
...

VULHUNTER: TOWARD DISCOVERING
VULNERABILITIES IN ANDROID

APPLICATIONS
...

A NEW STATIC-ANALYSIS FRAMEWORK HELPS SECURITY ANALYSTS DETECT VULNERABLE

APPLICATIONS. THE AUTHORS DESIGNED AN APP PROPERTY GRAPH (APG), CONDUCTED

GRAPH TRAVERSALS OVER APGS, AND REDUCED THE MANUAL-VERIFICATION WORKLOAD.

THEY IMPLEMENTED THE FRAMEWORK IN VULHUNTER AND MODELED FIVE TYPES OF

VULNERABILITIES. RESULTS SHOWED THAT OF 557 RANDOMLY COLLECTED APPS WITH AT

LEAST 1 MILLION INSTALLATIONS, 375 APPS (67.3 PERCENT) HAD AT LEAST ONE

VULNERABILITY.

......With the mobile Internet’s pros-
perity, recent years have witnessed an unpre-
cedented number of Android applications
(“apps”) published and sold in app markets.
However, short development cycles and
insufficient security development guidelines
have led to many vulnerable apps. After ana-
lyzing 2,107 apps from companies on the
Forbes Global 2000, HP research recently
found that 90 percent of apps are vulnerable
(http://zd.net/1FK7I5b).

Motivated by recent research,1 we propose
a new static-analysis framework to facilitate
vulnerability discovery for apps by extracting
detailed and precise information from apps,
easing the identification process, and reduc-
ing the manual-verification workload. More
precisely, we design a novel data structure
called the app property graph (APG), which
smoothly integrates abstract syntax trees
(ASTs), an interprocedure control-flow graph

(ICFG), a method-call graph (MCG), and a
system dependency graph (SDG) to repre-
sent each app. Although the APG is moti-
vated by the code property graph (CPG),1

the APG differs from the CPG due to the sig-
nificant difference between apps and C
source codes (see the “Related Work in Vul-
nerability Discovery” sidebar for details). For
example, the APG employs the ICFG,
MCG, and SDG to characterize the frequent
interprocedure and intercomponent commu-
nications in apps. The APG also incorporates
permissions and other unique features in
apps as properties. To ease the identification
process, we model common vulnerabilities of
apps reported in the Common Vulnerabil-
ities and Exposures (CVE) system as graph
traversals and detect vulnerable apps by con-
ducting graph traversals over APGs. Note
that each app needs to be processed just once
for extracting APG and then we can conduct

Chenxiong Qian

Xiapu Luo

Yu Le

Hong Kong Polytechnic

University

Guofei Gu

Texas A&M University

...

44 Published by the IEEE Computer Society 0272-1732/15/$31.00�c 2015 IEEE

various graph traversals, including those
extracted from new vulnerability patterns.
Moreover, to reduce the manual-verification
workload, we employ symbolic execution to
filter out infeasible paths and suggest attack
inputs whenever possible.

In creating the APG, we tackled many
challenges, including dealing with object
references and inheritance in Shimple IR
codes and handling Android’s event-driven
mechanism. Also, we propose an approach to
convert Shimple IR codes to SMT-Lib2 codes
so that the existing SMT solver can be used.
Finally, we implemented the framework in
VulHunter with 9,145 lines of Java codes. We
modeled five common vulnerabilities as
graph traversals and checked the security of
577 popular apps, each of which has more
than 1 million installations. The result shows
that 375 apps have at least one vulnerability.

Overview of VulHunter
Figure 1 depicts the major steps in our

framework, which has three necessary steps
and three optional steps, depending on the
type of vulnerability. VulHunter has imple-
mented all these steps. We use a real vulner-
able app, GoSMS Pro (com.jb.gosms, v3.72),
to illustrate how VulHunter works. This app
has an exported service, CellValidateService,
which sends a short message service (SMS)
according to incoming intents. Because this
service does not sanitize incoming intents,
an adversary can send a crafted intent for

triggering GoSMS to send an SMS to an arbi-
trary destination address. Figure 2 illustrates
the vulnerable code snippet, the correspond-
ing Shimple IR code, and its APG.

Constructing APG
VulHunter first constructs an app’s APG

according to its AndroidManifest.xml and
classes.dex and then stores it in a graph data-
base, which uses graph structures (including
nodes, edges, and properties) to represent and
store data. AndroidManifest.xml provides
essential information about an app, such as
required permissions and intent filters.

