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ABSTRACT
The bus arrival time is primary information to most city
transport travelers. Excessively long waiting time at bus
stops often discourages the travelers and makes them re-
luctant to take buses. In this paper, we present a bus ar-
rival time prediction system based on bus passengers’ par-
ticipatory sensing. With commodity mobile phones, the bus
passengers’ surrounding environmental context is effectively
collected and utilized to estimate the bus traveling routes
and predict bus arrival time at various bus stops. The pro-
posed system solely relies on the collaborative effort of the
participating users and is independent from the bus operat-
ing companies, so it can be easily adopted to support uni-
versal bus service systems without requesting support from
particular bus operating companies. Instead of referring to
GPS enabled location information, we resort to more gener-
ally available and energy efficient sensing resources, includ-
ing cell tower signals, movement statuses, audio recordings,
etc., which bring less burden to the participatory party and
encourage their participation. We develop a prototype sys-
tem with different types of Android based mobile phones
and comprehensively experiment over a 7 week period. The
evaluation results suggest that the proposed system achieves
outstanding prediction accuracy compared with those bus
company initiated and GPS supported solutions. At the
same time, the proposed solution is more generally available
and energy friendly.

Categories and Subject Descriptors
C.2.4 [Computer Communication Networks]: Distributed
Systems –Distributed Applications; C.3.3 [Special-Purpose
and Application-based Systems]: Real-time and embed-
ded systems; H.5.3 [Information Interfaces and Presen-
tation]: Groups and Organization Interfaces – Collaborative
Computing
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1. INTRODUCTION
Public transport, especially the bus transport, has been

well developed in many parts of the world. The bus trans-
port services reduce the private car usage and fuel consump-
tion, and alleviate traffic congestion. As one of the most
comprehensive and affordable means of public transport, in
2011 the bus system serves over 3.3 million bus rides every
day on average in Singapore with around 5 million residents
[1].

When traveling with buses, the travelers usually want to
know the accurate arrival time of the bus. Excessively long
waiting time at bus stops may drive away the anxious travel-
ers and make them reluctant to take buses. Nowadays, most
bus operating companies have been providing their timeta-
bles on the web freely available for the travelers. The bus
timetables, however, only provide very limited information
(e.g., operating hours, time intervals, etc.), which are typi-
cally not timely updated. Other than those official timeta-
bles, many public services (e.g., Google Maps) are provided
for travelers. Although such services offer useful informa-
tion, they are far from satisfactory to the bus travelers. For
example, the schedule of a bus may be delayed due to many
unpredictable factors (e.g., traffic conditions, harsh weather
situation, etc). The accurate arrival time of next bus will
allow travelers to take alternative transport choices instead,
and thus mitigate their anxiety and improve their experi-
ence. Towards this aim, many commercial bus information
providers offer the realtime bus arrival time to the public
[20]. Providing such services, however, usually requires the
cooperation of the bus operating companies (e.g., installing
special location tracking devices on the buses), and incurs
substantial cost.

In this paper, we present a novel bus arrival time predic-
tion system based on crowd-participatory sensing. We in-
terviewed bus passengers on acquiring the bus arrival time.
Most passengers indicate that they want to instantly track
the arrival time of the next buses and they are willing to
contribute their location information on buses to help to
establish a system to estimate the arrival time at various



bus stops for the community. This motivates us to design
a crowd-participated service to bridge those who want to
know bus arrival time (querying users) to those who are on
the bus and able to share their instant bus route information
(sharing users). To achieve such a goal, we let the bus pas-
sengers themselves cooperatively sense the bus route infor-
mation using commodity mobile phones. In particular, the
sharing passengers may anonymously upload their sensing
data collected on buses to a processing server, which intelli-
gently processes the data and distributes useful information
to those querying users.

Our bus arrival time prediction system comprises three
major components: (1) Sharing users: using commodity mo-
bile phones as well as various build-in sensors to sense and
report the lightweight cellular signals and the surrounding
environment to a backend server; (2) Querying users: query-
ing the bus arrival time for a particular bus route with mo-
bile phones; (3) Backend server: collecting the instantly re-
ported information from the sharing users, and intellectually
processing such information so as to monitor the bus routes
and predict the bus arrival time. No GPS or explicit location
services are invoked to acquire physical location inputs.

Such a crowd-participated approach for bus arrival time
prediction possesses the following several advantages com-
pared with conventional approaches. First, through directly
bridging the sharing and querying users in the participa-
tory framework, we build our system independent of the bus
operating companies or other third-party service providers,
allowing easy and inexpensive adoption of the proposed ap-
proach over other application instances. Second, based on
the commodity mobile phones, our system obviates the need
for special hardware or extra vehicle devices, which substan-
tially reduces the deployment cost. Compared with conven-
tional approaches (e.g., GPS supported ones [12, 29]), our
approach is less demanding and much more energy-friendly,
encouraging a broader number of participating passengers.
Third, through automatically detecting ambient environ-
ments and generating bus route related reports, our ap-
proach does not require the explicit human inputs from the
participants, which facilitates the involvement of participa-
tory parties.

Implementing such a participatory sensing based system,
however, entails substantial challenges. (1) Bus detection:
since the sharing users may travel with diverse means of
transport, we need to first let their mobile phones accu-
rately detect whether or not the current user is on a bus and
automatically collect useful data only on the bus. Without
accurate bus detection, mobile phones may collect irrelevant
information to the bus routes, leading to unnecessary energy
consumption or even inaccuracy in prediction results. (2)
Bus classification: we need to carefully classify the bus route
information from the mixed reports of participatory users.
Without users’ manual indication, such automatic classifica-
tion is non-trivial. (3) Information assembling: One sharing
user may not stay on one bus to collect adequate time period
of information. Insufficient amount of uploaded information
may result in inaccuracy in predicting the bus route. An ef-
fective information assembling strategy is required to solve
the jigsaw puzzle of combining pieces of incomplete infor-
mation from multiple users to picture the intact bus route
status.

In this paper, we develop practical solutions to cope with
such challenges. In particular, we extract unique identifi-

able fingerprints of public transit buses and utilize the mi-
crophone on mobile phones to detect the audio indication
signals of bus IC card reader. We further leverage the ac-
celerometer of the phone to distinguish the travel pattern of
buses to other transport means. Thus we trigger the data
collection and transmission only when necessary (§3.3). We
let the mobile phone instantly sense and report the nearby
celltower IDs. We then propose an efficient and robust top-k
celltower set sequence matching method to classify the re-
ported celltower sequences and associate with different bus
routes. We intellectually identify passengers on the same bus
and propose a celltower sequence concatenation approach to
assemble their celltower sequences so as to improve the se-
quence matching accuracy (§3.4). Finally, based on accumu-
lated information, we are then able to utilize both historical
knowledge and the realtime traffic conditions to accurately
predict the bus arrival time of various routes (§3.5).

We consolidate the above techniques and implement a pro-
totype system with the Android platform using two types
of mobile phones (Samsung Galaxy S2 i9100 and HTC De-
sire). Through our 7-week experimental study, the mobile
phone scheme can accurately detect buses with 98% detec-
tion accuracy and classifies the bus routes with up to 90%
accuracy. As a result, the prototype system predicts bus
arrival time with average error around 80 seconds. Such a
result is encouraging compared with current commercial bus
information providers in Singapore.

