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Context: Software defect prediction strives to detect defect-prone software modules by mining the historical data. 

Effective prediction enables reasonable testing resource allocation, which eventually leads to a more reliable 

software. 

Objective: The complex structures and the imbalanced class distribution in software defect data make it challeng- 

ing to obtain suitable data features and learn an effective defect prediction model. In this paper, we propose a 

method to address these two challenges. 

Method: We propose a defect prediction framework called KPWE that combines two techniques, i.e., Kernel 

Principal Component A nalysis ( KPCA ) and Weighted Extreme Learning Machine ( WELM ). Our framework consists 

of two major stages. In the first stage, KPWE aims to extract representative data features. It leverages the KPCA 

technique to project the original data into a latent feature space by nonlinear mapping. In the second stage, KPWE 

aims to alleviate the class imbalance. It exploits the WELM technique to learn an effective defect prediction model 

with a weighting-based scheme. 

Results: We have conducted extensive experiments on 34 projects from the PROMISE dataset and 10 projects from 

the NASA dataset. The experimental results show that KPWE achieves promising performance compared with 41 

baseline methods, including seven basic classifiers with KPCA, five variants of KPWE, eight representative feature 

selection methods with WELM, 21 imbalanced learning methods. 

Conclusion: In this paper, we propose KPWE, a new software defect prediction framework that considers the 

feature extraction and class imbalance issues. The empirical study on 44 software projects indicate that KPWE is 

superior to the baseline methods in most cases. 
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. Introduction 

Software testing is an important part of software development life
ycle for software quality assurance [1,2] . Defect prediction can assist
he quality assurance teams to reasonably allocate the limited testing re-
ources by detecting the potentially defective software modules (such as
lasses, files, components) before releasing the software product. Thus,
ffective defect prediction can save testing cost and improve software
uality [3–5] . 

The majority of existing researches leverages various machine learn-
ng techniques to build defect prediction methods. In particular, many
☆ Fully documented templates are available in the elsarticle package on CTAN . 
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lassification techniques have been used as defect prediction models,
uch as decision tree [6] , Naive Bayes [7] , random forest [8,9] , near-
st neighbor [10] , support vector machine [11,12] , neural network
13–15] , logistic regression [16] , and ensemble methods [17,18] . Since
rrelevant and redundant features in the defect data may degrade the
erformance of the classification models, different feature selection
ethods have been applied to select an optimal feature subset for defect
rediction [19] . These methods can be roughly divided into three cate-
ories: the filter-based feature ranking methods, wrapper-based feature
ubset evaluation methods, and extraction-based feature transformation
ethods, such as Principal Component Analysis (PCA) [20] . 

.1. Motivation 

Selecting optimal features that can reveal the intrinsic structures
f the defect data is crucial to build effective defect prediction mod-
October 2018 
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Fig. 1. An example of the merit of feature mapping. 
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M  
ls. The filter-based and wrapper-based feature selection methods only
elect a subset of the original features without any transformation [21] .
owever, such raw features may not properly represent the essential

tructures of raw defect data [22] . Being a linear feature extraction
ethod, PCA has been widely used to transform the raw features to
 low-dimensional space where the features are the linear combinations
f the raw ones [23–26] . PCA performs well when the data are linearly
eparable and follow a Gaussian distribution, whereas the real defect
ata may have complex structures that can not be simplified in a linear
ubspace [27,28] . Therefore, the features extracted by PCA are usually
ot representative, and cannot gain anticipated performance for defect
rediction [19,29] . To address this issue, we exploit KPCA [30] , a non-
inear extension of PCA, to project the original data into a latent high-
imensional feature space in which the mapped features can properly
haracterize the complex data structures and increase the probability of
inear separability of the data. When the original data follow an arbitrary
istribution, the mapped data by KPCA obey an approximate Gaussian
istribution. Fig. 1 shows the merit of the feature mapping, where the
ata are linearly inseparable within the low-dimensional space but lin-
arly separable within the high-dimensional space. Existing studies have
hown that KPCA outperforms PCA [31,32] . 

Although many classifiers have been used for defect prediction, Less-
ann et al. [33] suggested that the selection of classifiers for defect
rediction needs to consider additional criteria, such as computational
fficiency and simplicity, because they found that there are no sig-
ificant performance differences among most defect prediction classi-
ers. Moreover, class imbalance is prevalent in defect data in which the
on-defective modules usually outnumber the defective ones. It makes
ost classifiers tend to classify the minority samples (i.e., the defec-

ive modules) as the majority samples (i.e., the non-defective modules).
owever, existing defect prediction methods did not address this prob-

em well, thus leading to unsatisfactory performance. In this work, we
xploit Single-hidden Layer Feedforward Neural networks (SLFNs) called
eighted Extreme Learning Machine (WELM) [34] to overcome this chal-

enge. WELM assigns higher weights to defective modules to emphasize
heir importance. In addition, WELM is efficient and convenient since it
nly needs to adaptively set the number of hidden nodes while other pa-
ameters are randomly generated instead being tuned through iterations
ike traditional neural networks [35] . 

In this paper, we propose a new defect prediction framework called
PWE that leverages the two aforementioned techniques: KPCA and
ELM. This framework consists of two major stages. First, KPWE ex-

loits KPCA to map original defect data into a latent feature space. The
apped features in the space can well represent the original ones. Sec-

nd, with the mapped features, KPWE applies WELM to build an efficient
nd effective defect prediction model that can handle imbalanced defect
ata. 

We conduct extensive experiments on 44 software projects from two
atasets (PROMISE dataset and NASA dataset) with four indicators, i.e.,
-measure, G-measure, MCC, and AUC. On average, KPWE achieves av-
rage F-measure, G-measure, MCC, and AUC values of 0.500, 0.660,
.374, and 0.764 on PROMISE dataset, of 0.410, 0.611, 0.296 and
183 
.754 on NASA dataset, and of 0.480, 0.649, 0.356, and 0.761 across
4 projects of the two datasets. We compare KPWE against 41 base-
ine methods. The experimental results show that KPWE achieves sig-
ificantly better performance (especially in terms of F-measure, MCC,
nd AUC) compared with all baseline methods. 

.2. Organization 

The remainder of this paper is organized as follows.
ection 2 presents the related work. In Section 3 , we describe the
roposed method in detail. Section 4 elaborates the experimental
etup. In Section 5 , we report the experimental results of performance
erification. Section 6 discusses the threats to validity. In Section 7 , we
raw the conclusion. 

. Related work 

.1. Feature selection for defect prediction 

Some recent studies have investigated the impact of feature selection
ethods on the performance of defect prediction. Song et al. [4] sug-

ested that feature selection is an indispensable part of a general de-
ect prediction framework. Menzies et al. [7] found that Naive Bayes
lassifier with Information Gain based feature selection can get good
erformances over 10 projects from the NASA dataset. Shivaji et al.
36,37] studied the performance of filter-based and wrapper-based fea-
ure selection methods for bug prediction. Their experiments showed
hat feature selection can improve the defect prediction performance
ven remaining 10% of the original features. Wold et al. [20] investi-
ated four filter-based feature selection methods on a large telecom-
unication system and found that the Kolmogorov–Smirnov method

chieved the best performance. Gao et al. [38] explored the performance
f their hybrid feature selection framework based on seven filter-based
nd three feature subset search methods. They found that the reduced
eatures would not adversely affect the prediction performance in most
ases. Chen et al. [39] modelled the feature selection as a multi-objective
ptimization problem: minimizing the number of selected features and
aximizing the defect prediction performance. They conducted experi-
ents on 10 projects from PROMISE dataset and found that their method

utperformed three wrapper-based feature selection methods. However,
heir method was less efficient than two wrapper-based methods. Catal
nd Diri [40] conducted an empirical study to investigate the impact of
he dataset size, the types of feature sets and the feature selection meth-
ds on defect prediction. To study the impact of feature selection meth-
ds, they first utilized a Correlation-based Feature Selection (CFS) method
o obtain the relevant features before training the classification mod-
ls. The experiments on five projects from NASA dataset showed that
he random forest classifier with CFS performed well on large project
atasets and the Naive Bayes classifier with CFS worked well on small
rojects datasets. Xu et al. [19] conducted an extensive empirical com-
arison to investigate the impact of 32 feature selection methods on
efect prediction performance over three public defect datasets. The ex-
erimental results showed that the performances of these methods had
ignificant differences on all datasets and that PCA performed the worst.
hotra et al. [41] extended Xu et al.’s work and conducted a large-scale
mpirical study to investigate the defect prediction performance of 30
eature selection methods with 21 classification models. The experimen-
al results on 18 projects from NASA and PROMISE datasets suggested
hat correlation-based filter-subset feature selection method with best-
rst search strategy achieved the best performance among all other fea-
ure selection methods on majority projects. 

.2. Various classifiers for defect prediction 

Various classification models have been applied to defect prediction.
alhotra [42] evaluated the feasibility of seven classification models for
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efect prediction by conducting a systematic literature review on the
tudies that published from January 1991 to October 2013. They dis-
ussed the merits and demerits of the classification models and found
hat they were superior to traditional statistical models. In addition,
hey suggested that new methods should be developed to further im-
rove the defect prediction performance. Malhotra [43] used the statis-
ical tests to compare the performance differences among 18 classifica-
ion models for defect prediction. They performed the experiments on
even Android software projects and stated that these models have sig-
ificant differences while support vector machine and voted perceptron
odel did not perform well. Lessmann et al. [33] conducted an em-
irical study to investigate the effectiveness of 21 classifiers on NASA
ataset. The results showed that the performances of most classifiers
ave no significant differences. They suggested that some additional
actors, such as the computational overhead and simplicity, should be
onsidered when selecting a proper classifier for defect prediction. Gho-
ra et al. [44] expanded Lessmann’s experiment by applying 31 classi-
ers to two versions of NASA dataset and PROMISE dataset. The results
howed that these classifiers achieved similar results on the noisy NASA
ataset but different performance on the clean NASA and the PROMISE
atasets. Malhotra and Raje [45] investigated the performances of 18
lassifiers on six projects with object-oriented features and found that
aive Bayes classifier achieved the best performance. Although some

esearchers introduced KPCA into defect prediction [46–48] recently,
hey aimed at building asymmetrical prediction models with the kernel
ethod by considering the relationship between principal components

nd the class labels. In this work, we leverage KPCA as a feature selec-
ion method to extract representative features for defect prediction. In
ddition, Mesquita et al. [49] proposed a method based on ELM with re-
ect option (i.e., IrejoELM) for defect prediction. The results were good
ecause they abandoned the modules that have contradictory decisions
or two designed classifiers. However, in practice, such modules should
e considered. 