We use Soot (http://bit.ly/1veFjB8) to
disassemble classes.dex into Shimple IR code
(http://bit.ly/1zbB3BM) and then construct
the AST, MCG, ICFG, and SDG. These
data structures compose an app’s APG,
denoted as f ¼ fN ; R; Pg. N is the set of
nodes that denote classes, methods, state-
ments, class fields, instance fields, operands,
and operators. Different kinds of nodes have
different labels. R is the set of edges (or rela-
tionships) that represent connections among
classes, methods, and statements, such as the
data dependency and control dependency in
the SDG, syntax relations in the AST, and
control flow in the CFG. P is the set of prop-
erties that represent the attributions of nodes
and relationships. For instance, the properties
of a class node include method signature,
name, modifier, argument count, and whe-
ther it is an entry of certain component. The

App property
graph Slicing engine ShimpleToSMT

translator

AndroidManifest
.xml

classes.dex

App

Constraint
solver

traversal

traversal

Traversals

paths

input

Output

VulHunter

Vulnerability
Nodes,

paths, etc. Slices SMT2 Code

1

2

3
4 5 6

Figure 1. The static-analysis framework. Steps 1 through 3 are necessary, and steps 4 through 6 are optional.

...

JANUARY/FEBRUARY 2015 45

properties of dependency relationships record
the condition (“true” or “false”) of If-Stmt,
or the lookup value of TableSwitch-Stmt
and PackedSwitch-Stmt.

Modeling vulnerabilities as graph traversals
Traversals denote the ways we query the

graph database according to nodes, edges,
and properties. By modeling vulnerabilities
as graph traversals, we perform them over
APGs to identify vulnerable apps. In our
example, finding paths from onStart to
sendTextMessage is modeled with the
following graph traversal:

ðNMethodfname : “onStart”gÞ � ½RICFG �
þ

! ðNStmtftype : “invoke”; callee name :

“sendTextMessage”gÞ ð1Þ

where ðNMethodfname : “onStart”gÞ denotes
method nodes with the name “onStart”;
ðNStmtftype : “invoke”; callee name : “send

TextMessage”gÞ represents statement nodes
that call the method “sendTextMessage,” and
½RICFG �

þ denotes the relationship between
nodes and its length is not less than one. Note
that we use ðNtypefkey : valuegÞ to represent
nodes with label type and property key : value,
and ½Rtype�þ to denote the relationships of
type type with a length not less than one.
This traversal will return paths that start at
method node onStart, end at statement
node sendTextMessage, and have nodes
connected with ICFG relationships. Similarly,
to find out whether sendTextMessage’s
arguments depend on the input from
onStart, we model it with another graph
traversal:

ðNStmt type : “invoke”; callee name :f

“sendTextMessage”gÞ � ½RSDGData �
þ

! NStmtIdentity
ftainted : trueg

� �
ð2Þ

..

Related Work in Vulnerability Discovery
Existing research on automatic vulnerability discovery for applica-

tions (“apps”) usually focuses on several specific types of vulnerabil-

ities because of the undecidability of the generic problem of spotting

program vulnerabilities.1 For example, ComDroid aims at Intent-

related issues (that is, unauthorized Intent receipt and Intent spoof-

ing).2 SMV-Hunter detects SSL and Transport Layer Security (TLS)

man-in-the-middle vulnerabilities.3 ContentScope examines the vul-

nerabilities of an unprotected content provider.4 AndroidLeaks

uncovers potential private information leakage.5 Woodpecker targets

capability leak vulnerabilities.6 CHEX discovers component hijacking

vulnerabilities.7 However, these systems’ effectiveness and efficiency

are usually restricted in practice due to the exponential growth of

paths to examine, simplified assumptions, and the limited number of

vulnerability patterns.1,8 Moreover, it is not easy to extend these sys-

tems to capture new vulnerabilities, although they share some com-

mon components (such as constructing control-flow graphs and

dataflow graphs).

Enck et al. used Fortify SCA to conduct a systematic study of 1,100

apps in order to uncover several kinds of vulnerabilities.9 However,

they did not discover vulnerable apps, and it is not clear how SCA

processes those apps. We propose a new static-analysis framework

to facilitate vulnerability discovery for apps by extracting detailed and

precise information from apps and easing the identification process.

Moreover, the framework can reduce the manual-verification work-

load by performing slicing and filtering out infeasible paths. To our

knowledge, existing approaches cannot achieve these goals simulta-

neously. Moreover, defining app property graphs (APGs) and employ-

ing graph databases can scale up the vulnerability discovery process.

