triplet of over-
all confidence levels CE ∈ {Cindoor,Csemi−outdoor,Coutdoor}.
The environment type with the highest overall confidence
level will be reported as the final detection result.

The stateless IODetector provides us instant detection re-
sults. Users can activate IODetector on need basis. Thus
the significant out-of-the-box functionality ensures the en-
ergy efficiency of stateless IODetector. In our experiments,
however, we find that the current environment state of hu-
man being is usually related to the previous state. For exam-
ple, during the movement from indoor to outdoor, the user
has a good chance experiencing the semi-outdoor environ-
ment. The stateless IODetector does not consider previous
states and thus may suffer from noises. In the following, we
alternatively consider a stateful integration of the three sub-
detectors which makes decisions on top of both current and
previous observations.

In order to do so, we let all sub-detectors continuously
perform detection and return sequential results. Figure 10
sketches an illustrative example of stateful IODetector. We
make use of the Hidden Markov Model (HMM) [30] to
integrate the sub-detectors. The HMM models a Markov
process with underlying hidden states. Every hidden state
emits observable states with particular conditional probabil-
ity distribution called the emission probability distribution.
The HMM traverses the states and the transitions among
the hidden states are governed by the transition probabili-
ties. With the HMM, we estimate the most likely sequence
of hidden states that may produce the sequence of observ-
able states. We use the first-order HMM in which the cur-
rent environment state is only affected by the immediate pre-
vious state. We denote the hidden state at time t as H(t)
∈ {indoor, semi-outdoor, outdoor} and the observed results
from the three sub-detectors as RL(t)(light), RC(t)(cellular),
and RM(t)(magnetism), where R is the output environment
type with the highest confidence level from each individual
sub-detector. For example, the detection result from light
detector is RL ∈{indoor, semi-outdoor/outdoor}. IODe-
tector incorporates the detection results from all the sub-
detectors and treats them as the observable state B(t) =
[RL(t),RC(t),RM(t)]. IODetector will thus infer the most
likely hidden state H(t) from the previous hidden state
H(t−1) and the current observable state B(t). The transition

Hidden states

Observable states

Light

RL RC RM

Time CellularProximity Magnetism

Figure 10. Stateful IODetector.

and emission probabilities determine the inference result.
Transition probability. We determine the transition

probabilities based on the experimental observations and the
characteristics of IODetector. Since the detection period of
IODetector is set to 10 seconds, when a user is previously
indoor, the current environment state is highly likely indoor
and might be semi-outdoor but is not likely outdoor because
the user unlikely moves directly from indoor to fully outdoor
environment. It is similar when a user is outdoor. When the
user is semi-outdoor, however, he could be able to directly
move indoor or outdoor, or he may stay semi-outdoor. We
denote the transition probability from environment H1 to H2
(elaborated as I:indoor, O:outdoor, and S:semi-outdoor in
the following) as T (H1,H2). Based on above observations,
we determine the transition probabilities as follows:

1) T (S, I) = T (S,S) = T (S,O) = p1 = 1/3.
2) T (I, I) = T (I,S) = p2 = 1/2.
3) T (O,O) = T (O,S) = p3 = 1/2.
4) T (O, I) = T (I,O) = p4 = 0.
Emission probability. The emission probability E(B,H)

is the likelihood that an observable state B is observed in
H environment. We set the emission probability according
to the training data as described in §3.1. Table 1 shows
the emission probability of each hidden state (indoor, semi-
outdoor and outdoor) to each observable state in detail.

Viterbi algorithm. We apply the Viterbi algorithm [32], a
dynamic programming algorithm, to estimate the most likely
environment type in the HMM according to the detection re-
sults of the three sub-detectors. As the scales of both hid-
den and observable states are small, the computation cost
can be easily accommodated on commodity mobile phone
platforms.

For the stateful IODetector, we do not keep all the sensors
on. We use the accelerometer as a trigger. Only when the ac-
celerometer detects the user movement, IODetector activates
the sensors and starts to infer the new environment state from
the HMM. When the user is stationary, the user environment
state is deemed unchanged and all sensors are deactivated,
and so is the HMM processing.