.3. Class imbalanced learning for defect prediction 

Since class imbalance issue can hinder defect prediction techniques
o achieve satisfactory performance, researchers have proposed differ-
nt imbalanced learning methods to mitigate such negative effects. Sam-
ling based methods and cost-sensitive based methods are the most stud-
ed imbalanced learning methods for defect prediction. 

For the sampling based imbalanced learning methods, there are two
ain sampling strategies to balance the data distribution. One is to de-

rease the number of non-defective modules (such as under-sampling
echnique), the other is to increase the number of the defective modules
ith redundant modules (such as over-sampling technique) or synthetic
odules (such as Synthetic Minority Over-sampling Technique, SMOTE) .
amei et al. [50] investigated the impact of four sampling methods on

he performance of four basic classification models. They conducted ex-
eriments on two industry legacy software systems and found that these
ampling methods can benefit linear and logistic models but were not
elpful to neural network and classification tree models. Bennin et al.
51] assessed the statistical and practical significance of six sampling
ethods on the performance of five basic defect prediction models. Ex-
eriments on 10 projects indicated that these sampling methods had
tatistical and practical effects in terms of some performance indica-
ors, such as Pd, Pf, G-mean, but had no effect in terms of AUC. Bennin
t al. [52] explored the impact of a configurable parameter (i.e, the per-
entage of defective modules) in seven sampling methods on the per-
ormance of five classification models. The experimental results showed
hat this parameter can largely impact the performance (except AUC)
f studied prediction models. Due to the contradictory conclusions of
revious empirical studies about which imbalanced learning methods
erformed the best in the context of defect prediction models, Tan-
ithamthavorn et al. [53] conducted a large-scale empirical experiment
n 101 project versions to investigate the impact of four popularly-used
184 
ampling techniques on the performance and interpretation of seven
lassification models. The experimental results explained that these sam-
ling methods increased the completeness of Recall indicator but had
o impact on the AUC indicator. In addition, the sampling based im-
alanced learning methods were not conducive to the understanding
owards the interpretation of the defect prediction models. 

The cost-sensitive based imbalanced learning methods alleviate the
ifferences between the instance number of two classes by assigning dif-
erent weights to the two types of instances. Khoshgottar et al. [54] pro-
osed a cost-boosting method by combining multiple classification mod-
ls. Experiments on two industrial software systems showed that the
oosting method was feasible for defect prediction. Zheng [55] pro-
osed three cost-sensitive boosting methods to boost neural networks for
efect prediction. Experimental results showed that threshold-moving-
ased boosting neural networks can achieve better performance, espe-
ially for object-oriented software projects. Liu et al. [56] proposed
 novel two-stage cost-sensitive learning method by utilizing cost in-
ormation in the classification stage and the feature selection stage.
xperiments on seven projects of NASA dataset demonstrated its superi-
rity compared with the single-stage cost-sensitive classifiers and cost-
lind feature selection methods. Siers and Islam [57] proposed two cost-
ensitive classification models by combining decision trees to minimize
he classification cost for defect prediction. The experimental results on
ix projects of NASA dataset showed the superiority of their methods
ompared with six classification methods. The WELM technique used in
ur work belongs to this type of imbalanced learning methods. 

. KPWE: The new framework 

The new framework consists of two stages: feature extraction and
odel construction. This section first describes how to project the orig-

nal data into a latent feature space using the nonlinear feature trans-
ormation technique KPCA, and then presents how to build the WELM
odel with the extracted features by considering the class imbalance

ssue. 

.1. Feature extraction based on KPCA 

In this stage, we extract representative features with KPCA to re-
eal the potentially complex structures in the defect data. KPCA uses
 nonlinear mapping function 𝜑 to project each raw data point within
 low-dimensional space into a new point within a high-dimensional
eature space F . 

Given a dataset { 𝑥 𝑖 , 𝑦 𝑖 } , 𝑖 = 1 , 2 , … , 𝑛, where 𝑥 𝑖 = [ 𝑥 𝑖 1 , 𝑥 𝑖 2 , … , 𝑥 𝑖𝑚 ] T ∈
 

𝑚 denotes the feature set and 𝑦 𝑖 = [ 𝑦 𝑖 1 , 𝑦 𝑖 2 , … , 𝑦 𝑖𝑐 ] T ∈ ℜ 

𝑐 ( 𝑐 = 2 in this
ork) denotes the label set. Assuming that each data point x i is mapped

nto a new point 𝜑 ( x i ) and the mapped data points are centralized, i.e.,

1 
𝑛 

∑𝑛 

𝑖 =1 𝜑 ( 𝑥 𝑖 ) = 0 (1) 

The covariance matrix C of the mapped data is: 

𝐂 = 

1 
𝑛 

∑𝑛 

𝑖 =1 𝜑 ( 𝑥 𝑖 ) 𝜑 ( 𝑥 𝑖 ) 
T (2) 

To perform the linear PCA in F , we diagonalize the covariance ma-
rix C , which can be treated as a solution of the following eigenvalue
roblem 

𝐕 = 𝜆𝐕 , (3)

here 𝜆 and V denote the eigenvalues and eigenvectors of C , respec-
ively. 

Since all solutions V lie in the span of the mapped data points
 ( 𝑥 1 ) , 𝜑 ( 𝑥 2 ) , … , 𝜑 ( 𝑥 𝑛 ) , we multiply both sides of Eq. (3) by 𝜑 ( x l ) 

T as 

 ( 𝑥 𝑙 ) T 𝐂𝐕 = 𝜆𝜑 ( 𝑥 𝑙 ) T 𝐕 , ∀𝑙 = 1 , 2 , … , 𝑛 (4)

Meanwhile, there exist coefficients 𝛼1 , 𝛼2 , … , 𝛼𝑛 that linearly express
he eigenvectors V of C with 𝜑 ( 𝑥 1 ) , 𝜑 ( 𝑥 2 ) , … , 𝜑 ( 𝑥 𝑛 ) , i.e., 

𝐕 = 

∑𝑛 

𝑗=1 𝛼𝑗 𝜑 ( 𝑥 𝑗 ) (5) 
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Fig. 2. Feature extraction with KPCA. 
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Eq. (4) can be rewritten as following formula by substituting
qs. (2) and ( 5 ) into it 

1 
𝑛 
𝜑 ( 𝑥 𝑙 ) T 

∑𝑛 

𝑖 =1 𝜑 ( 𝑥 𝑖 ) 𝜑 ( 𝑥 𝑖 ) 
T ∑𝑛 

𝑗=1 𝛼𝑗 𝜑 ( 𝑥 𝑗 ) = 𝜆𝜑 ( 𝑥 𝑙 ) T 
∑𝑛 

𝑗=1 𝛼𝑗 𝜑 ( 𝑥 𝑗 ) (6) 

Let the kernel function 𝜅( x i , x j ) be 

( 𝑥 𝑖 , 𝑥 𝑗 ) = 𝜑 ( 𝑥 𝑖 ) T 𝜑 ( 𝑥 𝑗 ) (7)

Then Eq. (6) is rewritten as 

1 
𝑛 

∑𝑛 

𝑙=1 ,𝑖 =1 𝜅( 𝑥 𝑙 , 𝑥 𝑖 ) 
∑𝑛 

𝑖 =1 ,𝑗=1 𝛼𝑗 𝜅( 𝑥 𝑖 , 𝑥 𝑗 ) = 𝜆
∑𝑛 

𝑙=1 ,𝑗=1 𝛼𝑗 𝜅( 𝑥 𝑙 , 𝑥 𝑗 ) (8) 

Let the kernel matrix K with size n × n be 

 𝑖,𝑗 = 𝜅( 𝑥 𝑖 , 𝑥 𝑗 ) (9)

Then Eq. (8) is rewritten as 

 

2 𝛼 = 𝑛𝜆𝐊 𝛼, (10)

here 𝛼 = [ 𝛼1 , 𝛼2 , … , 𝛼𝑛 ] T . 
The solution of Eq. (10) can be obtained by solving the eigenvalue

roblem 

 𝛼 = 𝑛𝜆𝛼 (11)

or nonzero eigenvalues 𝜆 and corresponding eigenvectors 𝜶. As we can
ee, all the solutions of Eq. (11) satisfy Eq. (10) . 

