
kTRxer: A Portable Toolkit for Reliable Internet Probing
Lei Xue†, Xiapu Luo†‡§, and Yuru Shao†

Department of Computing, The Hong Kong Polytechnic University†

The Hong Kong Polytechnic University Shenzhen Research Institute‡
{cslxue,csxluo,csyshao}@comp.polyu.edu.hk

Abstract—Being one of the primitives of Internet measurement
and security scanning, active probing has numerous applications.
While the majority of existing probing tools were designed for
PCs/servers, the wide adoption of mobile devices and embedded
systems bring new requirements and challenges to active probing,
for example, the limited resources in those devices may affect
active probing’s accuracy and efficiency. However, few research
studies examine such impact. In this paper, we fill the gap by
investigating the effect of resource-limited devices on common
packet sending/receiving techniques used by probing tools and
proposing kTRxer, a toolkit that can be run in many devices to
help probing tools achieve better accuracy and efficiency. kTRxer
mitigates the negative effect from devices by keeping away from
noise sources and achieves portability by avoiding modifying
specific device drivers. We have implemented kTRxer with 5489
lines of C codes and conducted extensive evaluation on three
platforms, including PC, broadband router, and smartphone.
The experimental results show that kTRxer can achieve up to
10 times transmission rate and introduce much less delay noise
than existing approaches.

I. INTRODUCTION

Active probing has been widely used in numerous appli-

cations, such as network path performance measurement [1],

network fault diagnosis [2], vulnerability scanning [3], to name

a few. While existing probing tools were usually designed

for PCs/servers that have sufficient resources, the significant

increase of mobile devices and embedded systems adoption

introduces new requirements and challenges to active probing.

More precisely, conducting measurement or scanning in new

contexts, such as mobile network and home network, usually

requires running probing tools in resource-limited devices, like

smartphone [4] or broadband routers [5], [6]. However, few

research studies examine the effect of limited resources on

the accuracy and the efficiency of active probing and how to

mitigate the negative effect.

Probing tools usually involve three basic operations, in-

cluding sending customized probes, receiving responses, and

reacting after processing responses. The accuracy of active

probing will be affected by whether probes can be transmitted

at predefined time. For example, since socket functions,

such as send() and sendto(), just put the message on buffer and

the real transmission is handled by an operating system(OS)’s

TCP/IP stack [7], a probing tool may not know whether the OS

really sends out the packet. As another example, while tools

for measuring network capacity or available bandwidth usually

§ The corresponding author.

require that the probe packets should be sent back-to-back [8],

[9], the OS may delay the transmission of some probe packets

due to the competition of CPU/memory/network resources

from applications, thus biasing the measurement results.

The efficiency of active probing refers to the capability

of making full use of the network resources. To conduct

large-scale scanning, it is desirable to reach the maximal

sending rate of a network interface (NIC). For example, ZMap
employs raw socket to achieve fast internet-wide scanning

[3]. However, Section III shows that raw socket cannot

achieve high efficiency in resource-limited devices.

In this paper, we examine the effect of resource-limited

devices on common packet sending/receiving techniques (e.g.,

socket and raw socket used by probing tools and iden-

tify four kinds of limitations in existing approaches. First, the

accuracy will be affected by many factors, such as the resource

competition from other processes, memory copy from user

space to kernel space, interception of other kernel modules

(e.g., iptables), to name a few. Second, the efficiency is

low in the presence of cross traffic or in a resource-limited

device; Third, although some techniques like netmap [10]

can achieve high efficiency by directly manipulating NIC’s

buffer, they do not have good portability because they need to

modify NIC drivers. Fourth, some techniques are not flexible.

For example, socket supports neither customizing the whole

packet nor processing packets destined to IP addresses not

owned by the device.

