
Finding the Missing Piece:
Permission Specification Analysis for Android NDK

Hao Zhou1, Haoyu Wang2, Shuohan Wu1, Xiapu Luo1∗, Yajin Zhou3, Ting Chen4∗, Ting Wang5
1The Hong Kong Polytechnic University

2Beijing University of Posts and Telecommunications
3Zhejiang University

4University of Electronic Science and Technology of China
5Pennsylvania State University

Abstract—The Android research community has long focused
on building the permission specification for Android framework
APIs, which can be referenced by app developers to request the
necessary permissions for their apps. However, existing studies
just analyze the permission specification for Java framework
APIs in Android SDK, whereas the permission specification for
native framework APIs in Android NDK remains intact. Since
more and more apps implement their functionalities using native
framework APIs, and the permission specification for these APIs
is poorly documented, the permission specification analysis for
Android NDK is in urgent need. To fill in the gap, in this paper,
we conduct the first permission specification analysis for Android
NDK. In particular, to automatically generate the permission
specification for Android NDK, we design and develop PSGen, a
new tool that statically analyzes the implementation of Android
framework and Android kernel to correlate native framework
APIs with their required permissions. Applying PSGen to 3
Android systems, including Android 9.0, 10.0, and 11.0, we find
that PSGen can precisely build the permission specification. With
the help of PSGen, we discover more than 200 native framework
APIs that are correlated with at least one permission.

Index Terms—Android, Kernel, NDK, Permission

I. INTRODUCTION

Android SDK [2] and NDK [6] provide Java framework APIs
and native framework APIs, respectively, for apps to access the
functionalities of Android framework and Android kernel. Java
framework APIs are implemented in the framework’s .jar
files, which are used by apps to call the interfaces of Java
system services [46]. Native framework APIs are developed
in C or C++ code and are implemented in the system’s .so
libraries, which are employed by apps to invoke the interfaces
of native system services [42] or access the kernel [29].

To prevent unauthorized apps from accessing the sensitive
functionalities in Android framework [28], [32], [33], [46] and
its kernel [58], Android adopts a permission based security
model. For example, the system services of Android framework
that implement sensitive functionalities enforce permission
checks to examine whether the calling apps have gained the
required permissions. If not, the “permission denied” exception
will be thrown [38], which may cause apps to crash [50].

Therefore, in order to properly invoke the framework APIs
whose execution leads to permission checks, apps must apply

∗ The corresponding authors.

for the required permissions [19]. To do so, developers should
know what permissions are required by the framework APIs
used by their apps, and request them in the apps. Unfortunately,
the correlations between framework APIs and their required
permissions are not well documented in the API references
published by Google [28], [32]. Therefore, it is in urgent need
to build the permission specification for the framework APIs
provided by Android SDK and NDK.

Various permission specification analysis has been proposed
to build the permission specification for framework APIs [28],
[32], [33], [40]. However, they solely focus on Java framework
APIs and to our best knowledge, none of the existing work
takes native framework APIs into analysis. Almanee et al.
recently showed that native code are prevalent in top 200
free apps on Google Play [30]. Moreover, our analysis on
more than 266K apps downloaded from a third-party app store
reveals that native code is found in around 82% of these apps,
indicating that a large number of apps have used native code to
implement their functionalities. Since apps usually call native
framework APIs in their native code [29], it is essential to build
the permission specification for them. Note that the existing
approaches for conducting permission specification analysis on
framework APIs cannot be applied to Android NDK because
these approaches can neither identify the permission checks in
native code nor associate the permissions with their protected
native framework APIs.

To fill in the gap, in this paper, we conduct the first permis-
sion specification analysis for Android NDK, and develop a
Permission Specification Generator (PSGen) to automatically
generate the permission specification for native framework APIs.
More precisely, PSGen first finds the system library functions
that enforce permission checks, and then identifies the native
framework APIs that call these functions and correlates them
with the permissions under check. The whole process consists
of three steps. First, to find the permission checks enforced in
native system services and the kernel, PSGen performs static
analysis on system libraries of Android framework and the
executable file of Android kernel to build callgraphs. Second,
since native system services provide interfaces and the kernel
offers system calls for system library functions to interact with
them, PSGen analyzes the callgraphs to identify the permission

1

restricted interfaces and system calls, whose execution leads to
permission checks. Third, given a native framework API, PSGen
traverses the callgraphs to find the reachable paths between
the API and those permission restricted interfaces and system
calls, and associates the API with the permissions under check.

We address the following technical challenges in the devel-
opment of PSGen. First, it is non-trivial to build the complete
callgraph of a system library by analyzing it separately, because
the functions in the system library may rely on the functions
defined in others. To tackle this issue, while building the
callgraph of a system library, we also analyze its dependent
libraries (detailed in §V-A). Second, the polymorphism feature
of C++ code in system libraries makes it hard to differentiate
the objects of the classes that are inherited from the same
parent class, which will degrade the callgraphs’ accuracy. To
mitigate this problem, we carefully perform points-to analysis
on native code when constructing callgraphs (detailed in §V-A).
Third, due to the huge and complex code base of the kernel,
it is almost infeasible to directly apply points-to analysis to
its executable file (i.e., vmlinux) for building the accurate
callgraph. To approach this issue, since the kernel is composed
by several independent modules, we perform static analysis on
each of them to build their callgraphs, and then merge them to
form the complete callgraph of the kernel (detailed in §VI-A).

We use PSGen to build the permission specification for native
framework APIs of 3 Android systems, including Android 9.0
with the common kernel 4.4, Android 10.0 with the common
kernel 4.4, and Android 11.0 with the common kernel 4.9. The
results show that PSGen generates the permission specification
for native framework APIs with the precision of over 92.7%.
In addition, we discover over 200 native framework APIs that
are correlated with at least one permissions.

In summary, we make the following contributions:
• To the best of our knowledge, we are the first to investigate

the permission specification for Android NDK.
• We develop PSGen, a new tool to automatically build the

permission specification for native framework APIs. We will
release the tool after the paper gets published.
• We evaluate the performance of PSGen by applying it to 3

Android systems. The results show that PSGen can precisely
generate the permission specification for native framework
APIs provided by Android NDK. The generated permission
specification for Android NDK and the source code of PSGen
are available at https://github.com/moonZHH/PSGen.

II. BACKGROUND

In this section, we provide the necessary knowledge about
Android system services (in §II-A), Android kernel (in §II-B),
Android NDK (in §II-C), and Android permissions (in §II-D).

A. Android System Services

System services are the essential parts of Android framework
and they provide interfaces for apps to call their functions [21].
Depending on the programming languages used to implement
their core functions, system services are categorized into the
Java system services and the native system services [42].

Since apps and system services run in separate processes,
Android provides Binder [7], an inter-process communication
(IPC) mechanism, for apps to interact with services. Precisely,
for each system service, apps use its Binder proxy to communi-
cate with the Binder stub, which is commonly the service itself.
More specifically, apps invoke local interfaces of the system
service (i.e., the methods defined in the class of the Binder
proxy) to call the service’s remote interfaces (i.e., the methods
defined in the class of the Binder stub). This process involves
two steps. First, the local interface calls the transact function
of the Binder proxy to send the request to the Binder stub.
Second, the onTransact function of the Binder stub handles
the request and calls the correlated remote interface.

It is worth noting that the classes of a system service’s
Binder proxy and Binder stub will inherit the same interface
class [46]. In addition, each pair of the service’s local interface
and remote interface implements the same method declared in
the interface class, and thus they share the same namespace,
method name, return type, and parameter types. For instance,
as shown in Figure 1, BpCameraService (in Line 5-7) and
CameraService (in Line 8-10) are the classes for the Binder
proxy and the Binder stub of the camera service, and both of
them inherit the ICameraService interface class (in Line 1-4).
Moreover, the connectDevice local interface (in Line 6) and
the connectDevice remote interface (in Line 9) are a pair of
interfaces, and both of them implement the connectDevice
virtual method (in Line 3) declared in ICameraService.

 01 class ICameraService { // ICameraService.h

 04 /* ignore the declarations of other interfaces */ }

 02 virtual void addListener(*); // register listener for changes to camera status
 03 virtual void connectDevice(*); // connect to camera device

 05 class BpCameraService : public ICameraService { // directly inherit

 08 class CameraService : public ICameraService { // indirectly inherit

 07 /* ignore the implementations of other local interfaces */ }

 // ICameraService is the interface class of the camera service.

 // BpCameraSerivce is the class for the Binder proxy of the camera service.

 // CameraSerivce is the class for the Binder stub of the camera service.

