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How Long to Wait?: Predicting Bus Arrival Time
with Mobile Phone based Participatory Sensing
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Abstract—The bus arrival time is primary information to most city transport travelers. Excessively long waiting time at bus stops often
discourages the travelers and makes them reluctant to take buses. In this paper, we present a bus arrival time prediction system
based on bus passengers’ participatory sensing. With commodity mobile phones, the bus passengers’ surrounding environmental
context is effectively collected and utilized to estimate the bus traveling routes and predict bus arrival time at various bus stops.
The proposed system solely relies on the collaborative effort of the participating users and is independent from the bus operating
companies, so it can be easily adopted to support universal bus service systems without requesting support from particular bus
operating companies. Instead of referring to GPS enabled location information, we resort to more generally available and energy
efficient sensing resources, including cell tower signals, movement statuses, audio recordings, etc., which bring less burden to the
participatory party and encourage their participation. We develop a prototype system with different types of Android based mobile
phones and comprehensively experiment with the NTU campus shuttle buses as well as Singapore public buses over a 7-week period.
The evaluation results suggest that the proposed system achieves outstanding prediction accuracy compared with those bus operator
initiated and GPS supported solutions. We further adopt our system and conduct quick trial experiments with London bus system for
4 days, which suggests the easy deployment of our system and promising system performance across cities. At the same time, the
proposed solution is more generally available and energy friendly.

Index Terms—Bus arrival time prediction, Participatory sensing, Mobile phones, Cellular-based tracking.
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1 INTRODUCTION

Public transport, especially the bus transport, has been
well developed in many parts of the world. The bus
transport services reduce the private car usage and fuel
consumption, and alleviate traffic congestion. As one of
the most comprehensive and affordable means of public
transport, in 2011 the bus system serves over 3.3 million
bus rides every day on average in Singapore with around
5 million residents [1].

When traveling with buses, the travelers usually want
to know the accurate arrival time of the bus. Excessively
long waiting time at bus stops may drive away the
anxious travelers and make them reluctant to take buses.
Nowadays, most bus operating companies have been
providing their timetables on the web freely available for
the travelers. The bus timetables, however, only provide
very limited information (e.g., operating hours, time
intervals, etc.), which are typically not timely updated.
Other than those official timetables, many public services
(e.g., Google Maps) are provided for travelers. Although
such services offer useful information, they are far from
satisfactory to the bus travelers. For example, the sched-
ule of a bus may be delayed due to many unpredictable
factors (e.g., traffic conditions, harsh weather situation,
etc). The accurate arrival time of next bus will allow trav-
elers to take alternative transport choices instead, and
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thus mitigate their anxiety and improve their experience.
Towards this aim, many commercial bus information
providers offer the realtime bus arrival time to the public
[17]. Providing such services, however, usually requires
the cooperation of the bus operating companies (e.g.,
installing special location tracking devices on the buses),
and incurs substantial cost.

In this paper, we present a novel bus arrival time
prediction system based on crowd-participatory sensing.
We interviewed bus passengers on acquiring the bus
arrival time. Most passengers indicate that they want
to instantly track the arrival time of the next buses and
they are willing to contribute their location information
on buses to help to establish a system to estimate the
arrival time at various bus stops for the community.
This motivates us to design a crowd-participated service
to bridge those who want to know bus arrival time
(querying users) to those who are on the bus and able to
share the instant bus route information (sharing users).
To achieve such a goal, we let the bus passengers them-
selves cooperatively sense the bus route information
using commodity mobile phones. In particular, the shar-
ing passengers may anonymously upload their sensing
data collected on buses to a processing server, which
intelligently processes the data and distributes useful
information to those querying users.

Our bus arrival time prediction system comprises
three major components: (1) Sharing users: using com-
modity mobile phones as well as various build-in sen-
sors to sense and report the lightweight cellular signals
and the surrounding environment to a backend server;
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(2) Querying users: querying the bus arrival time for a
particular bus route with mobile phones; (3) Backend
server: collecting the instantly reported information from
the sharing users, and intellectually processing such
information so as to monitor the bus routes and predict
the bus arrival time. No GPS or explicit location services
are invoked to acquire physical location inputs.

Such a crowd-participated approach for bus arrival
time prediction possesses the following several advan-
tages compared with conventional approaches. First,
through directly bridging the sharing and querying users
in the participatory framework, we build our system
independent of the bus operating companies or other
third-party service providers, allowing easy and inex-
pensive adoption of the proposed approach over other
application instances. Second, based on the commodity
mobile phones, our system obviates the need for special
hardware or extra vehicle devices, which substantially
reduces the deployment cost. Compared with conven-
tional approaches (e.g., GPS supported ones [13], [24]),
our approach is less demanding and much more energy-
friendly, encouraging a broader number of participat-
ing passengers. Third, through automatically detecting
ambient environments and generating bus route related
reports, our approach does not require the explicit hu-
man inputs from the participants, which facilitates the
involvement of participatory parties.

Implementing such a participatory sensing based sys-
tem, however, entails substantial challenges. (1) Bus de-
tection: since the sharing users may travel with diverse
means of transport, we need to first let their mobile
phones accurately detect whether or not the current user
is on a bus and automatically collect useful data only on
the bus. Without accurate bus detection, mobile phones
may collect irrelevant information to the bus routes,
leading to unnecessary energy consumption or even
inaccuracy in prediction results. (2) Bus classification:
we need to carefully classify the bus route information
from the mixed reports of participatory users. Without
users’ manual indication, such automatic classification
is non-trivial. (3) Information assembling: One sharing
user may not stay on one bus to collect adequate time
period of information. Insufficient amount of uploaded
information may result in inaccuracy in predicting the
bus route. An effective information assembling strategy
is required to solve the jigsaw puzzle of combining
pieces of incomplete information from multiple users to
picture the intact bus route status.

In this paper, we develop practical solutions to cope
with such challenges. In particular, we extract unique
identifiable fingerprints of public transit buses and uti-
lize the microphone on mobile phones to detect the
audio indication signals of bus IC card reader. We further
leverage the accelerometer of the phone to distinguish
the travel pattern of buses to other transport means.
Thus we trigger the data collection and transmission
only when necessary (§3.3). We let the mobile phone
instantly sense and report the nearby cell tower IDs.

We then propose an efficient and robust top-k cell tower
set sequence matching method to classify the reported
cell tower sequences and associate with different bus
routes. We intellectually identify passengers on the same
bus and propose a cell tower sequence concatenation
approach to assemble their cell tower sequences so as to
improve the sequence matching accuracy (§??). Finally,
based on accumulated information, we are then able to
utilize both historical knowledge and the realtime traffic
conditions to accurately predict the bus arrival time of
various routes (§3.5).