As mentioned above, we first assume that the mapped data points
re centralized. If they are not centralized, the Gram matrix 𝐾̃ be used
o replace the kernel matrix K as 

̃
 = 𝐊 − 1 𝑛 𝐊 − 𝐊 1 𝑛 + 1 𝑛 𝐊 1 𝑛 , (12)

here 1 n denotes the n × n matrix with all values equal to 1/ n . 
Thus, we just need to solve the following formula 

̃
 𝛼 = 𝑛𝜆𝛼 (13) 

To extract the nonlinear principal components of a new test data
oint 𝜑 ( x new ), we can compute the projection of the k th kernel compo-
ent by 

𝐕 

𝑘 ⋅ 𝜑 ( 𝑥 𝑛𝑒𝑤 ) = 

∑𝑛 

𝑖 =1 𝛼
𝑘 
𝑖 
𝜑 ( 𝑥 𝑖 ) T 𝜑 ( 𝑥 𝑛𝑒𝑤 ) = 

∑𝑛 

𝑖 =1 𝛼
𝑘 
𝑖 
𝜅( 𝑥 𝑖 , 𝑥 𝑛𝑒𝑤 ) (14) 

Fig. 2 depicts the process of KPCA for feature extraction. KPCA sim-
lifies the feature mapping by calculating the inner product of two data
oints with kernel function instead of calculating the 𝜑 ( x i ) explicitly.
arious kernel functions, such as Gaussian Radial Basic Function (RBF)
ernel and polynomial kernel, can induce different nonlinear mapping.
he RBF kernel is commonly used in image retrieval and pattern recog-
ition domains [58,59] that is defined as 

( 𝑥 𝑖 , 𝑥 𝑗 ) = exp 

( 

− 

‖𝑥 𝑖 − 𝑥 𝑗 ‖2 
2 𝜎2 

) 

, (15)
185 
here ‖ · ‖ denotes the l 2 norm and 2 𝜎2 = 𝜔 denotes the width of the
aussian RBF function. 

To eliminate the underlying noise in the data, when performing the
CA in the latent feature space F , we maintain the most important prin-
ipal components that capture at least 95% of total variances of the data
ccording to their cumulative contribution rates [60] . Finally, the data
re mapped into a p -dimensional space. 

After completing feature extraction, the original training data are
ransformed to a new dataset { 𝑥 ′

𝑖 
, 𝑦 𝑖 } ∈ ℜ 

𝑝 ×ℜ 

𝑐 ( 𝑖 = 1 , 2 , … , 𝑛 ). 

.2. ELM 

Before formulizing the WELM, we first introduce the basic ELM. With
he mapped dataset { 𝑥 ′

𝑖 
, 𝑦 𝑖 } ∈ ℜ 

𝑝 ×ℜ 

𝑐 ( 𝑖 = 1 , 2 , … , 𝑛 ), the output of the
eneralized SLFNs with q hidden nodes and activation function h ( x ′ ) is
ormally expressed as 

𝑜 𝑖 = 

∑𝑞 

𝑘 =1 𝛽𝑘 ℎ 𝑘 ( 𝑥 
′
𝑖 
) = 

∑𝑞 

𝑘 =1 𝛽𝑘 ℎ ( 𝑤 𝑘 , 𝑏 𝑘 , 𝑥 
′
𝑖 
) , (16) 

here 𝑖 = 1 , 2 , … , 𝑛, 𝑤 𝑘 = [ 𝑤 𝑘 1 , 𝑤 𝑘 2 , … , 𝑤 𝑘𝑝 ] T denotes the input weight
ector connecting the input nodes and the k th hidden node, b k denotes
he bias of the k -th hidden node, 𝛽𝑘 = [ 𝛽𝑘 1 , 𝛽𝑘 2 , … , 𝛽𝑘𝑐 ] T denotes the out-
ut weight vector connecting the output nodes and the k th hidden node,
nd o i denotes the expected output of the i th sample. The commonly-
sed activation functions in ELM include sigmoid function, Gaussian
BF function, hard limit function, and multiquadric function [61,62] .
ig. 3 depicts the basic architecture of ELM. 

Eq. (16) can be equivalently rewritten as 

 𝛽 = 𝐎 , (17)

here H is called the hidden layer output matrix of the SLFNs and is
efined as 

𝐇 = 𝐇 ( 𝑤 1 , … , 𝑤 𝑞 , 𝑏 1 , … , 𝑏 𝑞 , 𝑥 
′
1 , … , 𝑥 ′

𝑛 
) = 

⎡ ⎢ ⎢ ⎣ 
𝐡 ( 𝑥 ′1 ) 
⋮ 

𝐡 ( 𝑥 ′
𝑛 
) 

⎤ ⎥ ⎥ ⎦ 
= 

⎡ ⎢ ⎢ ⎣ 
ℎ ( 𝑤 1 , 𝑏 1 , 𝑥 

′
1 ) ⋯ ℎ ( 𝑤 𝑞 , 𝑏 𝑞 , 𝑥 

′
1 ) 

⋮ ⋱ ⋮ 
ℎ ( 𝑤 1 , 𝑏 1 , 𝑥 

′
𝑛 
) ⋯ ℎ ( 𝑤 𝑞 , 𝑏 𝑞 , 𝑥 

′
𝑛 
) 

⎤ ⎥ ⎥ ⎦ 
𝑛 × 𝑞 

, 

(18) 

here the i th row of H denotes the output vector of the hidden layer
ith respect to input sample 𝑥 ′

𝑖 
, and the k th column of H denotes the

utput vector of the k th hidden node with respect to the input samples
 

′
1 , 𝑥 

′
2 , … , 𝑥 ′

𝑛 
. 
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𝜷 denotes the weight matrix connecting the hidden layer and the
utput layer, which is defined as 

= 

⎡ ⎢ ⎢ ⎣ 
𝛽T 1 
⋮ 
𝛽T 
𝑞 

⎤ ⎥ ⎥ ⎦ 
𝑞 × 𝑐 

(19)

O denotes the expected label matrix, and each row represents the
utput vector of one sample. O is defined as 

 = 

⎡ ⎢ ⎢ ⎣ 
𝑜 T 1 
⋮ 
𝑜 𝑛 

T 

⎤ ⎥ ⎥ ⎦ = 

⎡ ⎢ ⎢ ⎣ 
𝑜 11 ⋯ 𝑜 1 𝑐 
⋮ ⋱ ⋮ 
𝑜 𝑛 1 ⋯ 𝑜 𝑛𝑐 

⎤ ⎥ ⎥ ⎦ 
𝑛 × 𝑐 

(20)

Since the target of training SLFNs is to minimize the output error,
.e., approximating the input samples with zero error as follows ∑𝑛 

𝑖 =1 ‖𝑜 𝑖 − 𝑦 𝑖 ‖ = ‖𝐎 − 𝐘 ‖ = 0 (21)

here 𝐘 = 

⎡ ⎢ ⎢ ⎣ 
𝑦 T 1 
⋮ 
𝑦 𝑛 

T 

⎤ ⎥ ⎥ ⎦ = 

⎡ ⎢ ⎢ ⎣ 
𝑦 11 ⋯ 𝑦 1 𝑐 
⋮ ⋱ ⋮ 
𝑦 𝑛 1 ⋯ 𝑦 𝑛𝑐 

⎤ ⎥ ⎥ ⎦ 
𝑛 × 𝑐 

denotes the target output ma-

rix. 
Then, we need to solve the following formula 

 𝛽 = 𝐘 (22)

Huang et al. [35,63] proved that, for ELM, the weights w k of the
nput connection and the bias b k of the hidden layer node can be ran-
omly and independently designated. Once these parameters are as-
igned, Eq. (22) is converted into a linear system and the output weight
atrix 𝜷 can be analytically determined by finding the least-square so-

ution of the linear system, i.e., 

in 
𝛽

‖𝐇 𝛽 − 𝐘 ‖ (23)

The optimal solution of Eq. (23) is 

̂ = 𝐇 

†𝐘 = ( 𝐇 

𝑇 𝐇 ) (24)

here H † denotes the Moore–Penrose generalized inverse of the hidden
ayer output matrix H [64,65] . The obtained 𝛽 can ensure minimum
raining error, get optimal generalization ability and avoid plunging into
ocal optimum since 𝛽 is unique [35] . This solution can also be obtained
ith Karush–Kuhn–Tucker (KKT) theorem [66] . 

Finally, we get the classification function of ELM as 

( 𝑥 ′) = 𝐡 ( 𝑥 ′) ̂𝛽 = 𝐡 ( 𝑥 ′) 𝐇 

†𝐘 (25)

.3. Model construction based on WELM 

For imbalanced data, to consider the different importance of the ma-
ority class samples (i.e., defective modules) and the minority class sam-
les (i.e., non-defective modules) when building the ELM classifier, we
efine a n × n diagonal matrix W , whose diagonal element W ii denotes
he weight of training sample 𝑥 ′

𝑖 
. More precisely, if 𝑥 ′

𝑖 
belongs to the

ajority class, the weight W ii is relatively lower than the sample that
elongs to the minority class. According to the KKT theorem, Eq. (24) is
ewritten as 

̂ = 𝐇 

†𝐘 = ( 𝐇 

T 𝐖𝐇 ) −1 𝐇 

T 𝐖𝐓 (26)

Then, Eq. (25) becomes 

( 𝑥 ′) = 𝐡 ( 𝑥 ′) ̂𝛽 = 𝐡 ( 𝑥 ′)( 𝐇 

T 𝐖𝐇 ) −1 𝐇 

T 𝐖𝐓 (27)

There are mainly two schemes for assigning the weights to the sam-
les of the two classes as follows [34] : 

𝟏 = 𝐖 𝐢𝐢 = 

{ 

1∕ 𝑛 𝑃 if 𝑥 ′
𝑖 
∈ minority class 

1∕ 𝑛 𝑁 if 𝑥 ′
𝑖 
∈ majority class , (28)
186 
r 

𝟐 = 𝐖 𝐢𝐢 = 

{ 

0 . 618∕ 𝑛 𝑃 if 𝑥 ′
𝑖 
∈ minority class 

1∕ 𝑛 𝑁 if 𝑥 ′
𝑖 
∈ majority class , (29)

here W1 and W2 denote two weighting schemes, n P and n N indicate
he number of samples of the minority and majority class, respectively.
he golden ratio of 0.618:1 between the majority class and the minority
lass in scheme W2 represents the perfection in nature [67] . 