 10 /* ignore the implementations of other remote interfaces */ }

 06 void android::hardware::<class>::connectDevice(*) { /* local interface */ }

 09 void android::hardware::<class>::connectDevice(*) { /* remote interface */ }

Fig. 1: The C++ classes related to the camera service.

B. Android Kernel
Android kernel is a variant of Linux kernel [5]. Thus, it

employs Discretionary Access Control [57] to restrict the access
to critical resources based on the identity of subjects or the
group to which they belong. For example, the kernel will check
the process’s user identifier (UID) or group identifier (GID) to
decide whether it has the authority to access certain files [41].

The kernel provides system calls [24] for apps to access its
functions. Each system call is assigned with a unique system
call number and will be handled by a corresponding handler
in the kernel. The correspondence between each system call
and its handler is defined in the unistd.h file [25] of the
kernel and we list partial of them in Table I.

Commonly, to invoke a system call, the syscall function
[24] will be called with its first parameter specifying the system

2

https://github.com/moonZHH/PSGen

call number. Moreover, it is worth noting that the standard C
library (i.e., libc.so) defines the wrapper functions (e.g.,
open, close, socket) for several system calls [39], which use
assembly code to call syscall.

TABLE I: Partial of system calls and their handlers.

System Call (Number) Handler Description

__NR_openat (56) sys_openat open in libc.so calls it to open a file.

__NR_close (57) sys_close close in libc.so calls it to close a file.

__NR_socket (198) sys_socket socket calls it to create a network socket.

C. Android NDK

App developers can use Android NDK [6], [44], [51], which
consists of the app accessible system libraries (e.g., those listed
in Table II), to implement part of an app or a whole app in
native code. Commonly, apps can call native framework APIs
provided by NDK libraries (i.e., the functions exported by the
system libraries that make up Android NDK) to interact with
system services or the kernel. For example, apps can call the
socket function defined in libc.so to request the kernel to
create the network socket.

TABLE II: Partial of the NDK libraries.

Library Description

libc.so Providing the standard C library APIs, such as socket.

libcamera2ndk.so Providing the APIs to interact with the camera service.

libbinder_ndk.so Providing the APIs to get the Binder proxy of system services.

D. Android Permissions

Android employs a permission based security model [34],
[46] to prevent unauthorized apps from performing sensitive
operations. For example, apps should apply for and then be
granted with the required permissions in order to access private
user data (e.g., contacts and SMSs), retrieve sensitive device
information (e.g., microphone’s states and input devices’ states),
or use critical system features (e.g., camera and internet) [19].

Depending on whether the granted permissions will give
supplementary GIDs (i.e., Effective GIDs [11] which are com-
monly used for the privilege check) to the running processes
of apps, we divide the permissions into two categories, namely,
EGID related permissions and the other general permissions.
EGID related permissions are declared in the platform.xml
file [22] of Android system, part of which are listed in Table
III. For example, the apps that have gained the INTERNET
permission will be running with the AID_INET EGID.

III. MOTIVATION

In §III-A, we introduce the native framework APIs, the
execution of which is restricted by permissions. Then, in §III-B,
we present how Android performs permission checks. Moreover,
in §III-C, we show a motivating example to explain the need
of building the permission specification for Android NDK.

TABLE III: Partial of EGID related permissions.

Permission EGID (Value)

BLUETOOTH_ADMIN AID_NET_BT_ADMIN (3001)

BLUETOOTH AID_NET_BT (3002)

INTERNET AID_INET (3003)

NET_ADMIN AID_NET_ADMIN (3005)

READ_NETWORK_USAGE_HISTORY AID_NET_BW_STATS (3006)

UPDATE_DEVICE_STATS AID_NET_BW_ACCT (3007)

A. Types of native framework APIs

Apps can use three types of native framework APIs provided
by Android NDK to interact with system services or the kernel.

• Type-1: To interact with system services, Apps can invoke
the APIs, which internally call local interfaces of services. For
example, apps can call the ACameraManager_openCamera API
exported by the libcamera2ndk.so library to request the
camera service to open the camera.

 02 sp<IServiceManager> sm = defaultServiceManager()

 05 BpCameraService::connectDevice(*) // local interface

 06 CameraService::connectDevice(*)

 07 CameraService::connectHelper(*)

Apps

Native
system
services

 10 /* ignore irrelevant code */ }
 09 checkPermission("android.permission.CAMERA", *, *)

 03 sp<IBinder> binder = sm->getService("media.camera")
 04 BpCameraService* bp = interface_cast<>(binder) // Binder proxy

Binder
 // CameraService inherit BnCameraService (Binder stub)

 08 Status CameraService::validateConnectLocked (*) {

// remote interface

transact

onTransact

 01 ACameraManager_openCamera(*) // NDK API

Fig. 2: An example of calling native framework APIs to interact with
system services, and a case of the explicit permission check.

The internal of ACameraManager_openCamera is illustrated
in Figure 2. Specifically, the API first obtains the Binder proxy
of the camera service (in Line 2-4). Then, it uses the Binder
proxy to invoke the connectDevice local interface (in Line
5), which internally calls the transact function to send the
request to the Binder stub of the camera service. Subsequently,
the onTransact function of the Binder stub handles the request
and calls the connectDevice remote interface of the camera
service (in Line 6) to open the camera.

TABLE IV: APIs for obtaining the Binder proxy of system services.

Library API Declaration

libbinder_ndk.so AServiceManager_getService(const char* instance)

libbinder_ndk.so AServiceManager_checkService(const char* instance)

• Type-2: Since apps can call the APIs listed in Table IV to
obtain the Binder proxy of system services, they can directly
access the services’ remote interfaces using the obtained Binder

3

proxy. Hence, we include remote interfaces of system services
(i.e., Type-2 APIs) into the APIs provided by Android NDK.

 /* Calling NDK API to obtain the Binder proxy */

 02 CameraService::connectDevice(*) // remote interface

 01 AIBinder* p = AServiceManager_getService("media.camera")
transact

onTransact
Binder

Apps

 System
services

Fig. 3: An example of calling native framework APIs to obtain the
Binder proxy to interact with native system services.

The example in Figure 3 shows how apps call the APIs in
Table IV to request the camera service to open the camera.
In detail, after obtaining the service’s Binder proxy (in Line
1), apps directly invoke the transact function of the Binder
proxy to call the connectDevice remote interface (in Line 2).

• Type-3: To interact with the kernel, Apps can call the APIs
(e.g., socket), which internally invoke system calls.

 03 sys_socket(AF_INET, type, protocol) // corresponding handler

 04 __sock_create(*, AF_INET, type, protocol, *, *)

 05 pf->create(*, sock, protocol, *) // indirect function call

 06 inet_create(*, /* output */ sock, protocol, *) // create socket

User
space
(apps)

Kernel
space

 09 }

 07 static inline int current_has_network(void) {
 08 return in_egroup_p (AID_INET) // android.permission.INTERNET

 02 syscall(__NR_socket*, AF_INET, type, protocol) // system call

 01 socket(AF_INET, type, protocol) // NDK API

Fig. 4: An example of calling the native framework API to interact
with the kernel, and a case of the implicit permission check.

Figure 4 shows the implementation details about socket.
More specifically, socket calls the syscall function to invoke
the __NR_socket system call (in Line 2), which will be handled
by the sys_socket handler in the kernel (in Line 3).

B. Types of Permission Checks

Depending on the categories of Android permissions intro-
duced in §II-D, we divide permission checks into two types,
including the explicit checks for general permissions and the
implicit checks for EGID related permissions.

• Explicit Permission Checks in System Services: Remote
interfaces of system services can be called to perform sensitive
operations, and thus they will call permission check functions
to examine whether the apps have the required permissions.
Since the string constant, representing the permission under
check, will passed as a parameter to permission check functions
[46], we treat such checks as explicit permission checks.

For instance, in Line 6-10 of Figure 2, the connectDevice
interface calls the checkPermission function (i.e., the permis-
sion check function in Line 9) to examine whether the apps,
requesting to open the camera, have been granted with the
CAMERA permission. Since “android.permission.CAMERA”

(i.e., the permission string in Line 9) is passed as a parameter
to checkPermission, this case is an explicit permission check.

Moreover, since ACameraManager_openCamera internally
calls connectDevice to complete its task, only the apps, having
been granted with the CAMERA permission, are allowed to
call this API. Accordingly, it is a permission restricted API
(i.e., invoking this API requires specific permission).