To solve the above issues, we propose kTRxer, a portable

toolkit for helping probing tools achieve better accuracy and

efficiency. kTRxer mitigates the negative effect from devices

by keeping away from noise sources and achieves portability

by avoiding modifying device drivers. Our major contributions

are threefold. First, we explore the design space and select

the most suitable techniques for kTRxer. For example, to send

probes, kTRxer first constructs all necessary data structures

for packet transmission in Linux kernel and then invokes the

function that will call NIC’s transmission function directly.

By doing so, kTRxer can not only achieve high efficiency but

also escape from many noise sources, such as interception

of iptables, the long chain of system calls, etc. As another

example, to mitigate the delay of memory copy, kTRxer creates

two virtual devices for mapping the user space to the kernel

space. Second, we have implemented kTRxer with 5,489 lines

of C codes. It consists of a Linux kernel module for sending

and receiving probes and a user interface module offering

a set of APIs to facilitate building probing tools on top978–1–4799-4852-9/14/$31.00 c©2014 IEEE

2014 IEEE 22nd International Symposium of Quality of Service (IWQoS)

978-1-4799-4852-9/14/$31.00 ©2014 IEEE 129

of kTRxer. All modules can be easily migrated to different

devices running Linux as demonstrated in Section III. Third,

we conduct extensive experiments to evaluate kTRxer on three

platforms (i.e., PC, broadband router, and smartphone) in the

presence/absence of cross traffic. The experimental results

show that kTRxer can achieve up to 10 times transmission rate

and introduce much less delay noise than existing approaches.

Moreover, the overhead incurred by kTRxer is low.

The remainder of this paper is organized as follows. Section

II describes the design of kTRxer and Section III reports

the experiment results. After introducing the related work in

Section IV, we conclude the paper in Section V.

II. KTRXER

In this section, we first present kTRxer’s design goals. After

introducing kTRxer’s architecture in Section II-B, we will

describe how kTRxer’s major modules are designed to achieve

the goals in the remaining subsections.

A. Design goals

To facilitate the implementation of accurate and efficient

probing tools in different devices, we have the following

design goals for kTRxer.

1) It should mitigate the delay noise from the device as

much as possible to achieve high accuracy.

2) It should improve the efficiency as high as a NIC can

support.

3) It can be easily migrated to various devices running

different Linux distributions.

4) It should be flexible to support common probing require-

ments(e.g., customize probes and manipulate responses).

B. Architecture

User Interface Module

Virtual Devices

Measurement
Tools

Probing
Tools

kTRxer Kernel Module

Netfilter Hooks
NF_IP_PRE_ROUTING

Inerr

aluaauaa

kTRxerlib (libktrxer.a/ktrxer.h)
(Packet schdeule, Rules management, Packets Tx, packets Rx)

xer Kernen

tfilt

NIC

For Tx
(/dev/ktx)

For Rx
(/dev/krx)

Packet Rx Packet TxFilter Rules
Management

dev_hart_start_xmit()

User space

Kernel space

Fig. 1. The architecture of kTRxer.

Fig.1 illustrates the kTRxer’s architecture that consists of

two major components: a loadable kernel module that com-

prises of a packet transmission component (i.e., Packet Rx)

and a packet capture component (i.e., Packet Tx), and a user

interface module that provides rich interfaces for upper-layer

probing tools to send and schedule probes, and to receive

and filter responses. When using kTRxer, a probing tool

first delivers probes and the related operation commands to

kTRxer’s kernel module through its user interface module.

Then, kTRxer will schedule the packet transmissions and send

the received responses to the probing tool.

This architecture takes into account the design goals. First,

implementing the packet sending and receiving functions in a

kernel module empowers kTRxer to quickly dispatch probes

through the Packet Tx component and capture response pack-

ets through the Packet Rx component. In other words, this

kernel module can not only avoid some delay noise but also

improve the efficiency. We will elaborate more on how these

two components can further mitigate the delay noise in Section

II-C and II-D, respectively. To shorten the delay of exchanging

data between the user interface module and the kernel module,

kTRxer creates two virtual devices for mapping the memory

in user space and that in kernel space so that the two modules

can communicate data without using memory copy. Second,

the kernel module can be easily migrated to different devices

running various Linux distributions. We have tested kTRxer on

a PC running Ubuntu, a broadband router running OpenWRT,

and a smartphone running Android.

