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Abstract—Since more than 96% of mobile malware targets
the Android platform, various techniques based on static code
analysis or dynamic behavior analysis have been proposed to
detect malicious apps. As malware is becoming more complicated
and stealthy, recent research proposed a promising detection
approach that looks for the inconsistency between an app’s
permissions and its description. In this paper, we first revisit
this approach and reveal that using description and permission
will lead to many false positives because descriptions often fail to
declare all sensitive operations. Then, we propose exploiting an
app’s privacy policy and its bytecode to enhance the malware
detection based on description and permissions. It is non-
trivial to automatically analyze privacy policy and perform the
cross-verification among these four kinds of software artifacts
including, privacy policy, bytecode, description, and permissions.
To address these challenging issues, we first propose a novel
data flow model for analyzing privacy policy, and then develop
a new system, named TAPVerifier, for carrying out investiga-
tion of individual software artifacts and conducting the cross-
verification. The experimental results show that TAPVerifier can
analyze privacy policy with a high accuracy and recall rate.
More importantly, integrating privacy policy and bytecode level
information can remove up to 59.4% false alerts of the state-of-
the-art systems, such as AutoCog, CHABADA, etc.

Index Terms—mobile applications; privacy policy.

I. INTRODUCTION

The massive success of app economy poses lucrative and
profitable targets for attackers. It has been shown that the
number of mobile malware has jumped 75% in 2014 [49].
Moreover, while Android has taken up 81.5% market share
with millions of apps [44], 96% mobile malware targets
Android [49].

Many detection systems based on static analysis [19], [32],
[38], [42], [87], [90] and/or dynamic analysis [35], [58], [62],
[72], [78], [82] have been proposed to detect mobile malware.
However, without well-defined signatures, it is difficult to
differentiate between malware and benign apps because they
may offer the same functionality. Recent research suggested
a promising approach that detects malware by checking its
description-to-behavior fidelity (i.e., whether it behaves as
advertised [41], [55], [59]). For example, whether a music app
collecting users’ location information is suspicious or not de-
pends on what it claims to do. These approaches (e.g.,Whyper
[55], AutoCog [59]) profile an app’s expected behaviors by
extracting the semantic meaning from its description, and
characterize the app’s real behaviors by examining the permis-
sions required by the app. CHABADA [41] identifies abnormal
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sensitive API usages from apps that are expected to provide
similar functionality according to their descriptions.

Although their results are encouraging, there needs a sys-
tematic study on assessing an app’s description-to-behavior
fidelity because of two reasons. First, since an app’s descrip-
tion on Google Play has character limit, it cannot detail all
behaviors, thus leading to false positives. To remedy this
issue, we propose employing an app’s privacy policy to obtain
more information about its expected behaviors. It is worth
noting that more and more apps provide privacy policies for
describing their privacy-related behaviors (e.g., 76% of free
apps on Google play provide privacy policies for users in 2012
[5]). More importantly, Google recently updated its User Data
Policy to require the developers of apps that are in Google play
to provide privacy policies. Moreover, since Mar. 15, 2017,
Google started removing apps without privacy policies from
Google play [65].

Second, since developers may over-claim permissions [36],
using permissions to represent an app’s behaviors will result in
false positives (i.e., “overclaim” security-related behaviors). To
address this issue, we propose inspecting an app’s bytecode to
profile its real behaviors. Therefore, in this paper, we leverage
both an app’s privacy policy and its bytecode to revisit and
enhance its description-to-behavior fidelity by answering the
following two research questions:

RQ1 Does an app’s privacy policy supply useful information
for assessing its description-to-behavior fidelity?

RQ2 Does an app’s bytecode provide useful information for
measuring its description-to-behavior fidelity?

It is non-trivial to answer these two questions due to the
difficulty of analyzing privacy policies and bytecode and
correlating them with descriptions and permissions. First, since
privacy policies are legal style documents, it is challenging to
automatically extract their meanings [91]. We propose a novel
data flow model for privacy policy to create semantic patterns,
which are then used to identify actions in privacy policy.
After that, we use information extraction (IE) and natural
language processing (NLP) techniques to identify an app’s
expected behaviors. Second, since privacy policy, bytecode,
description, and permission are different kinds of software
artifacts, analysing each of them and then correlating their
semantic meanings pose unique challenges. We propose and
develop TAPVerifier, a Text-based APplication Verification
system that integrates the analysis of these four kinds software
artifacts together and performs the cross-verification automat-
ically. Overall, our major contributions include:

1) A novel data flow model for privacy policy to define
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semantic patterns. Based on these patterns, we can auto-
matically identify the collected personal information from
apps’ privacy policies.

2) We propose and develop TAPVerifier, a novel system
for analyzing four kinds of software artifacts, including,
privacy policy, bytecode, description, and permission, and
conducting cross-verification among them automatically.

3) We conduct extensive experiments to evaluate TAPVeri-
fier. The experimental results show that compared with
description, privacy policies are more likely to describe
privacy-related behaviours. Furthermore, by using privacy
policy and bytecode, TAPVerifier can remove up to 59.4%
false alerts generated by the state-of-the-art systems (e.g.,
Whyper, AutoCog, CHABADA, etc.).

The reminder of this paper is organized as follows. We intro-
duce the background knowledge and the motivating examples
in Section II. Section III details how we identify semantic
patterns for analyzing privacy policies. Section IV describes
the design and the implementation of TAPVerifier. Section
V presents the extensive evaluation results and observations.
After discussing TAPVerifier’s limitations and introducing our
future work in Section VI, we present related work in Section
VII and conclude the paper in Section VIII.

II. PRELIMINARIES

A. Background

1) Privacy policy: When publishing an app in Google play,
developers will provide additional information to help user
learn more about the app, such as, description, privacy policy,
screenshots, to name a few [6]. An app’s description is like an
advertisement for promoting the app and attracting more users
[74]. To make the description appealing to users, the app’s
most relevant features are presented. Privacy policy informs
users about personal information collection, such as what kind
of information will be collected, how information will be used,
etc. [15].

2) Android: Each app has an APK file that
contains the executable dex file, the manifest file
(AndroidManifest.xml), resource file and other
supporting files. Android uses permissions to limit the access
to sensitive data or feature on the device. If an app wants to
use some features protected by permissions, it must declare
corresponding permission in its manifest file.

3) Description-to-Behavior Fidelity: Some researchers pro-
pose checking the inconsistencies between an app’s description
and its real behavior to identify abnormal apps [55] [59] [41].
More precisely, they use the app’s description to infer expected
behaviors and employ the permissions/APIs used by the app
to represent its behaviors.

Whyper [55] and AutoCog [59] combine description and
the requested permissions to find improper permissions. After
extracting word pairs from description, Whyper and AutoCog
map them to permissions. Then, they compare these per-
missions inferred from the description with the permissions
requested by the app. If an app requests some permissions but
does not explain it in the description, Whyper/AutoCog will
raise an alert. The major difference between these two systems

lies in how to construct the semantic model. Whyper builds
it by manually analyzing API documents whereas AutoCog
creates it by conducting statistical analysis on a large number
of descriptions.

CHABADA [41] combines description and the called APIs
to find suspicious apps. It first uses LDA [27] to extract
topic words from descriptions for grouping apps into different
clusters. Then, it identifies suspicious apps with abnormal API
usages in the same cluster.

B. Motivating Examples

We use the app “com.tinymission.dailyyogafree” to illus-
trate how to employ privacy policy to remove false alerts
resulted from the insufficiency of description. Fig. 1, Fig. 2,
and Fig. 3 show the snippet of the app’s code, its privacy
policy, and the description, respectively.

Fig. 1: Snippet of com.tinymission.dailyyogafree’s codes. It gets the location
information and writes the information to the log.

The types of non-personal data Daily Workout may collect and 
use include, but are not limited to:  

(i) device properties, including, but not limited to unique device 
identifier or other device identifier ("UDID");  

(ii) device software platform and firmware;  

(iii) mobile phone carrier;  

(iv) geographical data such as zip code, area code and location; 

Fig. 2: Snippet of com.tinymission.dailyyogafree’s privacy policy.

Your own personal yoga instructor wherever you are!  FEATURES: 
• Level one 20, 40 and 60 minute workouts             • Great for both men and women
• Video demonstrates how to get into each pose   • Audio instructions for entire routine
• 30+ poses                                                                 • 3 predefined routines
>>> Featured in WIRED magazine!!!
Simply Yoga is your own personal yoga instructor. The app contains a 20, 40 and 60 
minute yoga routine that step you through each pose. Each pose is demonstrated by 
a certified personal trainer, so simply choose your workout length and follow along in 
the comfort of your own home!
If you like Simply Yoga FREE, check out the full version which features:
• A second set of workouts (Level 2)    • Create custom routines from all poses
• Landscape mode                                • Ad-free
>>> Want more workouts? Also check out the "DAILY WORKOUTS" full version app for
 multiple workouts including ab, arm, butt, cardio, leg and full-body routines. Daily 
Workouts now also has Pilates, stretch, kettlebell and ball workouts and more!

Fig. 3: Description of com.tinymission.dailyyogafree.

Use privacy policy to explain the necessity of permission.
As shown in Fig.1, the app calls the API getLastKnownLo-

cation() to get the location information and eventually writes
the information into the log. Since invoking this function needs
the permission ACCESS_FINE_LOCATION, the app requires
such permission in its manifest file.
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Fig.2 lists part of the app’s privacy policy, where “Daily
Workout” (i.e., “Daily Workout Apps, LLC”) is the developer
of the app “com.tinymission.dailyyogafree”. The item (iv) in-
dicates that the app will collect users’ location information and
the app requires the permission ACCESS_FINE_LOCATION.
In other words, the privacy policy can explain the necessity of
requesting this permission.

Use privacy policy to find false alerts. When analyz-
ing this app’s description (Fig.3), AutoCog [59] cannot
locate any sentence that can explain why the permission
ACCESS_FINE_LOCATION is needed, and therefore it raises
a permission alert. However, since the privacy policy can
explain the necessity, such false alert can be removed by
analyzing the privacy policy.

Use code to find false alerts. We use the
app “com.ilspl.mahavir” to demonstrate how to use
code analysis to remove false alerts due to the
overclaimed permissions. The app, “com.ilspl.mahavir”,
requests permission ACCESS_FINE_LOCATION and
ACCESS_COARSE_LOCATION without explaining it in
its description. AutoCog generates an alert. However, our
bytecode analysis finds that this app does not use any location
related APIs. Therefore, such false alert can be removed with
the help of bytecode analysis.

III. SEMANTIC PATTERNS FOR PRIVACY POLICIES

A. Data Flow Model for Privacy Policy
Useful sentence. Not all sentences in privacy policies are

relevant to users’ personal information. We define “useful
sentences” as those sentences that describe what information
will be collected by an app. By analyzing useful sentences,
we can identify the personal information to be collected by
the app. Other sentences are regarded as “useless”, and will
not be analysed. For example, although the sentence “if you
have any question, you can contact us by using the following
information” contains sensitive word “contact”, we do not
analyse it since it talks about how to contact the developer.

Data flow model. Since useful sentences can have di-
verse formats, we propose a systematic approach to define
semantic patterns, and then use such patterns to recognize
useful sentences. More precisely, motivated by the categories
of privacy elements summarized in [16], [17], we create a
data flow model for major components in privacy policies.
This model describes how personal information is processed
and transmitted and guides us to define semantic patterns.