• Implicit Permission Checks in Kernel: Apps can invoke
system calls to perform sensitive operations [29], and thus
the kernel will perform authority checks on UIDs and GIDs
of the apps’ running processes. Commonly, it will call the
in_egroup_p function (i.e., the EGID check function) to exam-
ine whether the processes are running with the required EGIDs.
Since some of the EGIDs are correlated with permissions (e.g.,
those listed in Table III), the checks on those EGIDs can be
seen as the checks on their corresponding permissions. Thus,
we treat such EGID checks as implicit permission checks.

For example, in Line 3-9 of Figure 4, sys_socket internally
calls in_egroup_p to check whether the processes, requesting
to create the network socket, are running with AID_INET (in
Line 8). Since this EGID is associated with the INTERNET
permission, this case is an implicit permission check.

Moreover, since socket internally calls sys_socket, only
the apps, having been granted with the INTERNET permission,
are allowed to call this native framework API. Accordingly, it
is a permission restricted API as well.

C. A Motivating Example

To help developers properly use Android framework APIs,
Google provides the official API references [2], [6], which
contain the description and permission specification for each
API. However, the documentation of native framework APIs
included in Android NDK lacks the permission specification
for those permission restricted APIs.

 01 openCamera // API name
 02 public void openCamera (*, *, *) // method declaration
 03 Open a connection to a camera with the given ID. // description
 04 /* more descriptions about the functionality */
 05 Requires android.permission.CAMERA // permission requirement
 06 /* more details about the parameters and exceptions */

P1

P2

P3

(a) The reference for the SDK API, CameraManager.openCamera.

 01 ACameraManager_openCamera // API name
 02 * ACameraManager_openCamera (*, *, *, *) // function declaration
 03 Open a connection to a camera with the given ID. // description
 04 /* more descriptions about the functionality */
 05 /* more details about the parameters and return value */

P1

P2
P3

(b) The reference for the NDK API, ACameraManager_openCamera.

Fig. 5: The motivating example.

Figure 5 shows the official documentation of two framework
APIs related to the camera service, both of which can be called
to open the camera device. Figure 5a is summarized from the
reference of the Java API CameraManager.openCamera [10].
Meanwhile, Figure 5b is summarized from the reference of the
NDK API ACameraManager_openCamera [1]. Both of the API

4

1. Build callgraph (.so files)

2. Identify permission restricted functions

1. Build callgraph (built-in.o files)

3. Identify permission restricted sys calls

2. Identify EGID restricted functions

Input

1. Collect accessible native framework APIs 2. Find permission restricted APIs

(remote interfaces and local interfaces)
3. Find permission restricted interfaces

4. Find permission restricted functions

Module-F: Analyze Android framework Module-K: Analyze the kernel

Module-G: Generate permission specification for Android NDK

Fig. 6: The overview and workflow of PSGen.

references consist of three parts: P1 presents the name and
method declaration of the API; P2 describes the functionality of
the API, and this part also includes the permission specification
that declares the required permissions for calling the API; P3
provides additional information about the API, such as the
parameters, the return value, and the thrown exceptions.

Since using camera requires the CAMERA permission [9],
the references of the two APIs should contain the same permis-
sion specification. However, we find that the P2 part in Figure
5b does not contain the permission specification, whereas the P2
part (i.e., Line 5) in Figure 5a lists the permission information.
That is, the official documentation lacks the necessary permis-
sion specification for ACameraManager_openCamera. Without
including such the information in the API reference, app
developers may fail to properly invoke this API in their apps
[3]. More specifically, since app developers are not informed
to request the CAMERA permission in their apps, the apps that
call ACameraManager_openCamera to open the camera will
fail to request the camera service.

Since existing studies on permission specification analysis
for Android framework APIs cannot generate the permission
specification for native framework APIs included in Android
NDK, we design and implement a new tool named PSGen,
which analyzes the native code of Android framework and
the kernel to build the permission specification for native
framework APIs. Specifically, towards this example (referring to
Figure 2), PSGen first identifies the permission check enforced
in validateConnectLocked (in Line 9). Then, it will find the
permission restricted interfaces of the camera service (i.e., the
connectDevice interfaces in Line 5,6), and associate them with
the CAMERA permission under check. Subsequently, PSGen
discovers that there exists reachable function call paths from
the ACameraManager_openCamera API to the connectDevice
local interface, and thus PSGen further correlates the CAMERA
permission to ACameraManager_openCamera.

IV. PSGEN

In this section, we introduce the overview and the workflow
of PSGen in §IV-A and §IV-B, respectively.

A. Overview

Figure 6 presents the architecture of PSGen, which consists
of three modules, namely Module-F (detailed in §V), Module-
K (detailed in §VI), and Module-G (detailed in §VII). PSGen
analyzes the implementation of Android framework and the
kernel to build the permission specification for Android NDK.

Module-F analyzes native system services and correlates the
services’ interfaces to the explicit permission checks enforced
in them. Built upon SVF [48], an LLVM bitcode based static
analysis tool for native code, Module-F analyzes LLVM bitcode
of system libraries’ .so files, which are generated by compiling
C or C++ code of Android framework via LLVM [4].

Module-K analyzes the kernel of Android and associates the
system library functions, which invoke system calls, to implicit
permission checks enforced in system call handlers. Module-K
is also built upon SVF and it analyzes LLVM bitcode of kernel
modules’ built-in.o files, which is generated by compiling
the source code of the kernel via LLVM.

According to the three types of native framework APIs intro-
duced in §III-A, Module-G builds the permission specification
for Android NDK by identifying the permission restricted APIs,
whose execution leads to permission checks. Specifically, it
takes in the analysis results of Module-F and Module-K and
the callgraph of Android framework to correlate permission
restricted APIs to their corresponding permission checks.

B. Workflow

The workflow of each module in PSGen is illustrated in
Figure 6 and we elaborate more on them as follows.

Module-F takes three steps to associate the permission checks
enforced in native system services with their interfaces. First,
to find permission checks enforced in native system services,
this module builds the callgraph for the native code of Android
framework, where native system services are implemented (see
§V-A). Second, to identify the permission restricted interfaces
of system services, whose execution leads to permission checks,
this module analyzes each function in the callgraph to find
the permission restricted functions that call permission check
functions (see §V-B). Third, this module traverses the callgraph
from each remote interface of system services to find the
permission restricted interfaces and then correlates them to the
corresponding permissions under check (see §V-C).

Module-K takes four steps to correlate the implicit permis-
sion checks (i.e., EGID checks) enforced in the kernel to their
corresponding system library functions. First, to find EGID
checks enforced in the kernel, this module builds the callgraph
of the kernel (see §VI-A). Second, to identify the permission
restricted system calls, the execution of their corresponding
handlers will lead to EGID checks, this module analyzes each
function in the callgraph to find the EGID restricted functions
that call in_egroup_p to enforce EGID checks (see §VI-B).
Third, to recognize the system library functions that invoke
permission restricted system calls, this module traverses the
callgraph from each system call handlers to find the permission
restricted ones, and then maps them to their corresponding
system calls (see §VI-C). Fourth, this module analyzes system
library functions to find those that invoke permission restricted
system calls and then associates them with the EGID related
permissions under check (see §VI-D).

Module-G takes in the permissions associated with interfaces
of system services and system library functions, as well as the
callgraph of native code of Android framework to build the

5

permission specification for Android NDK through two steps.
First, to collect the native framework APIs that are accessible
to apps, this module parses NDK libraries to get their exported
functions. Second, to find the permission restricted APIs, which
internally call permission restricted interfaces or functions, this
module traverses the callgraph from each app accessible API.
Module-G will correlate each permission restricted API with its
corresponding permissions under check. All these correlations
form the permission specification for Android NDK.

V. ANALYZING NATIVE CODE OF ANDROID FRAMEWORK

This section describes the details of Module-F. Specifically,
we introduce how this module builds the callgraph for native
code of Android framework (in §V-A), identifies the permission
restricted functions (in §V-B), and find the permission restricted
interfaces of native system services (in §V-C).

A. Building Callgraph
Since the native code of Android framework, especially the

implementations of native system services, are mainly dispersed
in system libraries (e.g., libcameraservice.so contains
the code for the camera service), we build the callgraph of
each system library and then merge them together to form the
complete callgraph. Specifically, we leverage SVF [48] to build
the callgraph of each system library based on the LLVM bitcode
of the library’s .so file. During this process, we encounter two
challenging issues, which will make the callgraph incomplete
and inaccurate. In the following, we present the details about
these issues and our approaches to addressing them.

• Indistinguishable C++ Objects: Different C++ classes can
share the same LLVM bitcode representation. It makes SVF
unable to distinguish their objects.