Applying the HMM, stateful IODetector further explores
the sequential observations and provides stateful detection
results, which are robust to noisy measurements [30]. Its
detection accuracy, which we show in §4.2.2, is better than
stateless IODetector. However, stateful IODetector may con-



Detector Observable
state Indoor Semi-

outdoor Outdoor

Light Indoor 0.9 0.11 0.11
detector Semi/outdoor 0.1 0.89 0.89
Cellular Indoor 0.82 0.16 0.16
detector Semi/outdoor 0.18 0.84 0.84

Magnetism Semi/indoor 0.88 0.88 0.17
detector Outdoor 0.12 0.12 0.83

Table 1. Emission probability settings.

sume extra energy since it has to perform continuous de-
tection. We show the energy consumption of IODetector
in §4.2.2 and §4.3.3. Users can choose either stateless or
stateful IODetector which is more suitable for the applica-
tion scenarios.
4 Evaluation

We implement a prototype system on the Android plat-
form with different types of mobile phones. We collect sen-
sor data at 19 traces including 84 different sites over a one-
month period of experiments. The following details the ex-
periment methodology and the results.
4.1 Experimental methodology

Mobile Phones. We implement IODetector on the An-
droid platform and test its performance using three differ-
ent types of mobile phones (Samsung Galaxy S2 i9100,
HTC Desire S, and HTC Sensation G14). All types of mo-
bile phones are equipped with light sensors, proximity sen-
sors, magnetism sensors, accelerometers, etc. The Samsung
Galaxy S2 i9100 has a 1 GB RAM and dual-core 1.2 GHz
Cortex-A9 processor, the HTC Desire S has a 768 MB RAM
and 1 GHz Scorpion processor, and the HTC Sensation G14
has a 768 MB RAM and dual-core 1.2 GHz Scorpion proces-
sor. As IODetector is independent of platforms, we believe
that the proposed indoor/outdoor detection method can be
simply implanted to other mobile computing platforms, such
as Apple iOS and Windows Phone.

Sensor motes. We use TelosB motes integrated with light
sensors to measure the light signals with higher fidelity. We
modify TinyOS code to directly read the voltage on the light
sensor S1087-01. The sensitivity range of the light sensor
is from 300nm to 1200nm with a full coverage of the visi-
ble light spectrum and a partial coverage of the infrared and
ultraviolet spectrum. At the current stage, we connect the
TelosB mote to the mobile phone for the enhanced light fi-
delity, and we look forward to a similar performance solely
using the mobile phones if we unlock the full access to the
on-board light sensors on the Android OS platform.

Experiment environment. We experiment with 19
different walking traces and collect sensor readings from
23 outdoor segments (covering football fields, downtown
squares, etc.), 27 semi-outdoor segments (covering corridors
and paths near buildings), and 34 indoor segments (including
offices and shopping malls) mainly in campus and city areas
(summarized in Table 2) during the period 5:00 to 22:00 in
30 days with different weather conditions. The users walk
along these traces and the mobile phones perform continuous
detection for the experimental sites along the traces. These
sites are different from the environments where we collect
prior data and learn the IODetector philosophy.

Environment type Representative places Total

Outdoor 12 campus sites,
11 downtown areas 23

Semi-outdoor 15 campus sites,
12 downtown areas 27

Indoor 10 office rooms, 18 stores,
6 restaurants 34

Table 2. Experimental sites
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Figure 11. Detection performance of three sub-detectors.

4.2 System performance
In this section we show the detection performance of

the three individual sub-detectors as well as the aggregated
IODetector. We also compare the performance of the state-
less and stateful IODetectors.

4.2.1 Performance of sub-detectors
One may query three different detectors independently

and select an arbitrary one in practice. To evaluate the contri-
bution of each detector (i.e., light detector, cellular detector,
and magnetism detector), we examine the detection perfor-
mance independently in Figure 11. Each detector reports the
environment type with the highest confidence level after the
local computation.

The light detector is available when there are clear paths
between mobile phones and ambient light sources. Figure
11(a) depicts the detection performance of light detector. We
find that the light detector can effectively distinguish the in-
door environment from the semi-outdoor/outdoor environ-
ment. In Figure 11(a), when mobile phones are in the indoor
environment, the detection accuracy is around 83%. When
the phones are in the semi-outdoor/outdoor environment, the
detection accuracy is around 88%. Figure 11(b) shows the
detection performance of cellular detector that classifies the
indoor environment from the semi-outdoor/outdoor environ-
ment. We obtain quite a close performance of cellular de-
tector compared with that of light detector. Our experiments
mainly cover the campus and city areas where most sites are
covered by at least 5 cell towers. In such experiment settings,
the cell tower based detection performs with 82% accuracy.