Third, kTRxer allows probing tools to fully customize

the probes and then invoke the user-space library to deliver

the probes to the kernel module through virtual device for

transmission. They can also supply filter rules to the Packet

Rx component for capturing specific response packets. Section

II-E details the user interface module. It is worth noting

that the separated packet sending and receiving components

allow users to develop complex probing logic on top of

kTRxer. For example, a measurement/probing tool can first

send some probes, and then react after processing the received

responses. Note that many packet generators do not provide

such functionality because they usually just send fixed packets

as quickly as possible and do not care about response packets.

C. Packet Tx

To achieve the first and the second goals, we fist analyze

the process flows of packet transmission in Linux, as shown

in Fig. 2, and then select the most suitable techniques. If

socket is used to send probes, a probing tool cannot tell

whether the packets are dispatched or discarded. Furthermore,

the processing by different functions from the user space to the

kernel space may introduce unpredictable but significant delay

to packet transmissions [10]. In other words, it is difficult to

precisely control the sending time of probes. More precisely, a

probe’s payload will first be copied from the user space to the

kernel space and a socket buffer structure (i.e., sk_buff) will

be created to record information describing how the packet

is represented in the kernel. Then it will be processed by

transport layer functions, for example tcp sendmsg(), which

will divide the message into several segments according to

the maximum segment size (MSS).

Before the packet is sent to the function dev queue xmit(),
its route is first determined and then ip fragment() is called

to perform packet fragmentation if necessary. Moreover, the

2014 IEEE 22nd International Symposium of Quality of Service (IWQoS)

130

packet will also go through two netfilter [11] hook points

(NF_INET_LOACL_OUT and NF_INET_POST_ROUTINT).

Note that handlers hooking these two points will process

the packet and introduce additional delay. Even the function

dev queue xmit() does not immediately send out the packet.

Instead, it inserts the packet into a queue for transmission and

then invokes dev hart start xmit(). The comments in Linux

kernel mention that dev queue xmit() does not guarantee

the packet will be transmitted by NIC, because it may be

dropped due to congestion or traffic shaping. The function

dev hart start xmit() will further invoke NIC’s transmission

function through the function pointer ndo start xmit().
Compared with socket-based approaches, using raw

socket can avoid the delay introduced by the transport

layer functions. However, packets sent by raw socket may

still be postponed due to the IP layer functions and the

device queue management if device supports priority queuing.

To avoid the delays introduced by these functions, netmap
inserts the packet into NIC’s buffer and then invokes NIC’s

transmission function to send packets. Although this approach

minimizes the delay introduced by Linux’s TCP/IP stack, it

is not easy to migrate netmap to other devices, because it

requires modifying NIC’s driver.

Our solution consists of two steps. First, kTRxer prepares

all necessary data structures (e.g., a linked list of sk buff)

in the kernel according to the input. By doing so, kTRxer
can avoid the delay introduced by the processing functions at

upper layers, such as functions for preparing headers, iptables’

handlers, and tc’s methods, and allow the user to fully

customize the packets. Second, kTRxer invokes the last general

function (i.e., dev hart start xmit()) supported by all NICs to

transmit the packet. This approach ensures that kTRxer can be

easily migrated to different Linux distributions.

Since sometimes probes need to be sent at scheduled time,

kTRxer performs the scheduling in kernel module instead of

user space for achieving higher accuracy. Two kinds of timers

can be used in kernel space: timer and hrtimer. The resolution

of timer in Linux kernel is a jiffy, which depends on the value

of HZ defined in Linux and may not be the same in different

distributions, for example, it is 1 millisecond on i386 and 10

milliseconds on most embedded platforms [12]. In contrast,

the resolution of hrtimer is 1 nanosecond and therefore kTRxer
uses it for scheduling packet transmission.

