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Context: Software defect prediction strives to detect defect-prone software modules by mining the historical data.
Effective prediction enables reasonable testing resource allocation, which eventually leads to a more reliable
software.

Objective: The complex structures and the imbalanced class distribution in software defect data make it challeng-
ing to obtain suitable data features and learn an effective defect prediction model. In this paper, we propose a
method to address these two challenges.

Method: We propose a defect prediction framework called KPWE that combines two techniques, i.e., Kernel
Principal Component Analysis (KPCA) and Weighted Extreme Learning Machine (WELM). Our framework consists
of two major stages. In the first stage, KPWE aims to extract representative data features. It leverages the KPCA
technique to project the original data into a latent feature space by nonlinear mapping. In the second stage, KPWE
aims to alleviate the class imbalance. It exploits the WELM technique to learn an effective defect prediction model
with a weighting-based scheme.

Results: We have conducted extensive experiments on 34 projects from the PROMISE dataset and 10 projects from
the NASA dataset. The experimental results show that KPWE achieves promising performance compared with 41
baseline methods, including seven basic classifiers with KPCA, five variants of KPWE, eight representative feature
selection methods with WELM, 21 imbalanced learning methods.

Conclusion: In this paper, we propose KPWE, a new software defect prediction framework that considers the
feature extraction and class imbalance issues. The empirical study on 44 software projects indicate that KPWE is
superior to the baseline methods in most cases.

1. Introduction classification techniques have been used as defect prediction models,

such as decision tree [6], Naive Bayes [7], random forest [8,9], near-

Software testing is an important part of software development life
cycle for software quality assurance [1,2]. Defect prediction can assist
the quality assurance teams to reasonably allocate the limited testing re-
sources by detecting the potentially defective software modules (such as
classes, files, components) before releasing the software product. Thus,
effective defect prediction can save testing cost and improve software
quality [3-5].

The majority of existing researches leverages various machine learn-
ing techniques to build defect prediction methods. In particular, many

* Fully documented templates are available in the elsarticle package on CTAN.
* Corresponding author.
E-mail address: jinliu@whu.edu.cn (J. Liu).

https://doi.org/10.1016/j.infsof.2018.10.004

est neighbor [10], support vector machine [11,12], neural network
[13-15], logistic regression [16], and ensemble methods [17,18]. Since
irrelevant and redundant features in the defect data may degrade the
performance of the classification models, different feature selection
methods have been applied to select an optimal feature subset for defect
prediction[19]. These methods can be roughly divided into three cate-
gories: the filter-based feature ranking methods, wrapper-based feature
subset evaluation methods, and extraction-based feature transformation
methods, such as Principal Component Analysis (PCA) [20].

1.1. Motivation

Selecting optimal features that can reveal the intrinsic structures
of the defect data is crucial to build effective defect prediction mod-

Received 21 September 2017; Received in revised form 26 August 2018; Accepted 5 October 2018

Available online 17 October 2018
0950-5849/© 2018 Elsevier B.V. All rights reserved.


https://doi.org/10.1016/j.infsof.2018.10.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2018.10.004&domain=pdf
http://www.ctan.org/tex-archive/macros/latex/contrib/elsarticle
mailto:jinliu@whu.edu.cn
https://doi.org/10.1016/j.infsof.2018.10.004

Z. Xuetal

>
o~

Vs
/®
A\®

N

A

Low-dimensional space

High-dimensional space

Fig. 1. An example of the merit of feature mapping.

els. The filter-based and wrapper-based feature selection methods only
select a subset of the original features without any transformation [21].
However, such raw features may not properly represent the essential
structures of raw defect data [22]. Being a linear feature extraction
method, PCA has been widely used to transform the raw features to
a low-dimensional space where the features are the linear combinations
of the raw ones [23-26]. PCA performs well when the data are linearly
separable and follow a Gaussian distribution, whereas the real defect
data may have complex structures that can not be simplified in a linear
subspace [27,28]. Therefore, the features extracted by PCA are usually
not representative, and cannot gain anticipated performance for defect
prediction [19,29]. To address this issue, we exploit KPCA [30], a non-
linear extension of PCA, to project the original data into a latent high-
dimensional feature space in which the mapped features can properly
characterize the complex data structures and increase the probability of
linear separability of the data. When the original data follow an arbitrary
distribution, the mapped data by KPCA obey an approximate Gaussian
distribution. Fig. 1 shows the merit of the feature mapping, where the
data are linearly inseparable within the low-dimensional space but lin-
early separable within the high-dimensional space. Existing studies have
shown that KPCA outperforms PCA [31,32].

Although many classifiers have been used for defect prediction, Less-
mann et al. [33] suggested that the selection of classifiers for defect
prediction needs to consider additional criteria, such as computational
efficiency and simplicity, because they found that there are no sig-
nificant performance differences among most defect prediction classi-
fiers. Moreover, class imbalance is prevalent in defect data in which the
non-defective modules usually outnumber the defective ones. It makes
most classifiers tend to classify the minority samples (i.e., the defec-
tive modules) as the majority samples (i.e., the non-defective modules).
However, existing defect prediction methods did not address this prob-
lem well, thus leading to unsatisfactory performance. In this work, we
exploit Single-hidden Layer Feedforward Neural networks (SLFNs) called
Weighted Extreme Learning Machine (WELM) [34] to overcome this chal-
lenge. WELM assigns higher weights to defective modules to emphasize
their importance. In addition, WELM is efficient and convenient since it
only needs to adaptively set the number of hidden nodes while other pa-
rameters are randomly generated instead being tuned through iterations
like traditional neural networks [35].

In this paper, we propose a new defect prediction framework called
KPWE that leverages the two aforementioned techniques: KPCA and
WELM. This framework consists of two major stages. First, KPWE ex-
ploits KPCA to map original defect data into a latent feature space. The
mapped features in the space can well represent the original ones. Sec-
ond, with the mapped features, KPWE applies WELM to build an efficient
and effective defect prediction model that can handle imbalanced defect
data.

We conduct extensive experiments on 44 software projects from two
datasets (PROMISE dataset and NASA dataset) with four indicators, i.e.,
F-measure, G-measure, MCC, and AUC. On average, KPWE achieves av-
erage F-measure, G-measure, MCC, and AUC values of 0.500, 0.660,
0.374, and 0.764 on PROMISE dataset, of 0.410, 0.611, 0.296 and
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0.754 on NASA dataset, and of 0.480, 0.649, 0.356, and 0.761 across
44 projects of the two datasets. We compare KPWE against 41 base-
line methods. The experimental results show that KPWE achieves sig-
nificantly better performance (especially in terms of F-measure, MCC,
and AUC) compared with all baseline methods.

1.2. Organization

The remainder of this paper is organized as follows.
Section 2 presents the related work. In Section 3, we describe the
proposed method in detail. Section 4 elaborates the experimental
setup. In Section 5, we report the experimental results of performance
verification. Section 6 discusses the threats to validity. In Section 7, we
draw the conclusion.

2. Related work
2.1. Feature selection for defect prediction

Some recent studies have investigated the impact of feature selection
methods on the performance of defect prediction. Song et al. [4] sug-
gested that feature selection is an indispensable part of a general de-
fect prediction framework. Menzies et al. [7] found that Naive Bayes
classifier with Information Gain based feature selection can get good
performances over 10 projects from the NASA dataset. Shivaji et al.
[36,37] studied the performance of filter-based and wrapper-based fea-
ture selection methods for bug prediction. Their experiments showed
that feature selection can improve the defect prediction performance
even remaining 10% of the original features. Wold et al. [20] investi-
gated four filter-based feature selection methods on a large telecom-
munication system and found that the Kolmogorov-Smirnov method
achieved the best performance. Gao et al. [38] explored the performance
of their hybrid feature selection framework based on seven filter-based
and three feature subset search methods. They found that the reduced
features would not adversely affect the prediction performance in most
cases. Chen et al. [39] modelled the feature selection as a multi-objective
optimization problem: minimizing the number of selected features and
maximizing the defect prediction performance. They conducted experi-
ments on 10 projects from PROMISE dataset and found that their method
outperformed three wrapper-based feature selection methods. However,
their method was less efficient than two wrapper-based methods. Catal
and Diri [40] conducted an empirical study to investigate the impact of
the dataset size, the types of feature sets and the feature selection meth-
ods on defect prediction. To study the impact of feature selection meth-
ods, they first utilized a Correlation-based Feature Selection (CFS) method
to obtain the relevant features before training the classification mod-
els. The experiments on five projects from NASA dataset showed that
the random forest classifier with CFS performed well on large project
datasets and the Naive Bayes classifier with CFS worked well on small
projects datasets. Xu et al. [19] conducted an extensive empirical com-
parison to investigate the impact of 32 feature selection methods on
defect prediction performance over three public defect datasets. The ex-
perimental results showed that the performances of these methods had
significant differences on all datasets and that PCA performed the worst.
Ghotra et al. [41] extended Xu et al.’s work and conducted a large-scale
empirical study to investigate the defect prediction performance of 30
feature selection methods with 21 classification models. The experimen-
tal results on 18 projects from NASA and PROMISE datasets suggested
that correlation-based filter-subset feature selection method with best-
first search strategy achieved the best performance among all other fea-
ture selection methods on majority projects.