In the following of this paper, we first introduce the back-
ground and motivation in §2. In §3, we detail the chal-
lenges of our system and describe our technical solutions.
The evaluation results are presented in §4. The limitations
and possible improvements are discussed in §5 followed by
the description of related works in §6. We summarize this
paper in §7.

2. BACKGROUND AND MOTIVATION
The bus companies usually provide free bus timetables on

the web. Such bus timetables, however, only provide very
limited information (e.g., operating hours, time intervals,
etc.), which are typically not timely updated according to
instant traffic conditions. Although many commercial bus
information providers offer the realtime bus arrival informa-
tion, the service usually comes with substantial cost. With a
fleet of thousands of buses, the installment of in-vehicle GPS
systems incurs tens of millions of dollars [29]. The network
infrastructure to deliver the transit service raises the deploy-
ment cost even higher, which would eventually translate to
increased expenditure of passengers.

For those reasons, current research works [12, 29] explore
new approaches independent of bus companies to acquire
transit information. The common rationale of such approaches
is to continuously and accurately track the absolute physi-
cal location of the buses, which typically uses GPS for lo-
calization. Although many GPS-enabled mobile phones are
available on the market, a good number of mobile phones
are still shipped without GPS modules [31]. Those typi-
cal limitations of the localization based schemes motivate
alternative approaches without using GPS signal or other
localization methods. Besides, GPS module consumes sub-
stantial amount of energy, significantly reducing the lifetime
of power-constrained mobile phones [31]. Due to the high
power consumption, many mobile phone users usually turn
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Figure 1: Absolute localization is unnecessary for
arrival time prediction

off GPS modules to save battery power. The mobile phones
in vehicles may perform poorly when they are placed with-
out line-of-sight paths to GPS satellites [9].

To fill this gap, we propose to implement a crowd-participated
bus arrival time prediction system utilizing cellular signals.
Independent of any bus companies, the system bridges the
gap between the querying users who want to know the bus
arrival time to the sharing users willing to offer them real-
time bus information. Unifying the participatory users, our
design aims to realize the common welfare of the passengers.

To encourage more participants, no explicit location ser-
vices are invoked so as to save the requirement of special
hardware support for localization. Compared with the high
energy consumption of GPS modules, the marginal energy
consumption of collecting celltower signals is negligible on
mobile phones. Our system therefore utilizes the celltower
signals without reducing battery lifetime on sharing passen-
gers’ mobile phones. Our design obviate the need for accu-
rate bus localization. As a matter of fact, since the public
transport buses travel on certain bus routes (1D routes on
2D space), the knowledge of the current position on the route
(1D knowledge) and the average velocity of the bus suffices
to predict its arrival time at a bus stop. As shown in Fig-
ure 1, for instance, say the bus is currently at bus stop 1,
and a querying user wants to know its arrival time at bus
stop 6. Accurate prediction of the arrival time requires the
distance between bus stop 1 and 6 along the 1D bus route
(but not on the 2D map) and the average velocity of the
bus. In general, the physical positions of the bus and the
bus route on the 2D maps are not strictly necessary. In our
system, instead of pursuing the accurate 2D physical loca-
tions, we logically map the bus routes to a space featured by
sequences of nearby cellular towers. We classify and track
the bus statuses in such a logical space so as to predict the
bus arrival time on the real routes.

We leverage various lightweight sensors (e.g., microphone,
accelerometer, etc.) on mobile phones to enable automatic
and intelligent data collection and transmission. Although
we can make use of a basket of instantly available sensor re-
sources (e.g., magnetometer, gyroscope, camera, proximity
sensors, etc.), we mainly focus on energy-friendly and widely
available sensing signals (e.g., celltower and audio signals).
The purpose is to make the solution lightweight and perva-
sively available to attract more participants.

Bus Detection

Celltower Seq.
Audio Signal

Celltower Seq. 
Database

Pre-survey

Celltower Seq. Matching

Bus Classification

Arrival Time Prediction

Sharing user

Pre-processing

Online processing
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Interested Route

Backend server

Send request 

Return result 
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Figure 2: System architecture

3. SYSTEM DESIGN
Though the idea is intuitive, the design of such a system

in practice entails substantial challenges. In this section, we
describe the major components of the system design. We
illustrate the challenges in the design and implementation,
and present several techniques to cope with them.

3.1 System overview
Figure 2 sketches the architecture of our system. There

are 3 major components.
Querying user. As depicted in Figure 2 (right bottom),

a querying user queries the bus arrival time by sending the
request to the backend server. The querying user indicates
the interest bus route and bus stop to receive the predicted
bus arrival time.

Sharing user. The sharing user on the other hand con-
tributes the mobile phone sensing information to the sys-
tem. After a sharing user gets on a bus, the data collection
module starts to collect a sequence of nearby celltower IDs.
The collected data is transmitted to the server via cellular
networks. Since the sharing user may travel with different
means of transport, the mobile phone needs to first detect
whether the current user is on a bus or not. As shown in
Figure 2 (left side), the mobile phone periodically samples
the surrounding environment and extracts identifiable fea-
tures of transit buses. Once the mobile phone confirms it is
on the bus, it starts sampling the celltower sequences and
sends the sequences to the backend server. Ideally, the mo-
bile phone of the sharing user automatically performs the
data collection and transmission without the manual input
from the sharing user.

Backend server. We shift most of the computation bur-
den to the backend server where the uploaded information
from sharing users is processed and the requests from query-
ing users are addressed. Two stages are involved in this
component.

In order to bootstrap the system, we need to survey the
corresponding bus routes in the offline pre-processing stage.
We construct a basic database that associates particular bus
routes to celltower sequence signatures. Since we do not
require the absolute physical location reference, we mainly
wardrive the bus routes and record the sequences of ob-
served celltower IDs, which significantly reduces the initial
construction overhead.

The backend server processes the celltower sequences and
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Figure 3: Celltower connection time and received signal strength
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Figure 4: Celltower sequence set along a bus route

(a) On buses (b) At rapid train station
entrances

Figure 5: Transit IC card readers

audio signals from sharing users on the buses in the online
processing stage. Receiving the uploaded information, the
backend server first distinguishes the bus route that the shar-
ing user is currently traveling with. The backend server clas-
sifies the uploaded bus routes primarily with the reported
celltower sequence information. The bus arrival time on var-
ious bus stops is then derived based on the current bus route
statuses.

3.2 Pre-processing celltower data
The backend server needs to maintain a database that

stores sequences of celltower IDs that are experienced along
different bus routes. Wardriving along one bus route, the
mobile phone normally captures several celltower signals at

one time, and connects to the celltower with the strongest
signal strength. We find in our experiments that even if a
passenger travels by the same place, the connected celltower
might be different from time to time due to varying celltower
signal strength. To improve the robustness of our system,
instead of using the associated celltower, we record a set of
celltower IDs that the mobile phone can detect. To validate
such a point, we do an initial experiment. We measure the
celltower coverage at two positions A and B within the uni-
versity campus, which are approximately 300 meters apart
(Figure 3(a) depicts the two positions on the map).

Figure 3(b) and 3(c) report the celltower that the mobile
phone can detect, as well as their average signal strength
and connection time at A and B, respectively. We find that
position A and position B are both covered by 6 celltowers
with divergent signal strength. In Figure 3(b), we find that
at position A the mobile phone is connected to the celltower
5031 over 99% of the time, while its signal strength remains
consistently the strongest during the 10-hour measurement.
In Figure 3(c), the mobile phone at position B observes two
celltowers with comparable signal strength. We find that
the mobile phone is more likely to connect to the celltower
with stronger signal strength, and also may connect to the
celltower with the second strongest signal strength. Nev-
ertheless, during our 7-week experiments, we consistently
observe that mobile phones almost always connect to the
top-3 strongest celltowers. Therefore, in practice we choose
the set of the top-3 strongest celltowers as the signature for
route segments.