As shown in Fig. 4, our data flow model has three kinds
of actors, including We, You, and Third Party. The former
two actors can conduct several actions denoted by their re-
spective blocks. The actor We may refer to the app itself,
the developer/owner of this app, or the service provider. We
can collect personal information from the app. The actor You
refers to the user of an app or service, and You can provide
information through registering accounts or other channels.
The actor Third Party (e.g., Ad library) collaborates with We,
and may receive the information collected by We. Our model
is general and extensible, and it does not require a privacy
policy to include all actions. Moreover, if a new action is
identified, we can easily add it to the model.

The model in Fig.4 illustrates how information flows from
one actor to another and how it is handled by different actions.
We detail each action as follows.
. Data Collection. This action is usually accompanied with
sentences explicitly mentioning which information will be
collected by We, for example, “we may collect and process
information about your actual location.”.
. Data Storage. Since We may store information in some
place after collecting them, the sentences related to this action
will reveal the collected information, such as, “we’ll store
those contacts on our servers for you to use.”.
. Data Utilization. Privacy policies also describe what in-
formation will be used and the purpose of this behaviour.
The sentences about this action will disclose the collected
information, such as, “We may use your location information
to display advertisements for businesses”.
. Data Access. Since some sentences often mention the
limited access to the collected personal information, they
may provide more details about the personal information, for
example, “Service providers have access to your personal
information only to perform services on our behalf.”.
. Data Disclose. It explains what, when, and how the collected
information will be shared with Third Party by We. Hence,
the relevant sentences will give hints to the information, such
as, “We may disclose your information to third parties if we
determine that such disclosure is reasonably necessary.”.
. Integrity&Security. We will take some measures to protect
the integrity and security of user data. The relevant sentences
mention the data collected by We, such as “all sensitive/credit
information you supply is encrypted via Secure Socket Layer
(SSL) technology.”.
. User Consent. You may accept the privacy policy explicitly
by consenting to it. Alternatively, You may accept the privacy
policy implicitly by using the app. In either case, We can
acquire the information mentioned in the related sentences,
for example, “Each time you visit the Site or use the Service,
you agree and expressly consent to our collection, use and
disclosure of the information.”.
. Data Provision. When You register an account, We will
ask You to provide certain information directly. The relevant
sentences will present the details, for instance, “When you
register account through website, you will be asked to provide
us with your phone number, name and a photo”.
. Data Aggregation. We may combine the information col-
lected from different sources, such as “we may combine Per-
sonal Information with other information, such as combining
a precise geographical location with your name. ”.

Service Provision usually briefly introduces the service or
data provided to users. Since an app’s description provides
much more such information than Service Provision, we do
not analyze it.

B. Semantic Patterns
We define semantic patterns according to the data flow

model shown in Fig. 4. More precisely, we first find out the
verbs commonly used in different actions, and then define
semantic patterns according to those verbs’ semantic meanings
and common sentence structures in privacy policies.
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Fig. 4: Data Flow Model for Privacy Policy.

Verb set. Since the verbs are the basis of semantic patterns,
their comprehensiveness would affect the effectiveness of se-
mantic pattern. For example, verb “collect” and “gather” have
similar semantic meaning, and may be used interchangeably.

Permission API Example Personal Information

WRITE SETTINGS putConfiguration() configuration
READ CONTACTS assignContactFromPhone() contact
RECORD AUDIO setAudioSource() audio source

WRITE EXTERNAL STORAGE getExternalStorageDirectory() external storage directory
WRITE CONTACTS assignContactFromEmail() contact

ACCESS COARSE LOCATION getLastKnownLocation() last known location
CAMERA setVideoSource() video source

RECEIVE BOOT COMPLETED - -
GET ACCOUNTS getAccounts() accounts

READ CALENDAR CalendarContract$Reminders.query() reminders
ACCESS FINE LOCATION addGpsStatusListener() Gps status listener

TABLE I: Permissions and their related APIs.

We propose the following approach to automatically con-
struct the verb set that contains verbs with similar meaning.
In the first step, since PScout [21] lists the APIs protected by
10 sensitive permissions as shown in Table I, we analyze the
method names of these APIs to extract personal information.
For example, we extract “last known location” from the API
getLastKnownLocation(). If the method name only contains a
verb (e.g., Camera.open()), we collect the personal informa-
tion from its class name (e.g., “camera”).

In the second step, we look for the personal information
in a corpus that consists of 500 privacy policies, and locate
the corresponding verbs. More precisely, if one sentence con-
tains personal information, we analyze its typed dependency
to identify the corresponding verb. For example, since the
sentence “we will retain your account information” contains
“account”, we extract its related verb “retain”. We collect the
verbs that appear more than 5 times in these privacy policies,
and eventually obtain 132 verbs.

In the third step, we divide these verbs into proper categories
by comparing them with 23 seed verbs, which are commonly-
used verbs in privacy policies as suggested by Anton et al.
in [14]. We manually group the seed verbs into 12 verb sets
according to their semantic meaning, and let them be the seed
verbs of each verb set. Then, for the 132 new verbs obtained in
the second step, we calculate the semantic similarity between
them and the seed verbs in each verb set. Given a new verb,
if the similarity between it and the seed verb is higher than a
threshold (0.67 by default), we put it into the corresponding
verb set.

Finally, 115 new verbs are grouped into 12 verb sets (shown
in Table II). Other verbs (e.g. “cancel”) are removed since they

cannot be classified to any verb set. Table II lists three sample
verbs for each verb set. Note that some verbs appear in more
than one category. For example, given that ”provide” is used
in a sentence, if the subject is We, the sentence belongs to the
Service Provision action. Otherwise, if the subject is You, the
sentence should belong to the Data Provision action of You.

# Verb Set(Action Name) Example verbs
1 V Pcollect (Data Collection) collect, gather, capture,...
2 V Pcontain (Data Collection) contain, include, involve,...
3 V Paccess(Data Access) access, read, see,...
4 V Paccess−control (Data Access) limit, restrict, gain,...
5 V Pstore (Data Storage) store, reserve, log,...
6 V Puse (Data Utilization) use, process, link,...
7 V Pdisclose (Data Disclose) share, sell, disclose,...
8 V Pallow (All actions) allow, disallow, permit,...
9 V Pprovide (All actions) provide, supply, offer,...
10 V Pconsent (User Consent) consent, agree, assent,...
11 V Pprotect (Integrity&Security) protect, encrypt, decrypt, ...
12 V Pcombine (Data Aggregation) aggregate, combine, merge, ...

TABLE II: Common verbs and their related actions.

The following paragraphs will detail the semantic patterns
for each action. We determine these semantic patterns by first
looking for the main verbs (e.g., those shown in Table II)
in real privacy policies and then manually reading the cor-
responding sentences and extracting the patterns. To ease the
presentation of semantic patterns, resource represents the place
where the collected information will appear. We use V P pass

∗
to indicate the corresponding passive voice of the verbs.

Data Collection. Its semantic patterns include:
Pattern DC 1: sbj V Pcollect resource
Pattern DC 2: resource V P pass

collect

Pattern DC 3: sbj V Pcollect V Pcontain resource
Pattern DC 4: sbj V Pallow obj to V Pcollect resource
Pattern DC 5: sbj V P pass

allow to V Pcollect resource
The sentences related to this action will describe the

collected information directly, such as “We will collect any
information contained in such communication” (Pattern DC 1)
or “Personal data about you will be collected” (Pattern DC
2). They may ask for the permission to collect some infor-
mation, for example, “Cookies allow us to collect technical
and navigational information” (Pattern DC 4) or “We are
allowed to collect and store the following personal informa-
tion” (Pattern DC 5). Pattern DC 3 indicates a special class
of descriptive sentences that enumerate individual collected
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information, for instance, “Examples of the information we
collect include name, mobile phone number”. The subject and
the object form the part-whole relation [40], where name and
mobile phone number are part of the collected information.

Data Storage. Its semantic patterns include:
Pattern DS 1: sbj V Pstore resource
Pattern DS 2: resource V P pass

store

Pattern DS 3: sbj V Pallow obj to V Pstore resource
Pattern DS 4: sbj V P pass

allow to V Pstore resource
Pattern DS 1-4 are similar to Pattern DC 1,2,4,5 in Data

Collection, but the verb set V Pcollect is replaced with
V Pstore. Example sentences include: “We will store and use
your e-mail address” (Pattern DS 1), “Your e-mail address
will be stored by us” (Pattern DS 2), “Persistent cookies also
allow us to store your preferences” (Pattern DS 3), and “We
are allowed to store your contact information” (Pattern DS
4).

Data Utilization. Its common semantic patterns include:
Pattern DU 1: sbj V Puse resource
Pattern DU 2: resource V P pass

use

Pattern DU 3: sbj V Pallow obj to V Puse resource
Pattern DU 4: sbj V P pass

allow to V Puse resource
Pattern DU 1,2 are similar to Pattern DA 1,2, but they use

the verbs in V Puse. For instance, “We will utilize cookies for
identifying your language settings of your device” (Pattern DU
1) and “The personal data collected will be used for handling
such enquiry” (Pattern DU 2). Pattern DU 3, 4 allow “us” to
use personal information. An example sentence is “You allow
us to process your personal data” (Pattern DU 3) and “We
are allowed to use that information” (Pattern DU 4).

Data Access. Its common semantic patterns include:
Pattern DA 1: sbj V Paccess resource
Pattern DA 2: resource V P pass

access

Pattern DA 3: sbj V Pallow obj to V Paccess resource
Pattern DA 4: sbj V P pass

allow to V Paccess resource
Pattern DA 5: resource ADJaccess to sb
Pattern DA 6: sbj “keep ability ”to V Paccess resource
Pattern DA 7: sbj V Paccesscontrol “access to ”resource to sb

Pattern DA 1-4 are the same as Pattern DC 1,2,4,5 in
Data Collection, but the verb set V Pcollect is replaced with
V Paccess. Pattern DA 5 uses adjective to indicate that the
information can be collected, for example, “Your information
is accessible to us”. Pattern DA 6 explains the app’s ability to
collect information, such as, “We keep ability to access your
personal information”. Pattern DA 7 denotes limited access
to certain information, for instance, “We limit access to your
personal information to those employees”.

Data Disclose. Its common semantic patterns include:
Pattern DD 1: sbj V Pdisclose resource
Pattern DD 2: resource V P pass

disclose

Pattern DD 3: sbj V Pallow obj to V Pdisclose resource
Pattern DD 4: sbj V P pass

allow to V Pdisclose resource
For data disclose action, we define four semantic patterns,

just like patterns defined in Data Utilization, but V Puse is
replaced with V Pdisclose. Example sentences include: “We
will transfer your individual information to third parties when
necessary”(Pattern DD 1), “Your personal information will be
disclosed to such third parties” (Pattern DD 2), “You allow

us to share your personal information with another company”
(Pattern DD 3), and “We are allowed to sell your data to
others” (Pattern DD 4)

Integrity&Security. Its common semantic patterns include:
Pattern IS 1: sbj V Puse resource to V Pprotect resource
Pattern IS 2: resource V P pass

protect

Pattern IS 1 is in active voice, for example, “We will
use appropriate security safeguards to protect your personal
information against loss, theft, and unauthorized access”.
Pattern IS 2 is in passive voice, such as, “The sensitive
information will be encrypted”.

User Consent. It has the following pattern meaning that the
user consents to the information collection:
Pattern UC: sbjyou V Pconsent to something

This pattern matches sentences like “you are consent to the
collection of your personal information”. Since the User Con-
sent action describes the behaviors of the user, TAPVerifier
will not match or analyze relevant sentences.

Data Provision. It has the following pattern indicating that
the user will provide certain information to the app.
Pattern DP: sbjyou V Pprovideresource

This pattern represents sentences like “You should provide
a telephone number and an email address”.