We consolidate the above techniques and implement
a prototype system with the Android platform using
two types of mobile phones (Samsung Galaxy S2 i9100
and HTC Desire). Through our 7-week experimental
study, the mobile phone scheme can accurately detect
buses with 98% detection accuracy and classifies the
bus routes with up to 90% accuracy. As a result, the
prototype system predicts bus arrival time with average
error around 80 seconds. Such a result is encourag-
ing compared with current commercial bus information
providers in Singapore. We further test the flexibility
and ease of deployment of the system in 4-day trial
experiments with the London bus system. With little
modification to the system configuration, we easily set
up our system for London buses. The experiment results
from 5 bus routes in London suggest promising system
performance.

In the following of this paper, we first introduce the
background and motivation in §2. In §3, we detail the
challenges of our system and describe our technical
solutions. The evaluation results are presented in §4.
We perform a trial study in London and the results are
shown in §5. The related works are described in §6. We
summarize this paper in §7.

2 BACKGROUND AND MOTIVATION

The bus companies usually provide free bus timetables
on the web. Such bus timetables, however, only provide
very limited information (e.g., operating hours, time
intervals, etc.), which are typically not timely updated
according to instant traffic conditions. Although many
commercial bus information providers offer the realtime
bus arrival information, the service usually comes with
substantial cost. With a fleet of thousands of buses,
the installment of in-vehicle GPS systems incurs tens of
millions of dollars [24]. The network infrastructure to de-
liver the transit service raises the deployment cost even
higher, which would eventually translate to increased
expenditure of passengers.

For those reasons, current research works [13], [24]
explore new approaches independent of bus companies
to acquire transit information. The common rationale
of such approaches is to continuously and accurately
track the absolute physical location of the buses, which
typically uses GPS for localization. Although many GPS-
enabled mobile phones are available on the market, a
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Fig. 1. Absolute localization is unnecessary for arrival
time prediction

good number of mobile phones are still shipped without
GPS modules [26]. Those typical limitations of the local-
ization based schemes motivate alternative approaches
without using GPS signal or other localization methods.
Besides, GPS module consumes substantial amount of
energy, significantly reducing the lifetime of power-
constrained mobile phones [26]. Due to the high power
consumption, many mobile phone users usually turn off
GPS modules to save battery power. The mobile phones
in vehicles may perform poorly when they are placed
without line-of-sight paths to GPS satellites [10].

To fill this gap, we propose to implement a crowd-
participated bus arrival time prediction system utilizing
cellular signals. Independent of any bus companies, the
system bridges the gap between the querying users who
want to know the bus arrival time to the sharing users
willing to offer them realtime bus information. Unifying
the participatory users, our design aims to realize the
common welfare of the passengers.

To encourage more participants, no explicit location
services are invoked so as to save the requirement of
special hardware support for localization. Compared
with the high energy consumption of GPS modules, the
marginal energy consumption of collecting cell tower
signals is negligible on mobile phones. Our system there-
fore utilizes the cell tower signals without reducing bat-
tery lifetime on sharing passengers’ mobile phones. Our
design obviate the need for accurate bus localization.
In fact, since the public transit buses travel on certain
bus routes (1D routes on 2D space), the knowledge of
the current position on the route (1D knowledge) and
the average velocity of the bus suffices to predict its
arrival time at a bus stop. As shown in Fig. 1, for
instance, say the bus is currently at bus stop 1, and
a querying user wants to know its arrival time at bus
stop 6. Accurate prediction of the arrival time requires
the distance between bus stop 1 and 6 along the 1D
bus route (but not on the 2D map) and the average
velocity of the bus. In general, the physical positions
of the bus and the bus route on the 2D maps are not
strictly necessary. In our system, instead of pursuing the
accurate 2D physical locations, we logically map the bus
routes to a space featured by sequences of nearby cellular

Fig. 2. System architecture

towers. We classify and track the bus statuses in such a
logical space so as to predict the bus arrival time.

3 SYSTEM DESIGN

Though the idea is intuitive, the design of such a system
in practice entails substantial challenges. In this section,
we describe the major components of the system design.
We illustrate the challenges in the design and implemen-
tation, and present several techniques to cope with them.

3.1 System overview
Fig. 2 sketches the architecture of our system. There are
3 major components.

Querying user. As depicted in Fig. 2 (right bottom), a
querying user queries the bus arrival time by sending
the request to the backend server. The querying user
indicates the interest bus route and bus stop to receive
the predicted bus arrival time.

Sharing user. The sharing user on the other hand
contributes the mobile phone sensing information to
the system. After a sharing user gets on a bus, the
data collection module starts to collect a sequence of
nearby cell tower IDs. The collected data is transmitted
to the server via cellular networks. Since the sharing
user may travel with different means of transport, the
mobile phone needs to first detect whether the current
user is on a bus or not. As shown in Fig. 2 (left side),
the mobile phone periodically samples the surrounding
environment and extracts identifiable features of transit
buses. Once the mobile phone confirms it is on the bus,
it starts sampling the cell tower sequences and sends
the sequences to the backend server. Ideally, the mobile
phone of the sharing user automatically performs the
data collection and transmission without the manual
input from the sharing user.

Backend server. We shift most of the computation
burden to the backend server where the uploaded in-
formation from sharing users is processed and the re-
quests from querying users are addressed. Two stages
are involved in this component.

In order to bootstrap the system, we need to survey the
corresponding bus routes in the offline pre-processing
stage. We construct a basic database that associates
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(a) Cell tower coverage
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(b) Connection at position A
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(c) Connection at position B

Fig. 3. Cell tower connection time and received signal strength

Fig. 4. Cell tower sequence set along a bus route

particular bus routes to cell tower sequence signatures.
Since we do not require the absolute physical location
reference, we mainly war-drive the bus routes and record
the sequences of observed cell tower IDs, which signifi-
cantly reduces the initial construction overhead.

The backend server processes the cell tower sequences
from sharing users in the online processing stage. Re-
ceiving the uploaded information, the backend server
first classifies the uploaded bus routes primarily with
the reported cell tower sequence information. The bus
arrival time on various bus stops is then derived based
on the current bus route statuses.