2.2. Various classifiers for defect prediction

Various classification models have been applied to defect prediction.
Malhotra [42] evaluated the feasibility of seven classification models for
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defect prediction by conducting a systematic literature review on the
studies that published from January 1991 to October 2013. They dis-
cussed the merits and demerits of the classification models and found
that they were superior to traditional statistical models. In addition,
they suggested that new methods should be developed to further im-
prove the defect prediction performance. Malhotra [43] used the statis-
tical tests to compare the performance differences among 18 classifica-
tion models for defect prediction. They performed the experiments on
seven Android software projects and stated that these models have sig-
nificant differences while support vector machine and voted perceptron
model did not perform well. Lessmann et al. [33] conducted an em-
pirical study to investigate the effectiveness of 21 classifiers on NASA
dataset. The results showed that the performances of most classifiers
have no significant differences. They suggested that some additional
factors, such as the computational overhead and simplicity, should be
considered when selecting a proper classifier for defect prediction. Gho-
tra et al. [44] expanded Lessmann’s experiment by applying 31 classi-
fiers to two versions of NASA dataset and PROMISE dataset. The results
showed that these classifiers achieved similar results on the noisy NASA
dataset but different performance on the clean NASA and the PROMISE
datasets. Malhotra and Raje [45] investigated the performances of 18
classifiers on six projects with object-oriented features and found that
Naive Bayes classifier achieved the best performance. Although some
researchers introduced KPCA into defect prediction [46-48] recently,
they aimed at building asymmetrical prediction models with the kernel
method by considering the relationship between principal components
and the class labels. In this work, we leverage KPCA as a feature selec-
tion method to extract representative features for defect prediction. In
addition, Mesquita et al. [49] proposed a method based on ELM with re-
ject option (i.e., IrejoELM) for defect prediction. The results were good
because they abandoned the modules that have contradictory decisions
for two designed classifiers. However, in practice, such modules should
be considered.

2.3. Class imbalanced learning for defect prediction

Since class imbalance issue can hinder defect prediction techniques
to achieve satisfactory performance, researchers have proposed differ-
ent imbalanced learning methods to mitigate such negative effects. Sam-
pling based methods and cost-sensitive based methods are the most stud-
ied imbalanced learning methods for defect prediction.

For the sampling based imbalanced learning methods, there are two
main sampling strategies to balance the data distribution. One is to de-
crease the number of non-defective modules (such as under-sampling
technique), the other is to increase the number of the defective modules
with redundant modules (such as over-sampling technique) or synthetic
modules (such as Synthetic Minority Over-sampling Technique, SMOTE).
Kamei et al. [50] investigated the impact of four sampling methods on
the performance of four basic classification models. They conducted ex-
periments on two industry legacy software systems and found that these
sampling methods can benefit linear and logistic models but were not
helpful to neural network and classification tree models. Bennin et al.
[51] assessed the statistical and practical significance of six sampling
methods on the performance of five basic defect prediction models. Ex-
periments on 10 projects indicated that these sampling methods had
statistical and practical effects in terms of some performance indica-
tors, such as Pd, Pf, G-mean, but had no effect in terms of AUC. Bennin
et al. [52] explored the impact of a configurable parameter (i.e, the per-
centage of defective modules) in seven sampling methods on the per-
formance of five classification models. The experimental results showed
that this parameter can largely impact the performance (except AUC)
of studied prediction models. Due to the contradictory conclusions of
previous empirical studies about which imbalanced learning methods
performed the best in the context of defect prediction models, Tan-
tithamthavorn et al. [53] conducted a large-scale empirical experiment
on 101 project versions to investigate the impact of four popularly-used
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sampling techniques on the performance and interpretation of seven
classification models. The experimental results explained that these sam-
pling methods increased the completeness of Recall indicator but had
no impact on the AUC indicator. In addition, the sampling based im-
balanced learning methods were not conducive to the understanding
towards the interpretation of the defect prediction models.

The cost-sensitive based imbalanced learning methods alleviate the
differences between the instance number of two classes by assigning dif-
ferent weights to the two types of instances. Khoshgottar et al. [54] pro-
posed a cost-boosting method by combining multiple classification mod-
els. Experiments on two industrial software systems showed that the
boosting method was feasible for defect prediction. Zheng [55] pro-
posed three cost-sensitive boosting methods to boost neural networks for
defect prediction. Experimental results showed that threshold-moving-
based boosting neural networks can achieve better performance, espe-
cially for object-oriented software projects. Liu et al. [56] proposed
a novel two-stage cost-sensitive learning method by utilizing cost in-
formation in the classification stage and the feature selection stage.
Experiments on seven projects of NASA dataset demonstrated its superi-
ority compared with the single-stage cost-sensitive classifiers and cost-
blind feature selection methods. Siers and Islam [57] proposed two cost-
sensitive classification models by combining decision trees to minimize
the classification cost for defect prediction. The experimental results on
six projects of NASA dataset showed the superiority of their methods
compared with six classification methods. The WELM technique used in
our work belongs to this type of imbalanced learning methods.

3. KPWE: The new framework

The new framework consists of two stages: feature extraction and
model construction. This section first describes how to project the orig-
inal data into a latent feature space using the nonlinear feature trans-
formation technique KPCA, and then presents how to build the WELM
model with the extracted features by considering the class imbalance
issue.

3.1. Feature extraction based on KPCA

In this stage, we extract representative features with KPCA to re-
veal the potentially complex structures in the defect data. KPCA uses
a nonlinear mapping function ¢ to project each raw data point within
a low-dimensional space into a new point within a high-dimensional
feature space F.

Given a dataset {x;,y;},i = 1,2,...,n, where x; = [x;1, X;3, ..., X;,,] €
R™ denotes the feature set and y; = [y;1, V2, .-+ » Viel L € R (¢ = 2 in this
work) denotes the label set. Assuming that each data point x; is mapped
into a new point ¢(x;) and the mapped data points are centralized, i.e.,

Ly ekx) =0 M
The covariance matrix C of the mapped data is:
C=1%" o))" (@)

To perform the linear PCA in F, we diagonalize the covariance ma-
trix C, which can be treated as a solution of the following eigenvalue
problem

CV =4V, 3)
where 1 and V denote the eigenvalues and eigenvectors of C, respec-
tively.

Since all solutions V lie in the span of the mapped data points

@(x)), (x,), ... , p(x,), we multiply both sides of Eq. (3) by ¢(x)T as
@(x)TCV = dp(x)"V,VI=1,2,....n @

Meanwhile, there exist coefficients «|, a5, ... , a, that linearly express
the eigenvectors V of C with ¢(x,), p(x,), ..., p(x,), i.e.,

V=3 a0 ®)
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Fig. 2. Feature extraction with KPCA.

Eq. (4) can be rewritten as following formula by substituting
Egs. (2) and (5) into it

%(P(XI)T T @ )e(x)T Z:-':l a;p(x;) = Ap(x)T Z;’=1 a;p(x;) (6)
Let the kernel function «(x;, x]—) be
K(x;, x;) = p(x) p(x;) ©)
Then Eq. (6) is rewritten as
% 2?21,,-21 K(xp, x;) Z?:],/:] ajK(x;, x;) = A 27:1,1:1 a;k(xp, x;) ®
Let the kernel matrix K with size nxn be
K,-,j = K(x,-,xj O
Then Eq. (8) is rewritten as
K’a = niKa, (10)

where a = [a}, @y, ..., ,]T
The solution of Eq. (10) can be obtained by solving the eigenvalue
problem

Ka = nia (11)

for nonzero eigenvalues 4 and corresponding eigenvectors a. As we can
see, all the solutions of Eq. (11) satisfy Eq. (10).

As mentioned above, we first assume that the mapped data points
are centralized. If they are not centralized, the Gram matrix K be used
to replace the kernel matrix K as

K=K-1,K-KI,+1,Kl,, (12)
where 1, denotes the n x n matrix with all values equal to 1/n.