D. Packet Rx

With the design goals and the requirements of active probing

in mind, we examine the process flow of receiving packets to

identify most suitable approach to handle incoming packets.

A packet handler could be located at three places [13]: NIC

driver, protocol handlers, and netfilter [11] hooks. Although

adding handling functions in NIC driver may achieve the best

efficiency, it requires the modification of NIC driver, thus

having portability issues.

Registering a protocol handler also allows us to capture

incoming packets. However, since the system will send packets

to all matching protocol handlers, not only our protocol

Socket Raw Socket kTRxer

Socket Interfaces

AF_INET

Transport layer functions

dev_queue_xmit()

dev_hard_start_xmit()

Device driver

User layer

Kernel layer

Network driver
(Adapter-specific)

Netmap

User layerUser layer

Kernel layer

Network driverNetwork driver
(Adapter-specific)

IP layer functions

p
UDP

udp_sendmsg()

y
TCP

tcp_sendmsg() …

y
IP

ip_finish_output()

...

h o

ip_output()

ip_queue_xmit()

Fig. 2. The process flow of packet transmission.

handler but also others (e.g., the default IP handler) will

receive and process the response packets, thus wasting the

resources. kTRxer requires to be the first handler to process

specified incoming packets (e.g., drop, modify, extract required

content) and it only delivers required content to the upper

layer. Therefore, we did not use this approach. Similarly, we

did not adopt methods designed for passively capturing packets

(i.e., libpcap, PF RING [14]), because they also do not support

such kind of packet manipulations.

kTRxer registers netfilter hooks to handle incoming packets.

While netfilter has five hook points, kTRxer registers its

hook function on the point NF_IP_PRE_PROUTING because

of two reasons. First, NF_IP_PRE_ROUTING is the first

hook point for handling arriving packets so that kTRxer can

process the packet as soon as possible. Second, the hooks

on NF_IP_PRE_ROUTING can get all the packets reaching

the network device including those that are not sent to the

local host. It allows kTRxer to easily support Internet prob-

ing/measurement using fake IPs. Since each hook point may

have multiple handlers with different priority, we implement

new hook register/unregister functions to ensure that kTRxer
will be the first to process incoming packets by exploiting the

data structure of handlers.

The Packet Rx component will consult the Filter Rules

Management module on how to process incoming packets.

The latter maintains a rule table, whose entry specifies the

operations for packets matching certain rules. Each rule maps

a 5-tuple (source IP address, destination IP address, source

port, destination port, protocol) to one operation. Currently,

kTRxer provides four operation types, including capture the

packet, drop the packet, capture and then drop the packet, and

forward the packet.

Besides manipulating packets, another requirement is to as-

sign accurate timestamp to each packet. To be portable, kTRxer
relies on Linux kernel to obtain the timestamp. More precisely,

sk buffer contains a timestamp parameter that records the

timestap when the packet arrives at the network device. In

Linux kernel 2.4, the parameter is set by default. Since kernel

2.6, we can call net enable timestamp() to instruct the system

2014 IEEE 22nd International Symposium of Quality of Service (IWQoS)

131

to record the timestamp. As a result, the timestamp obtained

by kTRxer is the same as that recorded by libpcap, which is

much more accurate than that obtained in the user space.

E. User interface

The user interface module is composed of two components:

two virtual devices for efficiently exchanging data between a

probing tool and kTRxer’s kernel module, and a library along

with the header file (i.e., libktrxer.a and ktrxer.h) for

building tools on top of kTRxer.

The virtual devices /dev/ktx and /dev/krx employ memory

map (mmap) instead of memory copy to exchange data for

shortening the delay due to data movement. Employing memo-

ry map saves one memory copy between the user space and the

kernel space. Device /dev/ktx is used for delivering customized

probes to the kernel module for transmission and /dev/krx is

used for fetching captured packets and handling filter rules.