3.2 Pre-processing cell tower data
The backend server needs to maintain a database that
stores sequences of cell tower IDs that are experienced
along different bus routes. Wardriving along one bus
route, the mobile phone normally captures several cell
tower signals at one time, and connects to the cell
tower with the strongest signal strength. We find in our
experiments that even if a passenger travels by the same
place, the connected cell tower might be different from
time to time due to varying cell tower signal strength. To
improve the robustness of our system, instead of using
the associated cell tower, we record a set of cell tower
IDs that the mobile phone can detect. To validate such
a point, we do an initial experiment. We measure the
cell tower coverage at two positions A and B within the
university campus, which are approximately 300 meters
apart (Fig. 3(a) depicts the two positions on the map).

Fig. 3(b) and 3(c) report the cell tower that the mobile
phone can detect, as well as their average signal strength

(a) On buses (b) At rapid train station en-
trances

Fig. 5. Transit IC card readers

and connection time at A and B, respectively. We find
that position A and position B are both covered by 6 cell
towers with divergent signal strength. In Fig. 3(b), we
find that at position A the mobile phone is connected
to the cell tower 5031 over 99% of the time, while its
signal strength remains consistently the strongest during
the 10-hour measurement. In Fig. 3(c), the mobile phone
at position B observes two cell towers with compara-
ble signal strength. We find that the mobile phone is
more likely to connect to the cell tower with stronger
signal strength, and also may connect to the cell tower
with the second strongest signal strength. Nevertheless,
during our 7-week experiments, we consistently observe
that mobile phones almost always connect to the top-3
strongest cell towers. Therefore, in practice we choose
the set of the top-3 strongest cell towers as the signature
for route segments.

Fig. 4 illustrates the cell tower sequence collected on
our campus bus traveling from our school to a rapid
train station off the campus. The whole route of the bus
is divided into several concatenated sub-route segments
according to the change of the top-3 cell tower set. They
are marked alternately in red and black in the figure.
For example, the mobile phone initially connects to cell
tower 5031 in the first sub-route and the top-3 cell tower
set is {5031, 5092, 11141}. Later the mobile phone is
handed over to cell tower 5032 and the cell tower set
becomes {5032, 5031, 5092} in the second sub-route. We
subsequently record the top-3 cell tower in each sub-
route. Such a sequence of cell tower ID sets identifies a
bus route in our database. By war-driving along different
bus routes, we can easily construct a database of cell
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Fig. 6. Bus detection using audio indication signal

tower sequences associated to particular bus routes.

3.3 Bus detection: Am I on a bus?

During the on-line processing stage, we use the mobile
phones of sharing passengers on the bus to record the
cell tower sequences and transmit the data to the back-
end server. As aforementioned, the mobile phone should
intelligently detect whether it is on a public transit bus
or not and collect the data only when the mobile phone
is on a bus. Some works [16], [18] study the problem of
activity recognition and context awareness using various
sensors. Such approaches, however, cannot be used to
distinguish different transport modes (e.g., public transit
buses and non-public buses). In this section, we explore
multi-sensing resources to detect the bus environment
and distinguish it from other transport modes. We seek
a lightweight detection approach in terms of both energy
consumption and computation complexity.

3.3.1 Audio detection
Nowadays, IC cards are commonly used for paying tran-
sit fees in many areas (e.g., EZ-Link cards in Singapore
[2], Octopus cards in Hong Kong [3], Oyster cards in
London [4], etc). On a public bus in Singapore, several
card readers are deployed for collecting the fees (as
depicted in Fig. 5(a)). When a passenger taps the transit
card on the reader, the reader will send a short beep
audio response to indicate the successful payment. In
our system, we choose to let the mobile phone detect
the beep audio response of the card reader, since such
distinct beeps are not widely used in other means of
transportation such as non-public buses and taxis.

In order to exploit the unique beeps of IC card readers,
in our initial experiment we record an audio clip on the
bus at the audio sampling rate of 44.1kHz with Sam-
sung Galaxy S2 i9100 mobile phone. Such a sampling
rate is more than sufficient to capture the beep signals
[22]. Fig. 6 (bottom) plots the raw audio signal in the
time domain, where the IC card reader starts beeping
approximately from 11000th sample and lasts to 18000th
sample. We crop the section of the beep audio signal and
depict the section in Fig. 6(b). After we convert the time
domain signal to the frequency domain through 512pt
Fast Fourier Transform (FFT) (Fig. 6(b)), we observe
clear peaks at 1kHz and 3kHz frequency bands. For
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Fig. 7. Detecting audio beeps in the frequency domain

comparison we depict the audio clip as well where no
beep signal is sent. Both time domain and the frequency
domain signals are plotted in Fig. 6(a). We find no peaks
at 1kHz and 3kHz frequency bands.

With the knowledge of the frequency range of the
dual-tone beep signal sent by the IC card reader, in our
system we can lower down the audio sampling rate of
the mobile phone to 8kHz (8000 samples/s) which is
sufficient to capture the beep signals with maximum
frequency of 3kHz. We find that in practice 128pt FFT
suffices to detect the IC card reader on the bus with
tractable computation complexity on commodity mobile
phones. We use the standard sliding window averaging
technique with window size w = 32 samples to filter out
the noises in both 1kHz and 3kHz frequency bands. We
use an empirical threshold ε of three standard deviation
(i.e., 99.7% confidence level of noise) to detect beep
signals. If the received audio signal strengths in 1kHz
and 3kHz frequency bands both exceed the threshold,
the mobile phone confirms the detection of the bus. Fig.
7 depicts the beep signal detection process. When the IC
card reader starts beeping, the signal strengths in both
1kHz and 3kHz frequency bands jump significantly and
therefore can be detected.

The audio detection module is running all the time
on mobile phones. We test the audio indication based
bus detection method with various scenarios, and the
experiments show encouraging results for bus detection
(§4.2.1). As the dual-tone responsive signal is universally
used in almost all public transit buses in Singapore, we
can use it as an identifiable signature to distinguish the
buses from other vehicles. Therefore, we use the dual-
tone as the acoustic trigger for the successive cell tower
data collection and transmission of the mobile phones
of sharing users. We can easily adopt similar techniques
[19] to detect certain audio indications to identify the
public transports as well in other areas (e.g., the bell
ringing tunes in Hong Kong buses).

3.3.2 Accelerometer detection: Bus v.s. Rapid train
For the audio detection technique, there may be false
positives in our daily lives. Some similar beep signal may
exist in other scenarios when users are tapping other
types of cards like the cash card and employee’s card.
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In some noisy environments, the background sound or
music may cause false positives. These kinds of false
positives do not influence the system performance be-
cause the collected data can be filtered out at the backend
server using bus classification algorithm which we will
introduce later in §3.4.