Thus, we just need to solve the following formula
Ka = nia (13)

To extract the nonlinear principal components of a new test data
point ¢(x,,,), we can compute the projection of the kth kernel compo-
nent by

VE - () = Ty F ()T 0(X0) = Ty @bk (xp X por0) (14)

Fig. 2 depicts the process of KPCA for feature extraction. KPCA sim-
plifies the feature mapping by calculating the inner product of two data
points with kernel function instead of calculating the ¢(x;) explicitly.
Various kernel functions, such as Gaussian Radial Basic Function (RBF)
kernel and polynomial kernel, can induce different nonlinear mapping.
The RBF kernel is commonly used in image retrieval and pattern recog-
nition domains [58,59] that is defined as
llx; = x;112 )

202

K (X, x;) = exp <— (15)
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where |- | denotes the I, norm and 262 = @ denotes the width of the

Gaussian RBF function.

To eliminate the underlying noise in the data, when performing the
PCA in the latent feature space F, we maintain the most important prin-
cipal components that capture at least 95% of total variances of the data
according to their cumulative contribution rates [60]. Finally, the data
are mapped into a p-dimensional space.

After completing feature extraction, the original training data are
transformed to a new dataset {x/’.,y,v} ERPXNRC (i=1,2,...,n).

3.2. ELM

Before formulizing the WELM, we first introduce the basic ELM. With
the mapped dataset {xlf, ¥} € RP X R (i = 1,2, ...,n), the output of the
generalized SLFNs with g hidden nodes and activation function h(x’) is
formally expressed as

0; = X0_ B (X)) = XI_ Beh(wy, by, x)),

where i = 1,2, ...,n, w; = [Wy, Wy, ... ,w,(p]T denotes the input weight
vector connecting the input nodes and the kth hidden node, b; denotes
the bias of the k-th hidden node, ; = [f;1, B2 --- » Bre]* denotes the out-
put weight vector connecting the output nodes and the kth hidden node,
and o; denotes the expected output of the ith sample. The commonly-
used activation functions in ELM include sigmoid function, Gaussian
RBF function, hard limit function, and multiquadric function [61,62].
Fig. 3 depicts the basic architecture of ELM.

Eq. (16) can be equivalently rewritten as

16)

Hp =0, an

where H is called the hidden layer output matrix of the SLFNs and is
defined as

h(x)

H:H(w],...,wq,bl,...,bq,x'l,...,x:,)— :
h(x)

, (18)

By, by )

h(wl,bl,x’l)

h(wpb]’x;) h(wq,bq,x;) X q

where the ith row of H denotes the output vector of the hidden layer
with respect to input sample x/, and the kth column of H denotes the

output vector of the kth hidden node with respect to the input samples

’ o ’
Xps X)seees Xy
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B denotes the weight matrix connecting the hidden layer and the
output layer, which is defined as

A
p=|: (19)
T
ﬂ qdgxc
O denotes the expected label matrix, and each row represents the

output vector of one sample. O is defined as

0 011 O1¢

(20)

0,
neldpxc

Since the target of training SLFNs is to minimize the output error,
i.e., approximating the input samples with zero error as follows

Yicillo;=yll=10-Y|=0 21
T
» Y Ve
where Y = =|: denotes the target output ma-
ynT Yn1 Yne nxc
trix.

Then, we need to solve the following formula

Hp =Y @2)

Huang et al. [35,63] proved that, for ELM, the weights w; of the
input connection and the bias b, of the hidden layer node can be ran-
domly and independently designated. Once these parameters are as-
signed, Eq. (22) is converted into a linear system and the output weight
matrix g can be analytically determined by finding the least-square so-
lution of the linear system, i.e.,

mﬂin IHB - Y|| (23)
The optimal solution of Eq. (23) is
f=H'Y = HTH) 24

where Hf denotes the Moore-Penrose generalized inverse of the hidden
layer output matrix H [64,65]. The obtained f can ensure minimum
training error, get optimal generalization ability and avoid plunging into
local optimum since § is unique [35]. This solution can also be obtained
with Karush-Kuhn-Tucker (KKT) theorem [66].

Finally, we get the classification function of ELM as

fG') =h(x")f = h(xH'Y (25)

3.3. Model construction based on WELM

For imbalanced data, to consider the different importance of the ma-
jority class samples (i.e., defective modules) and the minority class sam-
ples (i.e., non-defective modules) when building the ELM classifier, we
define a n xn diagonal matrix W, whose diagonal element W;; denotes
the weight of training sample x]. More precisely, if x| belongs to the
majority class, the weight W; is relatively lower than the sample that
belongs to the minority class. According to the KKT theorem, Eq. (24) is
rewritten as

f=H'Y=H'WH) 'H'WT (26)
Then, Eq. (25) becomes
F() =h(x")F =h(x)H'WH) ' H'WT @7

There are mainly two schemes for assigning the weights to the sam-
ples of the two classes as follows [34]:

1/np
1/ny

if x/ € minority class

s 28
if x] € majority class 28)

w1=wii={
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or

0.618/np if x| € minority class
1/nyn if x] € majority class’

where W1 and W2 denote two weighting schemes, np and ny indicate
the number of samples of the minority and majority class, respectively.
The golden ratio of 0.618:1 between the majority class and the minority
class in scheme W2 represents the perfection in nature [67].

W2=W; = { (29)

4. Experimental setup

In this section, we elaborate the experimental setup, including the
Research Questions (RQs), benchmark datasets, the performance indica-
tors, and the experimental design.

4.1. Research questions

We design the following five research questions to evaluate our
KPWE method.

RQ1I: How efficient are ELM and WELM?

As the computational cost is an important criterion to select the ap-
propriate classifier for defect prediction in practical application [33,63],
this question is designed to evaluate the efficiency of ELM and its variant
WELM compared with some typical classifiers.

RQ2: How effective is KPWE compared with basic classifiers with KPCA?

Since our method KPWE combines feature transformation and an
advanced classifier, this question is designed to explore the effectiveness
of this new classifier compared against the typical classifiers with the
same process of feature extraction. We use the classic classifiers in RQ1
with KPCA as the baseline methods.

RQ3: Is KPWE superior to its variants?

Since the two techniques KPCA and WELM used in our method are
variants of the linear feature extraction method PCA and the original
ELM respectively, this question is designed to investigate whether our
method is more effective than other combinations of these four tech-
niques. To answer this question, we first compare KPWE against the
baseline methods that combine WELM with PCA (short for PCAWELM)
and none feature extraction (short for WELM). It can be used to inves-
tigate the different performance among the methods using non-linear,
linear and none feature extraction for WELM. Then, we compare KPWE
against the baseline methods that combine ELM with KPCA, PCA, and
none feature extraction (short for KPCAELM, PCAELM, and ELM, re-
spectively). It can be used to compare the performance of our method
against its downgraded version methods that do not consider the class
imbalance issue. All these baseline methods are treated as the variants
of KPWE.

RQ4: Are the selected features by KPCA more effective for performance
improvement than that by other feature selection methods?

To obtain the representative features of the defect data, previous re-
searches [19,41] used various feature selection methods to select an op-
timal feature subset to replace the original set. This question is designed
to investigate whether the features extracted by KPCA are more effec-
tive in improving the defect prediction performance than the features se-
lected by other feature selection methods. To answer this question, we
select some classic filter-based feature ranking methods and wrapper-
based feature subset selection methods with the same classifier WELM
for comparison.

RQ5: Is the prediction performance of KPWE comparable to that of other
imbalanced learning methods?