Researchers are exploring an alternative vulnerability-discovery

approach of facilitating security analysts by providing detailed and

precise information and expert knowledge. The work closest to our

approach is the code property graph (CPG),1 which combines an

abstract syntax tree (AST), control-flow graph (CFG), and program

dependency graph (PDG) to represent C source codes and model com-

mon vulnerabilities as graph traversals. Therefore, finding potential

vulnerabilities is turned into performing graph traversals over CPGs

with much better performance in terms of accuracy and flexibility.1

Although we also model vulnerabilities as graph traversals and

conduct graph traversals to find vulnerable apps, significant differen-

ces exist between the two approaches. First, we design APGs specifi-

cally for apps, because they have many unique features. Moreover,

the APG is based on disassembled Shimple IR code, whereas the CPG

is built from C source codes. Second, because apps have frequent

interprocedure and intercomponent communications, we employ an

interprocedure CFG and a system dependency graph, which consider

the dependencies among procedures; the CPG includes only an intra-

procedure CFG and a PDG that captures dependencies within a proce-

dure. Third, we use a method call graph and address challenges

caused by Android’s event-driven nature and its object references and

inheritances. Fourth, besides properties of codes, the APG also

..

MOBILE SYSTEMS

..

46 IEEE MICRO

where NStmtIdentity
{tainted : true} denotes iden-

tity statement nodes with taint. Note that we
use Ntypesubtype

to represent nodes that have label
type and belong to the subtype subtype. This
traversal ends at identity statement nodes
with the property tainted:true, meaning that
the left value of the identity statement is
tainted. In our example, it is the parameter
paramIntent of onStart (see Figure 2).

Performing traversals over APGs
To detect vulnerable apps, we perform tra-

versals over APGs. The output includes nodes
and paths with properties. In our example,
traversal 1 returns paths connected by ICFG
relationships, and traversal 2 returns paths
connected by SDGData relationships, mean-
ing that the input from onStart will affect
sendTextMessage’s arguments.

Slicing the program
Although some traversals may return

many paths, not all of them are feasible.

Therefore, we will filter out infeasible paths
by checking whether the conditions on these
paths can be fulfilled or not. More precisely,
we turn those conditions into constraints
using symbolic execution,2 and then decide
whether they are satisfiable through satisfi-
ability modulo theories (SMT) solvers. Before
doing this, we conduct program slicing (http://
bit.ly/1ycjK5f) to extract statements that
affect the values in constraints (that is, If-
Stmt, PackedSwitch-Stmt, and Table
Switch-Stmt). For example, by performing
slicing on paths returned by traversal 1, we get
the statements with a star in the top left corner
in Figure 2.

Translating Shimple IR codes to the
SMT-Lib2 language

The SMT-Lib2 language is used to
describe SMT problems. After translating
Shimple IR codes in each slice to SMT-Lib2
language, we convert the constraints into a

records essential information from the manifest file, because an app

cannot run normally without such information. Finally, VulHunter

reduces the manual-verification workload by performing slicing, trans-

lating Shimple IR codes to SMT-Lib2 codes, and then using Z3-str to

filter out infeasible paths.

Because it is a static-analysis system, VulHunter complements

dynamic analysis systems, such as TaintDroid10 and others.11

References
1. F. Yamaguchi et al., “Modeling and Discovering Vulnerabil-

ities with Code Property Graphs,” Proc. IEEE Symp. Security

and Privacy, 2014, pp. 590–604.

2. E. Chin et al., “Analyzing Inter-application Communication in

Android,” Proc. 9th Int’l Conf. Mobile Systems, Applications,

and Services (MobiSys 11), 2011, pp. 239–252.

3. D. Sounthiraraj et al., “SMV-Hunter: Large Scale, Automated

Detection of SSL/TLS Man-in-the-Middle Vulnerabilities in

Android Apps,” Proc. Network and Distributed System

Security Symp. (NDSS 14), 2014; www.internetsociety.org

/doc/smv-hunter-large-scale-automated-detection-ssltls-man

-middle-vulnerabilities-android-apps.

4. Y. Zhou and X. Jiang, “Detecting Passive Content Leaks and

Pollution in Android Applications,” Proc. Network and Dis-

tributed System Security Symp. (NDSS 13), 2013; http://

internetsociety.org/doc/detecting-passive-content-leaks-and

-pollution-android-applications.

5. C. Gibler et al., “AndroidLeaks: Automatically Detecting

Potential Privacy Leaks in Android Applications on a Large

Scale,” Proc. 5th Int’l Conf. Trust and Trustworthy Comput-

ing (TRUST 12), 2012, pp. 291–307.

6. M. Grace et al., “Systematic Detection of Capability Leaks in

Stock Android Smartphones,” Proc. Network and Distri-

buted System Security Symp. (NDSS 12), 2012; www

.internetsociety.org/systematic-detection-capability-leaks

-stock-android-smartphones.