Figure 4 illustrates the celltower sequence collected on our
campus bus traveling from our school to a rapid train sta-
tion off the campus. The whole route of the bus is divided
into several concatenated sub-route segments according to
the change of the top-3 celltower set. They are marked al-
ternately in red and black in the figure. For example, the
mobile phone initially connects to celltower 5031 in the first
sub-route and the top-3 celltower set is {5031, 5092, 11141}.
Later the mobile phone is handed over to celltower 5032 and
the celltower set becomes {5032, 5031, 5092} in the second
sub-route. We subsequently record the top-3 celltower in
each sub-route.

Such a sequence of celltower ID sets identifies a bus route
in our database. By wardriving along different bus routes,
we can easily construct a database of celltower sequences
associated to particular bus routes.



0 0.5 1 1.5 2
x 104

−20
−10

0
10
20

Time (samples)

A
m

pl
itd

ud
e

0 100 200 300 400 500
−20

−10

0

10

20

1 kHz 2 kHz 3 kHz 4 kHz
0

20

40

60

0 100 200 300 400 500
−20

−10

0

10

20

0 1 kHz 2 kHz 3 kHz 4 kHz
0

20

40

60
FFTFFTRaw audio signal Raw audio signal

(a) Background audio signal (b) IC card reader indication audio signal

Figure 6: Bus detection using audio indication signal
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3.3 Bus detection: Am I on a bus?
During the on-line processing stage, we use the mobile

phones of sharing passengers on the bus to record the cell-
tower sequences and transmit the data to the backend server.
As aforementioned, the mobile phone should intelligently de-
tect whether it is on a public transit bus or not and start
to collect the data only when the mobile phone is on a bus.
Some works [18, 21] study the problem of activity recogni-
tion and context awareness using various sensors. Such ap-
proaches, however, cannot be used to distinguish different
transport modes (e.g., public transit buses and non-public
buses). In this section, we explore multi-sensing resources
to detect the bus environment and distinguish it from other
transport modes. We seek a lightweight detection approach
in terms of both energy consumption and computation com-
plexity.

3.3.1 Audio detection
Nowadays, IC cards are commonly used for paying transit

fees in many areas (e.g., EZ-Link cards in Singapore [2],
Octopus cards in Hong Kong [3], Oyster cards in London
[4], etc). On a public bus in Singapore, several card readers
are deployed for collecting the fees (as depicted in Figure
5(a)). When a passenger taps the transit card on the reader,
the reader will send a short beep audio response to indicate
the successful payment. In our system, we choose to let
the mobile phone detect the beep audio response of the card
reader, since such distinct beeps are not widely used in other
means of transportation such as non-public buses and taxis.

In order to exploit the unique beeps of IC card readers,
in our initial experiment we record an audio clip on the
bus at the audio sampling rate of 44.1kHz with Samsung
Galaxy S2 i9100 mobile phone. Such a sampling rate is
more than sufficient to capture the beep signals [26]. Figure
6 (bottom) plots the raw audio signal in the time domain,
where the IC card reader starts beeping approximately from
11000th sample and lasts to 18000th sample. We crop the
section of the beep audio signal and depict the section in
Figure 6(b). After we convert the time domain signal to
the frequency domain through 512pt Fast Fourier Transform
(FFT) (Figure 6(b)), we observe clear peaks at 1kHz and
3kHz frequency bands. For comparison we depict the audio
clip as well where no beep signal is sent. Both time domain
and the frequency domain signals are plotted in Figure 6(a).
We find no peaks at 1kHz and 3kHz frequency bands.

With the knowledge of the frequency range of the dual-
tone beep signal sent by the IC card reader, in our system
we can lower down the audio sampling rate of the mobile
phone to 8kHz (8000 samples/s) which is sufficient to cap-
ture the beep signals with maximum frequency of 3kHz. We
find that in practice 128pt FFT suffices to detect the IC card
reader on the bus with tractable computation complexity on
commodity mobile phones. We use the standard sliding win-
dow averaging technique with window size w = 32 samples
to filter out the noises in both 1kHz and 3kHz frequency
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bands. We use an empirical threshold of three standard de-
viation (i.e., 99.7% confidence level of noise) to detect beep
signals. If the received audio signal strengths in 1kHz and
3kHz frequency bands both exceed the threshold, the mobile
phone confirms the detection of the bus. Figure 7 depicts
the beep signal detection process. When the IC card reader
starts beeping, the signal strengths in both 1kHz and 3kHz
frequency bands jump significantly and therefore can be de-
tected.

We test the audio indication based bus detection method
with various scenarios, and the experiments show encourag-
ing results for bus detection (§4.2.1). As the dual-tone re-
sponsive signal is universally used in almost all public transit
buses in Singapore, we can use it as an identifiable signa-
ture to distinguish the buses from other vehicles. Therefore,
we use the dual-tone as the acoustic trigger for the succes-
sive celltower data collection and transmission of the mobile
phones of sharing users. We can easily adopt similar tech-
niques [22] to detect certain audio indications to identify the
public transports as well in other areas (e.g., the bell ringing
tunes in Hong Kong buses).

3.3.2 Accelerometer detection: Bus v.s. Rapid train
In Singapore, however, transit IC cards are used in rapid

train stations as well where the IC card readers in the en-
trances may send the same beep audio signal (Figure 5(b)).
In practice, we find that solely relying on the audio detection
the mobile phones may falsely trigger the celltower ID col-
lection when they go with the rapid trains. Since the train
routes have substantial above-ground segments that overlap
with bus routes, simply using celltower signals does not ef-
fectively differentiate the two transit means. We expect to
leverage the accelerometer sensor on the mobile phone to
reduce such false detection.

Intuitively, the rapid trains are moving at relatively stable
speeds with few abrupt stops or sharp turns. On the con-
trary, the buses are typically moving with many sharp turns
and frequent acceleration and deceleration. We collect the
accelerometer data at a moderate sampling rate of 20Hz.
The raw accelerometer readings are first made orientation-
independent by computing the L2-norm (or magnitude) of
the raw data [28]. Figure 8 (top) plots the accelerometer
readings on a rapid train and a public transit bus which
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suggest that the accelerometer reading on the bus fluctuates
much frequently with larger magnitudes. We explore such
features of accelerometer readings to distinguish the buses
from the rapid trains.

We measure the statistics of the accelerometer readings
during 12.5 seconds (250 samples) to reduce the impact of
noise, such as average and variance of the acceleration. Fig-
ure 8 (bottom) plots the variance of the accelerometer read-
ings on the rapid train and the public transit bus, respec-
tively. According to the figure, the variance on the bus is
significantly larger than that on the train. Therefore, we
distinguish the buses from the trains using the variance of
accelerometer readings by setting a proper threshold.