Since our method KPWE is customized to address the class imbal-
ance issue for software defect data, this question is designed to study
whether our method can achieve better or at least comparable perfor-
mance than existing imbalanced learning methods. To answer this ques-
tion, we employ several sampling-based, ensemble learning-based, and
cost-sensitive-based imbalanced learning methods for comparison.
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Table 1

Statistics of the PROMISE dataset.
Projects #M #D (%)D Projects #M #D (%)D
ant-1.3 125 20 16.00 lo4j-1.0 135 34 25.19
ant-1.4 178 40 22.47 log4j—1.1 109 37 33.94
ant-1.5 293 32 10.92 lucene—2.0 195 91 46.67
ant-1.6 351 92 26.21 poi—2.0 314 37 11.78
ant-1.7 745 166 22.28 prop—6 660 66 10.00
arc 234 27 11.54 redaktor 176 27 15.34
camel-1.0 339 13 3.83 synapse—1.0 157 16 10.19
camel-1.2 608 216 35.53 synapse—1.1 222 60 27.03
camel-1.4 872 145 16.63 synapse—1.2 256 86 33.59
camel-1.6 965 188 19.48 tomcat 858 77 8.97
ivy—1.4 241 16 6.64 velocity—1.6 229 78 34.06
ivy—2.0 352 40 11.36 xalan—2.4 723 110 15.21
jedit-3.2 272 90 33.09 xalan—2.5 803 387 48.19
jedit—4.0 306 75 24.51 xalan—2.6 885 411 46.44
jedit—4.1 312 79 25.32 xerces-init 162 77 47.53
jedit—4.2 367 48 13.08 xerces—1.2 440 71 16.14
jedit—4.3 492 11 2.24 xerces—1.3 453 69 15.23

4.2. Benchmark dataset

We conduct extensive experiments on 34 projects taken from an
open-source PROMISE data repository,! which have been widely used
in many defect prediction studies [44,68,69]. These projects include
open-source projects (such as ‘ant’ project), proprietary projects (such as
‘prop’ project) and academic projects (such as ‘redaktor’ project). Each
module in the projects includes 20 object-oriented features and a depen-
dent variable that denotes the number of defects in the module. These
features are collected by Jureczko and Madeyski, Spinellis with Ckjm
tool [70,71]. We label the module as 1 if it contains one or more de-
fects. Otherwise, we label it as 0. In this work, we just select a subset
from PROMISE data repository as our benchmark dataset. The selection
criteria are that: First, to ensure a certain amount of training set and test
set, we filter out the projects that have less than 100 modules. Second,
since our method KPWE is designed to address the imbalanced defect
data where the non-defective modules outnumber the defective ones, we
only consider the projects whose defective ratios are lower than 50%. As
a result, 34 versions of 15 projects are selected and used in this study.
To investigate the generalization of our method to other datasets, we
further conduct experiments on ten projects from NASA dataset which
is cleaned by Shepperd et al. [27]. Since there are two cleaned versions
(D’ and D”) of NASA dataset, in this work, we use the D” version as our
benchmark dataset as in previous work [44].

Tables 1 and 2 summarize the basic information of the two datasets,
including the number of features (# F), the number of modules (# M),
the number of defective modules (# D) and the defect ratios (% D). Note
that we do not report the number of features for the projects in PROMISE
dataset since all of them contain 20 features. In addition, for PROMISE
dataset, the feature descriptions and corresponding abbreviations are
presented in Table 3 (CC is the abbreviations of Cyclomatic Complexity).
For NASA dataset, Table 4 depicts the common features among the 10
projects and Table 5 tabulates the other specific features for each project
with symbol 4/.

4.3. Performance indicators

We use F-measure, G-measure, Matthews Correlation Coefficient
(MCC) and Area Under the ROC Curve (AUC) to measure the perfor-
mance of KPWE, because they are widely used in defect prediction
[44,69,72,73]. The first three indicators can be deduced by some sim-
pler binary classification metrics as listed in Table 6.

! http://openscience.us/repo/defect/ck/.
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Possibility of detection (pd) or recall is defined as the ratio of the
number of defective modules that are correctly predicted to the total
number of defective modules.

Possibility of false alarm (pf) is defined as the ratio of the number of
defective modules that are incorrectly predicted to the total number of
non-defective modules.

Precision is defined as the ratio of the number of defective modules
that are correctly predicted to the total number of defective modules
that are correctly and incorrectly predicted.

F-measure, a trade-off between recall and precision, is defined as

2 x recall * precision

F-measure = — (30)
recall + precision
G-measure, a trade-off between pd and pf, is defined as
2% pd#* (1 —
G-measure = *p*—(pf) 31
pd+(1-pH

MCC, a comprehensive indicator by considering TP, TN, FP, and FN,
is defined as
_ TP % TN — FP « FN

MCC = .
/(TP + FP) % (TP + FN) % (TN + FP) = (IN + FN)

(32)

AUC calculates the area under a ROC curve which depicts the relative
trade-off between pd (the y-axis) and pf (the x-axis) of a binary classifi-
cation. Different from the above three indicators which are based on the
premise that the threshold of determining a sample as positive class is
0.5 by default, the value of AUC is independent of the decision thresh-
old. More specifically, given a threshold, we can get a point pair (pd,pf)
and draw the corresponding position in the two-dimension plane. For all
possible thresholds, we can get a set of such point pairs. The ROC curve
is made up by connecting all these points. The area under this curve is
used to evaluate the classification performance.

The greater values of the four indicators indicate better prediction
performance.

4.4. Experimental design

We perform substantial experiments to evaluate the effectiveness of
KPWE. In the feature extraction phase, we choose the Gaussian RBF
as the kernel function for KPCA since it usually exhibits better perfor-
mances in many applications [58,59,74]. In terms of the parameter o,
i.e., the width of the Gaussian kernel (as defined in Section 3.1), we
empirically set a relatively wide range as w = 10%,202, ..., 100%. In the
model construction phase, we also choose the Gaussian RBF as the ac-
tivation function for WELM because it is the preferred choice in many
applications [59,75]. Since the number of hidden nodes q is far less than
the number of training sample n [35], we set the number of hidden
nodes from 5 to n with an increment of 5. So, for each project, there are
2n(10 x g) combinations of w and q in total. For the weighting scheme
of W, we adopt the second scheme W2 as described in Section 3.3. For
each project, we use the 50:50 split with stratified sampling to constitute
the training and test set. More specifically, we utilize stratified sampling
to randomly select 50% instances as the training set and the remaining
50% instances as the test set. The stratified sampling strategy guarantees
the same defect ratios of the training set and test set which conforms to
the actual application scenario. In addition, such sampling setting helps
reduce sampling biases [76]. The 50:50 split and stratified sampling
are commonly used in previous defect prediction studies [22,77-79].
To mitigate the impact of the random division treatment on the experi-
mental results and produce a general conclusion, we repeat this process
30 times on each project by reshuffling the module order. Therefore,
for each parameter combination, we run KPWE 30 times and record the
average indicator values. Finally, the optimal combination of parame-
ters w and q is determined by the best average F-measure value. In this
work, we report the average values of the four indicators on 30-rounds
experiments.
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Table 2

Statistics of the NASA dataset.
Projects #F #M #D (%)D Projects #F #M #D (%)D
CM1 37 327 42 12.84 MW1 37 251 25 9.96
KC1 21 1162 294 25.30 PC1 37 696 55 7.90
KC3 39 194 36 18.56 PC3 37 1073 132 12.30
MC1 38 1847 36 1.95 PC4 37 1276 176 13.79
MC2 39 125 44 35.20 PC5 38 1679 459 27.34
Table 3

The feature description and abbreviation for PROMISE dataset.

1. Weighted Methods per Class (WMC)

2. Depth of Inheritance Tree (DIT)

3. Number of Children (NOC)

4. Coupling between Object Classes (CBO)
5. Response for a Class (RFC)

6. Lack of Cohesion in Methods (LOCM)
7. Lack of Cohesion in Methods (LOCM3)
8. Number of Public Methods (NPM)

9. Data Access Metric (DAM)

10. Measure of Aggregation (MOA)

11.

12

13.
14.
15.
16.
17.
18.
19.

2

(=]

Measure of Functional Abstraction (MFA)
. Cohesion Among Methods of Class (CAM)
Inheritance Coupling (IC)

Coupling Between Methods (CBM)
Average Method Complexity (AMC)
Afferent Couplings (Ca)

Efferent Couplings (Ce)

Greatest Value of CC (Max_CC)
Arithmetic mean value of CC (Avg_CC)

. Lines of Code (LOC)

The description of the common feature for NASA dataset.

. Line count of code
. Count of blank lines

Count of comments

Number of operators
. Number of operands

©ONOU S WN =

10. Halstead_Length

. Count of code and comments

. Line count of executable code

. Number of unique operators
. Number of unique operands

—_

11. Halstead_Volume

12. Halstead_Level

13. Halstead_Difficulty

14. Halstead_Content

15. Halstead_Effort

16. Halstead_Error_Estimate

17. Halstead_Programming_Time
18. Cyclomatic_Complexity

19. Design_Complexity

20. Essential Complexity

(=]

Table 6

Basic indicators for defect prediction.

Predicted as defective

Predicted as defective-free

Actual defective TP FN

Actual defective-free ~ FP N

pd (recall) %
FP

pf FP+TN
it TP

precision F

Table 5

The specific features for each project of NASA dataset.