7. L. Lu et al., “CHEX: Statically Vetting Android Apps for Com-

ponent Hijacking Vulnerabilities,” Proc. ACM Conf. Computer

and Communications Security (CCS 12), 2012, pp. 229–240.

8. S. Arzt et al., “Flowdroid: Precise Context, Flow, Field, Object-

Sensitive and Lifecycle-Aware Taint Analysis for Android Apps,”

Proc. 35th ACM SIGPLAN Conf. Programming Language

Design and Implementation (PLDI 14), 2014, pp. 259–269.

9. W. Enck et al., “A Study of Android Application Security,”

Proc. 20th USENIX Conf. Security (SEC 11), 2011, article 21.

10. W. Enck et al., “TaintDroid: An Information-Flow Tracking

System for Realtime Privacy Monitoring on Smartphones,”

Proc. 9th USENIX Conf. Operating Systems Design and

Implementation (OSDI 10), 2010, article 1–6.

11. C. Qian et al., “On Tracking Information Flows through JNI in

Android Applications,” Proc. 44th Ann. IEEE/IFIP Int’l Conf.

Dependable Systems and Networks (DSN 14), 2014, pp.

180–191.

...

JANUARY/FEBRUARY 2015 47

combination of binary-valued functions and
then solve them using SMTsolvers.

Solving constraints
We feed the SMT-Lib2 codes to Z3-str,3

an extension of Z3 SMT, for computing the
constraints and generating inputs for feasible
paths whenever possible, because Z3-str sup-
ports string types and can solve constraints
with string operations.

The APG
We use an APG, comprising the AST,

ICFG, MCG, and SDG, to characterize
each app.

AST
As a basic data structure in program analy-

sis, an AST eases the traversals over the APG
and the translation from Shimple IR codes to
SMT-Lib2, because it records each state-
ment’s operands and operators and keeps the
structures of Shimple IR codes.

MCG
The MCG records the invocation relation-

ships among methods. If a node represents a

method that requires permissions, we set the
permission property of that node. With
MCG, we can quickly decide the feasibility
for a method to trigger certain operations.
For example, according to the MCG in Fig-
ure 2, we know that onStart may trigger
sendTextMessage.

We tackle two challenges when construct-
ing MCGs. The first one results from the
commonly used object references and inheri-
tance in Shimple. For example, it is difficult
to determine the concrete class to which an
object reference points, especially when
handling InterfaceInvoke-Stmt. To
address this issue, we conduct points-to anal-
ysis using Spark4 and maintain the class
inheritance hierarchy. If an object reference
cannot be resolved by Spark, we consider all
possible subclasses.

The second challenge is due to Android’s
event-driven nature. There are two major
types of event handling in Android: listeners
to process events, and callbacks. For the for-
mer, we redirect invocations (for example,
setOnClickListener) to the relevant
objects’ callbacks (onClick). For the latter,
we follow Grace et al. to connect methods
according to well-defined semantics (for

MCG

sendTextMessage
permission: “SEND_SMS”

S14

CellValidateService
{exported:true}

onStart
{entry:true} Code

S1

S4

S5 S9

S10

S11

S12

S13

IF
-T
RU
E

IF-False

IF-TRUE

IF
-F
al
se

IN
VO
KE

If

Condition

Op1:
$r1

Op2:
null

Symbol:
!=

Target:
label1

MCG

AST Rel

ICFG Rel

MCG Rel

SDGData Rel

Class

Method

AST

Stmt

SDGCtrl Rel

S3

S2

S8

S7

S6

onStart:

S1: $r0 := @this;

S2: $r1 := @parameter0;

S3: if $r1 != null goto label1;

S4: label0: return;

S5: label1: $r2 = virtualinvoke $r1.getAction();

S6: $r3 = "com.jb.gosms.goim.ACTION_CELL_VALIDATE";

S7: $z0 = virtualinvoke $r3.equals($r2);

S8: if $z0 == 0 goto label0;

S9: $r4 = virtualinvoke $r1.getStringExtra("phone");

S10: $r5 = “XXXXX”;

S11: specialinvoke $r0.Code($r4, $r5);

Code:

S12: $r1 := @parameter0;

S13: $r2 := @parameter1;

S14: sendTextMessage($r1, null, $r2, …);

{tainted:true}

D[$r1]

C
[IF-false]

C[IF-true]

D[$r1]

C[IF-true]

C[IF-false]

D[$r2]

D[$r3]

D[$z0]

D[$r4]
D[$r5]

D[$r1]

D
[$r2]

D
[$

r4
]