Data Aggregation. It usually uses the following pattern:
Pattern DAG: sbj V Pcombine resource with resource

Pattern DAG describes that resources will be combined
together, such as “We will combine the information you provide
with information from other visitors”.

After defining the common sentence structures for different
actions, we combine these sentence structures and get nine
general semantic patterns (listed in Table III). We use V P∗
to represent the verb sets (1,3,5,6,7,9,11) in Table II. Thus,
we can use one general semantic pattern to represent multiple
sentence structures.

IV. TAPVERIFIER

A. Architecture

Fig.5 shows the architecture of TAPVerifier, which takes in
an app’s privacy policy, description, and APK file. The privacy
policy analysis module (Section IV-B) processes the privacy
policy and outputs a list of information that will or will not
be collected. Since many apps contain third-party libraries that
have separate privacy polices, TAPVerifier will also process the
third-party libraries’ privacy policies.

The permission and code analysis module (Section IV-C)
analyzes the manifest file and the dex file to construct an App
Property Graph (APG) for representing the app [57]. APGs
are stored in a graph database. Then the module will look for
sensitive APIs/URIs and the corresponding callers.

Since we focus on privacy policies, TAPVerifier reuses the
start-of-the-art systems (i.e., AutoCog and Whyper) to analyze
descriptions (Section IV-D). The output contains permission
alerts from these systems.

The fusion analysis module (Section IV-E) leverages the
expected behaviors extracted from privacy policy and descrip-
tion to detect the inconsistency between expected behaviors
and real behaviors reflected from permissions and bytecode.
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# Semantic Pattern Sample Sentences
1 sbj V P∗ resource We would collect your location information.
2 resource V P pass

∗ Your location would be collected.
3 sbj V P∗ V Pcontain resource The information we collect include: name, age, birthday.
4 sbj V Pallow obj to V P∗ resource You allow us to access your personal information.
5 sbj V P pass

allow to V P∗ resource We are allowed to access your personal information.
6 resource ADJaccess to sb Your location information is accessible to us.
7 sbj “keep ability ”to V Paccess resource We keep the ability to access your location information.
8 sbj V Paccess−control “access to ”resource to sb We limit access to your personal data stored in our server to employee.
9 sbj V Pcombine resource with resource We will combine your geographical location with your name.

TABLE III: General semantic patterns.
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Fig. 5: TAPVerifier’s Architecture

It also inspects the code to remove the false alerts due to over-
claimed permissions.

B. Privacy Policy Analysis

1) Overview: We employ IE and NLP techniques to process
privacy policies. As shown in Fig. 6, the procedure has
the following major steps. The pre-processing step (Section
IV-B2) extracts the content from privacy policy files in HTML
format and splits it into distinct sentences. The syntactic
parsing step (Section IV-B3) parses distinct sentences and
generates syntactic trees and typed dependencies.

The pattern matching step (Section IV-B4) identifies useful
sentences by matching sentences with semantic patterns. The
collected information extraction step (Section IV-B5) identifies
the collected information from useful sentences. The negation
analysis step (Section IV-B6) determines negative sentences
due to negation words. Finally, the privacy policy analysis
module outputs the collected (uncollected) information.

2) Pre-processing: Since the privacy policy file is saved
in HTML format, we use Beautiful Soup [3] to extract the
content. For the ease of processing, we only keep English let-
ters and some specified punctuation symbols (such as comma,
period quotation marks, colon, etc), and remove all non-ascii
symbols and some meaningless ascii symbols (such as “*”,
“#”, “$”, etc.).

After that, we use the natural language toolkit (NLTK) [4] to
split the text into sentences, because it has a pre-trained Punkt
tokenizer for English and contains a model for abbreviation
words, collocations, and words that start sentences.

3) Syntactic Parsing: For each sentence, TAPVerifier em-
ploys the Stanford Parser [31] to analyze it and generate the
sentence’s syntactic tree and its words’ dependency relations.

Such data serves as the basis for pattern matching and col-
lected information extraction. For example, Fig.7 shows the
result of parsing the sentence: “we would use your location,
account information when you use our app.”, which includes
a prase tree and the typed dependencies.

The parse tree starts from S, which denotes the start of a
sentence or a clause. The Stanford Parser divides the sentence
into phrases, each of which occupies one line in the hierarchy
structure. The parser also attaches part-of-speech (POS) tags
to words and phrases according to their syntax behaviors.
Common POS tags for English include noun, verb, adjective,
adverb, pronoun, etc. In Fig.7, NP means noun phrase, V P
denotes verb phrase, PRP indicates pronoun, V B represents
verb, and NN expresses noun. The typed dependencies shows
the relation information between words in multiple lines. Each
line starts with the relation name, followed by the governor
word and the dependent word. Common relations include
nsubj that means the subject, dobj that represents the direct
object, and root that points to the root word of the sentence.

4) Pattern Matching: Pattern matching is the core com-
ponent of our privacy policy analysis module. It identifies
all useful sentences and their corresponding semantic patterns
based on the syntactic information extracted from the syntactic
parsing step. Those sentences that cannot be mapped to any
semantic patterns will be removed. The pattern matching
algorithm is shown in Algorithm 1, where a sentence is a
useful one if it matches any one of the 9 general semantic
patterns defined in Table III. The useful sentences found in
this step and their corresponding semantic patterns will form
the input of the collected information extraction step.

The function getWord(query relation, query word) re-
turns a set of words that have the relation query relation
with the word query word in the typed dependencies.
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Fig. 7: Parse tree and typed dependencies of the sentence “we would use your
location, account information when you use our app.”

The function getV erbCate(query verb) is used to get
the verb set, which query verb belongs to. For example,
“collect” belongs to V Pcollect. The output of the function
len(query set) is the number of words in query set. The
function getWordAfter(str, keyword) searches for the sen-
tence str, and returns the first word after keyword.

Here, we just use pattern 1 and 2 as examples to explain
this algorithm. Most actions in the data flow model contain
semantic patterns in active voice (like general semantic pattern
1 in Table III) and passive voice (like general semantic pattern
2 in Table III). To match the general semantic pattern 1 and
2, we look up the dependency relationship in order to find
the word that has a “root” dependency relation with the node
Root. In the following section, we call this word root word.
Since sample sentences 1 and 2 in Table III use “collect” as
root word, they will be matched in this step.

The category of the root word affects the action of the cor-
responding sentence. For instance, verb “collect” indicates that
this sentence belongs to Data Collection, but “use” indicates
that this sentence belongs to Data Utilization. Therefore, after
getting root word, in line 2, we look up Table II to find its
corresponding verb set and determine the sentence’s action.

We use different methods to extract the collected informa-
tion from active voice sentences and passive voice sentences.

Input: str sent : sentence to match; Dep Relations : Typed Dependency
Relation list. Root is the dummy word that governs the root word in the
typed dependency.

Output: 1,2,3,..,8,9: General semantic pattern number; 0: Match fail.
1 root word = getWord(“root”, Root)
2 cate = getV erbCate(root word)
3 if cate == V P∗ then
4 // try to match pattern 1,2
5 if len(getWord(“auxpass”, root word)) == 0 then
6 return 1;
7 end
8 return 2;
9 else if cate == V Pcontain then

10 // try to match pattern 3
11 for sbj in getWord(“nsubj”, root word) do
12 for mod word in getWords(“rcmod”, sbj) do
13 if getV erbCate(mod word) == V Pcollect then
14 return 3;
15 end
16 end
17 end
18 else if cate == V Pallow then
19 // try to match pattern 4,5
20 passive words = getWord(“auxpass”, root word)
21 for verb ∈ getWord(“xcomp”, root word) do
22 if getV erbCate(verb) == V P∗ then
23 if len(passive words) == 0 then
24 return 4;
25 end
26 return 5;
27 end
28 end
29 else if cate == ADJaccess then
30 // try to match pattern 6
31 return 6;
32 else if “able to” in str sent ||“keep ability to” in str sent then
33 // try to match pattern 7
34 if ”able to” in str sent then
35 verb = getWordAfter(str sent, “able to”)
36 else
37 verb = getWordAfter(str sent, “keep ability to”)
38 end
39 if getV erbCate(verb) == V Paccess then
40 return 7;
41 end
42 else if cate == V Paccess−control&&“access to” in str sent then
43 // try to match pattern 8
44 return 8;
45 else if cate == V Pcombine then
46 // try to match pattern 9
47 return 9;
48 else
49 return 0; // all pattern match fail, return 0;
50 end

Algorithm 1: Semantic Pattern Match.

For an active voice sentence (e.g., Table III sample sentence
1), the collected information is the object of root word, while
in a passive voice sentence (e.g., Table III sample sentence
2), the collected information is the subject of root word.
After successfully matching root word, we check whether
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a sentence uses passive voice in line 5 in order to determine
which general semantic patterns (i.e., 1 or 2) this sentence
belongs to. This is achieved by counting the number of words
that have “auxpass” dependency relation with root word
in the dependency relation list. Note that “auxpass” means
“passive auxiliary”.

After identifying the semantic pattern according to the
root word, we check the action executor. If the semantic
pattern belongs to We, the action executor should not be You.
For example, if the root word ∈ V Pprovide, this sentence’s
action executor should not be We, because only the personal
information provided by users will be considered.

5) Collected Information Extraction: For each useful sen-
tence, TAPVerifier locates the collected information accord-
ing to the semantic pattern that matches the sentence. In
other words, once a general semantic pattern is determined,
TAPVerifier looks for the corresponding resource as shown
in Table III in the parse tree. Note that we do not extract
the noun phrases in the conditional clauses. For example,
given the sentence “we would use your location information
when you visit our website.”, we will extract the noun phrase
“your location information”, and ignore the noun phrase ”our
website”. Moreover, we remove stop words for improving
the accuracy. For example, the noun phrase “your location
information” becomes “location information”.

To improve the performance, we adopt ARKref [54] to
conduct the co-reference resolution. ARKref is a rule-based
coreference system that uses Stanford Parser [31] to analyze
sentences and marks most NP as mentions. Then, it uses a
set of patterns to find potential antecedents for each mention.
For pronominal mention, it selects the antecedent candidate
with the shortest syntactic path distance as the entity to which
the pronoun points. If one pronoun denotes the collected
information, the corresponding noun will be added to the list
of collected information. Besides the personal information, we
also record the corresponding verb and write it to the output
file. The verb can be used to improve the accuracy of the
fusion analysis module as explained in Section IV-E.

6) Negation Analysis: When performing the negation anal-
ysis, we consider the following negative words, including
negative determiners (e.g., “no”, “neither”), negative adjec-
tives (e.g., “unable”, “improper”), negative nouns (e.g., “no-
body”, “none”), verbs (e.g., “prevent”, “prohibit”, “forbid”)
with negative connotation, adverbs (e.g., “hardly”, “scarcely”,
“barely”) [80], and coordinating conjunctions that present a
contrast or exception.

To analyze complex sentences with negative words, we
consider not only the common cases with a single negative
word, but also the scenarios with more than one negative words
(e.g., double negation sentences). For example, in the sentence
“we will not collect any personal information but account
name”, “but” is a conjunction and it introduces a phrase
contrasting with what has been mentioned. Thus, the negation
analysis result of “account name” becomes the opposite of the
result of “personal information”.

More precisely, in the first step, we check the subject and
main verb related words. If these words contain negative
words, we regard the sentence as a negative one. Otherwise,

it is a positive one. For a negative sentence, we first label all
personal information as not being collected. For example, for
the sentence “we will not collect any personal information but
account name”, we first label both “personal information” and
“account name” as not being collected.