They work independently and will not interfere with each

other. When kTRxer’s kernel module is loaded, it will create

these two virtual devices and register a set of operations for

them. kTRxer also provides APIs for a probing tool to deliver

probes through libktrxer.a and ktrxer.h

III. EVALUATION

ReceiverSender (kTRxer/Raw
Socket/Socket/Netmap)

Desktop

Smartphone

RouterHost
Lan Wan

USB 2.0 USB 2.0

Eth Eth

Eth Eth

Cross Traffic

Fig. 3. The experiment setup

We have implemented kTRxer in 5489 lines of C codes

(counted by CLOC), which include 4837 lines for the kernel

module and 652 lines for the user interface module. We

conduct extensive experiments on three different platforms

(i.e., PC, router, and smartphone) to evaluate kTRxer. The PC,

running Ubuntu 12.04 LTS, is equipped with Intel 3.4 GHz i7-

4770 CPU, 16G memory, and 1Gbps NIC. The router, running

OpenWRT, is a Buffalo WZR-HP-AG3000H model with an

Atheros AR7161 680MHz CPU, 128M RAM, 32M Flash, and

AR8319 ethernet adapters. The Sumsang Vibrant smartphone,

running Android 4.2, has a 1GHz ARM Cortex-A8 CPU and

512M memory.

The experiments were designed to answer the following

questions:

1) Can kTRxer transmit probes as quickly as possible in

the presence/absence of cross traffic? How about other

techniques?

2) Can kTRxer accurately send probes at scheduled time?

How about other techniques?

Besides answering these questions, we also confirm that k-
TRxer can obtain the same timestamp for incoming packets as

libpcap does.

We implement four probing tools, which are based on

netmap, kTRxer, socket, and raw socket, respectively.

Note that we only run the netmap-based probing tool on the

PC because netmap does not provide modified drivers for

the smartphone and the router. Other probing tools are tested

on these platforms. Fig 3 shows the experiment setup. In all

scenarios, we run the probing tools on different senders, which

send probes to the same receiver, and capture the packets on

the receiver side.

We connect the smartphone to the receiver using a USB 2.0

cable and leverage the USB reverse tethering technique [15]

to build a network connection between them. When running

tests on PC, we directly connect the PC to the receiver using

a cable and the cross traffic generated by the PC goes through

the same path as probes (i.e., both of them are sent to the

receiver). To test kTRxer on the router, we connect the router’s

WAN interface to the receiver, and one of its LAN interfaces

to a host. To examine the worst case, we let the host send cross

traffic to the receiver. Thus, both probes and the cross traffic

will go through the same WAN interface. We use D-ITG [16]

to generate the cross traffic.

A. Transmission rate

We let probing tools send 100 UDP packets as a whole.

The payload size ranges from 28 bytes to 1,428 bytes, with

an increment of 50 bytes. In the receiver side, we capture these

packets and calculate the elapsed time between the first packet

and the last packet, then compute the transmission rate. We

run such test 10 times on each platform under different cross

traffic conditions, and draw the median value in Fig 4-6.

PC: We found that the NIC needs to be re-initialized after

running netmap’s pkt-gen program, and therefore D-ITG can-

not be run simultaneously. Hence, netmap only has the result

in the absence of cross traffic. Without cross traffic, netmap
can achieve the highest transmission rate. It is expectable

because netmap can avoid many delay noises by inserting

probes into NIC’s buffer directly. xTRxer is a little better

than raw socket. However, the differences among kTRxer,

raw socket and netmap are small. When the payload size is

over 500 bytes, all except the socket-based method can

reach the maximum transmission rate (i.e., 1,000 Mbs) of the

1G NIC. The implication is that using portable approaches

like kTRxer or raw socket with large packet size can

achieve the maximal transmission rate in device with sufficient

resource. socket’s performance is obviously the worst, only

about one fifths of other three tools.