We note that both light detector and cellular detector
can effectively classify the indoor environment from the
semi-outdoor/outdoor environment. On the other hand, the
magnetism detector can enhance the detection capability of
IODetector in classifying the semi-outdoor and outdoor en-
vironment. Figure 11(c) plots the performance of the mag-
netism detector. The magnetism detector can successfully
distinguish the indoor and semi-outdoor environments from
the outdoor environment with an accuracy around 80%.
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4.2.2 Performance of aggregated IODetector
As described in §3.5, there are two approaches to con-

structively combine the results from the three sub-detectors.
Detection accuracy. In Figure 12, we show the detec-

tion accuracy of both stateless and stateful IODetectors. We
report the average detection results, including detection pre-
cision and recall [8], in different scenarios.

As shown in Figure 12, the overall detection accuracy
of stateless IODetector is about 82%. When the three sub-
detectors are aggregated as the stateful IODetector, there is
improvement of detection accuracy for all different types of
indoor/outdoor environments but not much. According to
the experiment results, for both stateless and stateful IODe-
tectors, the detection precision and the recall for the indoor
detection are slightly higher than the detection results for the
other two environment types. Nevertheless, compared with
less than 83% detection accuracy of individual detectors, in
the aggregated IODetector both the precision and the recall
are consistently above 88% (90%+ for the indoor environ-
ment). The experiment results suggest that IODetector ac-
curately classifies the indoor/outdoor environments for most
cases. For the stateful IODetector, with the optimization of
the HMM parameters, the detection accuracy could be fur-
ther improved.

In Figure 13, we show one of the walking traces in that
we experiment with in NTU campus. The experiment was
done in a rainy day. The detection results from stateless and
stateful IODetectors can be seen in Figure 13(bottom). The
detection results of both IODetectors are accurate. When
we look at their detection results separately, there are some
differences. In some segments, the stateless IODetector suf-
fers from mis-detection of some semi-outdoor environments,
which are usually in the trace between indoor and outdoor
environments. In some segments, although the ambient envi-
ronment is not changed, the detection result of statless IODe-
tector may vary. The detection result of stateful IODetec-
tor is relatively more stable due to the effect of the HMM.
Considering the previous state, the HMM filters out some
noise and avoids the mis-detection of semi-outdoor environ-
ments during user movements. However, the stateful IODe-
tector may give inaccurate results for frequent environment
changes as it reacts insensitively to the sudden change of en-
vironment types and there are extra energy consumptions for
stateful IODetector due to its continuous operation.

Semi-outdoor
Indoor

Outdoor

Ground truth

Stateless
Stateful

50 m
200 ft

Figure 13. An experiment trace in the university campus.

Sensors Samsung
i9100

HTC
Desire

HTC
Sensation

No sensor 18.3 15.4 18.1
Magnetism 2Hz 18.0 14.9 17.8

Light 400Hz+FFT 17.8 15.0 17.5
Celltower 2Hz 18.1 15.1 17.9

Table 3. Battery duration for different sensor settings (in
hours).

Detection latency. The detection latency of IODetector is
bounded by the time consumed by three sub-detectors. The
light detector is fast, sampling at 400 Hz that is sufficient to
capture the alternating light intensity. We set the same detec-
tion window length of 10 seconds for both cellular detector
and magnetism detector. Considering that three detectors can
run in parallel, it typically takes 10 seconds to warm up and
then starts reporting detection results. After that, IODetector
can keep tracking the indoor/outdoor transitions according to
the application requirements.

System overhead. We measure the energy consumption
of continuously sampling light sensor, magnetism sensor and
cellular signals. We measure the battery duration with the
screen set to the minimum brightness in the experiments. Ta-
ble 3 shows the measured battery lifetime when the mobile
phones continuously sample different sensors. In Table 3, we
find that the battery durations for sampling magnetism sen-
sor at 2Hz and sampling light sensor at 400Hz with the FFT
are quite close to the battery duration without sampling any
sensors. Sampling the cellular signal consumes little extra
battery power as well. Thus although the stateful IODetec-
tor needs to perform continuous detection, the low energy
consumption makes it affordable for the users.

4.3 Case study: inferring GPS availability
In this subsection, we conduct a case study and demon-

strate how IODetector can be used to provide indicative in-
formation on the GPS availability. Nowadays, many smart-
phones are equipped with commodity GPS modules that pro-
vide localization and navigation services for mobile applica-
tions. Traditional works [30] study how to adaptively use
GPS/GSM/WiFi signals for energy-efficient localization or
tracking. Such approaches, however, either assume the pre-
knowledge of the ambient environment, or infer it passively
with high overhead and low efficiency. Serving as a generic
and lightweight service, IODetector can be used to provide
cheap and instant triggers for switching on/off the GPS com-
ponent so as to achieve both high location accuracy and en-
ergy efficiency.