D[$r5]

D[$r0]

 public class CellValidateService extends Service{

2 private void Code(String dest, String text){

 SmsManager.getDefault().sendTextMessage(dest, null, text, null, null);

4 }

6 public void onStart(Intent paramIntent, int paramInt){

if(paramIntent == null)

8 return;

 …

10 if("com.jb.gosms.goim.ACTION_CELL_VALIDATE"

.equals(paramIntent.getAction())){

String str1 = paramIntent.getStringExtra("phone");

12 String str2 = “XXXXX”; //constant string

 Code(str1, str2);

14 }

Figure 2. The vulnerable code and its Shimple IR code and part of the corresponding app property graph (APG) in GoSMS Pro

v3.72. This app exports a service named CellValidateService, which will send a short message service (SMS) according to an

incoming intent. Because this service does not sanitize incoming intents, an adversary can send a crafted intent to force this

app to send an SMS to an arbitrary destination.

..

MOBILE SYSTEMS

..

48 IEEE MICRO

example, in java.lang.Thread, methods start
and run are correlated).5 However, it is non-
trivial to handle callbacks involved in the
intercomponent communication (that is,
those through Intent). To approach this
issue, we use Epicc (http://siis.cse.psu.edu
/epicc) to map invocations (such as start
Activity) to callbacks (Activity.
onCreate).

CFG
The CFG depicts the execution flow of

statements. The APG adopts ICFGs because
of the frequent communications between
subroutines and components in apps. There
are five types of branch statements in Shim-
ple IR. For the conditional statements
If-Stmt and Switch-Stmt, we add a
property about the condition on those rela-
tionships. For example, in Figure 2, if the
statement s3’s condition is satisfied (that is,
true), statement s5 will be executed. Other-
wise, statement s4 will be executed. There-
fore, we set true (s3! s5) or false (s3! s4)
to the corresponding relationships between
If-Stmt and its target statements. We con-
nect the direct jump statement Goto-Stmt
to the target statement. When handling
Invoke-Stmt, if the invocation is not a
method in the Android SDK, we link it to
the first statement of target method (s11 !
s12) and also add relationships between the
target method’s exit statements and the
Invoke-Stmt; otherwise, we do nothing.
For exception-handling statements (such as
Throw-Stmt and Catch-Stmt), we con-
nect each statement in the try block to the
first statement in the exception handler.

SDG
The SDG is an interprocedural extension

of the PDGs for modeling statements’
dependencies that can be either control or
data dependent. A data dependency between
statements s1 and s2 indicates that one varia-
ble defined at s1 is used at s2. A control
dependency shows the influence of a state-
ment on other statements. In an SDG, nodes
represent statements, and edges correspond
to dependencies.

We decide data dependencies on the basis
of def-use chains, and we implement the algo-
rithm6 to determine control dependencies by

constructing dominator trees. As Figure 2
shows, data dependency has property
D[var], meaning var is defined at one state-
ment and used at another. Control depend-
ency has property C[condition],
indicating that the dependency exists when
the predicate statement satisfies the condition
(true or false of If-Stmt, or lookup value of
Switch-Stmt). In particular, to handle the
interprocedural data dependency, we link
Identity-Stmt of a callee method to
Invoke-Stmt in a relevant caller, and we
set the property value var to the argument
name at Invoke-Stmt.

Modeling common vulnerabilities
as graph traversals

We consider three types of graph traversals
for modeling common vulnerabilities: those
being detected through syntactical informa-
tion, those requiring control-flow informa-
tion, and those needing additional dataflow
information.

Definitions
We use the following symbols in our

traversals:

� MATCH
p
label represents matching

nodes with label label and proper-
ties p,

� ARGðN Þi indicates traversing from
Invoke-Stmt node N to get its ith
argument, and

� N 1� ½Rp
type�len ! N 2 denotes a path

from node N1 to node N2. The path
is connected by relationship type
with length len, which can be omit-
ted if it equals 1.

Syntax-level vulnerability
We use a real example (http://bit.ly

/1rRoozD) to explain such vulnerability.
Skype v1.0.0.831 creates private files using
the method openFileOutput with
parameters MODE WORLD READABLE and
MODE WORLD WRITABLE. Therefore, any
other apps can access Skype’s private files,
causing unauthorized information leakage
and manipulation. There are two necessary
conditions for such vulnerability: method
openFileOutput is called, and its second

...