. Details: Each C++ class is represented by the types of its
non-static fields in LLVM bitcode [15]. Accordingly, the LLVM
bitcode representations of the child classes, inheriting the same
parent class without adding additional non-static fields, cannot
be distinguished from each other.

We find that the interface classes, which will be inherited by
the classes of the Binder proxy or the classes of the Binder stub
of native system services, are such kind of child classes, and
thus processing them needs to address this issue. For example,
as shown in Figure 7a, since both of the IServiceManager
class (in Line 1-3) and the ICameraService class (in Line
6-8) inherit the IInterface class, and neither of them has
non-static fields, these interface classes will share the same
LLVM bitcode representation.

This issue makes SVF unable to correctly determine the
types of C++ objects. As shown in Figure 7b, Line 6,8-9
(LLVM bitcode) show that the variables sm and cs are both the
IServiceManager object. However, it is incorrect according
to the corresponding source code in Line 2-3, which indicate
that the types of cs should be ICameraService.

Since SVF requires accurate type information to perform
precise points-to analysis to build callgraph [48], the incorrect
type information incurred by this issue will negatively affect
the analysis and make the callgraph incomplete and inaccurate.

 01 class IServiceManager : public IInterface { // IServiceManager.h

 03 /* declare virtual functions and define static fields */ }
 02 /* IServiceManager is the interface class of the service manager service */

 04 int stub[10]; // differentiate IServiceManager from ICameraService

 // Definitions of IServiceManager and BpServiceManager in libbinder.so

 // Definitions of ICameraSerivce and BpCameraService in libcamera_client.so
 06 class ICameraService : public IInterface { // ICameraService.h
 07 /* ICameraService is the interface class of the camera service */

 09 int stub[20]; // differentiate ICameraService from IServiceManager
 08 /* declare virtual functions and define static fields */ }

 05 class BpServiceManager : public IServiceManager { /* ignore the code */ }

 10 class BpCameraService : public ICameraService { /* ignore the code */ }

insert

insert

(a) Class declarations of IServiceManager and ICameraService.

 06 %"class.android::sp" = type { %"class.android::IServiceManager"* }

 08 %sm = alloca %"class.android::sp" // an IServiceManager object
 09 %cs = alloca %"class.android::sp" // an IServiceManager object (X)

 07 define void @CameraManagerGlobal16getCameraServiceEv(*) {

 10 %vtable = * // get vtable for class of %sm (vtable for IServiceManager)
 11 %vfn = *, i32 4 // get the 5th function pointer in vtable

 13 %vtable2 = * // get vtable for class of %cs (vtable for IServiceManager)
 14 %vfn2 = *, i32 9 // get the 10th function pointer in vtable2

 16 /* ignore the irrelevant LLVM-bitcode */ }

 01 sp<ICameraService> CameraManagerGlobal::getCameraService(*) {

 03 sp<ICameraService> cs = sm->getService("media.camera");
 02 sp<IServiceManager> sm = defaultServiceManager();

 05 /* ignore the irrelevant C++ code */ }

 // C++ Source code of getCameraService in libcamera2ndk.so

 04 cs->addListener(*); // register the camera status listener

 // LLVM-bitcode of getCameraService

 12 %call = call * // call the virtual function reference by %vfn (?)

 15 %call2 = call * // call the virtual function referenced by %vfn2 (?)

(b) The C++ code and LLVM bitcode related to getCameraService.

 01 %"class.android::sp" = type { %"class.android::IServiceManager"* }

 06 %sm = alloca %"class.android::sp" // an IServiceManager object
 07 %cs = alloca %"class.android::sp.1" // an ICameraService object (√)

 05 define void @CameraManagerGlobal16getCameraServiceEv(*) {

 08 /* omit Line 11,14 in Figure.(b) */

 11 %vtable2 = * // refer to vtable of BpCameraService

 13 /* ignore the irrelevant LLVM-bitcode */ }

 02 %"class.android::sp.1" = type { %"class.android::ICameraService"* }

 04 @_ZTVN*BpCameraServiceE= * // vtable for BpCameraService
 03 @_ZTVN*BpServiceManagerE = * // vtable for BpServiceManager

 12 %call2 = * // call BpCameraService::addListener (√)

 09 %vtable = * // refer to vtable of BpServiceManager
 10 %call = * // call BpServiceManager::getService (√)

(c) The adjusted LLVM bitcode related to getCameraService.

Fig. 7: Adjusting LLVM bitcode of system libraries.

. Solution: We insert extra non-static fields to the interface
classes (e.g., IServiceManager and ICameraService) in order
to make their LLVM bitcode representations different.

To accomplish this task, we insert arrays with different length
to the interface classes. For instance, as illustrated in Figure
7a, we add an integer array with 10 elements (in Line 4) to
IServiceManager and an integer array with 20 elements (in
Line 9) to ICameraService, respectively. As a result, the two
interface classes have different non-static fields. Hence, their
LLVM bitcode representations become different as presented
in Line 1-2 of Figure 7c. Accordingly, SVF can correctly figure
out that the cs variable is an ICameraService object.

• Unknown Virtual Function Calls: The LLVM bitcode of a

6

library does not include its dependent libraries’ LLVM bitcode.
Thus, it lacks the information about the virtual functions defined
in the classes of other libraries. Accordingly, by analyzing each
system library individually, SVF cannot completely resolve the
virtual function calls from the library’s LLVM bitcode.

. Details: When compiling the source code of the C++ class
that implements virtual functions, LLVM will save the pointers
of these functions to an array called virtual function table
(a.k.a vtable) [15]. More specifically, LLVM adds a vtable
variable, representing the virtual function table, to the class’s
LLVM bitcode. Since this variable contains the information
(e.g., function names) about the class’s virtual functions, SVF
relies on it to resolve virtual function calls.

Since the source code of a system library does not contain
the source code of its dependent libraries, so does the library’s
LLVM bitcode. Therefore, a library’s LLVM bitcode will not
include the variables, storing the information about the virtual
functions defined in the C++ classes of other libraries.

This issue makes SVF unable to completely resolve the
virtual function calls. For example, referring to Figure 7a and
7b, since the getCameraService function is implemented in
libcamera2ndk.so while the BpCameraService class is
defined in libcamera_client.so, the LLVM bitcode of
getCameraService will not contain the vtable variable of
BpCameraService. Thus, when analyzing the LLVM bitcode
in Line 13-15 of Figure 7b, SVF cannot recognize the corre-
sponding virtual function call to addListener in Line 4.

Since numerous virtual function calls in system libraries
cannot be resolved, this issue makes callgraph incomplete.

. Solution: We link the LLVM bitcode of each system library
with the LLVM bitcode of its dependent libraries. Then, the
LLVM bitcode of the system library will contain the demanded
vtable variables of the classes defined in other libraries.

Specifically, we take two steps to finish this task. First, we use
llvm-objdump [14] to retrieve each system library’s dependent
libraries. Second, we use llvm-link [13], a LLVM bitcode linker,
to merge the LLVM bitcode of the dependent libraries to that of
the system library. For example, we link the LLVM bitcode of
libcamera2ndk.so with those of libbinder.so and
libcamera_client.so, the adjusted LLVM bitcode (shown
in Figure 7c) includes the vtable variables (in Line 3-4) for
resolving the virtual function calls. Then, SVF can successfully
resolve the virtual function calls to addListener.

B. Identifying Permission Restricted Functions

To find the permission restricted interfaces of native system
services, we identify the permission restricted functions, where
permission checks are enforced. Precisely, these permission re-
stricted functions will call permission check functions (e.g., the
checkPermission function in Line 9 of Figure 2), which take
the permission string as the parameter, to enforce permission
checks (see §III-B). Hence, we treat the callers of permission
check functions as permission restricted functions (e.g., the
validateConnectLocked function in Line 8 of Figure 2).

More specifically, we take three steps to find permission
restricted functions from the LLVM bitcode of each system
library. First, we find the permission strings in LLVM bitcode.
Second, for each permission string, we conduct data flow
analysis on its def-use chain constructed by SVF to find the
permission check function that consumes the string. Third, we
get the callers of each permission check function, which are
the permission restricted functions.

For each identified permission restricted function (Fp), we
also record the permission under check (P) and store them in a
map Mfp : {Fp → P}, which will then be used to determine
the permission restricted remote interfaces of systems services.

C. Finding Permission Restricted Interfaces

Module-F traverses the callgraph to find permission restricted
remote interfaces and local interfaces of native system services.
During this process, we record services’ remote interfaces in a
set Sri, which will then be used to determine the app-accessible
native framework APIs (in §VII-A).