Semi-outdoor
Indoor

50 m
200 ft

Outdoor

A

I

H

G

FE

D

C

B

J

K
L

M

N

O
P

Q
R

S

(a) GPS experiment trace in the uni-
versity campus.

indoor semi−outdooroutdoor
0

2

4

6

8

10

12

14

S
at

el
lit

es

(a) Number of satellites

indoor semi−outdooroutdoor
0

10

20

30

40

50

S
N

R

(b) Signal to noise ratio

(b) Number of visible satellites and SNR of GPS signals in
different environments.

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

Not available

Number of available satellites

E
rr

or
 (

m
et

er
s)

(c) GPS accuracy for different number of avail-
able satellites.

Figure 14. Indoor/outdoor dependent GPS performance.

4.3.1 Indoor/outdoor dependent performance
For accurate localization, GPS normally needs more than

4 clear line-of-sight paths to GPS satellites. In the outdoor
environment, with a sufficient number of paths to satellites,
commodity GPS modules can achieve a localization accu-
racy within 20m. In the shadow of tall buildings, some line-
of-sight paths to satellites would be blocked and GPS may
only receive signals from a small number of satellites. Some
received GPS signals might be from the reflecting walls lead-
ing to the multi-path problem. In such scenarios, the local-
ization accuracy degrades dramatically. In the indoor envi-
ronment, there is normally no line-of-sight path to satellites.
As a result, GPS takes minutes to scan the satellites without
finding any strong signals from satellites and the localization
error can be up to 400m. In addition to the inaccuracy, it
usually causes high responsive latency and extra power con-
sumption. As the GPS performance differs significantly in
the indoor and outdoor environments, mobile phones greatly
benefit from a priori knowledge of the ambient environment
types with minimal overhead.

4.3.2 GPS availability and localization accuracy
We evaluate the localization accuracy and energy con-

sumption of a mobile phone GPS component along with a
walking path in our experiment. Figure 14(a) plots the ex-
periment path in our campus. We mark the route segments
from A to S. The total length of the walking path is approxi-
mately 1600m, with 620m outdoor, 380m semi-outdoor, and
600m indoor segments, respectively. We query GPS for lo-
cation information when we travel along the circular path
with different mobile phone models under different weather
conditions during the one-month experiments.

Figure 14(b) plots the number of visible satellites as well
as the SNR (signal to noise ratio) of the GPS signals in
the indoor, semi-outdoor, and outdoor environments, respec-
tively. In Figure 14(b)(left), we find that in the indoor en-
vironment the mobile phones normally receive less than 2
GPS signals, though the mobile phones can sometimes cap-
ture slightly more GPS signals near windows. In the out-
door environment, the phones normally receive signals from
more than 6 GPS satellites even in cloudy and rainy days.
The number of observed satellites varies in between in the
semi-outdoor environment (e.g., corridors and paths in the
shadow of buildings). Figure 14(b)(right) plots the SNR of
the received GPS signals. The SNR value is a normalized

value from the android API indicating the signal to noise ra-
tio of the received satellite signal. The SNR greater than
20 is usually high enough for the mobile phone to calculate
accurate location, and typically, the greater, the better. In
Figure 14(b)(right), we observe that in the indoor environ-
ment the SNR of the GPS signals vary from 0 to 10. In the
outdoor environment, the SNR becomes much higher vary-
ing from 25 to 42 due to the clear line-of-sight paths between
the phones and GPS satellites. In the semi-outdoor environ-
ment, although we may sometimes observe more than 4 GPS
signals, typically the SNR of GPS signals is not high enough
to ensure accurate localization.

Figure 14(c) plots the summarized GPS localization error
against the number of visible satellites. We find that the GPS
modules can obtain more accurate localization results with
more visible satellites. According to the experiment results,
with less than 4 visible satellites GPS service is generally un-
available. The GPS module is able to work with more than 4
visible satellites. However, even with 4 satellite signals, the
localization accuracy vary dramatically in our experiment.
With more than 6 visible satellites, the localization error is
around 20m. We also observe that more visible satellites
(e.g., >9) yield less marginal improvements in the localiza-
tion accuracy. With 10 GPS satellites, the localization error
can be within 10m.