After that, if the sentence contains conjunctions that present
a contrast or exception (e.g., “but”), we locate the information
in the clauses or sentences following the conjunction, and
negate its current result (i.e., from “not being collected” to
“being collected” or from “being collected” to “not being
collected”). For the sentence “we will not collect any personal
information but account name”, since “account name” is in
the clause following “but”, we change its result from “not
being collected” to “being collected”. If the clauses/sentences
following the conjunctions also contain negative words or
conjunctions that present a contrast or exception, we will
repeat this analysis on them.

According to our experiences in manually analyzing apps’
privacy policies, we find that most negative sentences in
privacy policy have only one negative word and a small
number of sentences belong to the double negation cases.
Very few sentences use more complex structure. It may be
due to the fact that most guidelines (e.g., those from Google or
privacy commissioners around the world) suggest using simple
language to clearly present the content so that users can easily
understand the privacy policy. Since it is time-consuming to
manually check all sentences, we randomly select 500 negative
sentences from 200 privacy policies as samples and manually
read them. By focusing on compound sentences, complex
sentences, and compound-complex sentences, we found 11
sentences with complex structures (account for 2.2%), which
cannot be successfully processed by the current version of
TAPVerifier. We summarize the structures of these sentences
as follows and propose potential solutions for handling them
in future work.

Structure 1: 3 sentences utilize negation words to modify
the nouns and have positive and negative meanings at the same
time. For example, in the sentence “we may share generic ag-
gregated demographic information not linked to any personal
identification information”, the demographic information will
be shared but it will not be linked to personal identification
information. TAPVerifier identifies the root word “share” and
hence regards the sentence as a positive sentence because the
root word is not modified by any negation words.

Structure 2: 6 sentences are compound sentences, part of
which includes a negative sentence. For example, “Anony-
mous Data is collected or generated and is not associated
or linked to Personal Data”. In this sentence, “Anonymous
Data” is collected/generated but it is “not” associated/linked
to personal data. Since TAPVerifer cannot identify the positive
and negative meanings at the same time, it only locates the
root word “collected” and regards the sentence as a positive
one.

Structure 3: 2 sentences have the pattern “may and may
not ....”. TAPVerifier cannot determine whether the behavior
will be conducted or not. For example, consider the sentence
“you understand and agree that Tap Slots may or may not
prescreen content”.
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To handle these sentences, we will perform fine-grained
analysis on them in future work. For example, for the sentences
of Structure 1, TAPVerifier should identify that “generic
aggregated demographic information” is the object of the verb
“share” and it is also modified by the phrase “not linked to any
personal identification information”. Note that the negation
analysis result of the verb “share” is positive whereas the
result of the phrase “not linked to any personal identification
information” is negative. We should combine them together
to draw the conclusion. For the sentences of Structure 2,
each distinct sentence contained in the compound sentence
should be extracted and analyzed respectively, and then the
final conclusion should take into account the result of each
distinct sentence. For example, the negation analysis result of
the sub-sentence “Anonymous Data is collected or generated”
is positive whereas the result of the sub-sentence “is not
associated or linked to Personal Data” is negative. For the
sentences of Structure 3, two different negation analysis
results should be generated at the same time (i.e., positive
sentence for “may” and negative sentence for “may not”) and
then seek the decision from users.

7) Privacy Policies of Third-Party Libraries: Since many
apps contain third-party libraries that have their own privacy
policies, given an app with third-party libraries, TAPVerifier
will also analyze their privacy policies individually. To prepare
the database for popular third-party libraries’ privacy policies,
we download the SDKs and the privacy policies of top 83
Ad libraries listed in [18], 9 social libraries [2], and 24 most
commonly used development tools [1]. After filtering out the
privacy policies written in languages other than English, we
use TAPVerifier to analyze the privacy policies of 46 Ad
libraries, 9 social libraries, and 24 development tools.

C. Code and permission analysis

TAPVerifier improves our static analysis framework, Vul-
Hunter [57], and employs the enhanced version to analyze
each app without source code.

1) Static analysis module: Given an APK file, TAPVer-
ifier extracts the AndroidManifest.xml and the dex
file. If the app is hardened, we leverage the unpacking
tool DexHunter [88] to recover the dex file. By parsing
the AndroidManifest.xml file, TAPVerifier finds out all
components and the required permissions. Then, we use Soot
[75] with Dexpler [24] to transform the Dalvik code in dex
file to the intermediate representation Shimple. Shimple is very
similar to Jimple, another intermediate representation, with the
additional support of static single assignment(i.e., SSA) [12].
SSA can simplify the data flow analysis because it guarantees
that each variable is assigned only once and is defined before
it is used. Based on the class hierarchy (CHA [34]) and the
intermediate representation, we create an Android property
graph (APG) [57] that integrates abstract syntax tree (AST),
interprocedure control-flow graph (ICFG), method call graph
(MCG), and system dependency graph (SDG) of the app.

When building MCG, due to Android’s event-driven nature,
we carefully handle the callbacks used by the framework.
To avoid missing the callbacks of event listeners, we add

a connection between the invocation (e.g., setOnClickLis-
tener()) to the corresponding object’s callback (e.g., onClick()).
Moreover, if the developer extends thread related class (e.g.,
java.lang.Thread), we add a connection between the start()
method and the run() method. EdgeMiner [30] summarizes
the implicit control flow transitions through the Android
framework. To improve the precision of our static analysis
system, we leverage the transitions found by EdgeMiner to
enhance our MCG.

The life-cycle methods of components are called by
framework to start, pause, resume, or shut down the app.
For example, when loading one Activity, three life-cycle
methods (i.e., Activity.onCreate(), Activity.onStart(), Activ-
ity.onResume()) are called sequentially. To model such tran-
sitions between life-cycle methods, FlowDroid [20] create a
dummy main method for each component. By referring to
the control flow graph of the dummy main method proposed
by FlowDroid, we create the connections between life-cycle
methods (e.g., from Activity.onCreate() to Activity.onStart(),
from Activity.onStart() to Activity.onResume()).

We define source functions as the APIs through which an
app can collect information from device. For example, getDe-
viceId can be used to get the device ID [61]. Apart from APIs,
app can also gain information by querying the content provider
with URIs. For example, by calling ContentResolver.Query()
and using URI “content://com.android.calendar” as parameter,
the app can read the user’s calendar. We define sink functions
as the APIs that can transmit information through internet,
SMS, file, log, or other channels [61].

The Inter-Component Communication (ICC) model of An-
droid enables the components to exchange data through Intent.
To handle the inter-component communication, we use IccTA
[46] to map a component’s launch functions to the correspond-
ing callbacks. FlowDroid [20] is the state-of-art static taint
analysis system. The source to sink paths found by FlowDroid
are also included when building SDG.

Since the developer can use Java reflection to invoke APIs,
we utilize DroidRA [47] to reveal the APIs invoked via
reflection and then update APG if need.

2) Traversals: After building graphs for each app, we per-
form traversal to find the APIs and content providers protected
by permission. To find the information obtained by APIs, we
check all invoke_stmt and assign_stmt statements. If
source functions are called, we infer that the corresponding
information is used by the app.

To find the information obtained by content provider, we use
data dependency relation as the directed edge and do depth-
first search from the URI parameter of the content provider
query functions(e.g., ContentResolver.Query()). All possible
URI strings and URI fields appear on the search paths are
recorded. If sensitive URI strings(or URI fields) appear on the
path, we expect that the corresponding information is used.

3) Permission analysis: Certain permissions are required
when an app calls sensitive APIs or queries content providers
with some URIs. To find the permissions that an app actually
requires to call APIs and use content providers, we employ
the mapping between the APIs (URI strings and URI fields)
and the permissions provided by PScout [21]. Similar to (1),
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we search all called APIs, used URI strings and fields of the
app. If a specified API or URI is used, we conclude that the
corresponding permission is required by the app.

Some permissions are used by third-party libraries. In order
to find such permissions, we maintain a white list that contains
class name prefixes of commonly used third-party libraries.
After finding the API, URI string, or URI fields that require
sensitive permissions, we check the class name. If the class
name has the same prefix as a library, we expect that the
corresponding permission is used by the third-party library.

If the developers use the obfuscation techniques (e.g., Pro-
Guard) to hide the class name, method name, and variable
name, the third-party libraries may not be correctly identified.
To address this issue, we propose a two-stage approach by first
leveraging the available de-obfuscation tool [26] to recover
the names and then applying TAPVerifier. More precisely, we
employ DeGuard proposed by Bichsel el at. [26], which uses
non-obfuscated Android apps to learn probabilistic graphical
models for recovering the class name, method name, and
variable name.

D. Description Analysis

Since AutoCog handles more permissions with better per-
formance than Whyper [59], we use it to process descriptions.
AutoCog maps the sentences of a description to permissions.
Its description-to-permission relatedness (DPR) module pro-
vides a list of governor-dependent pairs for each permission.
For example, governor-dependent pair <“update”, “location”>
can be mapped to ACCESS_FINE_LOCATION permission.

Given a description, TAPVerifier obtains the text content
from the HTML file and then splits the text into distinct
sentences. After using the Stanford parser to parse each
sentence, TAPVerifier extracts all possible governor-dependent
pairs from the sentence and compares them with the pairs
provided by AutoCog’s DPR module. If the comparison result
exceeds the threshold (i.e., 0.67 in [59]), this sentence is
mapped to the corresponding permission. After processing all
sentences and all permissions, if any permission cannot be
mapped to any sentence in the description, AutoCog raises an
alert [59].

E. Fusion Analysis

Since the privacy policy provides information about an app’s
expected behaviors, we first describe how to use it to explain
the necessity of permission (Section IV-E1).

Existing systems (e.g., AutoCog) identify the inconsistency
between an app’s description and its requested permissions.
If the app requests sensitive permissions without mentioning
them in its description, AutoCog will raise an alert. The
fusion analysis module further improves the performance of
AutoCog from two aspects. First, we conduct the privacy
policy analysis to remove the false alerts of AutoCog (Section
IV-E2). Second, we perform the bytecode analysis to remove
its false alerts(Section IV-E3).

We describe the methods in this section, and present the
experimental results and insights in Section V.

1) Use privacy policy to explain the necessity of permis-
sion: When mapping the privacy policy to different permis-
sions, different kinds of permissions are processed separately.
AutoCog [59] considered 11 different kinds of permissions.
Since the permission RECEIVE_BOOT_COMPLETED cannot
be mapped to any personal information, we map privacy
policy to the remaining 10 permissions. We divide the 10
permissions into two categories and describe their mapping
methods respectively.

The first category of permissions allows the app to
collect personal information, including READ_CONTACTS,
RECORD_AUDIO, ACCESS_COARSE_LOCATION,
CAMERA, GET_ACCOUNTS, READ_CALENDAR, and
ACCESS_FINE_LOCATION. To map privacy policy to
these permissions, we correlate the collected information in
privacy policies with the resources protected by permissions.
More precisely, for each permission, we get the APIs
under its protection using PScout [21] and define the
corresponding resources by analyzing the permission’s
description and the APIs’ document. For example, the
permission RECORD_AUDIO is mapped to resources like
audio, microphone, speech, etc. This step is similar to
building the semantic graph in Whyper but we do not need
to enumerate the corresponding verbs. Then, we calculate
the similarity of a pair of the collected information from
privacy policies and the resource from permissions using
ESA [39], which is a WiKi-based semantic analysis system.
If the result exceeds the threshold, the collected information
(or the sentence in privacy policies) can be mapped to the
resource (or the permission). We currently set the threshold
to be 0.67.