We also run the probing tools in the presence of cross traffic,

whose sending rate is {12,000, 24,000, 36,000} packets per

second (pps) and the packet size uniformly distributes in the

[100, 1400] bytes. As shown in Fig 4(b) to Fig 4(d), kTRxer
is better than raw socket and socket in these cases

and the difference between kTRxer and raw socket grows

when the cross traffic become heavier. In particular, kTRxer’s

2014 IEEE 22nd International Symposium of Quality of Service (IWQoS)

132

0 500 1000 1500
0

200

400

600

800

1000

1200

Payload size (byte)

T
x

ra
te

 (
M

bi
t/s

)

kTRxer
Raw Socket
Socket
Netmap

(a) r = 0 pps

0 500 1000 1500
0

200

400

600

800

1000

1200

Payload size (byte)

T
x

ra
te

 (
M

bi
t/s

)

kTRxer
Raw Socket
Socket

(b) r = 12, 000 pps

0 500 1000 1500
0

200

400

600

800

1000

1200

Payload size (byte)

T
x

ra
te

 (
M

bi
t/s

)

kTRxer
Raw Socket
Socket

(c) r = 24, 000 pps

0 500 1000 1500
0

200

400

600

800

1000

1200

Payload size (byte)

T
x

ra
te

 (
M

bi
t/s

)

kTRxer
Raw Socket
Socket

(d) r = 36, 000 pps

Fig. 4. Transmission rate of different probing tools on the PC under different cross-traffic rate (r).

0 500 1000 1500
0

200

400

600

800

1000

Payload size (byte)

T
x

ra
te

 (
M

bi
t/s

)

kTRxer
Raw Socket
Socket

(a) r = 0 pps

0 500 1000 1500
0

200

400

600

800

1000

Payload size (byte)

T
x

ra
te

 (
M

bi
t/s

)

kTRxer
Raw Socket
Socket

(b) r = 6, 000 pps

0 500 1000 1500
0

200

400

600

800

1000

Payload size (byte)

T
x

ra
te

 (
M

bi
t/s

)

kTRxer
Raw Socket
Socket

(c) r = 12, 000 pps

0 500 1000 1500
0

200

400

600

800

1000

Payload size (byte)

T
x

ra
te

 (
M

bi
t/s

)

kTRxer
Raw Socket
Socket

(d) r = 18, 000 pps

Fig. 5. Transmission rate of different probing tools on the router under different cross-traffic rate (r).

transmission rate can still reach the limit of 1G NIC even

with heavy cross traffic while raw socket’s transmission

rate decreases when there is heavy cross traffic. Moreover,

socket still has the worse performance.

Router: Fig 5 shows the transmission rates of kTRxer, raw
socket, and socket with/without cross traffic. Different

from the results on PC, kTRxer is much better than raw
socket and socket in all cases. Although the transmission

rates of all methods decrease with the increase of cross-traffic

rate, the advantage of kTRxer is still obvious. By contrast,

the difference between the performance of raw socket and

that of socket declines with the increase of cross-traffic

rate. It may be due to the effect from a low-end CPU and

the process of iptables in the router, both of which will

introduce additional delay to all packets. kTRxer suffers less

from them because it prepares all necessary data structures for

transmission in kernel and then immediately calls the NIC’s

transmission function to dispatch the probes.

Smartphone: Since D-ITG is not available for Android,

we cannot evaluate kTRxer’s performance under cross traffic

on smartphone and leave it to future work. Since Android

application cannot invoke raw socket directly, for a fair

comparison, we run all probing tools on Android’s Linux

platform. We expect that using socket within an Android

application to send probes will lead to worse performance

because of the additional noises introduced by the Dalvik

virtual machine. Fig 6 shows the transmission rates of different

methods obtained on smartphone. All methods can result in

higher transmission rate by sending larger probes. kTRxer’s

performance is still much better than that of raw socket
and socket, reaching the highest Tx rate nearly 120 Mbit/s.

raw socket is still better than socket and its highest Tx

rate is about 50 Mbit/s.

B. Packet scheduling

To evaluate each method’s capability of sending packets at

scheduled time, we instruct probing tools to send 10 packets

and let the interval between consecutive packets be 10ms.