In summary, the experiment results demonstrate that the
GPS availability and localization accuracy are highly corre-
lated to the environment types. Yet solely reading such avail-
ability from the GPS module itself can be up to minutes and
consume much extra energy in scanning the satellites.

4.3.3 IODetector-augmented GPS: IO-GPS
We can simply leverage IODetector to infer the GPS with

accurate indoor/outdoor awareness. In our IOdetector aug-
mented GPS (IO-GPS) scheme, mobile applications invoke
IODetector for the indoor/outdoor detection before switch-
ing on the GPS module. If the mobile phone is outdoor,
the applications can confidently call GPS for an outdoor lo-
calization; if it is indoor, the applications may postpone the
GPS localization and resort to a variety of alternative indoor
localization techniques [35]. In this experiment, We track
the localization accuracy and energy consumption of the tra-
ditional GPS and the IO-GPS scheme.

IO-GPS localization accuracy. We follow the path in
Figure 14(a) at a walking speed and collect the GPS local-
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Figure 16. CDF of localization error.

ization data. We repeat the experiment 10 times and report
the average results. We use stateful IODetector to estimate
the environment type. Figure 15 presents one example in-
stance. In Figure 15, we observe that the GPS localization
error varies across different path segments. We see apparent
variation on GPS localization error due to the indoor/outdoor
environment transition. For example, when we move from
segment G to H (indoor → outdoor), we see a big dive of
the localization error; when we move from P to Q then to R
(outdoor→ semi-outdoor→ indoor), we observe a two-stage
jump of the localization error. Consistent with the above
measurement, in the indoor environment the GPS localiza-
tion error is much larger than that in the semi-outdoor or
outdoor environment. The path segment J has a particularly
high error because the segment is underground and the GPS
component detects almost no satellite signals.

Figure 16 summarizes the localization error from the 10
experiments and we take a fine-look at the localization er-
ror in outdoor, semi-outdoor, and indoor areas, respectively.
The median localization error in the outdoor environment is
around 24m with the maximum error within 50m in our ex-
periments. In the semi-outdoor areas, the median error is
around 44m while the 90th percentile can be up to 100m.
In the indoor environment, the median localization error is
around 140m with the 90th percentile of 235m. The overall
localization error presents the performance of the traditional
GPS. We find that the median localization error is around
55m with a long tail up to 400m. In our experiment set-
ting, users walk around campus with comparable route seg-
ments inside buildings and outdoor environments. Yet the
researches on human activity pattern show that people spend
around 89% of the time in the indoor environment [13].

Without discriminating the indoor/outdoor environment,

Environment Samsung
i9100

HTC
Desire

HTC
Sensation

Indoor GPS 9.2 6.6 8.7
Semi-outdoor GPS 9.8 7.2 9.7

Outdoor GPS 10.1 7.3 9.8
Stateful IODetector 17.3 14.4 16.8

Table 4. Battery consumption comparison (in hours).

blindly using the traditional GPS scheme would perform
similarly to that in the indoor cases for most of the time.
Augmented by IODetector, the IO-GPS performance would
be closer to that in the outdoor/semi-outdoor environment.
In Figure 15(bottom), we compare the indoor/outdoor detec-
tion results with the ground truth along the experiment path.
We can see that IODetector provides promising detection ac-
curacy. In particular, IODetector successfully detects the in-
door cases from the semi-outdoor and outdoor cases. For
outdoor/semi-outdoor detection at some places, IODetector
cannot provide the most accurate result. We revisit the places
such as the path segments D and E, where IODetector mis-
classifies the semi-outdoor and outdoor environments. We
find that D and E are located at a corner passing by a two-
storey building. It is even difficult to manually label such
places as ground truth, yet we believe the misclassification
results of IODetector in such corner cases would introduce
little influence to the GPS localization service.

Energy consumption. We measure the power consump-
tion when we run the GPS module during the experiment.
We measure the battery life with the screen set to the min-
imum brightness. Table 4 summarizes the battery life of
three different mobile phone models in different environ-
ments. We also present the battery duration for running state-
ful IODetector for the indoor/outdoor detection. In Table
4, the first 3 rows show the energy consumption of mobile
phones when GPS is turned on for indoor, semi-outdoor and
outdoor environments. We find that GPS drains the battery
rapidly in all the environments. The energy consumption
of GPS is especially high in the indoor environment where
the GPS module continuously scans the satellite signals and
rapidly depletes the battery energy. With the awareness of
the indoor/outdoor environment, IO-GPS may avoid unnec-
essarily switching on the GPS module and save the energy
consumption in the indoor environment.