The second category of permissions stores personal infor-
mation collected by the app, including WRITE_SETTINGS,
WRITE_EXTERNAL_STORAGE, WRITE_CONTACTS. For
these permissions, we take into account the verb of personal
information when mapping personal information to them. For
example, if an app requests WRITE_CONTACTS permission
and its privacy policy says “we will read your contact”, we still
cannot map this sentence to the permission, because the verb
“read” is weaker than “write”. However, if the verb changes
to others like “modify”, “change”, or V Pstore, then we can
map the sentence to WRITE_CONTACTS.

2) Use privacy policy to remove false alerts of description
analysis module: We can either use apps’ or third-party
libraries’ privacy policies to remove false alerts.
• Using apps’ privacy policies. When developers request

some permissions and mention such behaviors in an app’s
privacy policy instead of its description, we can leverage
the app privacy policy to remove false alerts resulted from
the description analysis. More precisely, after getting the
alerts generated by the description analysis module (i.e.,
AutoCog), TAPVerifier locates the suspicious permis-
sions that can be explained by the app privacy policy
and then removes them, thus improving the accuracy of
description analysis module.

• Using third-party libraries’ privacy policies. When the
integrated third-party library requests some permissions
and mention such behaviors in the library’s privacy
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policy instead of the app description, we can lever-
age the library’s privacy policy to remove false alerts
generated from the description analysis. More precisely,
after getting alerts generated by the description analysis
module (i.e.,AutoCog), TAPVerifier check the user of
the permission. If the permission is used by some third-
party library and the library’s privacy policy explains the
use of such permission, the suspicious permission can be
removed.

3) Use bytecode level information to remove false alerts
of description analysis module: Since apps may claim more
permissions than they need [36], we cannot map their de-
scriptions and/or privacy policies to some permissions. To
remove such false positives, given a permission and an app, we
perform traversals on the app’s method call graph and system
dependency graph to check whether it uses APIs or accesses
content providers protected by the permission. If the query
returns null, the permission is over-claimed by the app and
related alerts will be removed.

V. EXPERIMENTS AND EVALUATION

We have implemented TAPVerifier in 6,310 lines of python
code and the 1,510 lines java code on top of our system
VulHunter [57] We have also developed a crawler (1,334
line of python codes) to automatically fetch apps’ APK files,
descriptions, and privacy policies from Goolge play [9].

We conduct experiments to answer the following Q1 and
Q2 for the sake of measuring the performance of TAPVerifier.
Q1: How is the accuracy of our privacy policy analysis
module? More precisely, can it extract all useful sentences
from privacy policies correctly? (Section V-C)
Q2: How is the accuracy of TAPVerifier when mapping privacy
policy to different permissions? (Section V-D)

We also design experiments to answer the following five
questions in order to assess whether TAPVerifier can enhance
existing description based analysis system (i.e., AutoCog,
Whyper, and CHABADA) by using privacy policy and code.
Q3: How many false alerts generated by the description analy-
sis module (i.e. AutoCog) can be removed by using apps’ and
third-party libraries’ privacy policies? (Section V-E1, V-E2)
Q4: How many false alerts generated by the description
analysis module (i.e. AutoCog) can be removed by using code?
(Section V-F)
Q5: How many false alerts generated by Whyper can be
removed by using apps’ privacy policies? (Section V-H)
Q6: Can privacy policies be used to explain the behaviors of
malicious apps found by CHABADA [41]? (Section V-I)
The experimental results of Q3, Q4, Q5, and Q6 provide
evidences to answer the two research questions proposed in
Section I (i.e., RQ1 and RQ2).

A. Measurement and User Study of Privacy Policy

We first conduct a large-scale measurement to revisit the
percentage of apps with privacy policy, and the result is shown
in Table IV. After checking 4,202 apps, we find that 2,445 apps
(i.e., 58.1%) provide privacy policy on Google play. Moreover,
we observe that the percentage of apps with privacy policy

increases with the number of installs. For instance, for the
apps with 500,000 - 1,000,000 installs, only 44.6% of them
provide privacy policy on Google play. In contrast, for the
apps with 10,000,000 - 50,000,000 installs, 72.5% of them
have privacy policy. Note that some apps may display the
privacy policy inside the apps instead of posting it on Google
play. For example, a recent study from Zimmeck et al. [92]
checked 40 randomly selected apps that do not give privacy
policy on Google play, and found that 17% (7/40) of them
provide privacy policy link elsewhere (e.g., inside their app).
TAPVerifier can also handle such apps after extracting their
privacy policies from the apps.

Number of Installs Percentage of Apps that Provide PP Link

500,000−1,000,000 44.6% (465/1043)
1,000,000−5,000,000 54.8% (965/1760)

5,000,000−10,000,000 65.9% (329/499)
10,000,000−50,000,000 72.5% (469/647)
50,000,000−100,000,000 83.6% (107/128)

100,000,000−500,000,000 86.9% (93/107)
1,000,000,000−5,000,000,000 94.4% (17/18)

TABLE IV: The percentage of apps with privacy policy.

We expect that all apps offered through Google play will
include privacy policies soon, because Google recently up-
dated its User Data Policy asking the apps in Google play
to provide both a privacy policy and the secure handling of
personal information. Moreover, Google has been removing
apps from Google play if they do not comply with the new
User Data Policy since Mar. 15, 2017 [65].

Then, we conduct a user study through Amazon Turk to
examine how many users will read the privacy policy of the
app by publishing a survey with 7 questions. 3 questions are
about the background of the worker (i.e., age, gender, and
education), and 4 other questions are related to smartphone
and privacy policy, including: whether they use smartphones;
the type of their phone (i.e., Android or iOS); whether they
read privacy policy when downloading apps from app store;
and whether they read the in-app privacy policy when using
the app? We received 31 responses in 3 days. 64.5% (20/31)
respondents are male, and the remaining respondents are
female. Table V lists the age and education background of
respondents. Most of them are 18-40 year old, and 67.7%
(21/31) of them have at least associate degree. All of them
use smartphones, where 87.1% respondents (i.e., 27/31) adopt
Android phone while others select Apple phone.

Age Number Education Number
<18 0 High School 1
18-40 24 Some College 9
40-60 6 Associate 3
>60 1 Bachelor 11

- - Graduate 7

TABLE V: The age and education background of the respondents.

Table VI lists the answers to the questions related to privacy
policy: (1) Do you read the privacy policy when downloading
app from app store? (denoted as “PP on app store”); (2)
“Do you read the in-app privacy policy when using the
app?” (denoted as In-App PP). It shows that only 32.3%
respondents will read the privacy policy when downloading
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an app, and 45.1% respondents will read the in-app privacy
policy when using the app. A recent study [66] further shows
that many factors will affect whether or not a user will read the
privacy policy, including timing (when it is provided), channel
(how it is delivered), modality (what interaction modes are
used), and control (how are choices provided). Therefore, we
could not rely on users’ understanding of privacy policy to
detect malware. Instead, we propose and develop TAPVerifier
that can automatically process the privacy policy, bytecode,
description, and permissions and conduct synthesized analysis
on them to identify anomalies in apps.

Read PP or Not PP on app store In-App PP
Always 12.9%(4/31) 16.1%(5/31)

Sometimes 19.4%(6/31) 29.0%(9/31)
Never 67.7%(21/31) 54.9%%(17/31)

No smart phone 0.0%(0/31) 0.0%(0/31)

TABLE VI: The result of two privacy policy related questions: “Do you read
the privacy policy when downloading app from app store?” “Do you read the
in-app privacy policy when using the app?”

B. Data Set

The app data set in the previous version of this paper [85]
contains 1,197 randomly selected apps. When creating the
new data set, we remove 480 non-popular apps (downloaded
for less than 100,000 times) because many of them (i.e.,
132/480=27.5%) have been removed from Google play. Hence,
we add 483 new popular apps, each of which has been
downloaded for more than 100,000 times. The new data
set contains 1,200 apps. To help researchers reproduce our
work, we have upload the apk files, privacy policies, and
descriptions of these 1,200 apps to the following URL:
https://pan.baidu.com/s/1eRG0UIY.

C. Accuracy of TAPVerifier’s Privacy Policy Analysis

To evaluate the accuracy of TAPVerifier’s privacy policy
analysis module, we randomly select 100 privacy policies
from our sample set and split them into distinct sentences.
Then, we divide these sentences into two groups: one contains
useful sentences from which the collected information can be
extracted and the other one contains useless sentences. The
processing result of these sentences are manually verified by
three researchers who are not authors of this paper. Before the
manual verification, we explain to them the meaning of privacy
policy and the definitions of useful sentence and useless
sentence. Each sentence is checked by three researchers, and
we use the majority opinion as the ground truth.

The privacy policy analysis module outputs 4,576 useful
sentences and 5,501 useless sentences. The manual verification
shows that among 4,576 useful sentences, 82 sentences are
useless sentence (i.e., false positive), which account for 1.8%.
Moreover, among 5,501 useless sentences, 104 sentences are
useful sentences (i.e., false negative), which account for 1.9%.
Thus, our module’s precision is 98.2%, recall rate is 97.7%,
and F-score is 97.9%.

Precision =
TP

TP + FP
=

4494

4494 + 82
= 98.2% (1)

Recall =
TP

TP + FN
=

4494

4494 + 104
= 97.7% (2)

F − score =
2 ∗ Precision ∗Recall

Precision+Recall
= 97.9% (3)

Cause of false positives. One major cause is the hidden
action executor in imperative sentences. For example, when
processing the imperative sentence “please read our summary
of the changes”, although TAPVerifier successfully matches
the verb “read”, it decides that the action is executed by the
app due to the lack of real action executor in this sentence, and
therefore regards it as a useful sentence by mistake. However,
the “read” action is conducted by the user.

Cause of false negatives. One major cause is due to the
rare patterns that are not included in TAPVerifier. For example,
the sentence “you will be required to submit a valid user
ID and password for authentication” describes that the user
will submit personal information to the server. However, in
our semantic pattern defined for the user, we only consider
the sentence whose root word is in V Pprovide. Since this
sentence’s root word is “require”, it is missed. To remove
such false negative, we need to add the word “require”
to V Pallow so that “be required to” will be matched and
processed like “be allowed to”.

D. Map Privacy Policy to Permissions

Table VII lists the number of various permissions that
can be explained by privacy policy. For each permission,
we first identify the number of apps that request it (i.e.,
column “Request Number”), and then count the number of
apps whose privacy policies explain the necessity of the
permission (i.e., column “PP Map Number (Percentage)”).
We also calculate the accuracy of TAPVerifier (i.e., column
“TAPVerifier precision”).

Permission Request PP Map Number TAPVerifier
Number (Percentage) Precision

WRITE SETTINGS 129 2 (1.6%) 100%
READ CONTACTS 253 53 (20.9%) 89.8%
RECORD AUDIO 148 7 (4.7%) 100%

WRITE EXTERNAL STORAGE 1004 75 (7.5%) 88.2%
WRITE CONTACTS 76 3 (3.9%) 100%

ACCESS COARSE LOCATION 372 104 (28.0%) 92.0%
CAMERA 259 14 (5.4%) 93.3%

RECEIVE BOOT COMPLETED 343 - -
GET ACCOUNTS 657 15 (2.3%) 93.7%

READ CALENDAR 39 3 (7.7%) 75.0%
ACCESS FINE LOCATION 365 106 (29.0%) 91.4%

TABLE VII: The number (percentage) of permissions whose necessity can
be explained by privacy policy, and the precision of TAPVerifer for mapping
privacy policy to permissions.

We can see that 3 permissions are explained
by more than 20% privacy policies, including
READ_CONTACTS, ACCESS_COARSE_LOCATION, and
ACCESS_FINE_LOCATION. In Table VII, we use red font
to emphasize them.