We confirm the detection of buses if the measured accel-
eration variance is above the threshold, and the detection
of rapid trains otherwise. In Figure 9, we vary the thresh-
old from 0.005 to 0.2 and plot the detection accuracy. If
the threshold is small, most buses will be correctly detected,
while many trains will be misdetected as buses as well, which
may lead to noisy inputs to the backend server and energy
waste of mobile phones in collecting celltower IDs. On the
other hand, if threshold is too big, most rapid trains will
be filtered out, while we will miss the detection of many ac-
tual buses, which may lose the opportunities in collecting
useful celltower information on the buses. We select an em-
pirical threshold 0.03 to balance the false negative and false
positive.

In practice, we find that accelerometer based detection
can distinguish the buses from the trains with an accuracy
of approximately 90% (§4.2.2). The error rate of falsely
detecting rapid trains as buses is even smaller. The detection
error of falsely classifying public buses into rapid trains is
mainly due to the abnormality of the bus routes (e.g., long
straight routes) especially during non-peak hours. Such a
detection error is tolerable in the bus classification stage,
where the backend server has information redundancy to
handle the noisy reports.

3.4 Bus classification
When a sharing user gets on the bus, the mobile phone

samples a sequence of celltower IDs and reports the informa-
tion to the backend server. The backend server aggregates
the inputs from massive mobile phones and classifies the in-
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Database seq. 1 2 4 7 8 4 5 9 6

Uploaded seq. 7 8 4 5

Matched seq. 7 8 4 5

Table 1: Celltower sequence matching

puts into different bus routes. The statuses of the bus routes
are then updated accordingly.

3.4.1 Celltower sequence matching
We match the received celltower sequences to those sig-

nature sequences store in the database. Figure 10 shows an
illustrative example where a sharing passenger gets on the
bus at location A. The backend server will receive a celltower
sequence of 〈7, 8, 4, 5〉 when the sharing user reaches location
B. Say that the celltower sequence of the bus route stored
in the database is 〈1, 2, 4, 7, 8, 4, 5, 9, 6〉, then the sequence
〈7, 8, 4, 5〉 matches the particular bus route as a sub-segment
as shown in Table 1.

In practical scenarios, the sequence matching problem be-
comes more complicated due to the varying celltower sig-
nal strength. Recall that for each sub-route we record the
top-3 celltower IDs instead of the connected celltower ID
in the pre-processing period. We let each mobile phone
send back the sequence of celltowers that the mobile phone
has connected to. In the matching process on the server,
we accordingly devise a top-k celltower sequence matching
scheme by modifying the Smith-Waterman algorithm [33].
Smith-Waterman is a dynamic programming algorithm for
performing local sequence alignment which has been widely
used in bioscience (e.g., to determine similar regions between
two nucleotide or protein sequences).

We make concrete modifications on the original algorithm
to support the top-k celltower sequence matching. We weigh
a matching of a celltower ID with a top-k set according
to the celltower signal strength. Say that in a top-k set
S = {c1, c2, . . . , ck} ordered by signal strength (i.e., si ≥
sj , 1 ≤ i ≤ j ≤ k), where ci and si denote celltower i and
its signal strength, respectively.

We denote the uploaded celltower sequence from a shar-
ing user as Sequpload = 〈u1u2 . . . um〉 wherem is the sequence
length. We also denote a celltower set sequence in database
as Seqdatabase = 〈S1S2 . . . Sn〉 where n is the set sequence
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Figure 11: CDF of the overlapped route length
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Figure 12: Matching accuracy with varying se-
quence length

length. If ui = cw ∈ Sj , ui and Sj are considered match-
ing with each other, and mismatching otherwise. We as-
sign a score f(sw) for a match, where f(sw) is a positive
non-decreasing scoring function and w is the rank of signal
strength. In practice, we use f(sw) = 0.5w−1 as the scoring
function according to the signal strength order in the set.
The penalty cost for mismatches is set to be an empirical
value of −0.5 which balances the robustness and accuracy
in practice.

We choose top-3 celltower IDs with strongest celltower
signal strength to form a set based on our initial obser-
vations (§3.2). The distinctive advantage of the proposed
classification algorithm is its robustness to the variation of
celltower signal strength. Table 2 shows a celltower set se-
quence matching instance. In the example, the uploaded
celltower sequence is Sequpload = 〈1, 8, 10, 15, 16〉, and the
celltower ID set is shown in the first three rows sorted in
decreasing order of the associated celltower signal strength.

After running the sequence matching algorithm across all
bus route sequences in the database, the backend server se-
lects the bus route with the highest score. If the highest
matching score is smaller or the sequence length is shorter
than our empirical thresholds, the backend server postpones



Database 19 1 4 7 10 13 16 22

celltower 20 2 5 8 11 14 17 23
∑

set seq. 21 3 6 9 12 15 18 24

Uploaded seq. 1 – 8 10 15 16

Score 0 +1 -0.5 +0.5 +1 +0.25 +1 0 3.25

Table 2: Top-3 set sequence matching
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Figure 13: Celltower sequence concatenation

the updates to avoid errors. Intuitively, the small highest
matching score would be due to mistriggering of sharing
phones uploading celltower sequence not from interested bus
routes (e.g., rapid trains, private cars, etc). Too short cell-
tower sequence may not be informative since the misclas-
sification rate of such short sequence is high and thus the
backend server postpones the classification and the updating
process until the sequence excesses the empirical threshold
(which will be elaborated later).

One problem of the celltower sequence matching is that
some bus routes may overlap with each other. The mobile
phones on the overlapped road segments are likely to observe
similar celltower sequences. Since many buses typically ar-
rive at and depart from several major transit centers, such
overlapping road segments among different bus routes are
common.

We survey 50 bus routes in Singapore and measure their
overlapped road segments using Google Maps. Figure 11
plots the distribution of the lengths of overlapped road seg-
ments, which suggests that over 90% of the overlapped route
segments are shorter than 1400 meters, and over 80% are less
than 1000 meters. Considering that the coverage range of
each celltower in urban area is about 300-900 meters, we set
the empirical threshold of celltower sequence length to 7.

Figure 12 plots the celltower sequence matching accuracy
in classifying the bus routes. We vary the length of uploaded
celltower sequence from 2 to 9. We find that the matching
accuracy is low when the celltower sequence length is small
(e.g, <4) largely because of the problem of route overlap. We
observe that when the celltower sequence length reaches 6,
the accuracy increases substantially to around 90%. When
the celltower sequence length is larger than 8, the experi-
mental results are reasonably accurate and robust.

3.4.2 Celltower sequence concatenation: Solving jig-
saw puzzles

In many practical scenarios, the length of the celltower se-
quence obtained by a single sharing user, however, may be
insufficient for accurate bus route classification. An intuitive
idea is that we can concatenate several celltower sequences
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Figure 14: Time intervals of audio indication signals

of different sharing users on the same bus to form a longer
celltower sequence. In Figure 13, both celltower sequences
of sharing user A and B are short, while by concatenating
the two celltower sequences the backend server may obtain
an adequately long celltower sequence which can be used for
more accurate bus classification. A simple way of concate-
nating the celltower sequences is to let the mobile phones
of sharing passengers locally communicate with each other
(e.g., over Bluetooth) [24]. This approach, however, man-
dates location exposure among sharing passengers and might
raise privacy concerns. We thereby shift such a job to the
backend server.