Besides such cases, the most possible false positives
are from Rapid Train systems (MRT [4] in Singapore)
because the IC card systems are also deployed in rapid
train stations where the IC card readers in the entrances
may send the same beep signal (Fig. 5(b)). Many other
cities in the world have the similar situation as well.
Solely relying on the audio detection the mobile phones
may falsely trigger the cell tower ID collection when
they go with the rapid trains. Since the train routes
have substantial above-ground segments that overlap
with bus routes, simply using cell tower signals does not
effectively differentiate the two transit means. We expect
to leverage the accelerometer sensor on the mobile phone
to reduce such false detection.

Intuitively, the rapid trains are moving at relatively
stable speeds with few abrupt stops or sharp turns. On
the contrary, the buses are typically moving with many
sharp turns and frequent acceleration and deceleration.
We collect the accelerometer data at a moderate sampling
rate of 20Hz. The raw accelerometer readings are first
made orientation-independent by computing the L2-
norm (or magnitude) of the raw data [23]. Fig. 8 (top)
plots the accelerometer readings on a rapid train and a
public transit bus which suggest that the accelerometer
reading on the bus fluctuates much frequently with
larger magnitudes. We explore such acceleration features
to distinguish the buses from the rapid trains.

We measure the statistics of the accelerometer read-
ings during 12.5 seconds (250 samples) to reduce the
impact of noise, such as average and variance of the
acceleration. Fig. 8 (bottom) plots the variance of the
accelerometer readings on the rapid train and the public
transit bus, respectively. According to the figure, the
variance on the bus is significantly larger than that on
the train. Therefore, we distinguish the buses from the
trains using the variance of accelerometer readings by
setting a proper threshold.

We confirm the detection of buses if the measured
acceleration variance is above the threshold, and the de-

Fig. 9. Cell tower sequence matching

Database seq. 1 2 4 7 8 4 5 9 6
Uploaded seq. 7 8 4 5
Matched seq. 7 8 4 5

TABLE 1
Cell tower sequence matching

tection of rapid trains otherwise. We vary the threshold
from 0.005 to 0.2 and calculate the detection accuracy.
If the threshold is small, most buses will be correctly
detected, while many trains will be misdetected as buses
as well, which may lead to noisy inputs to the backend
server and energy waste of mobile phones in collecting
cell tower IDs. On the other hand, if threshold is too big,
most rapid trains will be filtered out, while we will miss
the detection of many actual buses, which may lose the
opportunities in collecting useful cell tower information
on the buses. We select an empirical threshold 0.03 to
balance the false negative and false positive.

In practice, we find that accelerometer based detec-
tion can distinguish the buses from the trains with an
accuracy of approximately 90% (§4.2.2). The error rate of
falsely detecting rapid trains as buses is even smaller.
The detection error of falsely classifying public buses
into rapid trains is mainly due to the abnormality of the
bus routes (e.g., long straight routes) especially during
non-peak hours. Such a detection error is tolerable in the
bus classification stage, where the backend server has
information redundancy to handle the noisy reports.

3.4 Bus classification
When a sharing user gets on the bus, the mobile phone
samples a sequence of cell tower IDs and reports the
information to the backend server. The backend server
aggregates the inputs from massive mobile phones and
classifies the inputs into different bus routes. The sta-
tuses of the bus routes are then updated accordingly.

3.4.1 Cell tower sequence matching
We match the received cell tower sequences to those
signature sequences store in the database. Fig. 9 shows
an illustrative example where a sharing passenger gets
on the bus at location A. The backend server will receive
a cell tower sequence of 〈7, 8, 4, 5〉 when the sharing user
reaches location B. Say that the cell tower sequence of the
bus route stored in the database is 〈1, 2, 4, 7, 8, 4, 5, 9, 6〉,
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Database 19 1 4 7 10 13 16 22
cell tower 20 2 5 8 11 14 17 23

∑
set seq. 21 3 6 9 12 15 18 24

Uploaded seq. 1 – 8 10 15 16
Score 0 +1 -0.5 +0.5 +1 +0.25 +1 0 3.25

TABLE 2
Top-3 set sequence matching

then the sequence 〈7, 8, 4, 5〉 matches the particular bus
route as a sub-segment as shown in Table 1.

In practical scenarios, the sequence matching problem
becomes more complicated due to the varying cell tower
signal strength. Recall that for each sub-route we record
the top-3 cell tower IDs instead of the connected cell
tower ID in the pre-processing period. We let each
mobile phone send back the sequence of cell towers that
the mobile phone has connected to. In the matching
process on the server, we accordingly devise a top-k
cell tower sequence matching scheme by modifying the
Smith-Waterman algorithm [28]. Smith-Waterman is a
dynamic programming algorithm for performing local
sequence alignment which has been widely used in
bioscience (e.g., to determine similar regions between
two nucleotide or protein sequences).

We make concrete modifications on the original algo-
rithm to support the top-k cell tower sequence matching.
We weigh a matching of a cell tower ID with a top-k set
according to the cell tower signal strength. Say that in a
top-k set S = {c1, c2, . . . , ck} ordered by signal strength
(i.e., si ≥ sj , 1 ≤ i ≤ j ≤ k), where ci and si denote cell
tower i and its signal strength, respectively.

We denote the uploaded cell tower sequence from a
sharing user as Sequpload = 〈u1u2 . . . um〉 where m is
the sequence length. We also denote a cell tower set
sequence in database as Seqdatabase = 〈S1S2 . . . Sn〉
where n is the set sequence length. If ui = cw ∈ Sj , ui

and Sj are considered matching with each other, and
mismatching otherwise. We assign a score f(sw) for a
match, where f(sw) is a positive non-decreasing scoring
function and w is the rank of signal strength. In practice,
we use f(sw) = 0.5w−1 as the scoring function according
to the signal strength order in the set. The penalty cost
for mismatches is set to be an empirical value of −0.5
which balances the robustness and accuracy in practice.

We choose top-3 cell tower IDs with strongest cell
tower signal strength to form a set based on our ini-
tial observations (§3.2). The distinctive advantage of
the proposed classification algorithm is its robustness
to the variation of cell tower signal strength. Table
2 shows a cell tower set sequence matching instance.
In the example, the uploaded cell tower sequence is
Sequpload = 〈1, 8, 10, 15, 16〉, and the cell tower ID set
is shown in the first three rows sorted in decreasing
order of the associated cell tower signal strength.