JANUARY/FEBRUARY 2015 49

argument is MODE WORLD READABLE,
MODE WORLD WRITABLE, or both. To
model these two conditions, we design the
following traversal:

MATCH
p2
Ast � ARGðN Þ2 �MATCH

p1
Stmt ðAÞ

where p1 contains properties for selecting
Invoke-Stmt or Assign-Stmt whose
right value is an invocation expression. p2
requires that the augment’s value is
MODE WORLD READABLE, MODE WORLD
WRITABLE, or both. Traversal A first
matches statements invoking method
openFileOutput, then visits the nodes of
their second argument, and finally selects those
whose value is MODE WORLD READABLE,
MODE WORLD WRITABLE, or both.

Note that traversal A cannot capture the
cases when the second augment of open
FileOutput is a variable rather than a con-
stant. Therefore, extra information, such as
dataflow information, is needed.

Control-flow-level vulnerability
Because some vulnerabilities will be trig-

gered through several statements, control-
flow information is needed to identify them.
We define the following traversal for capabil-
ity vulnerabilities:

MATCH
p1
Method � ½RMCG �þ

! MATCH
p2
Method ðB1Þ

where p1 selects source methods, such as the
entry methods of exported components, and
p2 chooses sink methods, such as sensitive
methods that require permissions. Also,
�½RMCG �þ ! means there is one or more
MCG relationships. Hence, traversal B1
returns paths from entries to important calls,
connected with MCG relationships. Because
traversal B1 describes only whether the vul-
nerability exists at the method level, we
define the following traversal to retrieve con-
trol-flow paths with statement nodes if tra-
versal B1 does not return nil:

MATCH
p1
Method � ½RICFG �þ

! MATCH
p2
Stmt ðB2Þ

where p1 selects entry methods of exported
components, and p2 chooses Invoke-

Stmt, which invokes permission-protected
methods. As Figure 2 shows, traversal B2
returns the path (s1, s2, s3, s5, s6, s7, s8, s9,
s10, s11, s12, s13, s14) from the method
node onStart to the Invoke-Stmt node
that calls sendTextMessage.

Dataflow-level vulnerability
Some vulnerabilities can be triggered only

if an attacker can inject proper data. Because
dataflow information is necessary for discov-
ering such vulnerabilities, we construct the
following traversal:

MATCH
psink

Stmt � ½RV
SDGData

�
! N � RSDGData½ ��! MATCH

psource

Stmt ðCÞ

where nodes with properties psource are sour-
ces, such as calling methods to get tainted
sensitive information. Nodes with properties
psink are sinks, such as statements that could
leak information (for example, Log.d
or FileOutputStream.write). N 1�
RV

SDGData

h i
! N 2 means that node N1 is

linked to node N2 with an SDG data
dependency relationship, and set V contains
variables used at N1 that are of interest. For
example, for the statement sendText
Message (s14) in Figure 2, V includes {r1, r2}.

Although traversal C returns paths show-
ing how sensitive data produced at sources is
propagated to sinks, not all paths are feasible.

Solving constraints
To remove infeasible paths, we collect

constraints on the path and decide whether
they can be satisfied. For control-flow paths,
we extract predicate statement nodes on the
paths. For dataflow paths, we consider more
statement nodes that could affect the path.

To use an SMT solver to decide whether a
path is feasible and generate appropriate
input if possible, we first convert Shimple IR
code to SMT-LIB2 code. However, existing
SMT solvers lack types. Hence, we map the
types defined in Shimple IR to the types sup-
ported by Z3-str—more precisely, we map
the Shimple primitive types to the Z3-str
primitive types. We map the reference type
to Z3-str’s String type. Although this type
mapping is coarse, it leads to a low failure
rate in Z3-str’s execution, and in our

..

MOBILE SYSTEMS

..

50 IEEE MICRO

experiments all SMT-Lib2 code generated by
our system can be successfully executed by
Z3-str. We convert each Invoke-Stmt to
an SMT-Lib2 function declaration statement
if the function has not been declared before,
and it is followed by an assertion statement
to make sure the return value is equal to
that invocation. We pass this object as the
first argument if it is an instance object
method call.

Evaluation
We implemented VulHunter with 9,145

lines of Java codes, excluding third-party
libraries, and modeled five common vulner-
abilities in apps according to CVE reports
from January 2011 to April 2014. Then, we
applied VulHunter to scan 577 popular apps
downloaded from Google Play in April
2014. All these apps have more than 1 mil-
lion installations; Figure 3 shows the category
distribution. We found that 375 apps had at
least one vulnerability.