We also find 7 permissions explained by less than
20% privacy policies, including WRITE_SETTINGS,
RECORD_AUDIO, WRITE_EXTERNAL_STORAGE,
WRITE_CONTACTS, CAMERA, GET_ACCOUNTS and
READ_CALENDAR. Note that although many privacy
policies contains word “account”, we do not map them to
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GET_ACCOUNTS since they are about account registration or
account information deletion. We currently do not consider
the behaviors of web page and server.

False positives when mapping privacy policy to permis-
sion. After checking the errors, we find that the false positives
are caused by the algorithm for computing semantic similarity
(i.e., ESA). For example, since “credit card number” have
a high semantic similarity with “sd card”, it is mapped to
permission WRITE_EXTERNAL_STORAGE. ESA transforms
a text into a series of related words before calculating the
semantic similarity value, and such wrong matching is un-
avoidable. We can use two methods to remove such false
positive: one is selecting a higher threshold for ESA; the other
is maintaining a black list of resources for each permission.

To measure the distribution of the contribution of each
action to the definition of permissions, we further analyze
the mappings between actions and permissions. A mapping
between action AC and permission PERM means that we
can find one sentence SENT that meets the following two
conditions: 1) the syntactic structure of the sentence SENT
matches one of the semantic patterns of the action AC; 2)
the sentence SENT describes the collection, usage, storage,
or disclosure of certain personal information protected by
permission PERM . The first condition is checked according
to the semantic patterns of each action, which are defined in
Section III-B. The second condition is checked according to
the mapping between personal information and permissions
(Section IV-E1).

The result is shown in the Table VIII. We can see that
the contribution of different actions to the definition of one
permission are different. For example, for the permission
READ_CONTACTS, the action DC (i.e., Data Collection) con-
tains the largest number of mappings (i.e., 131). Another
action UD (i.e., Data Utilization) only has 27 mappings.
However, for the CAMERA permission, the action DC (i.e.,
Data Collection) and DU (i.e., Data Utilization) contain similar
number of mappings (i.e., 17 and 16).

We also evaluate the usefulness of two new actions. The
actions IS (i.e., Integrity & Security) and DAG (i.e., Data
Aggregation) have 18 mappings in total. Although this number
is smaller than that of other actions, some new sentences,
which are missed by other actions, are discovered by the new
actions. For example, the sentence “We will take reasonable
precaution to protect your information, contact information...”
is identified by the IS (i.e., Integrity & Security) action. Note
that the pervious version of this study [85] does not include
the IS action and therefore the sensitive information “contact
information” included in this sentence is ignored.

E. Use privacy policy to remove false alerts generated by
AutoCog

AutoCog raises an alert if a permission cannot be mapped to
the description. However, some alerts are false alerts because
the permissions can be mapped to the privacy policies or the
permissions are over-claimed.

1) Using Apps’ Privacy Policies: Table IX shows the
number (percentage) of Autocog alerts we can remove by

using app privacy policies through TAPVerifier(i.e., column
“Removed Alert Num (Percentage)”).

We can see that employing privacy policies
can remove false alerts for all but the permission
RECEIVE_BOOT_COMPLETED, which cannot be mapped
to any privacy policy. But, the effectiveness of privacy
policies is diverse for different permissions. For example,
they can remove 44 false alerts for the permission
WRITE_EXTERNAL_STORAGE. However, only 14 false
alerts can be removed for the permission GET_ACCOUNTS.
The reason is although many privacy policies contain account
related sentences, the majority of them refer to account
registration or sign up instead of accessing accounts in
smartphone. Therefore we filter out such sentences.

Permission AutoCog Removed Alert
Alert (Percentage)

WRITE SETTINGS 107 2 (1.9%)
READ CONTACTS 128 29 (22.6%)
RECORD AUDIO 109 6 (5.5%)

WRITE EXTERNAL STORAGE 599 44 (7.3%)
WRITE CONTACTS 59 2 (3.4%)

ACCESS COARSE LOCATION 266 76 (28.6%)
CAMERA 227 11 (4.8%)

RECEIVE BOOT COMPLETED 316 -
GET ACCOUNTS 594 14 (2.4%)

READ CALENDAR 30 3 (10.0%)
ACCESS FINE LOCATION 206 65 (31.6%)

TABLE IX: The number of alerts raised by AutoCog, and the number of
alerts that can be removed through the analysis of privacy policy.

2) Using Third-Party Libraries’ Privacy Policies: We also
use third-party libraries’s privacy policies to remove false
alerts. Since they cannot be mapped to all permissions, we
show the result of relevant permissions in Table X. The result
shows that such privacy policies can remove many false alerts
due to the permissions WRITE_EXTERNAL_STORAGE,
ACCESS_COARSE_LOCATION, GET_ACCOUNTS, and
ACCESS_FALSE_LOCATION.

Permission Autocog Removed Alert
Alert (Percentage)

WRITE EXTERNAL STORAGE 599 136 (22.7%)
ACCESS COARSE LOCATION 266 44 (16.5%)

GET ACCOUNTS 594 10 (1.7%)
ACCESS FINE LOCATION 206 23 (11.2%)

TABLE X: The number (percentage) of alerts from AutoCog, which can
be removed through the analysis of apps’ and third-party libraries’ privacy
policies.

To evaluate the effectiveness of our two-stage approach for
handling obfuscated third-party libraries mentioned in Section
IV-C3), we randomly select 50 apps and utilize DeGuard’s
online service (i.e., http://apk-deguard.com) to process them
before using TAPVerifier to handle them. Among the 50 apps,
DeGuard recovers two new libraries in two apps after de-
obfuscation, including the app “com.lucid dreaming.awoken”
that integrates Guava (Google Core Libraries for Java) and
the app “com.nomanprojects.mycartracks” that embeds Google
Gson (a Java library that can convert Java Objects into
JSON representation). The class names of these two libraries
are obfuscated in the raw apk files. DeGuard successfully
uncovers their class names. By using the privacy policies
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Permission DC DS DU DA DD IS UC DP DAG
WRITE SETTINGS 3 2 0 1 0 0 0 1 0
READ CONTACTS 131 23 27 24 12 5 1 23 0
RECORD AUDIO 9 3 2 0 1 0 2 1 0

WRITE EXTERNAL STORAGE 29 56 2 0 0 2 4 0 0
WRITE CONTACTS 36 21 1 0 0 2 0 1 0

ACCESS COARSE LOCATION 247 49 54 39 27 1 16 26 3
CAMERA 17 4 16 1 5 1 1 0 0

GET ACCOUNTS 10 2 2 0 0 1 4 0 0
READ CALENDAR 8 3 2 2 0 0 0 1 0

ACCESS FINE LOCATION 244 48 55 37 23 1 17 24 2

TABLE VIII: The number of mappings between different actions and different permissions. The first row lists the actions defined in Section III-B: DC
(Data Collection), DS (Data Storage), DU (Data Utilization), DA (Data Access), DD (Data Disclose), IS (Integrity & Security), UC (User Consent), DP (Data
Provision), and DAG (Data Aggregation).

of these two libraries, we can remove two permission alerts
(GET_ACCOUNTS permission requested by these two apps)
generated by AutoCog.

F. Use Code to Remove False Alerts

Table XI shows the number of false alerts that are generated
by AutoCog but can be removed because they are over-claimed
permissions. The column “AutoCog Alert Num” lists the
number of AutoCog alerts for each permission. The column
“Lib Use” shows the number of alert apps whose third library
uses such permission. We maintain a white list of third party
libraries. The column “Total Use” shows the number of alerted
apps that use this permission in its code. The column “Over
Claim Num” illustrates the number of alerted apps that over-
claim certain permissions. The result clearly shows that many
alerts can be removed after locating over-claim permissions.

Since the apps may use Java reflection to invoke APIs,
we employ DroidRA [47] to process the 1,200 apps in our
dataset. It reports that 879 apps use the reflection technique,
and successfully recovers the invoked methods in 751 apps.
It cannot recover the invoked methods in the other 128 apps
(i.e., 879-751=128) because they only employ the reflection
technique to construct object or obtain field (i.e., no methods
are invoked via reflection).

Although 465 apps use the reflection technique to in-
voke framework APIs that can be located in the official
document, only 52 of them call the APIs protected by
permissions. For the APIs protected by permissions, the
API TelephonyManager.getDeviceId() (protected by permis-
sion READ_PHONE_STATE) is the most frequently used
one, which is called by 31 apps. For the APIs protected
by the 10 permissions listed in Table VII, we find that
6 apps call camera related APIs and 2 apps call account
related APIs via reflection. We do not find framework API
invocations through reflection in the other 286 apps (i.e.,
751-465=286) mainly due to two reasons. First, some APIs
have been removed from the official document. For example,
the app “aws.apps.networkInfoIi” calls the API WifiMan-
ager.getWifiApState(), which has been removed in the official
document. Second, the invoked method is defined by the devel-
oper. For instance, the app “com.oristats.habitbull” integrates

third-party library Flurry, which utilizes Java reflection to call
the method FlurryAdModule.getInstance().

G. Answers to RQs

We use the number of removed false alerts to measure
the information that can be provided by privacy policy and
bytecode for accessing the description-to-behavior fidelity.
More precisely, we compare Table IX (and Table X) with Table
XI to answer RQ1 and RQ2.

Answer to RQ1: For some permissions, privacy
policy can supply more information for accessing
description-to-behavior fidelity, including:READ_CONTACTS,
WRITE_EXTERNAL_STORAGE. For location related
permissions, (i.e., ACCESS_COARSE_LOCATION,
ACCESS_FINE_LOCATION), both privacy policy and
bytecode can provide more information. Moreover, privacy
policy cannot provide information related to the permission
REVEIVED_BOOT_COMPLETED, but bytecode can achieve
it.

Answer to RQ2: For some permissions, bytecode can
provide more information for measuring description-
to-behavior fidelity, including: WRITE_SETTING,
RECORD_AUDIO, WRITE_CONTACTS, CAMERA,
RECEIVE_BOOT_COMPLETED, GET_ACCOUNTS,
READ_CALENDAR.

After getting the result of description analysis module, we
can enhance it by combining the result of analyzing the app’s
privacy policy (Table IX), third-party libraries’ privacy policies
(Table X), and code (Table XI). The total number of false alerts
that can be removed is shown in Table XII.

To analyze the cause of other alerts that cannot be removed
by using privacy policy and bytecode level information, we
randomly select 50 apps and upload them to VirusTotal
to determine if they are malware or not. If the app is not
reported as malware, we manually analyze the cause of these
remained alerts. 19 apps are regarded as malicious apps
by at least one anti-virus tool of VirusTotal. For example,
TAPVerifier finds that the app “com.generamobile.headsoccer”
requests three permissions (ACCESS_FINE_LOCATION,
ACCESS_COARSE_LOCATION, and
WRITE_EXTERNAL_STORAGE) without explaining them
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Permission Autcog Permission Used in Code Over Claim
Alert Lib Use Total Use (Percentage)

WRITE SETTINGS 107 4 50 57 (53.3%)
READ CONTACTS 128 0 101 27 (21.1%)
RECORD AUDIO 109 0 69 40 (36.7%)

WRITE EXTERNAL STORAGE 599 323 522 77 (12.9%)
WRITE CONTACTS 59 0 49 10 (16.9%)

ACCESS COARSE LOCATION 266 106 202 64 (24.1%)
CAMERA 227 2 107 120 (52.9%)

RECEIVE BOOT COMPLETED 316 - - 38 (12.0%)
GET ACCOUNTS 594 17 308 286 (48.1%)

READ CALENDAR 30 2 17 13 (43.3%)
ACCESS FINE LOCATION 206 66 160 46 (22.3%)

TABLE XI: Number of apps that are regarded as abnormal by AutoCog due to the over-claimed permissions.