After running the sequence matching algorithm across
all bus route sequences in the database, the backend
server selects the bus route with the highest score. If the
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Fig. 10. Overlaped routes and matching accuracy with
varying sequence length

highest matching score is smaller or the sequence length
is shorter than our empirical thresholds, the backend
server postpones the updates to avoid errors. Intuitively,
the small highest matching score would be due to
mistriggering of sharing phones uploading cell tower
sequence not from interested bus routes (e.g., rapid
trains, private cars, etc). Too short cell tower sequence
may not be informative since the misclassification rate of
such short sequence is high and thus the backend server
postpones the classification and the updating process un-
til the sequence excesses the empirical threshold (which
will be elaborated later).

One problem of the cell tower sequence matching
is that some bus routes may overlap with each other.
The mobile phones on the overlapped road segments
are likely to observe similar cell tower sequences. Since
many buses typically arrive at and depart from several
major transit centers, such overlapping road segments
among different bus routes are common.

We survey 50 bus routes in Singapore and measure
their overlapped road segments using Google Maps. Fig.
10(a) plots the distribution of the lengths of overlapped
road segments, which suggests that over 90% of the
overlapped route segments are shorter than 1400 meters,
and over 80% are less than 1000 meters. Considering that
the coverage range of each cell tower in urban area is
about 300-900 meters, we set the empirical threshold of
cell tower sequence length to 7.

Fig. 10(b) plots the cell tower sequence matching
accuracy in classifying the bus routes. We vary the length
of uploaded cell tower sequence from 2 to 9. We find
that the matching accuracy is low when the cell tower
sequence length is small (e.g, <4) largely because of
the problem of route overlap. We observe that when
the cell tower sequence length reaches 6, the accuracy
increases substantially to around 90%. When the cell
tower sequence length is larger than 8, the experimental
results are reasonably accurate and robust.

3.4.2 Cell tower sequence concatenation: Solving jig-
saw puzzles
In many practical scenarios, the length of the cell tower
sequence obtained by a single sharing user, however,
may be insufficient for accurate bus route classification.
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Fig. 11. Cell tower sequence concatenation
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Fig. 12. Time intervals of audio indication signals

An intuitive idea is that we can concatenate several cell
tower sequences of different sharing users on the same
bus to form a longer cell tower sequence. In Fig. 11, both
cell tower sequences of sharing user A and B are short,
while by concatenating the two cell tower sequences
the backend server may obtain an adequately long cell
tower sequence which can be used for more accurate
bus classification. A simple way of concatenating the cell
tower sequences is to let the mobile phones of sharing
passengers locally communicate with each other (e.g.,
over Bluetooth) [20]. This approach, however, mandates
location exposure among sharing passengers and might
raise privacy concerns. We thereby shift such a job to the
backend server.

Recall that the mobile phone needs to collect audio
signals for bus detection (§3.3.1). Here, we reuse such
information to detect whether the sharing passengers are
on the same bus for cell tower sequence concatenation.
At each bus stop, normally several passengers enter a
bus and multiple beeps of the IC card readers can be
detected. The time intervals between the consecutive
beep signals fingerprint each bus in the time domain.
Fig. 12 depicts an instance of the audio signals captured
by three different mobile phones on the same bus. We
depict the raw audio signals in Fig. 12(a), and corre-
sponding frequency domain signals in Fig. 12(b)-(d).
Compared with the time domain signal, the frequency
domain signal is robust against the background noise
(e.g., though signal strength increases are observed in

Fig. 13. Bus arrival time prediction

1kHz frequency band around 0.8s, the signal strengths in
3kHz frequency band remain low). We can see that in the
frequency domain the signals are highly cross-correlated
and thus can be used to determine whether the phones
are on the same bus. Specifically, the time intervals
observed by three mobile phones are all approximately
dT1 and dT2 in Fig. 12.

We therefore use the time intervals between the de-
tected beeps to determine whether multiple mobile
phones are on the same bus. In our system, the mobile
phones of sharing users keep sampling the audio sig-
nal and record the time intervals between the detected
beeps. Such beep interval information is reported along
with the cell tower sequences to the backend server.
Receiving the uploaded sensing data from sharing pas-
sengers, the backend server detects and groups the
sharing passengers on the same bus by comparing both
cell tower sequences and the time intervals of the beep
signals. The backend server concatenates the pieces of
cell tower sequences from the same bus and forms a
longer cell tower sequence.

3.5 Arrival time prediction
After the cell tower sequence matching, the backend
server classifies the uploaded information according to
different bus routes. When receiving the request from
querying users the backend server looks up the latest
bus route status, and calculates the arrival time at the
particular bus stop.

Fig. 13 illustrates the calculation of bus arrival time
prediction. The server needs to estimate the time for the
bus to travel from its current location to the queried bus
stop. Suppose that the sharing user on the bus is in the
coverage of cell tower 2, the backend server estimates its
arrival time at the bus stop according to both historical
data as well as the latest bus route status. The server first
computes the dwelling time of the bus at the current cell
(i.e., cell 2 in this example) denoted as t2. The server also
computes the traveling time of the bus in the cell that the
bus stop is located denoted as tbs. The historical dwelling
time of the bus at cell 3 is denoted as T3. The arrival
time of the bus at the queried stop is then estimated as
follows,

T = T2 − t2 + T3 + tbs.

Without loss of generality, we denote the dwelling
time in cell i as Ti, 1 ≤ i ≤ n, the bus’s current cell
number as k, and the queried bus stop’s cell number as
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Fig. 14. Campus shuttle bus routes

q. The server can estimate the arrival time of the bus as
follows,

T =

q−1∑

i=k

Ti − tk + tq.

The server periodically updates the prediction time ac-
cording to the latest route report from the sharing users
and responds to querying users. The querying users
may indicate desired updating rates and the numbers
of successive bus runs to receive the timely updates.

4 IMPLEMENTATION AND EVALUATION

We implement a prototype system on the Android plat-
form with different types of mobile phones, and collect
the real data over a 7-week period. We first present
the experiment environment and methodology (§4.1).
We test the performance of each system component
individually to evaluate the design feasibility. We test the
bus detection techinique in §4.2 and route classification
method in §4.3. When we evaluate the whole system
performance, i.e., the accuracy of arrival time prediction
(§4.4), all the components are working together.

4.1 Experimental methodology
Mobile phones. We implement the mobile phone ap-
plications with the Android platform using Samsung
Galaxy S2 i9100 and HTC Desire. Both types of mobile
phones are equipped with accelerometers and support
16-bit 44.1kHz audio signal sampling from microphones.
The Samsung Galaxy S2 i9100 has a 1GB RAM and Dual-
core 1.2GHz Cortex-A9 processor, while the HTC Desire
has a 768MB RAM and 1GHz Scorpion processor. For
most of our experiments, we base on the SingTel GSM
networks in Singapore.