. Experimental setup 

In this section, we elaborate the experimental setup, including the
esearch Questions (RQs) , benchmark datasets, the performance indica-

ors, and the experimental design. 

.1. Research questions 

We design the following five research questions to evaluate our
PWE method. 

RQ1: How efficient are ELM and WELM? 

As the computational cost is an important criterion to select the ap-
ropriate classifier for defect prediction in practical application [33,63] ,
his question is designed to evaluate the efficiency of ELM and its variant

ELM compared with some typical classifiers. 
RQ2: How effective is KPWE compared with basic classifiers with KPCA?

Since our method KPWE combines feature transformation and an
dvanced classifier, this question is designed to explore the effectiveness
f this new classifier compared against the typical classifiers with the
ame process of feature extraction. We use the classic classifiers in RQ1
ith KPCA as the baseline methods. 

RQ3: Is KPWE superior to its variants? 

Since the two techniques KPCA and WELM used in our method are
ariants of the linear feature extraction method PCA and the original
LM respectively, this question is designed to investigate whether our
ethod is more effective than other combinations of these four tech-
iques. To answer this question, we first compare KPWE against the
aseline methods that combine WELM with PCA (short for PCAWELM)
nd none feature extraction (short for WELM). It can be used to inves-
igate the different performance among the methods using non-linear,
inear and none feature extraction for WELM. Then, we compare KPWE
gainst the baseline methods that combine ELM with KPCA, PCA, and
one feature extraction (short for KPCAELM, PCAELM, and ELM, re-
pectively). It can be used to compare the performance of our method
gainst its downgraded version methods that do not consider the class
mbalance issue. All these baseline methods are treated as the variants
f KPWE. 

RQ4: Are the selected features by KPCA more effective for performance

mprovement than that by other feature selection methods? 

To obtain the representative features of the defect data, previous re-
earches [19,41] used various feature selection methods to select an op-
imal feature subset to replace the original set. This question is designed
o investigate whether the features extracted by KPCA are more effec-
ive in improving the defect prediction performance than the features se-
ected by other feature selection methods. To answer this question, we
elect some classic filter-based feature ranking methods and wrapper-
ased feature subset selection methods with the same classifier WELM
or comparison. 

RQ5: Is the prediction performance of KPWE comparable to that of other

mbalanced learning methods? 

Since our method KPWE is customized to address the class imbal-
nce issue for software defect data, this question is designed to study
hether our method can achieve better or at least comparable perfor-
ance than existing imbalanced learning methods. To answer this ques-

ion, we employ several sampling-based, ensemble learning-based, and
ost-sensitive-based imbalanced learning methods for comparison. 
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Table 1 

Statistics of the PROMISE dataset. 

Projects # M # D (%)D Projects # M # D (%)D 

ant − 1.3 125 20 16.00 lo4j − 1.0 135 34 25.19 

ant − 1.4 178 40 22.47 log4j − 1.1 109 37 33.94 

ant − 1.5 293 32 10.92 lucene − 2.0 195 91 46.67 

ant − 1.6 351 92 26.21 poi − 2.0 314 37 11.78 

ant − 1.7 745 166 22.28 prop − 6 660 66 10.00 

arc 234 27 11.54 redaktor 176 27 15.34 

camel − 1.0 339 13 3.83 synapse − 1.0 157 16 10.19 

camel − 1.2 608 216 35.53 synapse − 1.1 222 60 27.03 

camel − 1.4 872 145 16.63 synapse − 1.2 256 86 33.59 

camel − 1.6 965 188 19.48 tomcat 858 77 8.97 

ivy − 1.4 241 16 6.64 velocity − 1.6 229 78 34.06 

ivy − 2.0 352 40 11.36 xalan − 2.4 723 110 15.21 

jedit − 3.2 272 90 33.09 xalan − 2.5 803 387 48.19 

jedit − 4.0 306 75 24.51 xalan − 2.6 885 411 46.44 

jedit − 4.1 312 79 25.32 xerces-init 162 77 47.53 

jedit − 4.2 367 48 13.08 xerces − 1.2 440 71 16.14 

jedit − 4.3 492 11 2.24 xerces − 1.3 453 69 15.23 
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.2. Benchmark dataset 

We conduct extensive experiments on 34 projects taken from an
pen-source PROMISE data repository, 1 which have been widely used
n many defect prediction studies [44,68,69] . These projects include
pen-source projects (such as ‘ant’ project), proprietary projects (such as

prop’ project) and academic projects (such as ‘redaktor’ project). Each
odule in the projects includes 20 object-oriented features and a depen-
ent variable that denotes the number of defects in the module. These
eatures are collected by Jureczko and Madeyski, Spinellis with Ckjm
ool [70,71] . We label the module as 1 if it contains one or more de-
ects. Otherwise, we label it as 0. In this work, we just select a subset
rom PROMISE data repository as our benchmark dataset. The selection
riteria are that: First, to ensure a certain amount of training set and test
et, we filter out the projects that have less than 100 modules. Second,
ince our method KPWE is designed to address the imbalanced defect
ata where the non-defective modules outnumber the defective ones, we
nly consider the projects whose defective ratios are lower than 50%. As
 result, 34 versions of 15 projects are selected and used in this study.
o investigate the generalization of our method to other datasets, we
urther conduct experiments on ten projects from NASA dataset which
s cleaned by Shepperd et al. [27] . Since there are two cleaned versions
D ′ and D ′′ ) of NASA dataset, in this work, we use the D ′′ version as our
enchmark dataset as in previous work [44] . 

Tables 1 and 2 summarize the basic information of the two datasets,
ncluding the number of features (# F), the number of modules (# M),
he number of defective modules (# D) and the defect ratios (% D). Note
hat we do not report the number of features for the projects in PROMISE
ataset since all of them contain 20 features. In addition, for PROMISE
ataset, the feature descriptions and corresponding abbreviations are
resented in Table 3 (CC is the abbreviations of Cyclomatic Complexity).
or NASA dataset, Table 4 depicts the common features among the 10
rojects and Table 5 tabulates the other specific features for each project
ith symbol 

√
. 

.3. Performance indicators 

We use F-measure, G-measure, Matthews Correlation Coefficient

MCC) and Area Under the ROC Curve (AUC) to measure the perfor-
ance of KPWE, because they are widely used in defect prediction

44,69,72,73] . The first three indicators can be deduced by some sim-
ler binary classification metrics as listed in Table 6 . 
1 http://openscience.us/repo/defect/ck/ . 

t  

w  

e

187 
Possibility of detection ( pd ) or recall is defined as the ratio of the
umber of defective modules that are correctly predicted to the total
umber of defective modules. 

Possibility of false alarm ( pf ) is defined as the ratio of the number of
efective modules that are incorrectly predicted to the total number of
on-defective modules. 

Precision is defined as the ratio of the number of defective modules
hat are correctly predicted to the total number of defective modules
hat are correctly and incorrectly predicted. 

F-measure, a trade-off between recall and precision , is defined as 

 - measure = 

2 ∗ recall ∗ precision 

recall + precision 
. (30) 

G-measure, a trade-off between pd and pf , is defined as 

 - measure = 

2 ∗ pd ∗ (1 − pf ) 
pd + (1 − pf ) 

. (31) 

MCC, a comprehensive indicator by considering TP, TN, FP , and FN ,
s defined as 

CC = 

TP ∗ TN − FP ∗ FN √
( TP + FP ) ∗ ( TP + FN ) ∗ ( TN + FP ) ∗ ( TN + FN ) 

. (32) 

AUC calculates the area under a ROC curve which depicts the relative
rade-off between pd (the y-axis) and pf (the x-axis) of a binary classifi-
ation. Different from the above three indicators which are based on the
remise that the threshold of determining a sample as positive class is
.5 by default, the value of AUC is independent of the decision thresh-
ld. More specifically, given a threshold, we can get a point pair ( pd,pf )
nd draw the corresponding position in the two-dimension plane. For all
ossible thresholds, we can get a set of such point pairs. The ROC curve
s made up by connecting all these points. The area under this curve is
sed to evaluate the classification performance. 

The greater values of the four indicators indicate better prediction
erformance. 

.4. Experimental design 

We perform substantial experiments to evaluate the effectiveness of
PWE. In the feature extraction phase, we choose the Gaussian RBF
s the kernel function for KPCA since it usually exhibits better perfor-
ances in many applications [58,59,74] . In terms of the parameter 𝜔 ,

.e., the width of the Gaussian kernel (as defined in Section 3.1 ), we
mpirically set a relatively wide range as 𝜔 = 10 2 , 20 2 , … , 100 2 . In the
odel construction phase, we also choose the Gaussian RBF as the ac-

ivation function for WELM because it is the preferred choice in many
pplications [59,75] . Since the number of hidden nodes q is far less than
he number of training sample n [35] , we set the number of hidden
odes from 5 to n with an increment of 5. So, for each project, there are
 𝑛 (10 × 𝑛 

5 ) combinations of 𝜔 and q in total. For the weighting scheme
f W , we adopt the second scheme W2 as described in Section 3.3 . For
ach project, we use the 50:50 split with stratified sampling to constitute
he training and test set. More specifically, we utilize stratified sampling
o randomly select 50% instances as the training set and the remaining
0% instances as the test set. The stratified sampling strategy guarantees
he same defect ratios of the training set and test set which conforms to
he actual application scenario. In addition, such sampling setting helps
educe sampling biases [76] . The 50:50 split and stratified sampling
re commonly used in previous defect prediction studies [22,77–79] .
o mitigate the impact of the random division treatment on the experi-
ental results and produce a general conclusion, we repeat this process
0 times on each project by reshuffling the module order. Therefore,
or each parameter combination, we run KPWE 30 times and record the
verage indicator values. Finally, the optimal combination of parame-
ers 𝜔 and q is determined by the best average F-measure value. In this
ork, we report the average values of the four indicators on 30-rounds

xperiments. 

http://openscience.us/repo/defect/ck/
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Table 2 

Statistics of the NASA dataset. 