5 Related work
Though there have not yet been generic approaches pro-

posed for explicit indoor/outdoor detection, there exist a



wide body of related works that implicitly deal with such
a problem.

Environment detection. GPS lock status can be used to
indirectly infer the ambient environment [25], but it usually
incurs substantial energy cost and high latency. ABL [15]
proposes the approach that allows mobile sensors to localize
themselves by exploiting their ambient physical environment
signals. FLIGHT [17] explores the fact that the light inten-
sity changes with a stable period in the indoor environment
and uses the feature to perform clock calibration. TempIO
[14] classifies the ambient environment by comparing the en-
vironment temperature with the current outdoor temperature
through the network query. Yet temperature sensors are not
widely available on current mobile phones. Along with many
other sensing recourses, the temperature sensor if available
on mobile phones can be used to complement our work.
TagSense [24] classifies the ambient environments to auto-
matically annotate images during the picture-click. Some
works in image processing and pattern recognition [23, 28]
also study the problem of classifying images according to
ambient environments. Those works can provide partial in-
dication on indoor/outdoor environment. As taking photos
normally incurs substantial human effort and energy cost,
we can hardly rely on such classification approaches to build
generic and automatic indoor/outdoor detection service.

Localization and tracking. Many works study GPS/
GSM/WiFi localization schemes. StarTrack [3] provides a
comprehensive set of APIs for the development of mobile
localization and tracking applications. Zhou et al. [37] use
cell tower sequences to track the buses and make bus arrival
time prediction for the waiting passengers. LANDMARC
[22] proposes a location sensing prototype system that uses
RFID technology for locating objects inside buildings. En-
Tracked [12] focuses on outdoor pedestrian tracking using
lightweight accelerometer to trigger GPS to reduce power
consumption. Jurdak et al. [9] complement GPS duty cy-
cling with short-range radio contacts to balance position-
ing accuracy and energy consumption. VTrack [30] stud-
ies reducing energy consumption using inaccurate WiFi po-
sitioning schemes to measure road traffic condition. Chung
et al. [7] present an accurate positioning system based on
the magnetic signatures in the indoor environment. Above
approaches primarily focus on obtaining accurate physical
locations and track the targeted objects. They can poten-
tially benefit from the indoor/outdoor awareness of IODe-
tector, e.g., adaptively switching on/off the GPS modules in
localization.

Context awareness and activity recognition. A number
of works have studied use of sensors to recognize user activ-
ities and detect ambient context. Yan et al. [34] design and
build FALCON to remedy slow app launch using contexts to
predict the next app to launch. CenceMe [21] exploits sen-
sors on mobile phones to automatically infer people’s ambi-
ent context and then allows users to share that through so-
cial networks. Mercury [18] monitors patients using wear-
able sensors in indoor medical environments. EEMSS [33]
presents an energy efficient sensor management framework
which uses minimum number of sensors on mobile devices
to monitor user status. Jigsaw [20] supports continuous sens-

ing applications on mobile phones to infer human activi-
ties and ambient context. PBN [10] proposes user activity
detection system using sensors on both mobile phones and
on-body wireless sensors. Such works either implicitly as-
sume the activity context or passively infer the ambient con-
text. Unlike those works, our work proactively detects the
indoor/outdoor environment using various lightweight sen-
sors (e.g., light sensor, cellular signal, and magnetism sen-
sor) without any remote supports.

SoundSense [19] classifies general sound types (e.g., mu-
sic, voice) to achieve context recognition. SensLoc [11] col-
lects WiFi beacons to extract useful patterns to infer con-
textual information. Kobe [6] aids the mobile classifier de-
velopment by automatically extracting high-level semantics
from raw sensory data while balancing energy, latency and
accuracy. Our work primarily differs from them in that
IODetector instantly detects the primitive ambient context
without any labor-intensive site survey and user feedback.
Those works may benefit from IODetector by taking the
indoor/outdoor information as a primary filter for context
recognition.

6 Conclusions
We present the design and implementation of an in-

door/outdoor environment detection system, which effi-
ciently takes input from a variety of lightweight sensors to
derive the indoor/outdoor information. By intelligently ag-
gregating the sub-detectors, IODetector achieves prompt and
accurate detection results in various time and environments.
We comprehensively test IODetector through a prototype im-
plementation and evaluate the system based on different An-
droid mobile phone models. We particularly conduct a case
study where we make use of IODetector results to infer the
GPS availability and accuracy under various indoor/outdoor
environment.
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