Backend server. We implement the backend server in
Java running on the DELL Precision T3500 workstation
with 4GB memory and Intel Xeon W3540 processor. The
bus arrival time prediction service can be implemented
in a computing cloud for dynamic and scalable resource
provisioning as well.

Experiment environment. Public bus transit system
serves millions of bus rides every day covering most
parts of Singapore. The public bus transit system is
supervised by Land Transport Authority (LTA) of Sin-
gapore and commercially operated mainly by two major

Route Length Avg. vel. Stop Seq. Length
A 4.0km 22.1km/h 11 14-15
B 3.8km 21.2km/h 9 9-10
C 5.5km 20.6km/h 13 16-17
D 5.8km 18.3km/h 9 20-22

TABLE 3
Campus bus route details

Route A B C D
A – 1.4km 3.4km 1.9km
B 1.4km – 2.1km 0km
C 3.4km 2.1km – 1.9km
D 1.9km 0km 1.9km –

TABLE 4
The lengths of shared bus routes

public transport providers, SBS Transit and SMRT Cor-
poration [5], [17]. Many other transit means coexist with
the public bus system. Mass Rapid Transit (MRT) trains
form the backbone of the railway system. There are also
tens of thousands of taxicabs operated by commercial
companies and individual taxi owners [11]. IC cards are
widely used for paying transit fees. Several card readers
are deployed for collecting the fees on SBS and SMRT
public buses and at entrance gates of MRT stations.

We experiment on both campus shuttle buses and pub-
lic transport buses (SBS Transit bus service in Singapore).
As shown in Fig. 14, there are 4 shuttle bus routes (i.e.,
Route A-D) in our campus. The shuttle buses serve from
08:00 to 23:00 with time intervals varying from 5 to 20
minutes. The bus route lengths span approximately from
3.8km to 5.8km with cell tower set sequence lengths
varying from 9 to 22. The average velocity of the buses is
about 20km/h. Table 3 gives the details of the bus routes.
The shuttle bus routes have overlapped road segments
as depicted in Fig. 14. The campus bus C travels in
clockwise direction, while buses A, B, and D move in
counterclockwise direction. We see that Route A and
Route C have substantial overlapped segments. Table
4 summarizes the shared route segments between each
pair of bus routes, which span from 0km to 3.4km. We
see that around 85% (3.4km/4km) of Route A overlaps
with Route C. We experiment on SBS Transit bus route
179 and 241 as well. For comparison study, we also col-
lect cell tower sequences and accelerometer readings in
East-West and the North-South MRT Lines in Singapore.

In our experiments in NTU campus shuttle buse routes
and SBS public transit bus routes, we do experiments
with the help of more than 70 participants, mainly the
undergraduate students and some volunteers. The exact
number of sharing users is not very clear sometimes. In
our statistical analysis, the number is about 1∼5 users
on one particular bus.
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Fig. 15. Bus detection performance

4.2 Bus detection performance

4.2.1 Audio detection accuracy

We collect more than 200 beep signals on different public
transit buses during our 7-week experiments. We set
the audio sampling rate to be 8kHz, and we use 128-
pt FFT to detect the IC card reader. We test the bus
detection method by varying the distances between the
IC card reader and the mobile phones (approximately
1 meter to 7 meters). We also consider the scenarios
where mobile phones may be held in hand and inside
bags. We report the average detection accuracy of single
beeps in different circumstances. In Fig. 15(a), we see
that the detection rate is over 95% when mobile phones
are in close vicinity to the IC card reader (e.g., within
3 meters) even when they are placed in bags. With
mobile phones placed 5 meters away from the reader,
the detection accuracies are about 71% held in hand,
and 58% placed in bags, respectively. As the distance
increases further (e.g, >7 meters), the detection accuracy
drops substantially.

The experiment results suggest that the audio based
method effectively detects the beep signal on the bus
when the distance between the IC card reader and the
mobile phone is within 3 meters. Considering that the
entrance gate of the bus is about 1.4 meters wide, when
a sharing user enters a bus, the mobile phone would
be normally less than 1 meter away from the IC card
reader. Notice that our system tolerates some missing
beeps because there are multiple opportunities to detect
the audio when other passengers are tapping their cards.

4.2.2 Bus vs. MRT train

We next evaluate the accelerometer based bus detection
method that is used to distinguish the buses from the
MRT trains. Fig. 15(b) plots the accuracy in detecting
the buses. We find that accelerometer based method
can distinguish the buses from the MRT trains with an
accuracy of over 90% on average. We analyzed the main
reason for falsely detecting public buses as MRT trains,
and find that it happens mostly when the buses are
driving along long straight routes late during night time.
The accelerometer readings may be relatively stable and
very similar to those on the MRT trains.
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Fig. 16. Bus classification accuracy

4.3 Bus classification performance

We present the evaluation results for our bus classifi-
cation algorithms. In our prototype system, we collect
the cell tower sequences on the 4 campus bus routes
and store them in the database. The campus buses do
not have IC card readers, so we use the GNUradio to
produce and play the dual-tone (1kHz and 3kHz) beeps.
Mobile phones start to collect data after detecting the
beeping signals on buses. For the public transit buses
(e.g., SBS transit and SMRT Corporation buses), the
mobile phones can directly detect their IC card readers.
The data collection process spans over a period of 7
weeks. We collect 20 runs for each shuttle bus route
for the bus route classification. As the cellular networks
are likely to be updated incrementally, most cell towers
along the bus routes typically remain consistent during
the experiment period.

We implement the cell tower sequence matching with
the top-3 cell tower sequence matching algorithm. In
Fig. 16(a), we plot the bus classification results for the 4
campus bus routes. According to the experiment results,
the bus classification accuracy is approximately 90% with
the highest accuracy of 96% for Bus B and the lowest of
87% for Bus D. Although 85% of Route A is overlapped
with Route C, the bus classification accuracy for Bus A
and C are still around 94%. The main reason is that Bus
A and C travel in the opposite directions. Since Route
D shares a large portion of overlapped road segments
with Route A and Route C, and buses travel in the
same direction on the shared road segments, buses along
Route D might be misclassified to Route A or Route
C. Fig. 16(c) depicts the classification ratio of buses
along Route D. We can find that 7% of the buses are
misclassified to Route A and 6% are misclassified to
Route C. Although Route B has many overlapped road
segments with Route A and C, the buses travel in the
opposite directions on those road segments. Fig. 16(b)
depicts the classification ratio of buses along Route B. We
find that only 3% of the buses are misclassified to Route
C. Overall, the bus classification accuracy is satisfactory,
considering the high overlap ratio of the four routes in
the campus (the city-wide public bus routes are far less
overlapped, e.g., SBS 179 and 241).
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4.4 Arrival time prediction

We present the final bus arrival time prediction results
based on above estimations. We collect the campus bus
traces using a high accurate vehicle GPS navigator as
the benchmarks. In the same buses, we collect cell tower
sequences using two mobile phones and stored the se-
quence in memory stick for our later trace-driven study.