Projects # F # M # D (%)D Projects # F # M # D (%)D 

CM1 37 327 42 12.84 MW1 37 251 25 9.96 

KC1 21 1162 294 25.30 PC1 37 696 55 7.90 

KC3 39 194 36 18.56 PC3 37 1073 132 12.30 

MC1 38 1847 36 1.95 PC4 37 1276 176 13.79 

MC2 39 125 44 35.20 PC5 38 1679 459 27.34 

Table 3 

The feature description and abbreviation for PROMISE dataset. 

1. Weighted Methods per Class (WMC) 11. Measure of Functional Abstraction (MFA) 

2. Depth of Inheritance Tree (DIT) 12. Cohesion Among Methods of Class (CAM) 

3. Number of Children (NOC) 13. Inheritance Coupling (IC) 

4. Coupling between Object Classes (CBO) 14. Coupling Between Methods (CBM) 

5. Response for a Class (RFC) 15. Average Method Complexity (AMC) 

6. Lack of Cohesion in Methods (LOCM) 16. Afferent Couplings (Ca) 

7. Lack of Cohesion in Methods (LOCM3) 17. Efferent Couplings (Ce) 

8. Number of Public Methods (NPM) 18. Greatest Value of CC (Max_CC) 

9. Data Access Metric (DAM) 19. Arithmetic mean value of CC (Avg_CC) 

10. Measure of Aggregation (MOA) 20. Lines of Code (LOC) 

Table 4 

The description of the common feature for NASA dataset. 

1. Line count of code 11. Halstead_Volume 

2. Count of blank lines 12. Halstead_Level 

3. Count of code and comments 13. Halstead_Difficulty 

4. Count of comments 14. Halstead_Content 

5. Line count of executable code 15. Halstead_Effort 

6. Number of operators 16. Halstead_Error_Estimate 

7. Number of operands 17. Halstead_Programming_Time 

8. Number of unique operators 18. Cyclomatic_Complexity 

9. Number of unique operands 19. Design_Complexity 

10. Halstead_Length 20. Essential_Complexity 

Table 6 

Basic indicators for defect prediction. 

Predicted as defective Predicted as defective-free 

Actual defective TP FN 

Actual defective-free FP TN 

pd ( recall ) 𝑇𝑃 

𝑇𝑃+ 𝐹𝑁 

pf 𝐹𝑃 

𝐹𝑃+ 𝑇𝑁 

precision 𝑇𝑃 

𝑇𝑃+ 𝐹𝑃 
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Table 5 

The specific features for each project of NASA dataset. 

Features CM1 KC1 KC3 M

21. Number_of_lines 
√ √ √

22. Cyclomatic_Density 
√ √ √

23. Branch_Count 
√ √ √ √

24. Essential_Density 
√ √ √

25. Call_Pairs 
√ √ √

26. Condition_Count 
√ √ √

27. Decision_Count 
√ √ √

28. Decision_Density 
√ √

29. Design_Density 
√ √ √

30. Edge_Count 
√ √ √

31. Global_Data_Complexity 
√ √

32. Global_Data_Density 
√ √

33. Maintenance_Severity 
√ √ √

34. Modified_Condition_Count 
√ √ √

35. Multiple_Condition_Count 
√ √ √

36. Node_Count 
√ √ √

37. Normalized_CC 
√ √ √

38. Parameter_Count 
√ √ √

39. Percent_Comments 
√ √ √

188 
.5. Statistical test method 

To statistically analyze the performance between our method KPWE
nd other baseline methods, we perform the non-parametric Frideman
est with the Nemenyi’s post-hoc test [80] at significant level 0.05 over
ll projects. The Friedman test evaluates whether there exist statisti-
ally significant differences among the average ranks of different meth-
ds. Since Friedman test is based on performance ranks of the methods,
ather than actual performance values, therefore it makes no assump-
ions on the distribution of performance values and is less susceptible to
utliers [33,81] . The test statistic of the Friedman test can be calculated
s follows: 

𝜒2 = 

12 𝑁 

𝐿 ( 𝐿 + 1) 

( 

𝐿 ∑
𝑗=1 

𝐴𝑅 

2 
𝑗 
− 

𝐿 ( 𝐿 + 1) 2 

4 

) 

, (33)

here N denotes the total number of the projects, L denotes the num-
er of methods needed to be compared, 𝐴𝑅 𝑗 = 

1 
𝑁 

∑𝑁 

𝑖 =1 𝑅 

𝑗 

𝑖 
denotes the

verage rank of method j on all projects and 𝑅 

𝑗 

𝑖 
denotes the rank of j th

ethod on the i th project. 𝜏𝜒2 obeys the 𝜒2 distribution with 𝐿 − 1 de-
ree of freedom [82] . Since the original Friedman test statistic is too
onservative, its variant 𝜏F is usually used to conduct the statistic test.
C1 MC2 MW1 PC1 PC3 PC4 PC5 √ √ √ √ √ √√ √ √ √ √ √√ √ √ √ √ √√ √ √ √ √ √√ √ √ √ √ √√ √ √ √ √ √√ √ √ √ √ √√ √ √ √ √√ √ √ √ √ √√ √ √ √ √ √√ √√ √√ √ √ √ √ √√ √ √ √ √ √√ √ √ √ √ √√ √ √ √ √ √√ √ √ √ √ √√ √ √ √ √ √√ √ √ √ √ √
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Table 7 

The parameter settings of the used machine learning classifiers. 

Classifier Parameter settings 

NB Estimator: kernel estimator 

RF Number of generated tree: 10, Number of variables for random feature selection: 2 

BP Layer: 3, Learning rate: 0.1, Maximal number of iterations: 2000, Tolerant error: 0.004 

SVM Kernel function: Gaussian RBF, Kernel parameter: 2 −10 , 2 −9 , , 2 4 , Cost parameter: 2 −2 , 2 −1 , 2 12 

NN Number of neighbors used: 1 

LR The distribution used: normal 

CART The minimal number of observations per tree leaf: 1 

Table 8 

Training Time of classifiers on promise dataset (in Seconds). 

Projects NB RF LR CART BP SVM ELM WELM 

ant 0.085 0.181 0.019 0.030 2.933 8.089 0.008 0.003 

arc 0.084 0.174 0.040 0.016 8.444 3.651 0.003 0.006 

camel 0.084 0.171 0.050 0.050 9.050 21.985 0.061 0.004 

ivy 0.086 0.168 0.014 0.020 6.222 5.233 0.006 0.002 

jedit 0.100 0.168 0.032 0.034 4.414 7.869 0.008 0.007 

log4j 0.066 0.150 0.007 0.014 0.465 2.181 0.000 0.000 

lucene 0.088 0.000 0.073 0.004 0.666 7.887 0.006 0.003 

poi 0.085 0.000 0.043 0.005 0.663 10.196 0.004 0.003 

prop-6 0.086 0.170 0.144 0.056 11.793 14.179 0.042 0.003 

redaktor 0.082 0.171 0.044 0.023 0.645 2.793 0.000 0.000 

synapse 0.081 0.170 0.021 0.020 5.761 3.912 0.003 0.000 

tomcat 0.082 0.206 0.023 0.058 6.267 21.958 0.055 0.005 

velocity 0.087 0.170 0.012 0.017 14.742 4.154 0.003 0.000 

xalan 0.080 0.223 0.024 0.077 6.836 26.410 0.028 0.011 

xerces 0.084 0.192 0.026 0.039 3.898 8.112 0.006 0.008 

Table 9 

Training time of classifiers on nasa dataset (in Seconds). 

Projects NB RF LR CART BP SVM ELM WELM 

CM1 0.004 0.175 1.902 0.094 8.551 6.960 0.030 0.061 

KC1 0.014 0.294 0.027 0.112 5.316 88.619 0.176 0.005 

KC3 0.004 0.167 1.755 0.07 18.519 3.996 0.003 0.040 

MC1 0.662 0.263 2.939 0.204 131.473 95.002 0.309 0.108 

MC2 0.669 0.15 1.065 0.049 1.791 2.696 0.003 0.036 

MW1 0.629 0.152 1.848 0.053 86.102 4.585 0.006 0.031 

PC1 0.643 0.198 2.151 0.115 3.285 20.158 0.041 0.054 

PC3 0.681 0.257 0.424 0.218 127.702 50.87 0.147 0.061 

PC4 0.630 0.261 2.658 0.216 53.239 65.151 0.09 0.073 

PC5 0.666 0.351 0.246 0.438 113.32 179.318 0.283 0.087 

Table 10 

Average indicator values of KPWE and seven basic classifiers with KPCA on two datasets and across 

all projects. 

Dataset Indicator KPNB KPNN KPRF KPLR KPCART KPBP KPSVM KPWE 

PROMISE F-measure 0.426 0.423 0.361 0.410 0.396 0.419 0.391 0.500 

G-measure 0.525 0.523 0.360 0.453 0.484 0.478 0.376 0.660 

MCC 0.284 0.257 0.235 0.292 0.222 0.260 0.280 0.374 

AUC 0.699 0.624 0.696 0.716 0.630 0.672 0.648 0.764 

NASA F-measure 0.354 0.336 0.267 0.325 0.315 0.352 0.310 0.410 

G-measure 0.476 0.477 0.264 0.387 0.425 0.429 0.287 0.611 

MCC 0.248 0.216 0.201 0.234 0.176 0.242 0.230 0.296 

AUC 0.708 0.596 0.693 0.698 0.606 0.684 0.655 0.754 

ALL F-measure 0.410 0.403 0.340 0.391 0.377 0.403 0.372 0.480 

G-measure 0.513 0.512 0.338 0.438 0.471 0.467 0.355 0.649 

MCC 0.276 0.248 0.228 0.279 0.212 0.256 0.269 0.356 

AUC 0.701 0.618 0.695 0.712 0.625 0.675 0.650 0.761 

𝜏

𝜏  

 

f  

v  

o  

p
 

f  

2 http://www.socr.ucla.edu/applets.dir/f_table.html . 
F is calculated as the following formula: 

𝐹 = 

( 𝑁 − 1) 𝜏𝜒2 

𝑁( 𝐿 − 1) − 𝜏𝜒2 
. (34)

𝜏F obeys the F-distribution with 𝐿 − 1 and ( 𝐿 − 1)( 𝑁 − 1) degrees of
reedom. Once 𝜏 value is calculated, we can compare 𝜏 against critical
F F 

189 
alues 2 for the F distribution and then determine whether to accept
r reject the null hypothesis (i.e., all methods perform equally on the
rojects). 