4.5. Statistical test method

To statistically analyze the performance between our method KPWE
and other baseline methods, we perform the non-parametric Frideman
test with the Nemenyi’s post-hoc test [80] at significant level 0.05 over
all projects. The Friedman test evaluates whether there exist statisti-
cally significant differences among the average ranks of different meth-
ods. Since Friedman test is based on performance ranks of the methods,
rather than actual performance values, therefore it makes no assump-
tions on the distribution of performance values and is less susceptible to
outliers [33,81]. The test statistic of the Friedman test can be calculated

as follows:
L 2
(ZARZ— L(L+1) >
j=1

J 4
where N denotes the total number of the projects, L denotes the num-
ber of methods needed to be compared, AR; = % Z,]i . R{ denotes the
average rank of method j on all projects and R{ denotes the rank of jth
method on the ith project. 72> obeys the z? distribution with L — 1 de-
gree of freedom [82]. Since the original Friedman test statistic is too
conservative, its variant z; is usually used to conduct the statistic test.

12N
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The parameter settings of the used machine learning classifiers.

Classifier =~ Parameter settings

NB Estimator: kernel estimator
RF Number of generated tree: 10, Number of variables for random feature selection: 2
BP Layer: 3, Learning rate: 0.1, Maximal number of iterations: 2000, Tolerant error: 0.004
SVM Kernel function: Gaussian RBF, Kernel parameter: 2-'°,27°, 24, Cost parameter: 22,271,212
NN Number of neighbors used: 1
LR The distribution used: normal
CART The minimal number of observations per tree leaf: 1
Table 8

Training Time of classifiers on promise dataset (in Seconds).

Projects  NB RF LR CART  BP SVM ELM WELM
ant 0.085 0.181 0.019 0.030 2.933 8.089 0.008 0.003
arc 0.084 0.174  0.040 0.016 8.444 3.651 0.003  0.006
camel 0.084 0.171 0.050 0.050 9.050 21.985 0.061 0.004
ivy 0.086 0.168 0.014 0.020 6.222 5.233 0.006 0.002
jedit 0.100 0.168  0.032 0.034  4.414 7.869 0.008  0.007
log4j 0.066 0.150 0.007 0.014 0.465 2.181 0.000 0.000
lucene 0.088 0.000 0.073 0.004 0.666 7.887 0.006 0.003
poi 0.085 0.000 0.043 0.005 0.663 10.196 0.004 0.003
prop-6 0.086 0.170 0.144 0.056 11.793 14.179 0.042 0.003
redaktor 0.082 0.171 0.044 0.023 0.645 2.793 0.000 0.000
synapse 0.081 0.170 0.021 0.020 5.761 3.912 0.003 0.000
tomcat 0.082 0.206 0.023 0.058  6.267 21.958  0.055  0.005
velocity 0.087 0.170 0.012 0.017 14.742 4.154 0.003 0.000
xalan 0.080 0.223 0.024 0.077 6.836 26.410 0.028 0.011
xerces 0.084 0.192 0.026 0.039  3.898 8.112 0.006  0.008
Table 9

Training time of classifiers on nasa dataset (in Seconds).

Projects  NB RF LR CART  BP SVM ELM WELM
cm1 0.004 0175 1.902 0.094 8.551 6.960 0.030  0.061
KC1 0.014 0.294 0.027 0.112 5.316 88.619 0.176 0.005
KC3 0.004 0.167 1.755 0.07 18.519 3.996 0.003 0.040
MC1 0.662  0.263 2939 0.204 131.473  95.002 0.309  0.108
MC2 0.669 0.15 1.065 0.049 1.791 2.696 0.003 0.036
MwW1 0.629 0.152 1.848 0.053 86.102 4.585 0.006 0.031
PC1 0.643 0198 2151 0.115 3.285 20.158 0.041  0.054
PC3 0.681 0.257 0.424 0.218 127.702 50.87 0.147 0.061
PC4 0.630 0.261 2.658 0.216 53.239 65.151 0.09 0.073
PC5 0.666 0.351 0.246 0.438 113.32 179.318 0.283 0.087
Table 10

Average indicator values of KPWE and seven basic classifiers with KPCA on two datasets and across

all projects.

Dataset Indicator KPNB KPNN KPRF  KPLR KPCART KPBP KPSVM  KPWE

PROMISE  F-measure  0.426  0.423  0.361  0.410  0.396 0.419  0.391 0.500

G-measure 0525  0.523 0360 0.453  0.484 0.478  0.376 0.660

MCC 0.284 0.257 0235 0.292  0.222 0.260  0.280 0.374

AUC 0.699 0.624 0.696 0.716  0.630 0.672  0.648 0.764

NASA F-measure  0.354 0.336  0.267 0.325 0.315 0352 0.310 0.410

G-measure  0.476 ~ 0.477  0.264  0.387  0.425 0.429  0.287 0.611

MCC 0.248  0.216 0201 0.234 0.176 0.242  0.230 0.296

AUC 0.708  0.596  0.693  0.698  0.606 0.684  0.655 0.754

ALL F-measure  0.410  0.403 0340 0.391  0.377 0.403  0.372 0.480

G-measure  0.513  0.512 0338 0.438 0.471 0.467  0.355 0.649

MCC 0.276  0.248 0228 0.279  0.212 0.256  0.269 0.356

AUC 0701  0.618 0.695 0712  0.625 0.675  0.650 0.761
7 is calculated as the following formula: values? for the F distribution and then determine whether to accept
or reject the null hypothesis (i.e., all methods perform equally on the

(N =Drp projects).

(34) If the null hypothesis is rejected, it means that the performance dif-

FENC-D-1,

7 obeys the F-distribution with L — 1 and (L — 1)(N — 1) degrees of
freedom. Once 7 value is calculated, we can compare 75 against critical
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ferences among different methods are nonrandom, then a so-called Ne-

2 http://www.socr.ucla.edu/applets.dir/f_table.html.
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Fig. 4. Box-plots of four indicators for KPWE and seven basic classifiers with KPCA across all 44 projects.
Table 11
Average indicator values of KPWE and its five variants with WELM on two datasets and
across all projects.
Dataset Indicator ELM  PCAELM  KPCAELM WELM PCAWELM KPWE
PROMISE F-measure 0.382 0.388 0.467 0.374 0.385 0.500
G-measure 0.470 0.486 0.567 0.556 0.571 0.660
MCC 0.174  0.183 0.342 0.182  0.200 0.374
AUC 0.617 0.624 0.702 0.629 0.639 0.745
NASA F-measure 0.322 0.324 0.365 0.330 0.333 0.410
G-measure  0.458  0.451 0.475 0.550  0.550 0.611
MCC 0.164 0.164 0.263 0.184 0.188 0.296
AUC 0.612 0.611 0.679 0.626 0.629 0.754
ALL F-measure 0.369 0.374 0.444 0.364 0.373 0.480
G-measure 0.468 0.478 0.546 0.555 0.566 0.649
McCC 0.172 0.179 0.324 0.183 0.197 0.356
AUC 0.616 0.621 0.697 0.628 0.637 0.747
menyi’s post-hoc test is performed to check which specific method dif- where g, ; is a critical value that related to the number of methods L
fers significantly [33]. For each pair of methods, this test uses the aver- and the significance level a. The critical values are available online.®
age rank of each method and checks whether the rank difference exceeds The Frideman test with the Nemenyi’s post-hoc test is widely used in
a Critical Difference (CD) which is calculated with the following formula: previous studies [33,81,83-88].
L(L+1) . . o
CD=gq,; v 35) http://www.cin.ufpe.br/~fatc/AM/Nemenyi_critval.pdf.
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Table 12
Average indicator values of KPWE and eight feature selection methods with WELM on two datasets and across all
projects.
Dataset Indicator CS FS 1G ReF NBWrap NNWrap LRWrap RFWrap KPWE
PROMISE F-measure 0.347 0.415 0.349 0.415 0.427 0.435 0.425 0.431 0.500
G-measure 0.482 0.574 0.482 0.574 0.588 0.605 0.582 0.597 0.660
MCC 0.139 0.257 0.142 0.255 0.271 0.283 0.271 0.277 0.374
AUC 0.590 0.680 0.588 0.674 0.688 0.692 0.689 0.690 0.764
NASA F-measure 0.297 0.360 0.301 0.366 0.353 0.378 0.365 0.369 0.410
G-measure 0.510 0.568 0.515 0.578 0.573 0.603 0.581 0.591 0.611
MCC 0.152 0.247 0.157 0.243 0.228 0.265 0.242 0.252 0.296
AUC 0.618 0.685 0.606 0.685 0.681 0.688 0.679 0.679 0.754
ALL F-measure 0.336 0.403 0.338 0.404 0.410 0.422 0.411 0.417 0.480
G-measure 0.488 0.572 0.490 0.575 0.585 0.604 0.582 0.595 0.649
MCC 0.142 0.255 0.145 0.252 0.261 0.279 0.265 0.271 0.356
AUC 0.596 0.681 0.592 0.676 0.686 0.691 0.687 0.688 0.761
CD =1.583 ; R . . CD =1.583 ; g . _
Friedman p-value: 9.419e-25 Friedman p-value: 1.062e-33
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
L n 1 n 1 n 1 n 1 1 n 1 n 1 L n 1 n 1 n 1 n 1 n 1 n 1 n 1
KPWE KPRF KPWE J KPRF
KPNB KPCART KPNN L—— KPSVM
KPBP KPSVM KPNB KPLR
KPNN KPLR KPCART KPBP
(a) F-measure (b) G-measure
CD =1.583 ; g . . CD =1.583 ; R . -
Friedman p-value: 5.177e-27 Friedman p-value: 7.206e-40
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
L 1 1 1 1 1 1 1 L 1 1 1 1 1 1
KPWE —— L———— KPCART KPWE J L——— KPNN
KPLR KPRF KPLR KPCART
KPNB KPNN KPNB KPSVM
KPSVM KPBP KPRF KPBP

(c) MCC

(d) AUC

Fig. 5. Comparison of KPWE against seven basic classifiers with KPCA using Friedman test and Nemenyi’s post-hoc test in terms of four indicators.