Modeling common vulnerabilities
We analyzed all CVE reports related to

Android apps from January 2011 to April
2014 and modeled as graph traversals five
common vulnerabilities (see Table 1) that
account for 72.5 percent of all cases. The five
common vulnerabilities include the following:

� Capability leak.5 An app exports its
component(s) without sanitizing the
intent from other apps, and therefore
it could leak its capabilities to other
apps, which gain extra capabilities
without requesting the corresponding
permissions. To fix this vulnerability,
an app can check the source of intent
or not export its component(s).

� Content provider directory traversal
(http://bit.ly/1FILcrB). An app ex-
ports its content providers without
properly canonicalizing the URI to
methods like openFile or open

350

2537 34
8

122

68

219

296

51
31 37

24

300

250

200

150

100

50

0

Bus
ine

ss

Com
ics

Com
mun

ica
tio

n

Gam
e

Boo
ks

_A
nd

_R
efe

re
nc

e

Educ
ati

on

Total apps

Vulnerable apps

Figure 3. We randomly selected 577 popular apps, each of which has at least 1 million

installations, and checked whether they have one or more common vulnerabilities. The figure

shows their category distribution.

Table 1. Five common vulnerabilities. For each vulnerability, we

give both the number of Common Vulnerabilities and Exposures

reports in each year and the number of vulnerable apps within the

577 apps under examination.

Vulnerability type 2011 2012 2013 2014

Vulnerable

apps

Capability leak 1 63 3 6 4

Content provider directory

traversal

0 0 0 9 3

X509TrustManager implemented

improperly

1 7 2 6 337

Public file access permission 3 6 6 3 133

Log sensitive information 0 2 1 2 20

...

JANUARY/FEBRUARY 2015 51

AssetFile, so that other apps can
access arbitrary files. To solve this
vulnerability, an app should check
the path.

� X509TrustManager implemented im-
properly. An app uses or inherits
class X509TrustManager but the
methods checkClientTrusted()
and checkServerTrusted() are
overridden with a blank implementa-
tion (http://bit.ly/1FILcrB) or the
default implementation (http://bit
.ly/1yzoIrM), so that it does not verify
the certificate. To avoid this problem,
an app should follow best practices to
implement those methods.7

� Public file access permission (http://bit
.ly/12klYme). An app creates files with
permission MODE WORLD READABLE,
MODE WORLD WRITABLE, or both, so
that other apps can read or modify
the files.

� Log sensitive information (http://bit
.ly/1yzp0Ph). An app logs sensitive
information (such as the device ID or
location), so that other apps can re-
trieve them by declaring READ LOGS
permission.

We will model the remaining vulnerabil-
ities in future work.

Discovering vulnerable apps
We performed the five graph traversals

over the APGs from the 577 apps, and Table 1
gives the results.

Capability leak. We selected only those func-
tions that send SMS as sink functions, and
we detected four apps that let other apps
send SMS through themselves. More sinks
will be included in future work. After manual
analysis, we confirmed one app and deter-
mined why the other three apps could not be
triggered.

The verified app is an email client called
TouchDown (com.nitrodesk.droid20.nitroid,
version 8.4.00086). It lets users wipe data
remotely through an SMS. However, it checks
the SMS’s content without verifying the
source of SMS, and sends a confirmation
SMS after wiping out data. An adversary can
send a malicious SMS to wipe out data on tar-

get devices. VulHunter cannot generate input
to trigger such an attack, because constraints
on paths depend on data stored in the app’s
SQLite databases and preference files, which
are not accessible during static analysis. How-
ever, VulHunter provides enough information
for us to conduct manual analysis.

The other three apps use the same pay-
ment framework that sends an SMS upon
receipt of a specific SMS. Similar to Touch-
Down, they do not verify the source of the
incoming SMS. After manually analyzing
these apps, we found that two apps invoked
the vulnerable codes but did not activate that
function. In future work, we will enhance
VulHunter with dead-code detection to elimi-
nate such false positives. Another app sup-
ports only telecommunications service
providers in Taiwan, so we could not check it.

Content provider directory traversal. Three
apps export their content providers, such that
other apps can access arbitrary private files.
We manually confirmed these vulnerabilities.

X509TrustManager implemented improperly.
This was a common vulnerability, as 337
apps used X509TrustManager without prop-
erly implementing those methods, and there-
fore were vulnerable to the SSL and TLS
man-in-the-middle (MITM) attack.7 We
randomly selected five apps, manually veri-
fied them, and located the vulnerable codes
(that is, the default TrustManager was over-
rode with a blank implementation.). When
we used tapioca (http://bit.ly/1r8gqAL) to
launch the MITM attacks, we found that
two apps could be attacked. For the remain-
ing three apps, one could not be triggered by
GUI operations, and the other two contained
dead codes. In future work, we will add dead-
code detection to reduce false positives, and
we will employ dynamic analysis tools such as
SMV-Hunter7 to automatically verify them.