Recall that the mobile phone needs to collect audio signals
for bus detection (§3.3.1). Here, we reuse such information
to detect whether the sharing passengers are on the same
bus for celltower sequence concatenation. At each bus stop,
normally several passengers enter a bus and multiple beeps
of the IC card readers can be detected. The time intervals
between the consecutive beep signals fingerprint each bus
in the time domain. Figure 14 depicts an instance of the
audio signals captured by three different mobile phones on
the same bus. We depict the raw audio signals in Figure
14(a), and corresponding frequency domain signals in Fig-
ure 14(b)-(d). Compared with the time domain signal, the
frequency domain signal is robust against the background
noise (e.g., though signal strength increases are observed in
1kHz frequency band around 0.8s, the signal strengths in
3kHz frequency band remain low). We can see that in the
frequency domain the signals are highly cross-correlated and
thus can be used to determine whether the phones are on
the same bus. Specifically, the time intervals observed by
three mobile phones are all approximately dT1 and dT2 in
Figure 14.
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Figure 15: Bus arrival time prediction

We therefore use the time intervals between the detected
beeps to determine whether multiple mobile phones are on
the same bus. In our system, the mobile phones of sharing
users keep sampling the audio signal and record the time in-
tervals between the detected beeps. Such beep interval infor-
mation is reported along with the celltower sequences to the
backend server. Receiving the uploaded sensing data from
sharing passengers, the backend server detects and groups
the sharing passengers on the same bus by comparing both
celltower sequences and the time intervals of the beep sig-
nals. The backend server concatenates the pieces of celltower
sequences from the same bus and forms a longer celltower
sequence.

3.5 Arrival time prediction
After the celltower sequence matching, the backend server

classifies the uploaded information according to different bus
routes. When receiving the request from querying users the
backend server looks up the latest bus route status, and
calculates the arrival time at the particular bus stop.

Figure 15 illustrates the calculation of bus arrival time
prediction. The server needs to estimate the time for the bus
to travel from its current location to the queried bus stop.
Suppose that the sharing user on the bus is in the coverage
of celltower 2, the backend server estimates its arrival time
at the bus stop according to both historical data as well as
the latest bus route status. The server first computes the
dwelling time of the bus at the current cell (i.e., cell 2 in
this example) denoted as t2. The server also computes the
traveling time of the bus in the cell that the bus stop is
located denoted as tbs. The historical dwelling time of the
bus at cell 3 is denoted as T3. The arrival time of the bus
at the queried stop is then estimated as follows,

T = T2 − t2 + T3 + tbs

Without loss of generality, we denote the dwelling time in
cell i as Ti, 1 ≤ i ≤ n, the bus’s current cell number as k,
and the queried bus stop’s cell number as q. The server can
estimate the arrival time of the bus as follows,

T =

q−1∑

i=k

Ti − tk + tq

The server periodically updates the prediction time ac-
cording to the latest route report from the sharing users
and repsonds to querying users. The querying users may in-
dicate desired updating rates and the numbers of successive
bus runs to receive the timely updates.

Route A
Route B
Route C
Route D

200 m
500 ft

Figure 16: Campus shuttle bus routes

Route Length Avg. vel. Stop Seq. Length

A 4.0km 22.1km/h 11 14-15

B 3.8km 21.2km/h 9 9-10

C 5.5km 20.6km/h 13 16-17

D 5.8km 18.3km/h 9 20-22

Table 3: Campus bus route length, average velocity,
number of bus stops, and celltower sequence length

Route A B C D

A – 1.4km 3.4km 1.9km

B 1.4km – 2.1km 0km

C 3.4km 2.1km – 1.9km

D 1.9km 0km 1.9km –

Table 4: The lengths of shared bus routes

4. IMPLEMENTATION AND EVALUATION
We implement a prototype system on the Android plat-

form with different types of mobile phones, and collect the
real data over a 7-week period. We first present the exper-
iment environment and methodology (§4.1). We test and
evaluate each component (bus detection in §4.2, and bus
classification in §4.3) and present the overall performance of
bus arrival time prediction in §4.4. The following details the
experiment methodology and findings.

4.1 Experimental methodology
Mobile phones. We implement the mobile phone appli-

cations with the Android platform using Samsung Galaxy
S2 i9100 and HTC Desire. Both types of mobile phones are
equipped with accelerometers and support 16-bit 44.1kHz
audio signal sampling from microphones. The Samsung Galaxy
S2 i9100 has a 1GB RAM and Dual-core 1.2GHz Cortex-A9
processor, while the HTC Desire has a 768MB RAM and
1GHz Scorpion processor. For most of our experiments, we
base on the SingTel GSM networks in Singapore.
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Figure 17: Bus detection accuracy

Backend server. We implement the backend server in
Java running on the DELL Precision T3500 workstation
with 4GB memory and Intel Xeon W3540 processor. The
bus arrival time prediction service can be implemented in
a computing cloud for dynamic and scalable resource provi-
sioning as well [15].

Experiment environment. Public bus transit system
serves millions of bus rides every day covering most parts
of Singapore. The public bus transit system is supervised
by Land Transport Authority (LTA) of Singapore and is
commercially operated mainly by two major public trans-
port providers, SBS Transit and SMRT Corporation [5, 20].
Many other transit means coexist with the public bus sys-
tem. Mass Rapid Transit (MRT) trains form the backbone
of the railway system. There are also tens of thousands of
taxicabs operated by commercial companies and by individ-
ual taxi owners [10]. IC cards are widely used for paying
transit fees. Several card readers are deployed for collecting
the fees on SBS and SMRT public buses and at entrance
gates of MRT stations.

We experiment in both campus shuttle buses and public
transport buses (SBS Transit bus service in Singapore). As
shown in Figure 16, there are 4 shuttle bus routes (i.e., Route
A-D) in our campus. The shuttle buses serve from 08:00
to 23:00 with time intervals varying from 5 to 20 minutes.
The bus route lengths span approximately from 3.8km to
5.8km with celltower set sequence lengths varying from 9
to 22. The average velocity of the buses is about 20km/h.
Table 3 gives the details of the bus routes. The shuttle bus
routes have overlapped road segments as depicted in Figure
16. The campus bus C travels in clockwise direction, while
buses A, B, and D move in counterclockwise direction. We
see that Route A and Route C have substantial overlapped
segments. Table 4 summarizes the shared route segments
between each pair of bus routes, which span from 0km to
3.4km. We see that around 85% (3.4km/4km) of Route A
overlaps with Route C.

We experiment on SBS Transit bus route 179 and 241
as well. For comparison study, we also collect celltower se-
quences and accelerometer readings in East-West and the
North-South MRT Lines in Singapore.

Scenario DR FPR Accuracy

Mobile phone in hand

1m 100% 98%

3m 97% 3% 97%

5m 71% 84%

7m 15% 56%

Mobile phone in bag

1m 98% 98%

3m 95% 1% 97%

5m 59% 79%

7m 5% 52%

Table 5: Bus detection accuracy. Detection rate
(DR), false positive rate (FPR) and accuracy under
various scenarios

4.2 Bus detection performance

4.2.1 Audio detection accuracy
We collect more than 200 beep signals on different public

transit buses during our 7-week experiments. We set the
audio sampling rate to be 8kHz, and we use 128-pt FFT to
detect the IC card reader. We test the bus detection method
by varying the distances between the IC card reader and the
mobile phones (approximately 1 meter to 7 meters). We also
consider the scenarios where mobile phones may be held in
hand and inside bags. We report the average detection ac-
curacy of single beeps in different circumstances. In Figure
17, we see that the detection rate is over 95% when mobile
phones are in close vicinity to the IC card reader (e.g., within
3 meters) even when they are placed in bags. With mobile
phones placed 5 meters away from the reader, the detection
accuracies are about 58% held in hand, and 71% placed in
bags, respectively. As the distance increases further (e.g,
>7 meters), the detection accuracy drops substantially. In
addition, we list the detection rate, false positive rate, and
accuracy of bus detection method in Table 5.