• Finding Permission Restricted Remote Interfaces: Since
the onTransact function of the Binder stub will call remote
interfaces of system services (see §II-A), we record the callees
of onTransact (e.g., the connectDevice remote interface in
Line 6 of Figure 2) to Sri and analyze them to identify the
permission restricted remote interfaces. Specifically, we traverse
the callgraph from each callee of onTransact to find whether
there are reachable paths from it to the permission restricted
functions that are stored in Mfp. If so, the callee is a permission
restricted remote interface.

Since a permission restricted remote interface (Rp) may
access multiple permission restricted functions, we correlate it
with a set of permissions (Srp). For each reachable permission
restricted function, we query Mfp to retrieve the permission
under check. For example, Srp of the connectDevice remote
interface is {CAMERA}. We store such the correlation to
the map Mrp : {Rp → Srp}, which will then be used in the
analysis of permission restricted local interfaces.

• Finding Permission Restricted Local Interfaces: A per-
mission restricted local interface is always correlated with a
permission restricted remote interface, because the latter is
invoked by the former. Based on this observation, we identify
the permission restricted local interfaces through two steps.
First, since local interfaces will call the transact function (see
§II-A), we get the callers of the transact function (e.g., the
connectDevice local interface in Line 5 of Figure 2) from the
callgraph in order to collect the local interfaces. Second, since
a pair of local interfaces and remote interfaces share the same
method declaration (see §II-A), for each caller of transact, we
search Mrp to check whether it has a corresponding permission
restricted remote interface. If so, we find a permission restricted
local interface. Note that, during this process, we remove the
functions from Sri, which are not services’ remote interfaces
because they do not share the same method declaration with
any of the local interfaces.

7

A pair of permission restricted local interfaces (Lp) and
remote interfaces (Rp) should be protected by the same set of
permissions. Therefore, we query Mrp to get the permission
set Slp for Lp. For example, Slp of the connectDevice local
interface is {CAMERA}, which is the same as Srp of the
connectDevice remote interface. We store such the correlation
to the map Mlp : {Lp → Slp}, which will be used to build the
permission specification for native framework APIs (in §VII).

VI. ANALYZING ANDROID KERNEL

This section describes the details of Module-K. Specifi-
cally, we present how this module builds the callgraph of
Android kernel (in §VI-A), identifies the EGID restricted kernel
functions (in §VI-B), and find the system calls and system
library functions (in §VI-C and §VI-D), whose executions are
restricted by EGID related permissions.

A. Building Callgraph

When compiling source code of the kernel, the compiler (e.g.,
LLVM) will generate an object file named built-in.o for
each module of the kernel. These object files are then statically
linked to generate a single executable file (i.e., vmlinux) for
the kernel [12]. Since vmlinux contains all necessary code of
the kernel, we can directly perform static code analysis on it to
build the callgraph. Specifically, we apply SVF and KMI [20],
a tool specially designed to resolve the indirect function calls
in the kernel, to analyzing the LLVM bitcode of vmlinux.
However, it is non-trivial to build the entire callgraph of the
kernel due to its huge code base. In the following, we present
the details about the issue and our approach to solving it.

• High Resource Consuming Points-to Analysis: Due to the
huge and complex code base of the kernel, it is both memory
and time consuming for SVF to conduct points-to analysis on
vmlinux to build the entire callgraph of the kernel [57].

. Details: SVF will track all the objects (e.g., functions and
variables) included in the target’s LLVM bitcode to perform
precise points-to analysis for building the accurate callgraph
[48]. Therefore, it is unscalable to the complex Android kernel
with over 2M LOC [5]. We have deployed SVF on a machine
with 192 GB memory and applied it to analyzing vmlinux.
Unfortunately, SVF has exhausted all the memory in around 2
hours without finishing the points-to analysis.

Without the results of the precise points-to analysis, SVF
cannot build the complete and accurate callgraph for the kernel.

. Solution: Since vmlinux is composed of built-in.o
files, we leverage SVF and KMI to build the callgraph of each
built-in.o file instead, and then merge them together to
form the entire callgraph of the kernel. It is noteworthy that,
in our experiment, SVF can build the callgraph for each object
file with the need of no more than 64 GB memory.

B. Identifying EGID Restricted Kernel Functions

To find the permission restricted system call handlers, we
identify the EGID restricted kernel functions, where EGID

checks are enforced. Specifically, these EGID restricted func-
tions call the in_egroup_p function, which takes the value
of EGID as the parameter (e.g., those listed in Table III),
to conduct EGID checks (see §III-B). Accordingly, we treat
the callers of the in_egroup_p function as EGID restricted
functions (e.g., current_has_network in Line 7 of Figure 4).

In detail, we identify EGID restricted functions from the
LLVM bitcode of each built-in.o file through two steps.
First, we locate the function call to in_egroup_p in LLVM
bitcode and then perform data flow analysis on its parameter
to determine the value of EGID under examination. Since
there is a gap between the EGID related permission and the
value of EGID under examination, we build a map (Megid)
between them. Specifically, we parse the platform.xml file
of Android system [22], where the correspondence between
each EGID related permission and its EGID is defined. Second,
for each function call to in_egroup_p, we get its callers, which
are the EGID restricted functions.

For each identified EGID restricted function (Fe), we query
Megid to get the EGID related permission (E) according to the
value of EGID under examination. We store such the correlation
in a map Mfe : {Fe → E}, which will be used to determine
the permission restricted system call handlers.

C. Identifying Permission Restricted System Calls

To find the system library functions, whose executions
are restricted by EGID related permissions, we identify the
permission restricted system calls (e.g., __NR_socket in Line
3 of Figure 4), whose handler will enforce EGID checks.

In detail, we traverse the callgraph of the kernel from each
system call handler, whose name commonly starts with “sys_”
[39], to find whether there are reachable paths from it to the
EGID restricted functions stored in Mfe. If so, a permission
restricted system call handler is found. To further get the system
call from the handler, we build a map (Mhandler) between them.
Specifically, we parse the unist.h file of the kernel [25],
where the correspondence between each system call and its
corresponding handler is defined. Then, we can query Mhandler

to get the permission restricted system call (Sp) of each found
permission restricted system call handler.

Since a permission restricted system call handler may access
multiple EGID restricted kernel functions, we associate Sp to a
set of EGID related permissions (Ssp). For each reachable EGID
restricted function, we query Mfe to get the permission under
check. For example, Ssp of __NR_socket is {INTERNET}.
We store such the correlation to the map Msp : {Sp → Ssp},
and will use it to find the system library functions, whose
executions are restricted by EGID related permissions.

D. Finding Permission Restricted System Library Functions

Since the system library functions, whose executions are
restricted by EGID related permissions, should call the syscall
function to invoke the permission restricted system calls in
Msp, we analyze the callers of syscall to identify such
permission restricted system library functions through two
steps. First, we locate each function call to syscall in the

8

LLVM bitcode of each system library and then get its caller.
Second, we perform data flow analysis on the first parameter of
syscall to determine whether the system call number refers
to a permission restricted system call in Msp. If so, the caller
of syscall is a permission restricted system library function.

However, we find that LLVM will not generate the bitcode for
the wrapper functions of system calls written by assembly code
(introduced in §II-B). Thus, we need to correlate each wrapper
function to the corresponding system call. Specially, we parse
the assembly files of wrapper functions (e.g., the socket.S
file [23] for socket) to find the system call number. Similarly, if
the system call number refers to a permission restricted system
call in Msp, the wrapper function is a permission restricted
system library function.

For each identified system library function (Le) whose
executions are restricted by EGID related permissions, we
query Msp to retrieve the set of permissions under check (Sle)
according to the system call number. For example, Sle of
socket is {INTERNET}. We store such the correlation in
the map Mle : {Le → Sle}, which will be used to build the
permission specification for native framework APIs (in §VII).

VII. GENERATING PERMISSION SPECIFICATION

This section describes the details of Module-G. Specifically,
we present how this module collects native framework APIs that
are accessible to apps (in §VII-A), and identifies the permission
restricted native framework APIs (in §VII-B).

A. Collecting App-Accessible Native Framework APIs

The main purpose of the permission specification for Android
NDK is to guide app developers to properly use the native
framework APIs in their apps. Therefore, before we generate
the permission specification for each native framework APIs,
we collect the APIs that can be called by native code of apps.
According to the types of native framework APIs presented in
§II-C, we collect these app-accessible APIs from two aspects.
(1) For Type-1 and Type-3 APIs, which are defined in the
system libraries of Android NDK, we collect them from the
exported symbol table of NDK libraries [17] (e.g., those listed
in Table II). Specifically, we use objdump [18], a utility for
dumping information from object files, to retrieve the exported
functions of NDK libraries. (2) For Type-2 APIs (i.e., remote
interfaces of system services), we collect them from Sri (see
§V-C), which stores the services’ remote interfaces. All these
app-accessible APIs are recorded in the set Sapi, from which
we further identify the permission restricted APIs.