If the null hypothesis is rejected, it means that the performance dif-
erences among different methods are nonrandom, then a so-called Ne-

http://www.socr.ucla.edu/applets.dir/f_table.html
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Fig. 4. Box-plots of four indicators for KPWE and seven basic classifiers with KPCA across all 44 projects. 

Table 11 

Average indicator values of KPWE and its five variants with WELM on two datasets and 

across all projects. 

Dataset Indicator ELM PCAELM KPCAELM WELM PCAWELM KPWE 

PROMISE F-measure 0.382 0.388 0.467 0.374 0.385 0.500 

G-measure 0.470 0.486 0.567 0.556 0.571 0.660 

MCC 0.174 0.183 0.342 0.182 0.200 0.374 

AUC 0.617 0.624 0.702 0.629 0.639 0.745 

NASA F-measure 0.322 0.324 0.365 0.330 0.333 0.410 

G-measure 0.458 0.451 0.475 0.550 0.550 0.611 

MCC 0.164 0.164 0.263 0.184 0.188 0.296 

AUC 0.612 0.611 0.679 0.626 0.629 0.754 

ALL F-measure 0.369 0.374 0.444 0.364 0.373 0.480 

G-measure 0.468 0.478 0.546 0.555 0.566 0.649 

MCC 0.172 0.179 0.324 0.183 0.197 0.356 

AUC 0.616 0.621 0.697 0.628 0.637 0.747 

m  

f  

a  

a  

𝐶  

w  

a
T  

p

3 http://www.cin.ufpe.br/~fatc/AM/Nemenyi_critval.pdf . 
enyi’s post-hoc test is performed to check which specific method dif-
ers significantly [33] . For each pair of methods, this test uses the aver-
ge rank of each method and checks whether the rank difference exceeds
 Critical Difference (CD) which is calculated with the following formula:

𝐷 = 𝑞 𝛼,𝐿 

√ 

𝐿 ( 𝐿 + 1) 
6 𝑁 

, (35)
190 
here q 𝛼, L is a critical value that related to the number of methods L
nd the significance level 𝛼. The critical values are available online. 3 

he Frideman test with the Nemenyi’s post-hoc test is widely used in
revious studies [33,81,83–88] . 

http://www.cin.ufpe.br/~fatc/AM/Nemenyi_critval.pdf
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Table 12 

Average indicator values of KPWE and eight feature selection methods with WELM on two datasets and across all 

projects. 

Dataset Indicator CS FS IG ReF NBWrap NNWrap LRWrap RFWrap KPWE 

PROMISE F-measure 0.347 0.415 0.349 0.415 0.427 0.435 0.425 0.431 0.500 

G-measure 0.482 0.574 0.482 0.574 0.588 0.605 0.582 0.597 0.660 

MCC 0.139 0.257 0.142 0.255 0.271 0.283 0.271 0.277 0.374 

AUC 0.590 0.680 0.588 0.674 0.688 0.692 0.689 0.690 0.764 

NASA F-measure 0.297 0.360 0.301 0.366 0.353 0.378 0.365 0.369 0.410 

G-measure 0.510 0.568 0.515 0.578 0.573 0.603 0.581 0.591 0.611 

MCC 0.152 0.247 0.157 0.243 0.228 0.265 0.242 0.252 0.296 

AUC 0.618 0.685 0.606 0.685 0.681 0.688 0.679 0.679 0.754 

ALL F-measure 0.336 0.403 0.338 0.404 0.410 0.422 0.411 0.417 0.480 

G-measure 0.488 0.572 0.490 0.575 0.585 0.604 0.582 0.595 0.649 

MCC 0.142 0.255 0.145 0.252 0.261 0.279 0.265 0.271 0.356 

AUC 0.596 0.681 0.592 0.676 0.686 0.691 0.687 0.688 0.761 

(a) F-measure (b) G-measure

(c) MCC (d) AUC

Fig. 5. Comparison of KPWE against seven basic classifiers with KPCA using Friedman test and Nemenyi’s post-hoc test in terms of four indicators. 
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However, the main drawback of post-hoc Nemenyi test is that it
ay generate overlapping groups for the methods that are compared,
ot completely distinct groups, which means that a method may be-
ong to multiple significantly different groups [44,88] . In this work, we
tilize the strategy in [88] to address this issue. More specifically, un-
er the assumption that the distance (i.e., the difference between two
verage ranks) between the best average rank and the worst rank is
 times larger than CD value, we divide the methods into three non-
verlapping groups: (1) The method whose distance to the best average
ank is less than CD belongs to the top rank group; (2) The method
hose distance to the worst average rank is less than CD belongs to

he bottom rank group; (3) The other methods belong to the middle
ank group. And if the distance between the best average rank and the
orst rank is larger than 1 time but less than 2 times CD value, we di-
ide the methods into 2 non-overlapping groups: The method belongs
o the top rank group (or bottom rank group) if its average rank is
loser to the best average rank (or the worst average rank). In addi-
ion, if the distance between the best average rank and the worst rank
s less than CD value, all methods belong to the same group. Using
his strategy, the generating groups are non-overlapping significantly
ifferent. 
191 
. Performance evaluation 

.1. Answer to RQ1: the efficiency of ELM, WELM and some classic 

lassifiers. 

Since many previous defect prediction studies applied classic classi-
ers as prediction models [33,44] , in this work, we choose seven repre-
entative classifiers, including Naive Bayes (NB), Nearest Neighbor (NN),

andom Forest (RF), Logistic Regression (LR), Classification and Regression

ree (CART), Back Propagation neural networks (BP) and Support Vector

achine (SVM) , and compare their efficiency with ELM and WELM. 
The parameter settings of the classifiers are detailed as follows. For

B, we use the kernel estimator that achieves better F-measure values
n most projects through our extensive experiments. For RF, we set the
umber of generated trees to 10, the number of variables for random
eature selection to 2, and do not limit the maximum depth of the trees,
s suggested in [11] . BP is implemented using the neural networks tool-
ox in MATLAB with a three-layered and fully-connected network ar-
hitecture. The learning rate is initialized to 0.1. Since how to select an
ptimal number of hidden nodes is still an open question [89] , we con-
uct extensive experiments on the benchmark dataset and find that BP
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Fig. 6. Box-plots of four indicators for KPWE and its variants on NASA dataset. 
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an achieve the best F-measure with less than 80 hidden nodes on the
ast majority of the projects. Thus we set the number of hidden nodes
rom 5 to 80 with an increment of 5. The algorithm terminates when the
umber of iterations is above 2000 or the tolerant error is below 0.004.
ther network parameters is set with the default values. The optimal
umber of hidden nodes is determined based on the best F-measure. 

For SVM, we also choose the Gaussian RBF as the kernel function,
nd set the kernel parameter 𝜔 𝑆𝑉 𝑀 

= 2 −10 , 2 −9 , … , 2 4 while cost param-
ter 𝐶 = 2 −2 , 2 −1 , … , 2 12 as suggested in [90] . Similarly, the optimal
arameter combination is obtained according to the best performance
hrough the grid search. For other classifiers, we use the default pa-
ameter values. Table 7 tabulates the parameter setting of the seven
asic classifiers. The experiments are conducted on a workstation with
 3.60 GHz Intel i7-4790 CPU and 8.00 GB RAM. 

Since NN is a lazy classifier that does not need to build a model
ith the training set in advance, it has no training time [91] .
ables 8 and 9 present the training times of ELM, WELM and the baseline
lassifiers on PROMISE dataset and NASA dataset, respectively. Note
hat the value 0 means the training time of the classifier is less than
.0005 s. For the project with multiple versions, we only report the av-
rage training time across the versions. From Table 8 , we observe that,
n PROMISE dataset, the training time of WELM, less than 0.01 s on
192 
4 projects, is lower than the baseline classifiers on most projects. More
pecifically, the training time of NB, RF, LR, and CART, less than 0.3 s,
s a little bit longer than that of ELM and WELM except for the time of
F on project lucene and poi, while the training time of ELM and WELM
re much shorter than that of BP and SVM. In particular, WELM runs
early 200 (for poi) to 30,000 (for velocity) times faster than BP while
00 (for arc) to 8500 (for velocity) times faster than SVM. The training
ime between ELM and WELM has a slight difference. From Table 9 , we
nd that, on NASA dataset, WELM takes less than 0.1 seconds to finish
raining a model on 9 projects. ELM and WELM run faster than the six
lassifiers except for NB on CM1 project. Particularly, WELM runs 50
for MC2) to 2700 (for MW1) times faster than BP while 100 (for KC3)
o 17,000 (for KC1) times faster than SVM. 