The experiment results suggest that the audio based method
effectively detects the beep signal on the bus when the dis-
tance between the IC card reader and the mobile phone is
within 3 meters. Considering that the entrance gate of the
bus is about 1.4 meters wide, when a sharing user enters a
bus, the mobile phone would be less than 1 meter away from
the IC card reader (normally within 0.5 meters).

4.2.2 Bus vs. MRT train
We next evaluate the accelerometer based bus detection

method that is used to distinguish the buses from the MRT
trains. Figure 18 plots the accuracy in detecting the buses.
We find that accelerometer based method can distinguish
the buses from the MRT trains with an accuracy of over
90% on average. We analyzed the main reason for falsely
detecting public buses as MRT trains, and find that it hap-
pens mostly when the buses are driving along long straight
routes late during night time. The accelerometer readings
may be relatively stable and very similar to those on the
MRT trains.
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Figure 18: Bus vs. MRT using accelerometer

4.3 Bus classification performance
We present the evaluation results for our bus classification

algorithms. In our prototype system, we collect the celltower
sequences on the 4 campus bus routes and store them in the
database. The campus buses do not have IC card readers,
so we use the GNUradio to produce and play the dual-tone
(1kHz and 3kHz) beeps. Mobile phones start to collect data
after detecting the beeping signals on buses. For the pub-
lic transit buses (e.g., SBS transit and SMRT Corporation
buses), the mobile phones can directly detect their IC card
readers. The data collection process spans over a period of 7
weeks. We collect 20 runs for each shuttle bus route for the
bus route classification. As the cellular networks are likely
to be updated incrementally, most celltowers along the bus
routes typically remain consistent during the experiment pe-
riod.

We implement the celltower sequence matching with the
top-3 celltower sequence matching algorithm. In Figure
19(a), we plot the bus classification results for the 4 cam-
pus bus routes. According to the experiment results, the
bus classification accuracy is approximately 90% with the
highest accuracy of 96% for Bus B and the lowest of 87%
for Bus D. Although 85% of Route A is overlapped with
Route C, the bus classification accuracy for Bus A and C
are still around 94%. The main reason is that Bus A and
C travel in the opposite directions. Since Route D shares
a large portion of overlapped road segments with Route A
and Route C, and buses travel in the same direction on the
shared road segments, buses along Route D might be mis-
classified to Route A or Route C. Figure 19(c) depicts the
classification ratio of buses along Route D. We can find that
7% of the buses are misclassified to Route A and 6% are
misclassified to Route C. Although Route B has many over-
lapped road segments with Route A and C, the buses travel
in the opposite directions on those road segments. (Figure
19(b)) depicts the classification ratio of buses along Route
B. We find that only 3% of the buses are misclassified to
Route C. Overall, the bus classification accuracy is satisfac-
tory, considering the high overlap ratio of the four routes
in the campus (the city-wide public bus routes are far less
overlapped, e.g., SBS 179 and 241).

Bus A Bus B Bus C Bus D
0

10

20

30

40

50

60

70

80

90

100

(a) Matching accuracy of 4 routes

M
at

ch
in

g 
ac

cu
ra

cy
 (

%
)

Bus A Bus B Bus C Bus D
0

20

40

60

80

100

(c)Bus classification for buses on route D

Bus A Bus B Bus C Bus D
0

20

40

60

80

100

(b)Bus classification for buses on route B

Figure 19: Bus classification accuracy

4.4 Arrival time prediction
We present the final bus arrival time prediction results

based on above estimations. We collect the campus bus
traces using a high accurate vehicle GPS navigator as the
benchmarks. In the same buses, we collect celltower se-
quences using two mobile phones and stored the sequence in
memory stick for our later trace-driven study.

In the trace-driven study, we generate queries at different
campus bus stops according to poisson arrival process, and
compare the predicted arrival time with the actual arrival
time of the campus buses to compute the average of the
absolute prediction error. Figure 20(a) shows the CDF of the
absolute error of arrival time prediction results. The median
prediction errors vary approximately from 40s for Bus B to
60s for Bus D. The 90th percentiles are approximately from
75s for Bus B to 115s for Bus D, respectively. Generally, the
average estimation error increases as the length of bus route
increases.

Figure 20(b) plots the average error against the distance
between the sharing user and the querying user, where we
approximate the distance using the number of bus stops. We
observe that as the bus moves closer to the querying user,
the prediction error becomes smaller. The error of Bus D
increases faster than those of Bus A, B, and C.

We experiment with commercial bus system as well. For
comparison, we also query the arrival time of public transit
buses provided by LTA of Singapore. The public buses are
periodically tracked with on-bus localization devices and re-
spond to the queries for the bus information. People can
send an SMS to query the bus arrival time indicating the
interested bus route and stop. In the experiment we test
the arrival time prediction on SBS bus route 179 and 241.
We compute the prediction error by comparing the predicted
results with the actual arrival time of the buses. Both pre-
diction errors of LTA and our system are measured and we
plot the CDF of the prediction results in Figure 20(c). Ac-
cording to the results, the average prediction error of our
system is approximately 80 seconds, while the prediction re-
sult of LTA is around 150 seconds. Such a comparison result
is surprising, as we expect more accurate prediction result
from the commercial system of LTA where a rich set of re-
sources including on-bus GPS sensors are proactively used.
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Figure 20: Arrival time prediction performance

Sensors Samsung i9100 HTC Desire

No sensor 18.2 15.3

Accelerometer 20Hz 18.0 15.2

Microphone 8kHz+FFT 17.5 14.9

Celltower 1Hz 17.8 15.0

GPS 1Hz 9.7 6.4

Table 6: Battery duration for different sensor set-
tings (in hours)

We suspect that the deployed system of LTA is intentionally
made inaccurate (e.g., using caching to reduce computation
and communication cost), yet we cannot further dig into
such a commercially running system for more details.

4.5 System overhead
Mobile phone. The computation complexity of the algo-

rithms on mobile phones is bounded by the length of audio
signals and accelerometer signals needed for the bus detec-
tion. In order to maintain the sample resolution and remove
the noise, we extract the audio signal with sliding widows
with the window size of 32. We record the audio signal at the
sampling rate of 8kHz, and use n = 128pt FFT to convert
the time domain audio signals to frequency domain signals.
The major computational complexity is attributed to per-
forming FFT on mobile phones which is O(n log n). Current
mobile phones can finish the computation task in realtime.
For example, it takes approximately 1.25ms and 1.8ms on
average to finish to 128pt FFT on Samsung Galaxy S2 i9100
and HTC Desire, respectively.

We measure the power consumption of continuously sam-
pling microphone, accelerometer, GPS, and cellular signals.
Table 6 illustrates the measured battery lifetime when the
mobile phones continuously trigger different sensors. The
experiments were performed with the screen set to minimum
brightness. We report the average results over 10 indepen-
dent measurements. The battery duration was quite similar
for sampling accelerometer at 20Hz, sampling audio signal at
8kHz with 128pt FFT, and sampling no sensors. Sampling
the celltower signal consumes limited extra battery power as
well. On the other hand the battery lifetime is substantially
reduced when the GPS module in the phone is enabled.