However, the main drawback of post-hoc Nemenyi test is that it
may generate overlapping groups for the methods that are compared,
not completely distinct groups, which means that a method may be-
long to multiple significantly different groups [44,88]. In this work, we
utilize the strategy in [88] to address this issue. More specifically, un-
der the assumption that the distance (i.e., the difference between two
average ranks) between the best average rank and the worst rank is
2 times larger than CD value, we divide the methods into three non-
overlapping groups: (1) The method whose distance to the best average
rank is less than CD belongs to the top rank group; (2) The method
whose distance to the worst average rank is less than CD belongs to
the bottom rank group; (3) The other methods belong to the middle
rank group. And if the distance between the best average rank and the
worst rank is larger than 1 time but less than 2 times CD value, we di-
vide the methods into 2 non-overlapping groups: The method belongs
to the top rank group (or bottom rank group) if its average rank is
closer to the best average rank (or the worst average rank). In addi-
tion, if the distance between the best average rank and the worst rank
is less than CD value, all methods belong to the same group. Using
this strategy, the generating groups are non-overlapping significantly
different.
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5. Performance evaluation

5.1. Answer to RQI: the efficiency of ELM, WELM and some classic
classifiers.

Since many previous defect prediction studies applied classic classi-
fiers as prediction models [33,44], in this work, we choose seven repre-
sentative classifiers, including Naive Bayes (NB), Nearest Neighbor (NN),
Random Forest (RF), Logistic Regression (LR), Classification and Regression
Tree (CART), Back Propagation neural networks (BP) and Support Vector
Machine (SVM), and compare their efficiency with ELM and WELM.

The parameter settings of the classifiers are detailed as follows. For
NB, we use the kernel estimator that achieves better F-measure values
on most projects through our extensive experiments. For RF, we set the
number of generated trees to 10, the number of variables for random
feature selection to 2, and do not limit the maximum depth of the trees,
as suggested in [11]. BP is implemented using the neural networks tool-
box in MATLAB with a three-layered and fully-connected network ar-
chitecture. The learning rate is initialized to 0.1. Since how to select an
optimal number of hidden nodes is still an open question [89], we con-
duct extensive experiments on the benchmark dataset and find that BP



Z. Xu et al.

F-measure

0.8

0.6

0.5F - - -

0.21

0.1 L ! L 1 ! -
. ELM PCAELM KPCAELM WELM PCAWELM KPWE

MCC

0.6

0.5

0.4 [} ° ¢}

0.3r

0.2

L L L 1 ! L
0. ELM PCAELM KPCAELM WELM PCAWELM KPWE

Information and Software Technology 106 (2019) 182-200

G-measure
0.8
.................... (ST E—
0.6
) °
0.4F o
o
0.2
o
* *
¥ x
I k3 I I L I
0 ELM PCAELM KPCAELM WELM PCAWELM KPWE
AUC
0.
0.8
0.7
0.6

L L L L T L
ELM PCAELM KPCAELM WELM PCAWELM KPWE

Fig. 6. Box-plots of four indicators for KPWE and its variants on NASA dataset.

can achieve the best F-measure with less than 80 hidden nodes on the
vast majority of the projects. Thus we set the number of hidden nodes
from 5 to 80 with an increment of 5. The algorithm terminates when the
number of iterations is above 2000 or the tolerant error is below 0.004.
Other network parameters is set with the default values. The optimal
number of hidden nodes is determined based on the best F-measure.

For SVM, we also choose the Gaussian RBF as the kernel function,
and set the kernel parameter wg,, ), = 279,277, ..., 2% while cost param-
eter C =272,271,...,2!2 as suggested in [90]. Similarly, the optimal
parameter combination is obtained according to the best performance
through the grid search. For other classifiers, we use the default pa-
rameter values. Table 7 tabulates the parameter setting of the seven
basic classifiers. The experiments are conducted on a workstation with
a 3.60 GHz Intel i7-4790 CPU and 8.00 GB RAM.

Since NN is a lazy classifier that does not need to build a model
with the training set in advance, it has no training time [91].
Tables 8 and 9 present the training times of ELM, WELM and the baseline
classifiers on PROMISE dataset and NASA dataset, respectively. Note
that the value 0 means the training time of the classifier is less than
0.0005 s. For the project with multiple versions, we only report the av-
erage training time across the versions. From Table 8, we observe that,
on PROMISE dataset, the training time of WELM, less than 0.01 s on
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14 projects, is lower than the baseline classifiers on most projects. More
specifically, the training time of NB, RF, LR, and CART, less than 0.3 s,
is a little bit longer than that of ELM and WELM except for the time of
RF on project lucene and poi, while the training time of ELM and WELM
are much shorter than that of BP and SVM. In particular, WELM runs
nearly 200 (for poi) to 30,000 (for velocity) times faster than BP while
600 (for arc) to 8500 (for velocity) times faster than SVM. The training
time between ELM and WELM has a slight difference. From Table 9, we
find that, on NASA dataset, WELM takes less than 0.1 seconds to finish
training a model on 9 projects. ELM and WELM run faster than the six
classifiers except for NB on CM1 project. Particularly, WELM runs 50
(for MC2) to 2700 (for MW1) times faster than BP while 100 (for KC3)
to 17,000 (for KC1) times faster than SVM.

Discussion: The short training time of ELM and WELM is due to the
following reasons. First, the weights of the input layer and the bias of the
hidden layer in ELM are randomly assigned without iterative learning.
Second, the weights of the output layer are solved by an inverse opera-
tion without iteration. They empower ELM to train the model quickly.
Since WELM only adds one step for assigning different weights to the
defective and non-defective modules when building the model, it intro-
duces little additional computation cost. Therefore, the training time of
ELM and that of WELM are very similar. The superiority of the training
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Fig. 7. Comparison of KPWE against its five variants with Friedman test and Nemenyi’s post-hoc test in terms of four indicators.

speed of ELM and WELM will be more significant when they are applied
to larger datasets.

Summary: Compared with the basic classifiers, ELM and WELM are
more efficient to train the prediction model, especially towards BP
and SVM, whereas the differences of the efficiency between ELM,
WELM and other classifiers are small.

5.2. Answer to RQ2: the prediction performance of KPWE and the basic
classifiers with KPCA.

Table 10 presents the average indicator values of KPWE and the
seven baseline methods on PROMISE dataset, NASA dataset, and across
all 44 projects of the two datasets. Fig. 4 depicts the box-plots of four
indicators for the eight methods across all 44 projects. The detailed re-
sults, including the optimal kernel parameter, the number of hidden
nodes, the performance value for each indicator on each project and the
corresponding standard deviation for all research questions are avail-
able on our online supplementary materials.* From Table 10 and Fig. 4,
we have the following observations.

First, from Table 10, the results show that our method KPWE
achieves the best average performance in terms of all indicators on
two datasets and across all 44 projects. More specifically, across all 44
projects, the average F-measure value (0.480) by KPWE yields improve-
ments between 17.1% (for KPNB) and 41.2% (for KPRF) with an average
improvement of 25.1%, the average G-measure value (0.649) by KPWE
gains improvements between 26.5% (for KPNB) and 92.0% (for KPRF)
with an average improvement of 50.4%, the average MCC value (0.356)
by KPWE achieves improvements between 27.6% (for KPLR) and 67.9%
(for KPCART) with an average improvement of 42.2%, and the average
AUC value (0.761) gets improvements between 6.9% (for KPLR) and
23.1% (for KPNN) with an average improvement of 14.2% compared
against the seven classic classifiers with KPCA.