B. Finding Permission Restricted Native Framework APIs

We identify the native framework APIs, which will call
permission restricted functions, to build the permission specifi-
cation for Android NDK. Specifically, we traverse the callgraph
of Android framework (built in §V-A) from each app-accessible
API stored in Sapi to determine whether there are reachable
paths from it to the permission restricted interfaces of system
services stored in Mrp and Mlp (see §V-C) or other permission

restricted system library functions stored in Mle (see §VI-D).
If so, we find a permission restricted native framework API.

A permission restricted API (Rapi) may require apps to gain
multiple permissions, and thus we correlate it with a set of
permissions (Papi). Specifically, for each reachable permission
restricted function, we query Mrp, Mlp, or Mle to retrieve the
permissions under check. All the correlations between Rapi

and Papi (as those shown in Table V) form the permission
specification for Android NDK.

TABLE V: A part of permission specification for Android NDK.

Permission Restricted API (Rapi) Required Permissions (Papi)

ACameraManager_openCamera (Type-1) android.permission.CAMERA

CameraService::connectDevice (Type-2) android.permission.CAMERA

socket (Type-3) android.permission.INTERNET

VIII. EVALUATION

We evaluate the performance of PSGen by answering the
following three research questions (RQs).

RQ1: Can PSGen generate the permission specification for the
Type-1 native framework APIs that require permissions?

RQ2: Can PSGen identify the permission restricted Type-2 APIs
and associate them with the required permissions?

RQ3: Can PSGen derive the correlations between the Type-3
native framework APIs and their corresponding permissions?

TABLE VI: Overview of the framework and the kernel under analysis.

ID Framework Version #Function Kernel Version #Function

S1 android-9.0.0_r46 359,750 common-android-4.4 63,438
S2 android-10.0.0_r41 409,605 common-android-4.4 63,438
S3 android-11.0.0_r21 496,649 common-android-4.9 57,781

• Data Set: To answer the research questions, we use PSGen to
analyze 3 Android systems (i.e., S1, S2, and S3), each of which
is composed by a pair of Android framework and Android
kernel. Table VI lists the details about the framework and
kernel under evaluation, including their versions and the number
of functions (#Function) included in their LLVM bitcode. In
detail, S1 consists of the framework of Android 9.0 and the
common Android kernel 4.4. S2 is composed by the framework
of Android 10.0 and the common Android kernel 4.4. S3 is
made up of the framework of Android 11.0 and the common
Android kernel 4.9. It is worth noting that these pairs of Android
framework and Android kernel are close to those deployed
on Pixel [8]. Meanwhile, the versions of the framework under
analysis are the three most popular ones and they took about
70% of the market share worldwide on March 2021 [16].

When compiling the source code of each framework and
kernel under analysis, we use WLLVM [26] to link the LLVM
bitcode for each object file (i.e., .o or .obj file) of a system
library or a kernel’s module to a single LLVM bitcode file so
that PSGen can get the complete LLVM bitcode of the target.

9

TABLE VII: Overview of the permission specification for native framework APIs.

Android
System

Type-1 APIs Type-2 APIs Type-3 APIs Total
#API #FP Precision #API #FP Precision #API #FP Precision #API #FP Precision

Android 9.0 + Kernel 4.4 (S1) 2 0 100% 106 4 96.2% 25 2 92.0% 133 6 95.5%
Android 10.0 + Kernel 4.4 (S2) 7 0 100% 188 3 98.4% 18 2 88.9% 213 5 97.7%
Android 11.0 + Kernel 4.9 (S3) 7 0 100% 192 14 92.7% 19 2 89.5% 218 16 92.7%

• Overall Results: We list the overall results of our permission
specification analysis for Android NDK in Tables VII and VIII.
More specifically, Table VII presents the number of native
framework APIs (#API) that require permissions to invoke
them. Meanwhile, we also include the number of false positives
(#FP) and the precision of PSGen in correlating the APIs to
their required permissions in Table VII. In addition, Table
VIII presents the distribution of the number of permissions
(#Permission) required by the permission restricted APIs.

TABLE VIII: Overview of number of permissions required by APIs.

#Permission 1 2 3 4

Android 9.0 + Kernel 4.4 (S1) 118 (92.9%) 8 (6.3%) 0 (0.0%) 1 (0.8%)
Android 10.0 + Kernel 4.4 (S2) 97 (46.6%) 104 (50.0%) 5 (2.4%) 2 (1.0%)
Android 11.0 + Kernel 4.9 (S3) 94 (46.5%) 97 (48.0%) 9 (4.5%) 2 (1.0%)

A. Permission Specification Analysis for Type-1 APIs

As presented in Table VII, for the system S1, PSGen identifies
2 Type-1 native framework APIs that require permissions to
call them. For S2 and S3, PSGen discovers 7 such the kind
of Type-1 APIs. We find that each of these APIs is correlated
with only one permission, but the official API references do
not provide the permission specifications for them.

To evaluate the precision of PSGen, we examine the generated
permission specification by manually inspecting the source code
of corresponding APIs. Specifically, no false positives is found,
and thus the precision of PSGen in generating the permission
specification for the Type-1 APIs is 100%.

Answer to RQ1: PSGen can precisely generate the permis-
sion specification for the Type-1 native framework APIs with
the precision of 100%.

B. Permission Specification Analysis for Type-2 APIs

For each of the systems under evaluation, PSGen identifies
106, 188, and 192 permission restricted Type-2 native frame-
work APIs, respectively, whose executions lead to permission
checks. From their permission specifications, we observe that
a majority of (about 95%) these APIs are correlated with one
or two permissions, and few of them are associated with more
than two permissions (as shown in Table VIII).

Similarly, we manually inspect the results to assess the pre-
cision of PSGen. Specifically, PSGen identifies the permission-
restricted Type-2 APIs with the precision of 96.2%, 98.4%, and
92.7%, respectively. We find that the main reason for causing
the false positives is the imprecise points-to analysis (i.e.,
Andersen’s points-to analysis [31]) adopted to build callgraphs.

Answer to RQ2: PSGen can precisely identify the permission
restricted Type-2 APIs and correlate them with their required
permissions with the precision of over 92.7%.

C. Permission Specification Analysis for Type-3 APIs

PSGen derives 25, 18, 19 correlations between the permission
restricted Type-3 native framework APIs and their correspond-
ing permissions for the systems under evaluation, respectively.
Although some of these Type-3 APIs (e.g., socket) are com-
monly used by apps [29], all of their permission specification
is not available in the official API references from Google.

We further find that all these Type-3 APIs are correlated with
the same permission android.permission.INTERNET,
an EGID related permission. After manually analyzing the
relevant source code of Android kernel, we notice that, in
higher versions of Android kernel, they remove almost all the
other EGID checks and only allow the root user to perform the
sensitive operations, which are previously restricted by those
EGID related permissions (e.g., those listed in Table III).

We also manually check the permission specification derived
by PSGen and find two false positives. In detail, the precision
of PSGen in analyzing the permission specification for Type-3
APIs is 92.0%, 88.9%, and 89.5%, respectively. Moreover, we
analyze the false positives to find the root cause. Specifically,
since the algorithm adopted by PSGen to build callgraphs is
path-insensitive, the condition that makes the callgraph edge
feasible is ignored, resulting in false positives.

Answer to RQ3: PSGen can precisely derive the correla-
tions between the Type-3 native framework APIs and their
corresponding permissions with the precision of over 88.9%.

IX. THREAT TO VALIDITY

The threat to the external validity is mainly caused by the
imprecise static analysis employed by PSGen. Due to the huge
code base of Android framework and Android kernel, PSGen
chooses the scalable but imprecise path-insensitive points-to
analysis to build their callgraphs. However, the imprecise static
code analysis causes false positives and degrades the precision
of PSGen in generating the permission specification for native
framework APIs as presented in §VIII. To mitigate the problem,
in future work, we will try to use the more precise path-sensitive
points-to analysis [47] to build the callgraphs.