Discussion : The short training time of ELM and WELM is due to the
ollowing reasons. First, the weights of the input layer and the bias of the
idden layer in ELM are randomly assigned without iterative learning.
econd, the weights of the output layer are solved by an inverse opera-
ion without iteration. They empower ELM to train the model quickly.
ince WELM only adds one step for assigning different weights to the
efective and non-defective modules when building the model, it intro-
uces little additional computation cost. Therefore, the training time of
LM and that of WELM are very similar. The superiority of the training



Z. Xu et al. Information and Software Technology 106 (2019) 182–200 

(a) F-measure (b) G-measure

(c) MCC (d) AUC

Fig. 7. Comparison of KPWE against its five variants with Friedman test and Nemenyi’s post-hoc test in terms of four indicators. 
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peed of ELM and WELM will be more significant when they are applied
o larger datasets. 

Summary : Compared with the basic classifiers, ELM and WELM are
more efficient to train the prediction model, especially towards BP
and SVM, whereas the differences of the efficiency between ELM,
WELM and other classifiers are small. 

.2. Answer to RQ2: the prediction performance of KPWE and the basic 

lassifiers with KPCA. 

Table 10 presents the average indicator values of KPWE and the
even baseline methods on PROMISE dataset, NASA dataset, and across
ll 44 projects of the two datasets. Fig. 4 depicts the box-plots of four
ndicators for the eight methods across all 44 projects. The detailed re-
ults, including the optimal kernel parameter, the number of hidden
odes, the performance value for each indicator on each project and the
orresponding standard deviation for all research questions are avail-
ble on our online supplementary materials. 4 From Table 10 and Fig. 4 ,
e have the following observations. 

First, from Table 10 , the results show that our method KPWE
chieves the best average performance in terms of all indicators on
wo datasets and across all 44 projects. More specifically, across all 44
rojects, the average F-measure value (0.480) by KPWE yields improve-
ents between 17.1% (for KPNB) and 41.2% (for KPRF) with an average

mprovement of 25.1%, the average G-measure value (0.649) by KPWE
ains improvements between 26.5% (for KPNB) and 92.0% (for KPRF)
ith an average improvement of 50.4%, the average MCC value (0.356)
y KPWE achieves improvements between 27.6% (for KPLR) and 67.9%
for KPCART) with an average improvement of 42.2%, and the average
UC value (0.761) gets improvements between 6.9% (for KPLR) and
3.1% (for KPNN) with an average improvement of 14.2% compared
gainst the seven classic classifiers with KPCA. 

Second, Fig. 4 demonstrates that the median values of all four indica-
ors by KPWE are superior to that by the seven baseline methods across
ll 44 projects. In particular, the median AUC by KPWE is even higher
han or similar to the maximum AUC by KPNN, KPCART, and KPBP. 
4 https://sites.google.com/site/istkpwe . 

p  

m  

e  

K  

193 
Third, Fig. 5 visualizes the results of the Friedman test with Ne-
enyi’s post-hoc test for KPWE and the seven baseline methods in terms

f the four indicators. Groups of the methods that are significantly differ-
nt are with different colors. The results of the Friedman test show that
he p values are all less than 0.05, which means that there exist signifi-
ant differences among the eight methods in terms of all four indicators.
he results of the post-hoc test show that KPWE always belongs to the
op rank group in terms of all indicators. In addition, KPLR belongs to
he top rank group in terms of AUC. These observations indicate that
PWE performs significantly better than the seven baseline methods ex-
ect for the KPLR method in terms of AUC. 

Discussion : Among all the methods that build prediction models with
he features extracted by KPCA, KPWE outperforms the baseline meth-
ds because it uses an advanced classifier that considers the class imbal-
nce in the defect data while traditional classifiers could not well copy
ith the imbalanced data. 

Summary : Our method KPWE performs better than KPCA with the
seven basic classifiers. On average, compared with the seven base-
line methods, KPWE achieves 24.2%, 47.3%, 44.3%, 14.4% perfor-
mance improvement in terms of the four indicators respectively over
PROMISE dataset, 28.1%, 63.6%, 35.6%, 14.2% performance im-
provement in terms of the four indicators respectively over NASA
dataset, and 25.1%, 50.4%, 42.2%, 14.2% performance improve-
ment in terms of the four indicators respectively across all 44
projects. 

.3. Answer to RQ3: the prediction performance of KPWE and its variants. 

Table 11 presents the average indicator values of KPWE and its five
ariants on PROMISE dataset, NASA dataset, and across all 44 projects
f the two datasets. Fig. 6 depicts the box-plots of four indicators for the
ix methods across all 44 projects. From Table 11 and Fig. 6 , we have
he following findings. 

First, from Table 11 , the results show that our method KPWE
chieves the best average performance in terms of all indicators on
wo datasets and across all 44 projects. More specifically, across all 44
rojects, the average F-measure value (0.480) by KPWE yields improve-
ents between 8.1% (for KPCAELM) and 31.9% (for WELM) with an av-

rage improvement of 25.4%, the average G-measure value (0.649) by
PWE gains improvements between 14.7% (for PCAWELM) and 38.7%

https://sites.google.com/site/istkpwe
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Fig. 8. Box-plots of four indicators for KPWE and eight feature selection methods with WELM across all 44 projects. 
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for ELM) with an average improvement of 25.0%, the average MCC
alue (0.356) by KPWE achieves improvements between 9.9% (for KP-
AELM) and 107.0% (for ELM) with an average improvement of 78.2%,
nd the average AUC value (0.761) gets improvements between 9.2%
for KPCAELM) and 23.5% (for ELM) with an average improvement of
9.2% compared with the five variants. 

Second, Fig. 6 shows that KPWE outperforms the five variants in
erms of the median values of all indicators across all 44 projects. In
articular, the median G-measure by KPWE is higher than or similar
o the maximum G-measure (do not consider the noise points) by the
aseline methods except for PCAWELM, the median MCC by KPWE is
igher than the maximum MCC by ELM, WELM and PCAWELM, and the
edian AUC by KPWE is higher than the maximum AUC by the baseline
ethods except for PCAWELM. 

Third, Fig. 7 visualizes the results of the Friedman test with Ne-
enyi’s post-hoc test for KPWE and its five variants in terms of the four

ndicators. The p values of the Friedman test are all less than 0.05, which
eans that there exist significant differences among the six methods in

erms of all four indicators. The results of the post-hoc test show that
PWE also always belongs to the top rank 1 group in terms of all indi-
194 
ators. In addition, KPCAELM belong to the top rank 1 group in terms
f F-measure and MCC. These observations indicate that in terms of
-measure and AUC, KPWE significantly performs better than the five
ariants, whereas in terms of F-measure and MCC, KPWE does not per-
orm significantly better than KPCAELM. 

Discussion : On the one hand, KPWE and KPCAELM are superior to
CAWELM and PCAELM in terms of all four indicators respectively, on
he other hand, KPWE and KPCAELM perform better than WELM and
LM, respectively on both datasets, all these mean that the features ex-
racted by the nonlinear method KPCA are beneficial to ELM and WELM
or the improvement of defect prediction performance compared against
he raw features or the features extracted by linear method PCA. More-
ver, KPWE, PCAWELM and WELM are superior to KPCAELM, PCAELM
nd ELM respectively which denotes that WELM is more appropriate to
he class imbalanced defect data than ELM. 

Summary : KPWE precedes its five variants. On average, compared
with the five downgraded variants, KPWE achieves 26.1%, 25.4%,
84.2%, 19.2% performance improvement in terms of the four in-
dicators respectively over PROMISE dataset, 22.7%, 23.9%, 58.4%,
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(a) F-measure (b) G-measure

(c) MCC (d) AUC

Fig. 9. Comparison of KPWE against the eight feature selection based baseline methods with Friedman test and Nemenyi’s post-hoc test in terms of four indicators. 
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19.6% performance improvement in terms of the four indicators re-
spectively over NASA dataset, and 25.4%, 25.0%, 78.2%, 19.2% per-
formance improvement in terms of the four indicators respectively
across all 44 projects. 

.4. Answer to RQ4: the prediction performance of KPWE and other 

eature selection methods with WELM. 

Here, we choose eight representative feature selection methods, in-
lude four filter-based feature ranking methods and four wrapper-based
eature subset selection methods, for comparison. The filter-based meth-
ds are Chi-Square (CS), Fish Score (FS), Information Gain (IG) and ReliefF

ReF) . The first two methods are both based on statistics, the last two
re based on entropy and instance, respectively. These methods have
een proven to be effective for defect prediction [19,92] . For wrapper-
ased methods, we choose four commonly-used classifiers (i.e., NB, NN,
R, and RF) and F-measure to evaluate the performance of the selected
eature subset. The four wrapper methods are abbreviated as NBWrap,
NWrap, LRWrap, and RFWrap. Following the previous work [19,38] ,
e set the number of selected features to ⌈log 2 m ⌉, where m is the number
f original features. 

Table 12 presents the average indicator values of KPWE and eight
eature selection methods with WELM on PROMISE dataset, NASA
ataset, and across all 44 projects of the two datasets. Fig. 8 depicts the
ox-plots of four indicators for the nine methods across all 44 projects.
ome findings are observed from Table 12 and Fig. 8 as follows. 

First, from Table 12 , the results show that our method KPWE
chieves the best average performance in terms of all indicators on
wo datasets and across all 44 projects. More specifically, across all 44
rojects, the average F-measure value (0.480) by KPWE yields improve-
ents between 13.7% (for NNWrap) and 42.9% (for CS) with an average

mprovement of 23.2%, the average G-measure value (0.649) by KPWE
ains improvements between 7.5% (for NNWrap) and 33.0% (for CS)
ith an average improvement of 16.4%, the average MCC value (0.356)
y KPWE achieves improvements between 27.6% (for NNWrap) and
50.7% (for CS) with an average improvement of 63.4%, and the aver-
ge AUC value (0.761) gets improvements between 10.1% (for NNWrap)
nd 27.7% (for CS) with an average improvement of 15.4% compared
ith eight feature selection methods with WELM. 
195 
Second, Fig. 8 manifests that superiority of KPWE compared with the
ight baseline methods in terms of the median values of all four indi-
ators across all 44 projects. In particular, the median AUC by KPWE is
igher than the maximum AUC by CS and IG. In addition, we can also
bserve that the performance of the four wrapper-based feature sub-
et selection methods are generally better than the filter-based feature
ubset selection methods, which is consistent with the observation in
revious study [19] . 