Backend server. The computation overhead of back-
end server is mainly bounded by the bus classification al-
gorithm, i.e., the uploaded celltower sequence length l, the
celltower set sequence length k, and the number of celltower
set sequences in the database N . The computation com-
plexity of sequence matching using dynamic programming
is O(lk), and as we need to compare with N candidate se-
quences in database the overall computation complexity is
O(lkN). Since in practice both m and n are usually small
(e.g., max{l,k} is around 40 according to our experiments),
the computation complexity increases almost linearly to the
number of candidate celltower sequences in the database.

5. LIMITATIONS AND ON-GOING WORK
Alternative referencing points. In practical imple-

mentation, we observe that the number of celltowers that a
sharing user can capture on a bus influences the bus classi-
fication accuracy. It takes a few minutes for the passenger
on a bus to observe several celltowers to form a reliable se-
quence for bus classifications. We are currently studying to
utilize the ambient radio signals and extract useful informa-
tion (e.g., WiFi points) to complement the celltower IDs as
fingerprints. As a matter of fact, there are relatively sta-
ble WiFi points along different bus routes. Similar to using
GPS modules, such a method consumes extra power on the
mobile phones, though the WiFi module draws much less
power. Our preliminary measurement indeed finds many re-
liable WiFi hotspots in our campus which may extend the
celltower fingerprints. We are also studying how such com-
plementary information can be utilized in an energy efficient
manner.

Number of passengers. The number of sharing pas-
sengers affects the prediction accuracy in our system. When
there is no sharing passengers on a bus, the backend server
would miss the bus, which affects the prediction results.
This common issue of crowd-sourced solutions is largely in-
fluenced by the penetration rate and popularity of the ser-
vices. One may actively promote the service to reach a criti-
cal penetration rate so as to ensure that at least one sharing
user is on the bus willing to report the bus status. At the
initial stage, we may equip the bus driver with the mobile
phone clients so that at least one sharing user (i.e., the bus
driver) can update the bus status to the backend server.

First few bus stops. The bus classification method
needs a sufficiently long celltower sequences for accurate



bus route classification, and consequently the arrival time
at the first few bus stops would not be timely updated. As
discussed in [12], being less affected by unpredictable traffic
conditions, the arrival time at the first few bus stops is stable
and predictable according to the historical data. Therefore,
the backend server may bias the arrival time prediction for
those bus stops towards the official bus schedules and real-
time traffic conditions on the bus routes.

Overlapped routes. By concatenating several celltower
sequences from the same bus, the backend server may obtain
a longer celltower sequence for bus classification. Although
such a longer sequence alleviates the overlapped bus route is-
sue, occasionally our bus classification algorithm still cannot
confidently classify the bus routes and have to postpone re-
sponses to querying passengers. Since many buses typically
arrive at and depart from several major transit centers, such
route overlapping could be especially common in downtown
area. In our experiments, we find that there are distinct dif-
ferences of the bus speeds between the campus shuttle buses
and the public transit buses even when the buses travel the
same overlapped sub-routes. The buses with more frequent
bus stops tend to drive at lower speed than those with fewer
bus stops. We are currently exploring how to effectively uti-
lize the differences of the bus speed to distinguish the buses
with overlapped routes. The problem of efficiently and ac-
curately classifying different bus routes sharing substantial
portion of overlapped segments (e.g., in downtown areas)
remains challenging.

6. RELATED WORK
Phone-based transit tracking. Our work is mostly re-

lated to recent works on the transit tracking systems [12, 20,
29]. EasyTracker [12] presents an automatic system for low-
cost, real-time transit tracking, mapping and arrival time
prediction using GPS traces collected by in-vehicle smart-
phones. Thiagarajan et al. [29] present a grassroots so-
lution for transit tracking utilizing accelerometer data and
GPS modules on participating mobile phones. Our work
differs from them in that it predicts the bus arrival time
based on celltower sequence information shared by partici-
patory users. To encourage more participants, no explicit
location services (e.g., GPS-based localization) are invoked
so as to reduce the overhead of using such special hardware
for localization.

EEMSS [32] presents an energy efficient sensor manage-
ment framework which uses minimum number of sensors on
mobile devices to monitor user states. Nericell [23] uses on-
board sensors to efficiently monitor the road surface quality
and traffic conditions. VTrack [31] predicts road traffic time
based on a sequence of WiFi-based positioning samples using
an HMM-based algorithm for map matching. Ravindranath
et al. [27] use various sensor hints to improve wireless pro-
tocols. CTrack [30] presents energy-efficient trajectory map-
ping using celltower fingerprints and utilizes various sensors
on mobile phones to improve the mapping accuracy. Balan
et al. [10] present a realtime trip information system to pre-
dict taxi fares and trip time. SignalGuru [19] presents a
software service that predicts traffic signals’ future schedule
which enables green light optimal speed advisory by leverag-
ing opportunistic sensing on windshield-mount smartphones.
Yang et al. [35] present a driver detection system that dis-
tinguishes a driver and a passenger leveraging car speakers
and mobile phone microphones.

Celltower sequence matching. StarTrack [7] provides
a comprehensive set of APIs for mobile application devel-
opment. Applying new data structures, [17] enhances Star-
Track in efficiency, robustness, scalability, and ease of use.
CAPS [25] determines a highly mobile user’s position using
a cell-ID sequences matching technique which reduces GPS
usages and saves energy on mobile phones. Unlike those pro-
posals, our work does not aim to position the mobile users
though similar in spirit to these existing works in utilizing
the celltower sequences.

Participatory sensing. Many recent works develop par-
ticipatory platforms for people-centric mobile computing ap-
plications [6, 13]. Micro-blog [16] presents a participatory
sensing application which connects sharing parties and query-
ing parties to allow geo-tagged multimedia sharing. MoVi
[11] studies the problem of social activity coverage where
participants collaboratively sense ambience and capture so-
cial moments through mobile phones. SoundSense [22] clas-
sifies ambient sounds to achieve context recognition. Sur-
roundSence [8] utilizes various sensors on mobile phones to
collect identifiable fingerprints signals for logical localiza-
tion. Escort [14] obtains cues from social encounters and
leverages an audio beacon infrastructure to guide a user to
a desired person. WILL [34] designs an indoor logical lo-
calization technique leveraging user mobility and WiFi in-
frastructure while avoiding site survey. Although targeted
at totally different applications and problems, the common
rationale behind these works and our design is that the ab-
solute physical location of users though sometimes sufficient
not always necessary to accomplish particular tasks.

7. CONCLUSIONS
In this paper, we present a crowd-participated bus arrival

time prediction system using commodity mobile phones. Our
system efficiently utilizes lightweight onboard sensors which
encourages and attracts participatory users. Primarily re-
lying on inexpensive and widely available cellular signals,
the proposed system provides cost-efficient solutions to the
problem. We comprehensively evaluate the system through
a prototype system deployed on the Android platform with
two types of mobile phones. Over a 7-week experiment pe-
riod, the evaluation results demonstrate that our system can
accurately predict the bus arrival time. Being independent
of any support from transit agencies and location services,
the proposed scheme provides a flexible framework for par-
ticipatory contribution of the community.

8. ACKNOWLEDGEMENT
We would like to thank our shepherd, Rajesh Krishna

Balan, as well as the anonymous reviewers for providing
constructive feedbacks and valuable input for improving the
quality of this paper. We acknowledge the support from
NTU SUG M4080103.020 and NAP M4080738.020.