Second, Fig. 4 demonstrates that the median values of all four indica-
tors by KPWE are superior to that by the seven baseline methods across
all 44 projects. In particular, the median AUC by KPWE is even higher
than or similar to the maximum AUC by KPNN, KPCART, and KPBP.

4 https://sites.google.com/site/istkpwe.
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Third, Fig. 5 visualizes the results of the Friedman test with Ne-
menyi’s post-hoc test for KPWE and the seven baseline methods in terms
of the four indicators. Groups of the methods that are significantly differ-
ent are with different colors. The results of the Friedman test show that
the p values are all less than 0.05, which means that there exist signifi-
cant differences among the eight methods in terms of all four indicators.
The results of the post-hoc test show that KPWE always belongs to the
top rank group in terms of all indicators. In addition, KPLR belongs to
the top rank group in terms of AUC. These observations indicate that
KPWE performs significantly better than the seven baseline methods ex-
pect for the KPLR method in terms of AUC.

Discussion: Among all the methods that build prediction models with
the features extracted by KPCA, KPWE outperforms the baseline meth-
ods because it uses an advanced classifier that considers the class imbal-
ance in the defect data while traditional classifiers could not well copy
with the imbalanced data.

Summary: Our method KPWE performs better than KPCA with the
seven basic classifiers. On average, compared with the seven base-
line methods, KPWE achieves 24.2%, 47.3%, 44.3%, 14.4% perfor-
mance improvement in terms of the four indicators respectively over
PROMISE dataset, 28.1%, 63.6%, 35.6%, 14.2% performance im-
provement in terms of the four indicators respectively over NASA
dataset, and 25.1%, 50.4%, 42.2%, 14.2% performance improve-
ment in terms of the four indicators respectively across all 44
projects.

5.3. Answer to RQ3: the prediction performance of KPWE and its variants.

Table 11 presents the average indicator values of KPWE and its five
variants on PROMISE dataset, NASA dataset, and across all 44 projects
of the two datasets. Fig. 6 depicts the box-plots of four indicators for the
six methods across all 44 projects. From Table 11 and Fig. 6, we have
the following findings.

First, from Table 11, the results show that our method KPWE
achieves the best average performance in terms of all indicators on
two datasets and across all 44 projects. More specifically, across all 44
projects, the average F-measure value (0.480) by KPWE yields improve-
ments between 8.1% (for KPCAELM) and 31.9% (for WELM) with an av-
erage improvement of 25.4%, the average G-measure value (0.649) by
KPWE gains improvements between 14.7% (for PCAWELM) and 38.7%
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Fig. 8. Box-plots of four indicators for KPWE and eight feature selection methods with WELM across all 44 projects.

(for ELM) with an average improvement of 25.0%, the average MCC
value (0.356) by KPWE achieves improvements between 9.9% (for KP-
CAELM) and 107.0% (for ELM) with an average improvement of 78.2%,
and the average AUC value (0.761) gets improvements between 9.2%
(for KPCAELM) and 23.5% (for ELM) with an average improvement of
19.2% compared with the five variants.

Second, Fig. 6 shows that KPWE outperforms the five variants in
terms of the median values of all indicators across all 44 projects. In
particular, the median G-measure by KPWE is higher than or similar
to the maximum G-measure (do not consider the noise points) by the
baseline methods except for PCAWELM, the median MCC by KPWE is
higher than the maximum MCC by ELM, WELM and PCAWELM, and the
median AUC by KPWE is higher than the maximum AUC by the baseline
methods except for PCAWELM.

Third, Fig. 7 visualizes the results of the Friedman test with Ne-
menyi’s post-hoc test for KPWE and its five variants in terms of the four
indicators. The p values of the Friedman test are all less than 0.05, which
means that there exist significant differences among the six methods in
terms of all four indicators. The results of the post-hoc test show that
KPWE also always belongs to the top rank 1 group in terms of all indi-
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cators. In addition, KPCAELM belong to the top rank 1 group in terms
of F-measure and MCC. These observations indicate that in terms of
G-measure and AUC, KPWE significantly performs better than the five
variants, whereas in terms of F-measure and MCC, KPWE does not per-
form significantly better than KPCAELM.

Discussion: On the one hand, KPWE and KPCAELM are superior to
PCAWELM and PCAELM in terms of all four indicators respectively, on
the other hand, KPWE and KPCAELM perform better than WELM and
ELM, respectively on both datasets, all these mean that the features ex-
tracted by the nonlinear method KPCA are beneficial to ELM and WELM
for the improvement of defect prediction performance compared against
the raw features or the features extracted by linear method PCA. More-
over, KPWE, PCAWELM and WELM are superior to KPCAELM, PCAELM
and ELM respectively which denotes that WELM is more appropriate to
the class imbalanced defect data than ELM.

Summary: KPWE precedes its five variants. On average, compared
with the five downgraded variants, KPWE achieves 26.1%, 25.4%,
84.2%, 19.2% performance improvement in terms of the four in-
dicators respectively over PROMISE dataset, 22.7%, 23.9%, 58.4%,
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Fig. 9. Comparison of KPWE against the eight feature selection based baseline methods with Friedman test and Nemenyi’s post-hoc test in terms of four indicators.

19.6% performance improvement in terms of the four indicators re-
spectively over NASA dataset, and 25.4%, 25.0%, 78.2%, 19.2% per-
formance improvement in terms of the four indicators respectively
across all 44 projects.

5.4. Answer to RQ4: the prediction performance of KPWE and other
feature selection methods with WELM.

Here, we choose eight representative feature selection methods, in-
clude four filter-based feature ranking methods and four wrapper-based
feature subset selection methods, for comparison. The filter-based meth-
ods are Chi-Square (CS), Fish Score (FS), Information Gain (IG) and ReliefF
(ReF). The first two methods are both based on statistics, the last two
are based on entropy and instance, respectively. These methods have
been proven to be effective for defect prediction [19,92]. For wrapper-
based methods, we choose four commonly-used classifiers (i.e., NB, NN,
LR, and RF) and F-measure to evaluate the performance of the selected
feature subset. The four wrapper methods are abbreviated as NBWrap,
NNWrap, LRWrap, and RFWrap. Following the previous work [19,38],
we set the number of selected features to [logym], where m is the number
of original features.

Table 12 presents the average indicator values of KPWE and eight
feature selection methods with WELM on PROMISE dataset, NASA
dataset, and across all 44 projects of the two datasets. Fig. 8 depicts the
box-plots of four indicators for the nine methods across all 44 projects.
Some findings are observed from Table 12 and Fig. 8 as follows.

First, from Table 12, the results show that our method KPWE
achieves the best average performance in terms of all indicators on
two datasets and across all 44 projects. More specifically, across all 44
projects, the average F-measure value (0.480) by KPWE yields improve-
ments between 13.7% (for NNWrap) and 42.9% (for CS) with an average
improvement of 23.2%, the average G-measure value (0.649) by KPWE
gains improvements between 7.5% (for NNWrap) and 33.0% (for CS)
with an average improvement of 16.4%, the average MCC value (0.356)
by KPWE achieves improvements between 27.6% (for NNWrap) and
150.7% (for CS) with an average improvement of 63.4%, and the aver-
age AUC value (0.761) gets improvements between 10.1% (for NNWrap)
and 27.7% (for CS) with an average improvement of 15.4% compared
with eight feature selection methods with WELM.

Second, Fig. 8 manifests that superiority of KPWE compared with the
eight baseline methods in terms of the median values of all four indi-
cators across all 44 projects. In particular, the median AUC by KPWE is
higher than the maximum AUC by CS and IG. In addition, we can also
observe that the performance of the four wrapper-based feature sub-
set selection methods are generally better than the filter-based feature
subset selection methods, which is consistent with the observation in
previous study [19].

Third, Fig. 9 visualizes the results of the Friedman test with Ne-
menyi’s post-hoc test for KPWE and the eight feature selection based
baseline methods in terms of the four indicators. There exist significant
differences among the nine methods in terms of all four indicators since
the p values of the Friedman test are all less than 0.05. The results of
the post-hoc test illustrate that KPWE always belongs to the top rank
group in terms of all indicators. In addition, NNWrap belongs to the top
rank group in terms of G-measure. These observations show that KPWE
performs significantly better than the eight baseline methods expect for
the NNWrap method in terms of G-measure.

Discussion: The reason why the features extracted by KPCA are more
effective is that, the eight feature selection methods only select a subset
of original features that are not able to excavate the important informa-
tion hidden behind the raw data, whereas KPCA can eliminate the noise
in the data and extract the intrinsic structures of the data that are more
helpful to distinguish the class labels of the modules.