Third, Fig. 9 visualizes the results of the Friedman test with Ne-
enyi’s post-hoc test for KPWE and the eight feature selection based

aseline methods in terms of the four indicators. There exist significant
ifferences among the nine methods in terms of all four indicators since
he p values of the Friedman test are all less than 0.05. The results of
he post-hoc test illustrate that KPWE always belongs to the top rank
roup in terms of all indicators. In addition, NNWrap belongs to the top
ank group in terms of G-measure. These observations show that KPWE
erforms significantly better than the eight baseline methods expect for
he NNWrap method in terms of G-measure. 

Discussion : The reason why the features extracted by KPCA are more
ffective is that, the eight feature selection methods only select a subset
f original features that are not able to excavate the important informa-
ion hidden behind the raw data, whereas KPCA can eliminate the noise
n the data and extract the intrinsic structures of the data that are more
elpful to distinguish the class labels of the modules. 

Summary : KPWE outperforms the eight feature selection methods
with WELM. On average, compared with the eight baseline meth-
ods, KPWE achieves 24.3%, 18.6%, 71.0%, 16.0% performance im-
provement in terms of the four indicators respectively over PROMISE
dataset, 18.5%, 8.5%, 38.3%, 13.7% performance improvement in
terms of the four indicators respectively over NASA dataset, and
23.2%, 16.4%, 63.4%, 15.4% performance improvement in terms
of the four indicators respectively across all 44 projects. 

.5. Answer to RQ5: the prediction performance of KPWE and other 

mbalanced learning methods. 

Here, we employ 12 classic imbalanced learning methods based
n data sampling strategies. These methods first use Random
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Fig. 10. Box-plots of four indicators for KPWE and 21 class imbalanced learning methods across all 44 projects. 
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nder-sampling (RU), Random Over-sampling (RO) or SMOTE (SM) tech-
iques to rebalance the modules of the two classes in the training set,
hen, four popular classifiers as the same in RQ4 (i.e., NB, NN, LR, and
F) are applied to the rebalanced training set. The method name is the
ombination of the abbreviation of the sampling strategy and the used
lassifier. Also, we employ two widely-used ensemble learning meth-
ds (i.e., Bagging (Bag) and Adaboost (Ada) for comparison. Moreover,
e use other seven imbalanced learning methods, Coding-based Ensem-

le Learning (CEL) [93] , Systematically developed Forest with cost-sensitive

oting (SysFV) [94] , Cost-Sensitive decision Forest with cost-sensitive Vot-

ng (CSFV) [95] , Balanced CSFV (BCSFV) [57] , Asymmetric Partial Least

quares classifier (APL) [96] , EasyEnsemble (Easy) [97] , and BalanceCas-

ade (Bal) [97] as the baseline methods. Note that the last three methods
ave not yet been applied to defect prediction but have been proved to
chieve promising performance for imbalanced data in other domains.
mong these method, SysFV, CSFV amd BCSFV are cost-sensitive based

mbalanced learning methods, while Easy and Bal combine the sampling
trategies and ensemble learning methods. 

Table 13 presents the average indicator values of KPWE and the 21
lass imbalanced baseline methods on PROMISE dataset, NASA dataset,
nd across all 44 projects of the two datasets. Fig. 10 depicts the box-
lots of four indicators for the 22 methods across all 44 projects. We
escribe the findings from Table 13 and Fig. 10 as follows. 
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First, from Table 13 , the results show that our method KPWE
chieves the best average performance in terms of F-measure and MCC
n two datasets and across all 44 projects. More specifically, across all
4 projects, the average F-measure value (0.480) by KPWE yields im-
rovements between 7.6% (for CEL) and 34.5% (for RULR) with an av-
rage improvement of 19.6%, the average MCC value (0.356) by KPWE
ains improvements between 17.9% (for Easy) and 140.5% (for SMNB)
ith an average improvement of 56.5%. However, Easy, Bal, APL out-
erform our method KPWE in terms of average G-measure values and
asy outperforms KPWE in terms of the average AUC values across all
4 projects. Overall, KPWE achieves average improvements of 23.4%
nd 11.2% over the 21 baseline methods in terms of average G-measure
nd AUC, respectively. 

Second, Fig. 10 depicts that KPWE is superior to the 21 baseline
ethods in terms of the median F-measure and MCC across all 44
rojects. In particular, the median MCC by KPWE is higher than the max-
mum MCC by RONB and SMNB. In addition, the median G-measure by
PWE is similar to that by APL and Bal, whereas the median G-measure
nd AUC by KPWE are only a little lower than those by Easy. 

Third, Fig. 11 visualizes the results of the Friedman test with Ne-
enyi’s post-hoc test for KPWE and the 21 class imbalanced learning
ethods in terms of the four indicators. As the p values of the Friedman

est are all less than 0.05, there exist significant differences among the
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(a) F-measure (b) G-measure

(c) MCC (d) AUC

Fig. 11. Comparison of KPWE against the 21 class imbalanced learning methods with Friedman test and Nemenyi’s post-hoc test in terms of four indicators. 
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2 methods in terms of all four indicators. The results of the post-hoc
est illustrate that KPWE also belongs to the top rank group in terms
f all indicators. However, in terms of F-measure, G-measure MCC and
UC, KPWE does not perform significantly well compared with seven,
even, four and six baseline methods respectively in which the common
ethods are Easy and Bal. These observations manifest that KPWE, Easy

nd Bal belong to the top rank group and perform no statistically sig-
ificant differences with each other in terms of all four indicators. Since
his is the first work to investigate the performance of method Easy and
ethods Bal on software defect data, the experimental results indicate

hat they are also potentially effective methods for defect prediction as
ur method KPWE is. 

Discussion : The under-sampling methods may neglects the potentially
seful information contained in the ignored non-defective modules, and
he over-sampling methods may cause the model over-fitting by adding
ome redundancy defective modules. In addition, data sampling based
mbalanced learning methods usually change the data distribution of the
efect data. From this point, the cost-sensitive learning methods (such
s our KPWE method) which does not change the data distribution are
etter choices for imbalanced defect data. Considering the main draw-
ack of under-sampling methods, Easy and Bal sample multiple subsets
rom the majority class and then use each of these subsets to train an
nsemble. Finally, they combine all weak classifiers of these ensembles
nto a final output [97] . The two methods can wisely explore these ig-
ored modules, which enable them to perform well on the imbalanced
ata. 

Summary : KPWE performs better than the 21 baseline methods espe-
cially in terms of F-measure and MCC. On average, compared with
 a  

197 
the baseline methods, KPWE achieves 19.1%, 23.9%, 57.7%, 11.3%
performance improvement in terms of the four indicators respec-
tively over PROMISE dataset, 21.0%, 23.2%, 53.2%, 11.4% perfor-
mance improvement in terms of the four indicators respectively over
NASA dataset, and 19.6%, 23.4%, 56.5%, 11.2% performance im-
provement in terms of the four indicators respectively across all 44
projects. In addition, KPWE performs no statistically significant dif-
ferences compared with Easy and Bal across all 44 projects in terms
of all four indicators. 

. Threats to validity 

.1. External validity 

External validity focuses on whether our experimental conclusions
ill vary on different projects. We conduct experiments on total 44
rojects of two defect datasets to reduce the threat for this kind of va-
idity. In addition, since the features of our benchmark dataset are all
tatic product metrics and the modules are abstracted at class level (for
ROMISE dataset) and component level (for NASA dataset), we cannot
laim that our experimental conclusions can be generalized to the defect
atasets with process metrics and the modules extracted at file level. 

.2. Internal validity 

We implement most baseline methods using the function library of
achine learning and toolbox in MATLAB to reduce the potential influ-

nce of the incorrect implementations on our experimental results. In
ddition, we tune the optimal parameter values, such as the width of
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ernel parameter in KPCA and the number of hidden nodes in WELM,
rom a relatively wide range of tested options. Nevertheless, a more
arefully controlled experiment for the parameter selection should be
onsidered. 

.3. Construct validity 

Although we employ four extensively-used indicators to evaluate the
erformances of KPWE and the baseline methods for defect prediction,
hese indicators do not take the effort of inspecting cost into considera-
ion. We will use the effect-aware indicators to evaluate the effectiveness
f our method in future work. 

.4. Conclusion validity 

We use a state-of-the-art double Scott-Knott ESD method to check
hether the differences between KPWE and the baseline methods are

ignificant. With this statistic test, the assessment towards the superior-
ty of KPWE is more rigorous. 

. Conclusion 

In this work, we propose a new defect prediction framework KPWE
hat comprises feature extraction stage and model construction stage.
n the first stage, to handle the complex structures in defect data, we
earn the representative features by mapping the original data into a la-
ent feature space with a nonlinear feature extraction method KPCA.
he mapped features in the new space can better represent the raw
ata. In the second stage, we construct a class imbalanced classifier on
he extracted features by introducing a state-of-the-art learning algo-
ithm WELM. Besides the advantages of fine generalization ability and
ess prone to local optimum, WELM strengthens the impact of defective
odules by assigning them higher weights. We have carefully evaluated
PWE on 34 projects from PROMISE dataset and 10 projects from NASA
ataset with four indicators. The experimental results show that KPWE
xhibits superiority over 41 baselines methods, especially in terms of
-measure, MCC and AUC. 

In future work, we will provide guidelines on deciding the optimal
umber of hidden nodes and kernel parameter values for KPWE, as they
ary for different projects. In addition, we plan to explore the impact
f the different kernel functions in KPCA and the different activation
unctions in WELM on the performance of KPWE. 
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