Public file access permission. This vulnerabil-
ity occurred in 133 apps. We randomly
selected 10 apps from them, manually veri-
fied these apps, and confirmed that all created
publicly readable or writable files.

Log sensitive information. We regard the
device ID, latitude, and longitude as sensitive

..

MOBILE SYSTEMS

..

52 IEEE MICRO

information, and found 20 vulnerable apps,
all of which have been manually verified
without false positives.

W e implemented our static-analysis
framework in VulHunter and mod-

eled five types of vulnerabilities as graph tra-
versals. Checking 557 popular apps, we
found that 375 (67.3 percent) of apps had at
least one vulnerability. Our future work is
twofold. One aim is to further improve the
framework, such as adding dead-code detec-
tion to reduce false positives, proposing for-
mal approaches to model new vulnerabilities
using APGs, and optimizing queries accord-
ing to vulnerability patterns. The other aim is
to integrate it with dynamic analysis for veri-
fying suspicious apps automatically. MICRO

Acknowledgments
This work is supported in part by the

Hong Kong GRF (No. PolyU 5389/13E),
the National Natural Science Foundation of
China (No. 61202396), the PolyU Research
Grant (G-UA3X), and the Open Fund of Key
Lab of Digital Signal and Image Processing of
Guangdong Province (2013GDDSIPL-04).

..
References
1. F. Yamaguchi et al., “Modeling and Discov-

ering Vulnerabilities with Code Property

Graphs,” Proc. IEEE Symp. Security and Pri-

vacy, 2014, pp. 590–604.

2. J. King, “Symbolic Execution and Program

Testing,” Comm. ACM, vol. 19, no. 7, 1976,

pp. 385–394.

3. Y. Zheng, X. Zhang, and V. Ganesh, “Z3-str:

A z3-Based String Solver for Web Applica-

tion Analysis,” Proc. 9th Joint Meeting

Foundations of Software Eng. (ESEC/FSE

13), 2013, pp. 114–124.

4. O. Lhotak and L.J. Hendren, “Scaling Java

Points-to Analysis Using Spark,” Proc. 12th

Int’l Conf. Compiler Construction (CC 03),

2003, pp. 153–169.

5. M. Grace et al., “Systematic Detection of

Capability Leaks in Stock Android Smart-

phones,” Proc. Network and Distributed Sys-

tem Security Symp. (NDSS 12), 2012; www

.internetsociety.org/systematic-detection

-capability-leaks-stock-android-smartphones.

6. T. Lengauer and R.E. Tarjan, “A Fast Algo-

rithm for Finding Dominators in a Flowgraph,”

ACM Trans. Programming Languages and

Systems, vol. 1, no. 1, 1979, pp. 121–141.

7. D. Sounthiraraj et al., “SMV-Hunter: Large

Scale, Automated Detection of SSL/TLS

Man-in-the-Middle Vulnerabilities in Android

Apps,” Proc. Network and Distributed Sys-

tem Security Symp. (NDSS 14), 2014;

www.internetsociety.org/doc/smv-hunter

-large-scale-automated-detection-ssltls-man

-middle-vulnerabilities-android-apps.

Chenxiong Qian is a research assistant in
the Department of Computing at the Hong
Kong Polytechnic University. His research
focuses on security and privacy with an
emphasis on mobile security. Qian has a
BEng in software engineering from Nanjing
University. Contact him at cscqian@comp.
polyu.edu.hk.

Xiapu Luo is a research assistant professor
in the Department of Computing and an
associate researcher at the Shenzhen Re-
search Institute at the Hong Kong Polytech-
nic University. His research focuses on
smartphone security, network security and
privacy, and Internet measurement. Luo has
a PhD in computer science from the Hong
Kong Polytechnic University. He is the cor-
responding author; contact him at csxluo@
comp.polyu.edu.hk.

Yu Le is a research assistant in the Depart-
ment of Computing at the Hong Kong Pol-
ytechnic University. His research focuses on
security and privacy with an emphasis on
mobile security. Le has a BEng in informa-
tion security from Nanjing University of
Posts and Telecommunications. Contact
him at cslyu@comp.polyu.edu.hk.

Guofei Gu is an associate professor in the
Department of Computer Science and
Engineering at Texas A&M University. His
research interests include network and sys-
tem security, social Web security, and cloud
and software-defined networking (SDN/
OpenFlow) security. Gu has a PhD in com-
puter science from the Georgia Institute of
Technology. Contact him at guofei@cse.
tamu.edu.

...

JANUARY/FEBRUARY 2015 53