X. RELATED WORK

Although researchers have proposed various work on analyz-
ing Android SDK, to the best of our knowledge, none of the

10

existing work targets at analyzing Android NDK. Meanwhile,
most of the existing studies (e.g., [37], [45], [49], [52]–[56],
[59]) focus on analyzing the Android SDK APIs called by apps,
and only few of them [28], [32], [33], [35], [36], [43] conduct
the permission specification analysis for Android SDK. PScout
[32] statically identifies the permission check methods and
builds the context-insensitive callgraph of Android framework.
Then, it performs backward reachability analysis to construct
the mapping between Java framework APIs and their required
permissions. Alexandre et al. [35] evaluated the performance of
two static analysis methods (CHA and Spark) on building the
permission specification for Java framework APIs. AXPLORER
[33] models the runtime behaviors of several complicated Java
classes of Android framework to promote the accuracy of
permission specification analysis. ARCADE [28] constructs the
path-sensitive callgraph of Android framework to make the
Android API protection mapping more precise. HEAPHELPER
[43] leverages the dynamic information stored in the heap of
Android framework to assist the construction of a more precise
callgraph, which makes the generated Android permission
specification more accurate. Besides the tools built upon static
analysis, DYNAMO [36] generates the permission specification
by dynamically executing Java framework APIs and recording
the permissions being checked. Since none of them analyze
native code of Android framework, we cannot use them to
build the permission specification for native framework APIs.

One of the applications of permission specification analysis
is to discover the inconsistent permission checks in Android
framework. Kratos [46], AceDroid [27], and ACMiner [40]
statically build the permission specification for Java framework
APIs and then examine whether the two APIs, implementing
the same functionality, are protected by the same permission.
However, since these tools just focus on discovering the incon-
sistent permission specification in Java framework APIs, our
work can help analysts to uncover the inconsistent permission
checks enforced for native framework APIs.

XI. CONCLUSION

We conduct the first permission specification analysis for
Android NDK by developing PSGen, a novel automated tool that
statically analyzes the implementation of Android framework
and Android kernel to correlate native framework APIs with
their required permissions. Applying PSGen to 3 Android
systems spanning from Android 9.0 to 11.0, we find that PSGen
can precisely build the permission specification for Android
NDK. We discover more than 200 native framework APIs that
are correlated with at least one permission.

XII. ACKNOWLEDGMENT

We thank the anonymous reviewers for their helpful com-
ments. This research is partially supported by the Hong
Kong RGC Project (No. PolyU15223918), Hong Kong ITF
Project (No. ITS/197/17FP), and the National Natural Science
Foundation of China (No.62072046, 61872057), and National
Key R&D Program of China (2018YFB0804100), Leading
Innovative and Entrepreneur Team Introduction Program of

Zhejiang (No. 2018R01005), and the National Science Foun-
dation under Grant (No. 1951729, 1953813, and 1953893).

REFERENCES

[1] “ACameraManager_openCamera,” https://developer.android.com/ndk/
reference/group/camera?#acameramanager_opencamera, 2021.

[2] “Android API reference,” https://developer.android.com/reference, 2021.
[3] “Android Camera2 executable failed to get

frames,” https://stackoverflow.com/questions/52710811/
android-camera2-executable-failed-to-get-frames, 2021.

[4] “Android Clang/LLVM Toolchain,” https://android.googlesource.com/
toolchain/llvm_android/+/master, 2021.

[5] “Android Common Kernels,” https://source.android.com/devices/
architecture/kernel/android-common, 2021.

[6] “Android NDK API Reference,” https://developer.android.com/ndk/
reference, 2021.

[7] “Binder,” https://developer.android.com/reference/android/os/Binder,
2021.

[8] “Building Kernels,” https://source.android.com/setup/build/
building-kernels, 2021.

[9] “Camera API,” https://developer.android.com/guide/topics/media/camera#
manifest, 2021.

[10] “CameraManager.openCamera,” https://developer.android.com/reference/
android/hardware/camera2/CameraManager?#openCamera(java.lang.
String,android.hardware.camera2.CameraDevice.StateCallback,android.
os.Handler), 2021.

[11] “Credentials in Linux,” https://www.kernel.org/doc/html/v4.15/security/
credentials.html, 2021.

[12] “Kernel Size Tuning Guide,” https://elinux.org/Kernel_Size_Tuning_
Guide, 2021.

[13] “LLVM bitcode linker,” http://llvm.org/docs/CommandGuide/llvm-link.
html, 2021.

[14] “LLVM’s object file dumper,” https://llvm.org/docs/CommandGuide/
llvm-objdump.html, 2021.

[15] “Mapping High Level Constructs to LLVM IR,” https:
//mapping-high-level-constructs-to-llvm-ir.readthedocs.io/en/latest/
README.html, 2021.

[16] “Mobile Android Version Market Share Worldwide,” https://gs.statcounter.
com/android-version-market-share/mobile/worldwide/, 2021.

[17] “NDK libraries,” https://developer.android.com/ndk/guides/libs, 2021.
[18] “Object file dumper,” https://man7.org/linux/man-pages/man1/objdump.1.

html, 2021.
[19] “Permissions overview,” https://developer.android.com/guide/topics/

permissions/overview, 2021.
[20] “PeX,” https://github.com/lzto/pex#resolve-indirect-call-kmi-or-cvf,

2021.
[21] “Platform Architecture,” https://developer.android.com/guide/platform,

2021.
[22] “platform.xml,” https://cs.android.com/android/platform/superproject/+/

master:frameworks/base/data/etc/platform.xml, 2021.
[23] “socket.S,” https://android.googlesource.com/platform/bionic/+/db1ea34/

libc/arch-x86/syscalls/socket.S, 2021.
[24] “System Calls,” https://www.gnu.org/software/libc/manual/html_node/

System-Calls.html, 2021.
[25] “unistd.h,” https://github.com/torvalds/linux/blob/master/include/uapi/

asm-generic/unistd.h, 2021.
[26] “Whole Program LLVM,” https://github.com/travitch/

whole-program-llvm, 2021.
[27] Y. Aafer, J. Huang, Y. Sun, X. Zhang, N. Li, and C. Tian, “AceDroid:

Normalizing Diverse Android Access Control Checks for Inconsistency
Detection,” in Proc. NDSS, 2018.

[28] Y. Aafer, G. Tao, J. Huang, X. Zhang, and N. Li, “Precise Android API
Protection Mapping Derivation and Reasoning,” in Proc. CCS, 2018.

[29] V. Afonso, A. Bianchi, Y. Fratantonio, A. Doupé, M. Polino, P. de Geus,
C. Kruegel, and G. Vigna, “Going native: Using a large-scale analysis
of android apps to create a practical native-code sandboxing policy,” in
Proc. NDSS, 2016.

[30] S. Almanee, A. Unal, and M. Payer, “Too Quiet in the Library: An
Empirical Study of Security Updates in Android Apps’ Native Code,” in
Proc. ICSE, 2021.

[31] L. O. Andersen, “Program analysis and specialization for the C
programming language,” Ph.D. dissertation, University of Cophenhagen,
1994.