Permission AutoCog Removed Alert
Alert (Percentage)

WRITE SETTINGS 107 59 (55.1%)
READ CONTACTS 128 50 (39.1%)
RECORD AUDIO 109 43 (39.4%)

WRITE EXTERNAL STORAGE 599 239 (39.9%)
WRITE CONTACTS 59 11 (18.6%)

ACCESS COARSE LOCATION 266 158 (59.4%)
CAMERA 227 128 (56.4%)

RECEIVE BOOT COMPLETED 316 38 (12.0%)
GET ACCOUNTS 594 303 (51.0%)

READ CALENDAR 30 15 (50.0%)
ACCESS FINE LOCATION 206 115 (55.8%)

TABLE XII: Total number of AutoCog alerts and the number of alerts we
can remove by using app privacy policy, third-party library privacy policy,
and code at the same time.

Permission Whyper Alert Removed Alert (Percentage)

READ CONTACTS 220 45 (20.5%)
RECORD AUDIO 139 5 (3.6%)

READ CALENDAR 29 2 (6.9%)

TABLE XIII: The number alerts raised by Whyper, and the number of alerts
that can be removed through the analysis of privacy policy.

in description and privacy policy. This app is reported as
malware by 7 of 55 anti-virus tools.

We manually analyzed the permissions of the 31 apps that
do not receive any alerts from Virustotal, and have the follow-
ing observations. 19 apps’ descriptions and privacy policies
only describe the apps’ privacy related behaviors without
covering the behaviors of the third-party libraries. Since the
list of third-party libraries examined by TAPVerifier is by
no means exhaustive, it missed some third-party libraries in
those apps. Moreover, since some third-party libraries’ privacy
policies do not cover all behaviors of these libs, TAPVerifier
identifies the inconsistency and raises an alert. The other 12
apps utilize sensitive permissions in their major code instead
of third-party libraries, but they do not explain such behaviors
in the descriptions or privacy policies. It may be due to the
developers’ carelessness. We believe that such problem may
be mitigated by Google’s new User Data Policy that requires
each app in Google play to provide a privacy policy that should
clearly list how user data is collected and handled [65].

H. Use Privacy Policy to Remove False Alerts Generated by
Whyper

Whyper [55] is the pioneer detection system based on
the description-to-behavior fidelity. It maps an app’s descrip-
tion to three different permissions (i.e. READ_CONTACTS,
READ_CALENDAR, and RECORD_AUDIO). By using the
mapping between privacy policy and different permissions,
TAPVerifier can also remove the false alerts generated by
Whyper.

Table XIII shows the result. For READ_CONTACTS,
TAPVerifier can remove 20.5% alerts. For RECORD_AUDIO
and READ_CALENDAR, TAPVerifier can remove 3.6% and
6.9% alerts generated by Whyper, respectively.

I. Use Privacy Policy to Explain the Behaviors of Malicious
Apps Found by CHABADA

We downloaded the dataset provided by CHABADA [11],
which contains features and the clustering result of 26,332
apps. CHABADA labels 174 of these 26,332 apps as malicious
ones. Among these 174 apps, we can successfully download
the APK files of 12 apps that provide privacy policy. In the pre-
vious version of this paper, we can only download 11 apps be-
cause the other 2 apps are paid apps. But recently we find that
the App 4 (i.e., “com.computertimeco.minishot.android”) can
be downloaded via the website: https://apps.evozi.com/apk-
downloader/. Hence, we analyze it in this revised submission.

To check whether these apps are malicious or not, we upload
their APK files to VirusTotal [7], which scans the APK files
with 56-58 different anti-virus tools. If the app is reported as
malicious by one or more anti-viruses, we regard the app as
malware. 8 APK files are regarded as benign by all anti-virus
tools. For the other 4 APK files (listed in Table XIV), each of
them was regarded as a malicious app by only one anti-virus
tool (i.e., other anti-virus tool do not raise alerts). Table XIV
also lists the corresponding anti-virus tools that raise alerts
and the detailed information.

Table XV shows the results of VirusTotal, CHABADA, and
TAPVerifier, individually. VirusTotal raises alerts for App 1,
2, 3, and 12.

Using TAPVerifier to analyze these 12 apps,
we find that the permissions requested by App 1
(RECORD_AUDIO and WRITE_EXTERNAL_STORAGE),
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# Apps Anti-Virus tools that raise alert Detail
1 com.appspot.swisscodemonkeys.steam AegisLab SUSPICIOUS
2 com.lonelycatgames.Xplore Bkav Android.Specapk.db.D8C0
3 es.cesar.quitesleep K7GW Spyware (004c0d821)
12 com.intsig.camscanner Cyren AndroidOS/GenBI.9FADF121!Olympus

TABLE XIV: The result from VirusTotal, including the anti-virus tools that raise an alert and the details from their reports.

# Apk Virus CHABADA TAPVerifier
ID Total Alert Alert

1 com.appspot.swisscodemonkeys.steam
√ √ √

2 com.lonelycatgames.Xplore
√ √

3 es.cesar.quitesleep
√ √ √

4 com.computertimeco.minishot.android
√

5 com.droidhen.falldown
√

6 com.netflix.mediaclient
√

7 com.nubee.coinpirateS
√

8 com.reverie.game.toiletpaper
√

9 net.bible.android.activity
√

10 org.mhgames.jewels
√

11 si.modula.android.instantheartrate
√ √

12 com.intsig.camscanner
√ √

TABLE XV: The results of VirusTotal, CHABADA, and TAPVerifier.

App 3 (RECEIVE_BOOT_COMPLETED), and App 11
(CAMERA and WRITE_EXTERNAL_STORAGE) are not
explained by their descriptions and privacy policies.

For App 2 and App 12, TAPVerifier does not raise an
alert whereas VirusTotal and CHABADA do. By checking
the results of CHABADA and TAPVerifier, we find that
CHABADA raises an alert for these two apps because they
call network and device ID related APIs (e.g., DefaultHttp-
Client.execute() and getDeviceId()). However, since App 2
explains the usage of all requested permissions (including
INTERNET and READ_PHONE_STATE) in its privacy pol-
icy, TAPVerifier regards it as a benign app, and therefore
CHABADA raises a false alert for this app. In contrast, App
12 only explains the usage of Internet in its privacy policy
without explaining the usage of device ID in either the privacy
policy or description. Therefore, CHABADA raises an alert.
TAPVerifier does not detect this apps because it does not
take into account the permission READ_PHONE_STATE. If
we include this permission in TAPVerifier, it will also raise
an alert. Note that TAPVerifier examines the same number of
permissions (i.e., 11) as AutoCog does whereas Whyper only
studies three permissions. In future work, we will include more
permissions in TAPVerifier.

For App 11, both CHABADA and TAPVerifier raise an
alert but VirusTotal does not. By manually checking the app
and the results of CHABADA and TAPVerifier, we find that
both CHABADA and TAPVerifier raise a false alert because
of the app’s camera related behavior (Camera.open()). More
precisely, this app explains this behavior in the description
through the sentence “Place the tip of your index finger on
phone’s camera”. CHABADA raises a false alert because it
does not analyze the semantic meaning of individual sentences
in the description. TAPVerifier leads to a false positive because
its description analysis module (i.e., AutoCog) only extracts
(verb, noun) pairs from the description without analyzing
the prepositional phrase (i.e., “on phone’s camera”). We will

further enhance the description analysis module in future work.
Most apps detected by CHABADA may not be malicious

ones (i.e., Apps 4-10), and neither VirusTotal nor TAPVer-
ifier raises an alert for them. By examining the results of
CHABADA, we find that it raises the alerts because these apps
make network connections. It is worth noting that TAPVerifier
does not consider the permissions related to establishing
network connections, because TAPVerifier just focuses on the
personal information. Similarly, neither AutoCog nor Whyper
considers the permissions related to establishing network con-
nections.

For verifying the results of CHABADA, we extend TAPVer-
ifier’s analysis to check whether these apps’ descriptions and
privacy policies can explain the behaviors of establishing net-
work connections. The results show that three apps’s behaviors
can be explained by their privacy policies and one app’s
behavior can be explained by its description. In other words,
these false positives can be removed by taking into account
the apps’ descriptions and privacy policies.
• App 5: com.droidhen.falldown. This app calls

WebView.<init>() and DefaultHttpClient.<init>()
to send data through internet. Its privacy policy contains
the sentence “Please note that certain features of
the Services may be able to connect to your social
networking sites to obtain additional information about
you”, which can explain the use of internet.

• App 6: com.netflix.mediaclient. This app calls
DefaultHttpClient.<init>() to access internet. Its
description explains that “Internet access and valid
payment method are required to redeem offer”.

• App 7: com.nubee.coinpirates. This app calls
network related APIs (e.g., ConnectivityMan-
ager.startUsingNetworkFeature() and HttpURLCon-
nection.connect()). Its privacy policy explains that it
may display advertisements through internet through
the sentence “The Company uses third-party service
providers to display advertisements on many different
websites available on the Internet”.

• App 8: com.reverie.game.toiletpaper. Although this app
calls network related APIs (i.e., ConnectivityMan-
ager.getActiveNetworkInfo()), its privacy policy explains
“Please note that certain features of the Services may be
able to connect to your social networking sites to obtain
additional information about you”.

For the other three apps (i.e., App 4, 9, 10), the network
behaviors found by CHABADA are not explained in the
description and privacy policy.

VI. THREAT TO VALIDITY

Internal validity. Some threats may affect the effectiveness
of TAPVerifier. First, when defining semantic patterns for
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different actions, the verb sets are extracted from a corpus
consisting of 500 privacy policies. We will increase the size
of the corpus to improve the coverage of the verb sets.

Second, the static analysis module of TAPVerifier can only
identify a limited number of third-party libraries. We will
add more third-party libraries into the system so that we
could remove more false alerts by using the libraries’ privacy
policies. Moreover, TAPVerifier does not conduct dynamic
analysis, native code analysis, and dynamic code loading
analysis, which can be exploited by malware to evade the
detection. To avoid this threat, we will integrate dynamic
analysis systems (e.g., DroidScope [83]), native code analysis
(e.g., NDroid [58]), and dynamic class loading analysis (e.g.,
[56]) for improving TAPVerifier’s performance in future work.

Third, TAPVerifier relies on PScout [21] to determine the
APIs/URIs relevant to privacy-sensitive permissions. Although
its website only provides the mapping between API/URI
and permissions for up to Android 5.1.1, TAPVerifier can
also work on the latest version of Android by using ei-
ther of the two following methods. First, we can utilize
PScout to process the latest version of Android frame-
work (https://github.com/zd2100/PScout) for getting the new
mapping. Second, besides PScout, Erik Derr et al. pro-
posed another system [22] that conducts static analysis
on Android framework to identify the mapping between
API/URI and permissions. The authors have published their
result (including the result of Android 6.0) on the web-
site http://www.axplorer.org/. We could employ this result in
TAPVerifier for handling the latest version of Android.

In Table XVI, we quantify the changes on the APIs asso-
ciated with privacy-sensitive permissions in different versions
of Android [21]. It shows that the number of changed APIs is
relatively small. For example, when the system is upgraded
from Android 3.2.2 to Android 4.0.1, only 24 new APs
are identified, which account for 14.8% (24/162). When the
system is upgraded from Android 4.0.1 to Android 4.1.1, only
3 new APIs are found, which account for 1.8% (3/164).