Summary: KPWE outperforms the eight feature selection methods
with WELM. On average, compared with the eight baseline meth-
ods, KPWE achieves 24.3%, 18.6%, 71.0%, 16.0% performance im-
provement in terms of the four indicators respectively over PROMISE
dataset, 18.5%, 8.5%, 38.3%, 13.7% performance improvement in
terms of the four indicators respectively over NASA dataset, and
23.2%, 16.4%, 63.4%, 15.4% performance improvement in terms
of the four indicators respectively across all 44 projects.

5.5. Answer to RQ5: the prediction performance of KPWE and other
imbalanced learning methods.

Here, we employ 12 classic imbalanced learning methods based
on data sampling strategies. These methods first use Random
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Fig. 10. Box-plots of four indicators for KPWE and 21 class imbalanced learning methods across all 44 projects.

Under-sampling (RU), Random Over-sampling (RO) or SMOTE (SM) tech-
niques to rebalance the modules of the two classes in the training set,
then, four popular classifiers as the same in RQ4 (i.e., NB, NN, LR, and
RF) are applied to the rebalanced training set. The method name is the
combination of the abbreviation of the sampling strategy and the used
classifier. Also, we employ two widely-used ensemble learning meth-
ods (i.e., Bagging (Bag) and Adaboost (Ada) for comparison. Moreover,
we use other seven imbalanced learning methods, Coding-based Ensem-
ble Learning (CEL) [93], Systematically developed Forest with cost-sensitive
Voting (SysFV) [94], Cost-Sensitive decision Forest with cost-sensitive Vot-
ing (CSFV) [95], Balanced CSFV (BCSFV) [57], Asymmetric Partial Least
squares classifier (APL) [96], EasyEnsemble (Easy) [97], and BalanceCas-
cade (Bal) [97] as the baseline methods. Note that the last three methods
have not yet been applied to defect prediction but have been proved to
achieve promising performance for imbalanced data in other domains.
Among these method, SysFV, CSFV amd BCSFV are cost-sensitive based
imbalanced learning methods, while Easy and Bal combine the sampling
strategies and ensemble learning methods.

Table 13 presents the average indicator values of KPWE and the 21
class imbalanced baseline methods on PROMISE dataset, NASA dataset,
and across all 44 projects of the two datasets. Fig. 10 depicts the box-
plots of four indicators for the 22 methods across all 44 projects. We
describe the findings from Table 13 and Fig. 10 as follows.
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First, from Table 13, the results show that our method KPWE
achieves the best average performance in terms of F-measure and MCC
on two datasets and across all 44 projects. More specifically, across all
44 projects, the average F-measure value (0.480) by KPWE yields im-
provements between 7.6% (for CEL) and 34.5% (for RULR) with an av-
erage improvement of 19.6%, the average MCC value (0.356) by KPWE
gains improvements between 17.9% (for Easy) and 140.5% (for SMNB)
with an average improvement of 56.5%. However, Easy, Bal, APL out-
perform our method KPWE in terms of average G-measure values and
Easy outperforms KPWE in terms of the average AUC values across all
44 projects. Overall, KPWE achieves average improvements of 23.4%
and 11.2% over the 21 baseline methods in terms of average G-measure
and AUC, respectively.

Second, Fig. 10 depicts that KPWE is superior to the 21 baseline
methods in terms of the median F-measure and MCC across all 44
projects. In particular, the median MCC by KPWE is higher than the max-
imum MCC by RONB and SMNB. In addition, the median G-measure by
KPWE is similar to that by APL and Bal, whereas the median G-measure
and AUC by KPWE are only a little lower than those by Easy.

Third, Fig. 11 visualizes the results of the Friedman test with Ne-
menyi’s post-hoc test for KPWE and the 21 class imbalanced learning
methods in terms of the four indicators. As the p values of the Friedman
test are all less than 0.05, there exist significant differences among the
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Fig. 11. Comparison of KPWE against the 21 class imbalanced learning methods with Friedman test and Nemenyi’s post-hoc test in terms of four indicators.

22 methods in terms of all four indicators. The results of the post-hoc
test illustrate that KPWE also belongs to the top rank group in terms
of all indicators. However, in terms of F-measure, G-measure MCC and
AUC, KPWE does not perform significantly well compared with seven,
seven, four and six baseline methods respectively in which the common
methods are Easy and Bal. These observations manifest that KPWE, Easy
and Bal belong to the top rank group and perform no statistically sig-
nificant differences with each other in terms of all four indicators. Since
this is the first work to investigate the performance of method Easy and
methods Bal on software defect data, the experimental results indicate
that they are also potentially effective methods for defect prediction as
our method KPWE is.

Discussion: The under-sampling methods may neglects the potentially
useful information contained in the ignored non-defective modules, and
the over-sampling methods may cause the model over-fitting by adding
some redundancy defective modules. In addition, data sampling based
imbalanced learning methods usually change the data distribution of the
defect data. From this point, the cost-sensitive learning methods (such
as our KPWE method) which does not change the data distribution are
better choices for imbalanced defect data. Considering the main draw-
back of under-sampling methods, Easy and Bal sample multiple subsets
from the majority class and then use each of these subsets to train an
ensemble. Finally, they combine all weak classifiers of these ensembles
into a final output [97]. The two methods can wisely explore these ig-
nored modules, which enable them to perform well on the imbalanced
data.

Summary: KPWE performs better than the 21 baseline methods espe-
cially in terms of F-measure and MCC. On average, compared with
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the baseline methods, KPWE achieves 19.1%, 23.9%, 57.7%, 11.3%
performance improvement in terms of the four indicators respec-
tively over PROMISE dataset, 21.0%, 23.2%, 53.2%, 11.4% perfor-
mance improvement in terms of the four indicators respectively over
NASA dataset, and 19.6%, 23.4%, 56.5%, 11.2% performance im-
provement in terms of the four indicators respectively across all 44
projects. In addition, KPWE performs no statistically significant dif-
ferences compared with Easy and Bal across all 44 projects in terms
of all four indicators.

6. Threats to validity
6.1. External validity

External validity focuses on whether our experimental conclusions
will vary on different projects. We conduct experiments on total 44
projects of two defect datasets to reduce the threat for this kind of va-
lidity. In addition, since the features of our benchmark dataset are all
static product metrics and the modules are abstracted at class level (for
PROMISE dataset) and component level (for NASA dataset), we cannot
claim that our experimental conclusions can be generalized to the defect
datasets with process metrics and the modules extracted at file level.

6.2. Internal validity

We implement most baseline methods using the function library of
machine learning and toolbox in MATLAB to reduce the potential influ-
ence of the incorrect implementations on our experimental results. In
addition, we tune the optimal parameter values, such as the width of
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Table 13

Average indicator values of KPWE and 21 class imbalanced learning methods with WELM on two datasets and across all projects.
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kernel parameter in KPCA and the number of hidden nodes in WELM,
from a relatively wide range of tested options. Nevertheless, a more
carefully controlled experiment for the parameter selection should be
considered.

6.3. Construct validity

Although we employ four extensively-used indicators to evaluate the
performances of KPWE and the baseline methods for defect prediction,
these indicators do not take the effort of inspecting cost into considera-
tion. We will use the effect-aware indicators to evaluate the effectiveness
of our method in future work.

6.4. Conclusion validity

We use a state-of-the-art double Scott-Knott ESD method to check
whether the differences between KPWE and the baseline methods are
significant. With this statistic test, the assessment towards the superior-
ity of KPWE is more rigorous.

7. Conclusion

In this work, we propose a new defect prediction framework KPWE
that comprises feature extraction stage and model construction stage.
In the first stage, to handle the complex structures in defect data, we
learn the representative features by mapping the original data into a la-
tent feature space with a nonlinear feature extraction method KPCA.
The mapped features in the new space can better represent the raw
data. In the second stage, we construct a class imbalanced classifier on
the extracted features by introducing a state-of-the-art learning algo-
rithm WELM. Besides the advantages of fine generalization ability and
less prone to local optimum, WELM strengthens the impact of defective
modules by assigning them higher weights. We have carefully evaluated
KPWE on 34 projects from PROMISE dataset and 10 projects from NASA
dataset with four indicators. The experimental results show that KPWE
exhibits superiority over 41 baselines methods, especially in terms of
F-measure, MCC and AUC.

In future work, we will provide guidelines on deciding the optimal
number of hidden nodes and kernel parameter values for KPWE, as they
vary for different projects. In addition, we plan to explore the impact
of the different kernel functions in KPCA and the different activation
functions in WELM on the performance of KPWE.
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