Then, we calculate the difference between measured interval

between packets and predefined interval. The smaller the

difference is, the better the method is.

Table I show the median and the interquartile range (IQR)

[17] of the absolute difference between the measured interval

and scheduled interval in the absence of cross traffic. It

is obvious that in differnet devices kTRxer leads to much

smaller median and IQR of the difference than socket
and raw socket do, meaning that kTRxer can control the

transmission of probes actually and stably. Particularly, the

median difference caused by kTRxer is usually one tenth of

that caused by socket and raw socket. Meanwhile, the

results do not have many changes with different data sizes.

0 500 1000 1500
0

20

40

60

80

100

120

Payload size (byte)

T
x

ra
te

 (
M

bi
t/s

)

kTRxer
Raw Socket
Socket

Fig. 6. Transmission rate of different probing tools on smartphone without
cross traffic.

IV. RELATED WORK

A plethora of active probing tools have been proposed [18].

After manually analyzing 21 open-source tools in [18], we

2014 IEEE 22nd International Symposium of Quality of Service (IWQoS)

133

TABLE I
MEDIAN/IQR (IN MICROSECONDS) OF |(SCHEDULED INTERVAL) - (MEASURED INTERVAL)|, WHERE SCHEDULED INTERVAL= 10MS

Platform Tool
Data Size (byte)

100 300 500 700 900 1100 1300

Desktop
kTRxer 21/27 10/25 17/42 15/30 8/33 5/31 11/36

Raw Socket 138/34 135/41 131/41 141/7 132/78 135/78 136/68
Socket 147/56 126/41 137/42 141/62 140/51 134/50 129/15

Router
kTRxer 8/15 8/10 9/9 5/7 8/9 10/15 10/18

Raw Socket 72/39 70/34 81/23 82/37 82/61 81/51 89/54
Socket 162/46 147/52 151/49 153/50 147/51 137/37 151/44

Smartphone
kTRxer 37/124 61/119 64/139 71/151 76/114 59/124 78/113

Raw Socket 125/102 125/202 127/149 126/82 129/141 123/110 129/180
Socket 609/263 624/335 379/377 365/199 326/142 373/259 195/498

found that 10 tools just use socket and the remaining tools

use raw socket if necessary. However, few tool examines

how to make full use of the NIC and how to avoid the negative

effect from the system.

Recently, some packet generators are optimized to make

full use of the NIC. For example, Brute [19] uses raw
socket and pktgen [20] invokes ndo start xmit() to generate

high-speed traffic. There are three major differences between

pktgen and kTRxer. First, since pktgen aims at dispatching

packets as quickly as possible for testing network equipments,

it randomly generates meaningless packets and sends them

out. In contrast, since kTRxer targets on helping probing

tools achieve better accuracy and efficiency in resource-limited

devices, it provides simple interfaces to facilitate the commu-

nication between itself and probing tools, and send the packets

out by invoking dev hard start xmit(). Second, since pktgen
randomly generates packets, it does not care about whether

the packet transmission succeeds or not. In contrast, kTRxer
will retransmit a probe if the transmission fails and will notify

the probing tools if all retransmissions fail. Third, pktgen does

not handle response packets while kTRxer will process them.

KUTE [21] uses similar techniques like pktgen.

Mobile devices and embedded systems introduce new re-

quirements and challenges to active probing. SamKnows [5]

and BISmark [6] run measurement tools in routers with

customized OpenWRT. However, the results may be biased if

there is heavy cross traffic. Similarly, SmartProbe, a Java tool

for estimating network capacity in smartphone, uses socket to

send probes [4]. Its results may be affected by the system [4].

We demonstrated the previous version of kTRxer in [22] and

have significantly improved it since then.

V. CONCLUSION

Performing active probing in resource-limited devices in-

troduces new requirements and challenges due to the non-

negligible effect of the system on the commonly used packet

sending/receiving techniques. To mitigate such negative effect,

we propose kTRxer, a portable toolkit for helping probing

tools achieve better accuracy and efficiency in resource-limited

devices. We have implemented kTRxer and the extensive

experimental results obtained from three different devices

shows that kTRxer can achieve much higher transmission rate

and introduce much less delay noise than existing approaches.