Permission 3.2.2 4.0.1 4.1.1
Total Total New Total New

WRITE SETTINGS 18 19 3 21 2
READ CONTACTS 21 28 7 27 0
RECORD AUDIO 7 7 0 7 0

WRITE EXTERNAL STORAGE 4 4 0 4 0
WRITE CONTACTS 21 27 6 27 0

ACCESS COARSE LOCATION 21 21 0 21 0
CAMERA 3 3 0 3 0

RECEIVE BOOT COMPLETED 2 0 0 0 0
GET ACCOUNTS 16 24 8 25 1

READ CALENDAR 0 7 0 7 0
ACCESS FINE LOCATION 22 22 0 22 0

TABLE XVI: Number of APIs associated with privacy-sensitive permissions
in different versions of Android according to the results from PScout [21]. The
column Total refers to the total number of APIs protected by each permission.
The column New refers to the number of APIs that are not found in the
previous version of Android.

Fourth, since the description analysis module only extracts
(verb, noun) pairs from the description, TAPVerifier cannot
identify the nouns included in other places (e.g., prepositional
phrase). We will enhance this module by taking into consid-
eration the whole sentence in future work.

Finally, since the current version of TAPVerifier does not
analyze all permissions (i.e., only 11 permissions are consid-
ered in this paper), it may miss some permissions that are
requested by the app without explanation in either description
or privacy policy. We will add more permissions to TAPVer-
ifier to overcome this threat. Moreover, in future work, we
will enhance TAPVerifier to process in-app privacy policy by
first using static analysis to identify the in-app privacy policy.
More precisely, we could first recover the GUI structure of
each activity in an app, and then check the content of the
TextView widget and the text associated with each button. If
the text contains the phrase “privacy policy”, we extract the
URL link provided by the developer.

We use the app “com.alienmanfc6.wheresmyandroid”
as an example to illustrate this procedure. After
obtaining the GUI structure of the starting activity,
we find that the layout of this activity (defined
in layout/setup_welcome.xml) includes a
TextView widget (id=@id/setup_terms_textview,
text=@string/terms_agreement). The
string terms_agreement is defined in the
values/strings.xml file: “By using this app
you agree to the terms of service and privacy
policy. You can read the full agreement online at
<a href = “http://wheresmydroid.com/terms.html” >
wheresmydroid.com/ terms.html”. Since this string
contains phrase “privacy policy”, we extract the URL
“http://wheresmydroid.com/terms.html” as the in-app privacy
policy related URL.
External validity. The major threat to external validity is
the correctness of the ground-truth when we check the useful
sentences and the permissions identified by TAPVerifier. Cur-
rently, we ask three researchers to check the processing results.
In future work, we will invite more people with experiences
in handling privacy policy to create corpus for verification.

Another threat is the quality of the privacy policy, which
will affect the number of alerts that can be removed by
TAPVerifier. Since such investigation deserves another paper,
we will explore the quality of these privacy policies and
measure its impact on TAPVerifier in future work.

The last threat is the correctness of Virustotal (Section V-I).
Since Virustotal employs a large number of antivirus to scan
the app, some antivirus may generate incorrect result. To
decrease this threat, we suggest the developers follow the latest
tips [10] [8] to provide clear description and privacy policy for
additional check.

VII. RELATED WORK

A. Text Analysis for Mobile Security
The description of apps have been analysed for mobile

security, such as CHABADA [41], Whyper [55], and AutoCog
[59]. CHABADA is different from Whyper and AutoCog since
it finds abnormal APIs by comparing the app with other
apps in the same cluster. However, Whyper and AutoCog find
suspicious permissions by checking the descriptions of apps.
ACODE [76] first finds APIs/URIs used in code, and then
uses keywords search technique to find related sentences in
the description of the app.
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The reviews of apps can also be used. AUTOREB [45]
searches keywords in review and then uses a trained spare
linear support vector to map the review to security-related be-
haviors. Slavin et al. detected the sensitive APIs called in code
but are not mentioned in privacy policy [67]. Different from
TAPVerifier, they manually extract data collection phrases
from many privacy policies and do not consider retrieving
sensitive information through content providers.

This paper is an extended version of our previous conference
paper [85]. Compared with the previous work, we extended
the contents from the following aspects. First, we enhance
the semantic patterns for privacy policy (Section III-A) by
adding two new kinds of actions into the data-flow model,
including data aggregation, integrity & security. By integrating
two new actions into TAPVerifier, we can conduct a fine-
grained analysis on privacy policy. In Section III-B, we
propose a mechanism to automatically build up verb sets
by analyzing existing privacy policy corpus. We also define
semantic patterns for the new actions, which can identify the
corresponding sentences from privacy policies.

Second, we improve TAPVerifier from several aspects (Sec-
tion IV). We enhance the negation analysis so that it can
process sentences with complex structure (Section IV-B6).
We improve the static analysis algorithm in Section IV-C
so that TAPVerifier can identify the source APIs/URIs used
by third-party libraries. This information from third-party
libraries’ privacy policies is used to remove the false alerts
of the description analysis module. TAPVerifier also integrates
DroidRA to find out the APIs called via reflection technique
(Section IV-C3). In Section IV-E1, we include a new algo-
rithm to map the privacy policy to different permissions. By
considering both the verbs of personal information and the
verbs in permission, the new algorithm can obtain a more
accurate mapping. We also change the algorithm to remove
false alerts by using third-party libraries’ privacy policies in
Section IV-E2. Since the algorithm used in our previous paper
[85] does not consider the behaviors of third-party libraries,
some errors may appear. For the new algorithm, only if a third-
party library uses some permissions in code and declares it in
the lib privacy policy, the corresponding alert can be removed.

Third, we add many new experiments in Section V. We
measure how many apps with privacy policy and conduct a
user case study to study how many users will read the privacy
policy (Section V-A). We include a new Section V-D to show
the number of permissions that can be explained by using the
privacy policy. In this section, we also analyze the mappings
between actions and permissions. When checking the number
of alerts we can remove by using third-party libraries’ privacy
policies (Section V-E2), we utilize the de-obfuscation tool
DeGuard to recover the class names of obfuscated third-party
libraries. After removing the alerts of AutoCog with privacy
policy and description, we analyze the cause of the remaining
alerts (Section V-G). We also include a new Section V-H to
show that TAPVerifier can use privacy policy to remove the
false alerts generated by the system Whyper. Finally, we add
a new Section V-I to demonstrate that TAPVerifier can use
privacy policy to enhance the performance of another existing
description based system CHABADA.

B. Mobile Malware Detection

Stowaway [36] utilizes automated testing techniques to build
up the map between Android permissions and APIs. Then it
disassembles the dex file to detect over-claimed permissions.
To increase code coverage, PScout [21] performs static reach-
ability analysis on framework to build up mapping between
API calls and permissions. Bartel et al. [25] combine Class
Hierarchy Analysis (CHA) and field-sensitive static analy-
sis (Spark) to analyze Android permissions. VetDroid [89]
conducts dynamic analysis to understand how the resources
protected by permissions are accessed and utilized. Felt et
al. find that the unrestricted intent-based ICC mechanisms
can be used to conduct intent spoofing attack [37]. They
develop a system ComDroid to examine permission-requiring
intents. Wei et al. [77] perform long term study on the
permission usage of the entire Android ecosystem. They find
that an increasing number of apps are violating the principle
of least privilege. Wu et al. [79] find out that 85.78% of
preloaded apps in are over-claimed and 66.40% are due to
vendor customizations. Backes et al. [22] report that PScout
generates some false mappings since it does not conduct in-
depth analysis on the application framework. Currently, we
select PScout to build the mapping between permission and
APIs/URIs. In the future, we will replace PScout with [22],
[25] to improve the correctness of our system. More discussion
about Android permission analysis can be found in [81], [73],
[71], and [64].

Various features that can be extracted by static analysis
have been proposed to detect mobile malware. DroidSIFT
[87] represents app with weighted contextual API dependency
graphs and then uses Naive Bayes classifier to identify mal-
ware family. AppContext [84] extracts security-sensitive API
calls and their context information as features, and then uses
SVM to determine whether an action is legitimate or not.
Apposcopy [38] uses inter-component call graph to represent
the control flow property and then uses static taint analysis
to get the data flow property to represent an app. Some other
static analysis systems focus on detecting the privacy leaks
in app. AAPL [50] uses the conditional data flow analysis
and joint data flow analysis to find data leakages in apps. It
also leverages the similar apps recommended by Google Play
to remove false alarms. SUPOR [43] uses NLP techniques
to identify sensitive input fields and conducts taint analysis on
the data originated from sensitive input fields to detect privacy
leakage. UI-Picker [53] extracts all text labels in UI and sends
them to a supervised learning classifier to determine the input
is sensitive or not.

DroidScope [82] intercept certain events and parse kernel
data structure to reconstruct OS-level and Java-level semantic
views, which enables it to monitor communication between
different components such as Java components, native com-
ponents, Android Java Framework and the Linux kernel. Enck
et al. developed a dynamic taint system TaintDroid [35].
TaintDroid is an extension to the Android OS that provides
real time monitoring of user data and detect data leaving the
mobile device. As traditional dynamic taint checking systems
such as TaintDroid and DroidScope uncover information flows
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through JNI, Chenxiong et al. developed a system NDroid
to get all low-level instructions of Android by instrumenting
QEMU based on which to conduct taint propagation [58].
CopperDroid [72] instrumented the Android emulator to col-
lect the system calls invoked by the apps running inside the
emulator. The binder-related system calls with their real-time
arguments are sent to the unmarshalling Oracle which runs
alongside CopperDroid to automatically deserialize Binder
communications. Uranine [63] instruments the Android apps
to detect privacy leakage in real time. The major advantage
of Uranine is that it does not require system modification
and source code of apps. In order to detect malware effec-
tively, DroidNative [13] performs static analysis on both the
dynamically loaded native code and the bytecode to build
up Control Flow Graph (CFG) and annotate the CFG with
Malware Analysis Intermediate Language (MAIL) patterns.

C. Privacy Policy Analysis

Privee performs coarse-grained analysis on privacy policies
by classifying them into six categories [91]. Costante et
al. performed a sentence-level analysis to determine what
information will be collected by a web site [33]. It divides
the action verbs in three groups and defines five semantic
patterns in an ad-hoc manner. Massey et al. used topic model
to extract key words from 2,061 policy documents [15] and
proposed a taxonomy that can be applied to many domains
[51]. Massey et al. [52] compares two taxonomies created
by Anton [16], [17] and Solove [68] [69]. Recently, HMM
is used to align the sections in privacy policies according to
their contents [48], [60]. Breaux et al. evaluate the time and
resource required for crowdsourcing the tasks of analyzing
privacy policies [29]. Moreover, they proposed Eddy to find
conflicts between privacy policies [28]. Sunyaev et al. checked
top 600 most commonly used mobile health apps and found
that 30.5% them had privacy policies [70]. At the same time,
average privacy length was 1755 words [70]. Balebako et al.
[23] conduct experiment and survey to indicate that showing
the privacy notice during app use significantly increased recall
rates over showing it in the app store. Since not all apps
in Google Play provide privacy policies, a system named
AutoPPG is developed [86]. AutoPPG can leverage static
analysis to find sensitive API/URIs used in code and then
utilize NLP technique to generate privacy policy sentences for
developers.

VIII. CONCLUSION

We propose using privacy policy and bytecode to en-
hance malware detection systems that rely on checking the
description-to-behavior fidelity in apps. More precisely, we
propose a novel data flow model for analyzing privacy policy,
and develop TAPVerifier for carrying out investigation of
privacy policy, bytecode, description, and permissions, and
conducting the cross-verification among them. The experimen-
tal result through real apps shows that our privacy policy anal-
ysis module can achieve 97.7% recall and 98.2% precision.
Moreover, TAPVerifier can remove up to 59.4% false alerts of
the state-of-the-art systems.
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