9. REFERENCES
[1] Bus transport in Singapore. http://en.wikipedia.

org/wiki/Bus_transport_in_Singapore.

[2] EZ-Link. http://www.ezlink.com.sg.

[3] Octupus. http://www.octopus.com.hk/home/en.

[4] Oyster. https://oyster.tfl.gov.uk/oyster.

[5] PublicTransport@SG.
http://www.publictransport.sg/.



[6] T. Abdelzaher, Y. Anokwa, P. Boda, J. Burke,
D. Estrin, L. Guibas, A. Kansal, S. Madden, and
J. Reich. Mobiscopes for Human Spaces. IEEE
Pervasive Computing, vol. 6(issue 2): pages 20–29,
Apr. 2007.

[7] G. Ananthanarayanan, M. Haridasan, I. Mohomed,
D. Terry, and C. A. Thekkath. Startrack: a framework
for enabling track-based applications. In Proceedings
of ACM MobiSys, pages 207–220, 2009.

[8] M. Azizyan, I. Constandache, and R. Roy Choudhury.
Surroundsense: mobile phone localization via
ambience fingerprinting. In Proceedings of ACM
MobiCom, pages 261–272, 2009.

[9] P. Bahl and V. N. Padmanabhan. RADAR: an
in-building RF-based user location and tracking
system. In Proceedings of IEEE INFOCOM, pages
775–784, 2000.

[10] R. K. Balan, K. X. Nguyen, and L. Jiang. Real-time
trip information service for a large taxi fleet. In
Proceedings of ACM MobiSys, pages 99–112, 2011.

[11] X. Bao and R. Roy Choudhury. Movi: mobile phone
based video highlights via collaborative sensing. In
Proceedings of ACM MobiSys, pages 357–370, 2010.

[12] J. Biagioni, T. Gerlich, T. Merrifield, and J. Eriksson.
Easytracker: automatic transit tracking, mapping, and
arrival time prediction using smartphones. In
Proceedings of ACM SenSys, pages 1–14, 2011.

[13] J. Burke, D. Estrin, M. Hansen, A. Parker,
N. Ramanathan, S. Reddy, and M. B. Srivastava.
Participatory sensing. In Workshop on
World-Sensor-Web (WSW): Mobile Device Centric
Sensor Networks and Applications, pages 117–134,
2006.

[14] I. Constandache, X. Bao, M. Azizyan, and R. R.
Choudhury. Did you see bob?: human localization
using mobile phones. In Proceedings of ACM
MobiCom, pages 149–160, 2010.

[15] E. Cuervo, A. Balasubramanian, D.-k. Cho,
A. Wolman, S. Saroiu, R. Chandra, and P. Bahl. Maui:
making smartphones last longer with code offload. In
Proceedings of ACM MobiSys, pages 49–62, 2010.

[16] S. Gaonkar, J. Li, R. R. Choudhury, L. Cox, and
A. Schmidt. Micro-blog: sharing and querying content
through mobile phones and social participation. In
Proceedings of ACM MobiSys, pages 174–186, 2008.

[17] M. Haridasan, I. Mohomed, D. Terry, C. A. Thekkath,
and L. Zhang. Startrack next generation: a scalable
infrastructure for track-based applications. In
Proceedings of USENIX OSDI, 2010.

[18] M. Keally, G. Zhou, G. Xing, J. Wu, and A. Pyles.
Pbn: towards practical activity recognition using
smartphone-based body sensor networks. In
Proceedings of ACM SenSys, pages 246–259, 2011.

[19] E. Koukoumidis, L.-S. Peh, and M. R. Martonosi.
Signalguru: leveraging mobile phones for collaborative
traffic signal schedule advisory. In Proceedings of
ACM MobiSys, pages 127–140, 2011.

[20] F. Li, Y. Yu, H. Lin, and W. Min. Public bus arrival
time prediction based on traffic information
management system. In Proceedings of IEEE
International Conference on Service Operations and

Logistics, and Informatics (SOLI), pages 336–341,
2011.

[21] Y. Liu, L. Chen, J. Pei, Q. Chen, and Y. Zhao. Mining
frequent trajectory patterns for activity monitoring
using radio frequency tag arrays. In Proceedings of
IEEE PerCom, 2007.

[22] H. Lu, W. Pan, N. D. Lane, T. Choudhury, and A. T.
Campbell. Soundsense: scalable sound sensing for
people-centric applications on mobile phones. In
Proceedings of ACM MobiSys, pages 165–178, 2009.

[23] P. Mohan, V. N. Padmanabhan, and R. Ramjee.
Nericell: rich monitoring of road and traffic conditions
using mobile smartphones. In Proceedings of ACM
SenSys, pages 323–336, 2008.

[24] J. Paek, J. Kim, and R. Govindan. Energy-efficient
rate-adaptive gps-based positioning for smartphones.
In Proceedings of ACM MobiSys, pages 299–314, 2010.

[25] J. Paek, K.-H. Kim, J. P. Singh, and R. Govindan.
Energy-efficient positioning for smartphones using
cell-id sequence matching. In Proceedings of ACM
MobiSys, pages 293–306, 2011.

[26] C. Peng, G. Shen, Y. Zhang, Y. Li, and K. Tan.
Beepbeep: a high accuracy acoustic ranging system
using cots mobile devices. In Proceedings of ACM
SenSys, pages 1–14, 2007.

[27] L. Ravindranath, C. Newport, H. Balakrishnan, and
S. Madden. Improving wireless network performance
using sensor hints. In Proceedings of USENIX NSDI,
2011.

[28] S. Reddy, M. Mun, J. Burke, D. Estrin, M. Hansen,
and M. Srivastava. Using mobile phones to determine
transportation modes. ACM Transactions on Sensor
Networks, vol. 6(issue 2): pages 1–27, March 2010.

[29] A. Thiagarajan, J. Biagioni, T. Gerlich, and
J. Eriksson. Cooperative transit tracking using
smart-phones. In Proceedings of ACM SenSys, pages
85–98, 2010.

[30] A. Thiagarajan, L. Ravindranath, H. Balakrishnan,
S. Madden, and L. Girod. Accurate, low-energy
trajectory mapping for mobile devices. In Proceedings
of USENIX NSDI, 2011.

[31] A. Thiagarajan, L. Ravindranath, K. LaCurts,
S. Madden, H. Balakrishnan, S. Toledo, and
J. Eriksson. Vtrack: accurate, energy-aware road
traffic delay estimation using mobile phones. In
Proceedings of ACM SenSys, pages 85–98, 2009.

[32] Y. Wang, J. Lin, M. Annavaram, Q. A. Jacobson,
J. Hong, B. Krishnamachari, and N. Sadeh. A
framework of energy efficient mobile sensing for
automatic user state recognition. In Proceedings of
ACM MobiSys, pages 179–192, 2009.

[33] M. S. Waterman and T. F. Smith. Identification of
common molecular subsequences. Journal of Molecular
Biology, 147:195–197, 1981.

[34] C. Wu, Z. Yang, Y. Liu, and W. Xi. WILL: Wireless
indoor localization without site survey. In Proceedings
of IEEE INFOCOM, 2012.

[35] J. Yang, S. Sidhom, G. Chandrasekaran, T. Vu,
H. Liu, N. Cecan, Y. Chen, M. Gruteser, and R. P.
Martin. Detecting driver phone use leveraging car
speakers. In Proceedings of ACM MobiCom, pages
97–108, 2011.