VI. ACKNOWLEDGMENT

This work is supported in part by the CCF-Tencent Open

Research Fund, the Hong Kong GRF (No. PolyU 5389/13E),

the National Natural Science Foundation of China (No.

61202396), Shenzhen City Special Fund for Strategic Emerg-

ing Industries (No. JCYJ20120830153030584), and the Open

Fund of Key Lab of Digital Signal and Image Processing of

Guangdong Province.

REFERENCES

[1] X. Luo, E. Chan, and R. Chang, “Design and implementation of TCP
data probes for reliable and metric-rich network path monitoring,” in
Proc. USENIX Annual Tech. Conf., 2009.

[2] L. Quan, J. Heidemann, and Y. Pradkin, “Trinocular: Understanding
internet reliability through adaptive probing,” in Proc. ACM SIGCOMM,
2013.

[3] Z. Durumeric, E. Wustrow, and J. Halderman, “Zmap: Fast internet-wide
scanning and its security applications,” in Proc. USENIX SECURITY,
2013.

[4] F. Disperati, D. Grassini, E. Gregori, A. Improta, L. Lenzini, D. Pel-
legrino, and N. Redini, “Smartprobe: a bottleneck capacity estimation
tool for smartphones,” in Proc. IEEE GreenCom, 2013.

[5] “Samknows,” http://www.samknows.com.
[6] “Bismark,” http://www.projectbismark.net.
[7] W. Stevens, B. Fenner, and A. Rudoff, Unix Network Programming: The

Sockets Networking API, 2003, vol. 1.
[8] C. Dovrolis, P. Ramanathan, and D. Moore, “Packet dispersion tech-

niques and a capacity-estimation methodology,” IEEE/ACM Trans.
Netw., vol. 12, no. 6, 2004.

[9] M. Jain and C. Dovrolis, “End-to-end available bandwidth: Measurement
methodology, dynamics, and relation with TCP throughput,” IEEE/ACM
Trans. Netw., vol. 11, no. 4, pp. 537–549, 2003.

[10] L. Rizzo, “netmap: a novel framework for fast packet i/o,” in Proc.
USENIX ATC, 2012.

[11] “Netfilter,” http://www.netfilter.org.
[12] “High resolution timers,” http://elinux.org/High Resolution Timers.
[13] S. Seth and M. Venkatesulu, TCP/IP Architecture, Design and Imple-

mentation in Linux. Wiley, 2008.
[14] “Pf ring,” http://www.ntop.org/products/pf ring/.
[15] “Usb reverse tethering,” http://forum.xda-

developers.com/showthread.php?t=2287494, 2013.
[16] A. Botta, A. Dainotti, and A. Pescape, “A tool for the generation

of realistic network workload for emerging networking scenarios,”
Computer Networks, vol. 56, no. 15, 2012.

[17] P. Huber and E. Ronchetti, Robust Statistics, 2nd ed. Wiley, 2009.
[18] “Performance measurement tools taxonomy,”

http://www.caida.org/tools/taxonomy/performance.xml.
[19] N. Secchi, R. Bonelli, S. Giordano, and G. Procissi, “Brute: A high

performance and extensible traffic generator,” in Proc. SPECTS, 2005.
[20] D. Turull, “pktgen,” http://people.kth.se/ danieltt/pktgen/.
[21] S. Zander, D. Kennedy, and G. Armitage, “Kute - a high performance

kernel-based udp traffic engine,” Swinburne University of Technolog,
Tech. Rep., 2005.

[22] L. Xue, R. Mok, and R. Chang, “Omware: An open measurement ware
for stable residential broadband measurement (Demo),” in Proc. ACM
SIGCOMM, 2013.

2014 IEEE 22nd International Symposium of Quality of Service (IWQoS)

134