In the trace-driven study, we generate queries at dif-
ferent campus bus stops according to poisson arrival
process, and compare the predicted arrival time with the
actual arrival time of the campus buses. The average of
the absolute prediction error is shown in Fig. 17(a). The
median prediction errors vary approximately from 40s
(Bus B) to 60s (Bus D). The 90th percentiles are approx-
imately from 75s (Bus B) to 115s (Bus D), respectively.
The average estimation error increases as the length of
bus route increases. Fig. 17(b) plots the average error
against the distance between the sharing user and the
querying user, where we approximate the distance using
the number of bus stops. We observe that as the bus
moves closer to the querying user, the prediction error
becomes smaller. The error of Bus D increases faster than
those of Bus A, B, and C.

We experiment with commercial bus system as well.
For comparison, we also query the arrival time of public
transit buses provided by LTA of Singapore. The public
buses are periodically tracked with on-bus localization
devices and respond to the queries for the bus informa-
tion. People can send an SMS to query the bus arrival
time indicating the interested bus route and stop. In
the experiment we test the arrival time prediction on
SBS bus route 179 and 241. We compute the prediction
error by comparing the predicted results with the actual
arrival time of the buses. Both prediction errors of LTA
and our system are measured and we plot the CDF
of the prediction results in Fig. 17(c). According to the
results, the average prediction error of our system is
approximately 80 seconds, while the prediction result of
LTA is around 150 seconds. Such a comparison result is
surprising, as we expect more accurate prediction result
from the commercial system of LTA where a rich set of
resources including on-bus GPS sensors are proactively
used. We suspect that the deployed system of LTA is
intentionally made inaccurate (e.g., using caching to

Sensors Samsung i9100 HTC Desire
No sensor 18.2 15.3

Accelerometer 20Hz 18.0 15.2
Microphone 8kHz+FFT 17.5 14.9

Cell tower 1Hz 17.8 15.0
GPS 1Hz 9.7 6.4

TABLE 5
Battery duration for different sensor settings (in hours)

reduce computation and communication cost), yet we
cannot further dig into such a commercially running
system for more details.

4.5 System overhead
Mobile phone. In order to maintain the sample resolu-
tion and remove the noise, we extract the audio signal
with sliding widows with the window size of 32. We
record the audio signal at the sampling rate of 8kHz,
and use n = 128pt FFT to convert the time domain audio
signals to frequency domain signals. The major com-
putational complexity is attributed to performing FFT
on mobile phones which is O(n log n). Current mobile
phones can finish the computation task in realtime. For
example, it takes approximately 1.25ms and 1.8ms on
average to finish to 128pt FFT on Samsung Galaxy S2
i9100 and HTC Desire, respectively.

We measure the power consumption of continuously
sampling microphone, accelerometer, GPS, and cellular
signals. Table 5 illustrates the measured battery lifetime
when the mobile phones continuously trigger differ-
ent sensors. The experiments were performed with the
screen set to minimum brightness. We report the average
results over 10 independent measurements. The battery
duration was quite similar for sampling accelerometer
at 20Hz, sampling audio signal at 8kHz with 128pt FFT,
and sampling no sensors. Sampling the cell tower signal
consumes limited extra battery power as well. On the
other hand the battery lifetime is substantially reduced
when the GPS module in the phone is enabled.

Backend server. Since our implementation is in a par-
ticular area of Singapore, we do not have the experience
when the system scales to the entire city. We make
mathematical analysis to forecast the computation ca-
pacity needed when the system scales. The computation
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Fig. 18. Experimental bus routes in London

Route Length Avg. vel. Stop Seq. Length
27 16.4km 25.2km/h 47 ∼58
7 11.2km 22.7km/h 36 ∼48
36 17.1km 20.5km/h 50 ∼62
23 13.8km 23.4km/h 41 ∼49

159 19.7km 24.1km/h 45 ∼67

TABLE 6
London bus route details

overhead of backend server is mainly bounded by the
bus classification algorithm, i.e., the uploaded cell tower
sequence length l, the cell tower set sequence length
k, and the number of cell tower set sequences in the
database N . The computation complexity of sequence
matching using dynamic programming is O(lk), and as
we need to compare with N candidate sequences in
database the overall computation complexity is O(lkN).
Since in practice both m and n are usually small (e.g.,
max{l,k} is around 40 according to our experiments),
the computation complexity increases almost linearly to
the number of candidate cell tower sequences in the
database.

5 TRIAL STUDY IN LONDON

5.1 London Buses

In addition to Singapore, we do trial experiments with
London bus system as well. Buses have been used on
London streets since 1829 [6]. London Buses Services
Limited (London Buses), which is part of “Transport for
London” [7], manages one of the largest bus networks
in the world. About 7500 iconic red buses carry more
than 6,000,000 passengers each weekday on a network
serving all parts of London. Oyster cards [4] are widely
used for paying the transit fees on London buses.

As depicted in Fig. 18, we primarily experiment with
London bus route 27, 7, 36, 23 and 159. We collect the
audio beeps on buses and the cellular signals observed
along the bus routes. The bus route details are summa-
rized in Table 6. The bus route lengths span from 11km
to 20km and the cell tower sequence lengths along the
bus routes are 48 to 67. The average bus speed is about
23km/h. The overlapped bus route segments are mainly
in the city center.

Scenario 1m 2m 3m 4m 5m 2nd floor
In hand 91.3% 88.3% 82.1% 79.3% 53.8% 60.4%
In bag 90.2% 84.2% 77.6% 72% 51.1% 47%

TABLE 7
Audio detection accuracy on London buses
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Fig. 19. Bus classification results

5.2 Bus detection

Audio detection. We record the beep audio signal from
the card readers on London buses at a sampling rate
of 44.1kHz and extract the frequencies using 512pt FFT.
Different from Singapore buses, the beep from London
buses is a single frequency audio signal of 2.4kHz unique
frequency. There are typically 2∼4 card readers installed
beside the front and back doors of the buses. With the
knowledge of the audio frequency, we can downscale
the sampling rate to 8kHz to detect the signal jump in
2.4kHz band.

We collect the audio beeps at different positions on
the buses. Their distances to the nearest card reader
vary from 1m to 5m. Some of the London buses are
double-decker buses and we evaluate the audio based
bus detection on the second floor of the bus as well. For
all the testing positions, we consider the scenarios where
the mobile phone may be held in hand or placed inside
bags.

Table 7 summarizes the average detection accuracy of
single beeps. We set the threshold ε carefully by training
about 60 beeps collected on the bus. The average detec-
tion accuracy (Table 7) is above 80% when the distance
is within 4m, even when the mobile phone is placed
inside bags. The audio detection accuracy decreases as
the distance increases. The audio detection accuracy on
London buses is lower than on Singapore buses (Fig.15).
One possible reason is that the volume of the audio
beeps on London buses is much weaker than that on
Singapore buses, which results in lower accuracy in
extracting the beep signal out of the background noise.

5.3 Bus classification

We present the bus classification results from 5 bus
routes. As depicted in Fig. 18, there are many overlapped
route segments between the 5 bus routes. We use dif-
ferent lengths of cell tower sequences to perform the
bus classification and compare the classification accuracy
with varied lengths in Fig. 19.
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In Fig. 19(a), the classification accuracy increases as
the cell tower sequence length grows. When the length is
longer than 8, the classification accuracy becomes higher
than 90%. When the cell tower sequence length is shorter
than 4, the classification accuracy drops significantly.

The cell tower sequence collected from the overlapped
bus route segments contributes less to those collected
from non-overlapped segments. Fig. 19(b) plots the in-
dividual performance of bus classification of the 5 ex-
perimented bus routes. The overall bus classification
accuracy is higher than 85% for all bus routes. In Fig. 18,
we see that route 27 has the shortest overlapped route
segments while route 23 has the longest, which results
in a highest classification accuracy of 94% for route 27
and a lowest classification accuracy of 82% for route 23.

5.4 Bus arrival time prediction

We present the bus arrival time prediction results on
the 5 bus routes. We collect time-stamped cell tower
sequences on each bus route for 3 runs, one of which
is stored in the database and the other 2 runs of data are
used as test cases for the later trace-driven study.

In the trace-driven study, we generate random queries
at different bus stops for each test case. The backend
server estimates the bus location with the uploaded
cell tower sequences and predicts the bus arrival time
based on the time-stamped cell tower sequence stored
in the database. The overall prediction error (Fig. 20) is
calculated by comparing the predicted and the actual
bus arrival time. We can see that the prediction error of
route 27 is the lowest and that of route 36 is the highest.
For the 5 bus routes, the median prediction error varies
from 65s (route 27) to 125s (route 36) and 90th percentiles
are about from 135s (route 27 and 7) to 230s (route 36),
respectively.

The overall prediction error of bus arrival time in
London is higher than that in Singapore (Fig. 17) mainly
due to the following reasons. First, the lengths of the
experimental bus routes in London are much longer than
what we experiment in Singapore, which brings more
unpredictable factors influencing the bus operation. Sec-
ond, the time duration between two adjacent buses of
some bus routes in London is much longer than that in
Singapore, which usually results in far away buses from
the querying user. Third, the traffic conditions in London

are much more complicated than our experiment region
in Singapore. Many unpredictable factors like traffic jam,
adaptive traffic lights, pedestrians, etc., may affect the
system performance.

6 RELATED WORK

Phone-based transit tracking. Our work is mostly re-
lated to recent works on the transit tracking systems [13],
[24]. EasyTracker [13] presents an automatic system for
low-cost, real-time transit tracking, mapping and arrival
time prediction using GPS traces collected by in-vehicle
smartphones. Thiagarajan et al. [24] present a grassroots
solution for transit tracking utilizing accelerometer and
GPS modules on participating mobile phones. EEMSS
[27] presents a sensor management framework which
uses minimum number of sensors on mobile devices to
monitor user states. VTrack [26] estimates road travel
time based on a sequence of WiFi-based positioning
samples using an HMM-based algorithm for map match-
ing. CTrack [25] presents trajectory mapping using cell
tower fingerprints and utilizes various sensors on mobile
phones to improve the mapping accuracy. Our work
differs from them in that it predicts the bus arrival
time based on cell tower sequence information shared
by participatory users. To encourage more participants,
no explicit location services (e.g., GPS-based localization)
are invoked so as to reduce the overhead of using such
special hardware for localization.

Cell tower sequence matching. StarTrack [9] provides
a comprehensive set of APIs for mobile application de-
velopment. Applying new data structures, [15] enhances
StarTrack in efficiency, robustness, scalability, and ease
of use. CAPS [21] determines a highly mobile user’s
position using a cell-ID sequences matching technique
which reduces GPS usages and saves energy on mobile
phones. Unlike those proposals, our work does not aim
to position the mobile users though similar in spirit to
these existing works in utilizing the cell tower sequences.

Participatory sensing. Many recent works develop
participatory platforms for people-centric mobile com-
puting applications [8]. MoVi [12] studies the problem
of social activity coverage where participants collabo-
ratively sense ambience and capture social moments
through mobile phones. Escort [14] obtains cues from
social encounters and leverages an audio beacon in-
frastructure to guide a user to a desired person. WILL
[29] designs an indoor logical localization technique
leveraging user mobility and WiFi infrastructure while
avoiding site survey. Although targeted at totally dif-
ferent applications and problems, the common rationale
behind these works and our design is that the absolute
physical locations of users though sometimes sufficient
are not always necessary to accomplish particular tasks.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we present a crowd-participated bus
arrival time prediction system. Primarily relying on
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inexpensive and widely available cellular signals, the
proposed system provides cost-efficient solutions to
the problem. We comprehensively evaluate the system
through an Android prototype system. Over a 7-week
experiment period, the evaluation results demonstrate
that our system can accurately predict the bus arrival
time. Being independent of any support from transit
agencies and location services, the proposed scheme
provides a flexible framework for participatory contri-
bution of the community. For a particular city, the only
requirement of our system implementation is that there
exist a backend server and an IC card based bus system.

Future work includes how to encourage more partic-
ipants to bootstrap the system because the number of
sharing passengers affects the prediction accuracy in our
system. This common issue of crowd-sourced solutions
is largely influenced by the penetration rate and popular-
ity of the services. One may actively promote the service
to reach a critical penetration rate so as to ensure that
at least one sharing user is on the bus willing to report
the bus status. At the initial stage, we may encourage
some specific passengers (like the bus drivers) to install
the mobile phone clients.
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