11

https://developer.android.com/ndk/reference/group/camera?#acameramanager_opencamera
https://developer.android.com/ndk/reference/group/camera?#acameramanager_opencamera
https://developer.android.com/reference
https://stackoverflow.com/questions/52710811/android-camera2-executable-failed-to-get-frames
https://stackoverflow.com/questions/52710811/android-camera2-executable-failed-to-get-frames
https://android.googlesource.com/toolchain/llvm_android/+/master
https://android.googlesource.com/toolchain/llvm_android/+/master
https://source.android.com/devices/architecture/kernel/android-common
https://source.android.com/devices/architecture/kernel/android-common
https://developer.android.com/ndk/reference
https://developer.android.com/ndk/reference
https://developer.android.com/reference/android/os/Binder
https://source.android.com/setup/build/building-kernels
https://source.android.com/setup/build/building-kernels
https://developer.android.com/guide/topics/media/camera#manifest
https://developer.android.com/guide/topics/media/camera#manifest
https://developer.android.com/reference/android/hardware/camera2/CameraManager?#openCamera(java.lang.String, android.hardware.camera2.CameraDevice.StateCallback, android.os.Handler)
https://developer.android.com/reference/android/hardware/camera2/CameraManager?#openCamera(java.lang.String, android.hardware.camera2.CameraDevice.StateCallback, android.os.Handler)
https://developer.android.com/reference/android/hardware/camera2/CameraManager?#openCamera(java.lang.String, android.hardware.camera2.CameraDevice.StateCallback, android.os.Handler)
https://developer.android.com/reference/android/hardware/camera2/CameraManager?#openCamera(java.lang.String, android.hardware.camera2.CameraDevice.StateCallback, android.os.Handler)
https://www.kernel.org/doc/html/v4.15/security/credentials.html
https://www.kernel.org/doc/html/v4.15/security/credentials.html
https://elinux.org/Kernel_Size_Tuning_Guide
https://elinux.org/Kernel_Size_Tuning_Guide
http://llvm.org/docs/CommandGuide/llvm-link.html
http://llvm.org/docs/CommandGuide/llvm-link.html
https://llvm.org/docs/CommandGuide/llvm-objdump.html
https://llvm.org/docs/CommandGuide/llvm-objdump.html
https://mapping-high-level-constructs-to-llvm-ir.readthedocs.io/en/latest/README.html
https://mapping-high-level-constructs-to-llvm-ir.readthedocs.io/en/latest/README.html
https://mapping-high-level-constructs-to-llvm-ir.readthedocs.io/en/latest/README.html
https://gs.statcounter.com/android-version-market-share/mobile/worldwide/
https://gs.statcounter.com/android-version-market-share/mobile/worldwide/
https://developer.android.com/ndk/guides/libs
https://man7.org/linux/man-pages/man1/objdump.1.html
https://man7.org/linux/man-pages/man1/objdump.1.html
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://github.com/lzto/pex#resolve-indirect-call-kmi-or-cvf
https://developer.android.com/guide/platform
https://cs.android.com/android/platform/superproject/+/master:frameworks/base/data/etc/platform.xml
https://cs.android.com/android/platform/superproject/+/master:frameworks/base/data/etc/platform.xml
https://android.googlesource.com/platform/bionic/+/db1ea34/libc/arch-x86/syscalls/socket.S
https://android.googlesource.com/platform/bionic/+/db1ea34/libc/arch-x86/syscalls/socket.S
https://www.gnu.org/software/libc/manual/html_node/System-Calls.html
https://www.gnu.org/software/libc/manual/html_node/System-Calls.html
https://github.com/torvalds/linux/blob/master/include/uapi/asm-generic/unistd.h
https://github.com/torvalds/linux/blob/master/include/uapi/asm-generic/unistd.h
https://github.com/travitch/whole-program-llvm
https://github.com/travitch/whole-program-llvm

[32] K. W. Y. Au, Y. Zhou, Z. Huang, and D. Lie, “PScout: Analyzing the
Android Permission Specification,” in Proc. CCS, 2012.

[33] M. Backes, S. Bugiel, E. Derr, P. McDaniel, D. Octeau, and S. Weisgerber,
“On Demystifying the Android Application Framework: Re-Visiting
Android Permission Specification Analysis,” in Proc. USENIX Security,
2016.

[34] D. Barrera, H. G. Kayacik, P. C. van Oorschot, and A. Somayaji,
“A Methodology for Empirical Analysis of Permission-Based Security
Models and Its Application to Android,” in Proc. CCS, 2010.

[35] A. Bartel, J. Klein, M. Monperrus, and Y. Le Traon, “Static analysis for
extracting permission checks of a large scale framework: The challenges
and solutions for analyzing android,” IEEE Transactions on Software
Engineering, vol. 40, no. 6, pp. 617–632, 2014.

[36] A. Dawoud and S. Bugiel, “Bringing balance to the force: Dynamic
analysis of the android application framework,” in Proc. NDSS, 2021.

[37] M. Fan, L. Yu, S. Chen, H. Zhou, X. Luo, S. Li, Y. Liu, J. Liu, and
T. Liu, “An empirical evaluation of GDPR compliance violations in
Android mHealth apps,” in Proc. ISSRE, 2020.

[38] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
permissions demystified,” in Proc. CCS, 2011.

[39] S. Ghavamnia, T. Palit, A. Benameur, and M. Polychronakis, “Confine:
Automated system call policy generation for container attack surface
reduction,” in Proc. RAID, 2020, pp. 443–458.

[40] S. A. Gorski, B. Andow, A. Nadkarni, S. Manandhar, W. Enck, E. Bodden,
and A. Bartel, “ACMiner: Extraction and Analysis of Authorization
Checks in Android’s Middleware,” in Proc. CODASPY, 2019.

[41] A. Grünbacher, “POSIX Access Control Lists on Linux,” in Proc. USENIX
ATC, 2003.

[42] B. Liu, C. Zhang, G. Gong, Y. Zeng, H. Ruan, and J. Zhuge, “FANS:
Fuzzing Android Native System Services via Automated Interface
Analysis,” in Proc. USENIX Security, 2020.

[43] L. Luo, “Heap Memory Snapshot Assisted Program Analysis for Android
Permission Specification,” in Proc. SANER, 2020.

[44] C. Qian, X. Luo, Y. Shao, and A. Chan, “On tracking information flows
through jni in android applications,” in Proc. DSN, 2014.

[45] C. Qian, X. Luo, Y. Le, and G. Gu, “Vulhunter: toward discovering
vulnerabilities in android applications,” IEEE Micro, vol. 35, no. 1, pp.
44–53, 2015.

[46] Y. Shao, J. Ott, Q. A. Chen, Z. Qian, and Z. M. Mao, “Kratos: Discovering
Inconsistent Security Policy Enforcement in the Android Framework,”
in Proc. NDSS, 2016.

[47] Q. Shi, X. Xiao, R. Wu, J. Zhou, G. Fan, and C. Zhang, “Pinpoint: Fast
and precise sparse value flow analysis for million lines of code,” in Proc.
PLDI, 2018.

[48] Y. Sui and J. Xue, “SVF: interprocedural static value-flow analysis in
LLVM,” in Proc. CC, 2016.

[49] Y. Tang, X. Zhan, H. Zhou, X. Luo, Z. Xu, Y. Zhou, and Q. Yan,
“Demystifying application performance management libraries for android,”
in Proc. ASE, 2019.

[50] J. Wu, S. Liu, S. Ji, M. Yang, T. Luo, Y. Wu, and Y. Wang, “Exception
beyond Exception: Crashing Android System by Trapping in "Uncaught
Exception",” in Proc. ICSE, 2017.

[51] L. Xue, C. Qian, H. Zhou, X. Luo, Y. Zhou, Y. Shao, and A. T. Chan,
“Ndroid: Toward tracking information flows across multiple android
contexts,” IEEE Transactions on Information Forensics and Security,
vol. 14, no. 3, pp. 814–828, 2019.

[52] L. Xue, H. Zhou, X. Luo, L. Yu, D. Wu, Y. Zhou, and X. Ma,
“Packergrind: An adaptive unpacking system for android apps,” IEEE
Transactions on Software Engineering, 2020.

[53] L. Xue, H. Zhou, X. Luo, Y. Zhou, Y. Shi, G. Gu, F. Zhang, and M. H. Au,
“Happer: Unpacking Android Apps via a Hardware-Assisted Approach,”
in Proc. S&P, 2021.

[54] L. Yu, X. Luo, J. Chen, H. Zhou, T. Zhang, H. Chang, and H. K. Leung,
“PPChecker: Towards Accessing the Trustworthiness of Android Apps’
Privacy Policies,” IEEE Transactions on Software Engineering, 2018.

[55] X. Zhan, L. Fan, S. Chen, F. Wu, T. Liu, X. Luo, and Y. Liu, “Atvhunter:
Reliable version detection of third-party libraries for vulnerability
identification in android apps,” in Proc. ICSE, 2021.

[56] X. Zhan, L. Fan, T. Liu, S. Chen, L. Li, H. Wang, Y. Xu, X. Luo, and
Y. Liu, “Automated third-party library detection for android applications:
Are we there yet?” in Proc. ASE, 2020.

[57] T. Zhang, W. Shen, D. Lee, C. Jung, A. M. Azab, and R. Wang, “Pex: A
permission check analysis framework for linux kernel,” in Proc. USENIX
Security, 2019.

[58] Y. Zhang, M. Yang, B. Xu, Z. Yang, G. Gu, P. Ning, X. S. Wang, and
B. Zang, “Vetting undesirable behaviors in android apps with permission
use analysis,” in Proc. CCS, 2013.

[59] H. Zhou, H. Wang, Y. Zhou, X. Luo, Y. Tang, L. Xue, and T. Wang,
“Demystifying diehard android apps,” in Proc. ASE, 2020.

12

	Introduction
	Background
	Android System Services
	Android Kernel
	Android NDK
	Android Permissions

	Motivation
	Types of native framework APIs
	Types of Permission Checks
	A Motivating Example

	PSGen
	Overview
	Workflow

	Analyzing Native Code of Android Framework
	Building Callgraph
	Identifying Permission Restricted Functions
	Finding Permission Restricted Interfaces

	Analyzing Android Kernel
	Building Callgraph
	Identifying EGID Restricted Kernel Functions
	Identifying Permission Restricted System Calls
	Finding Permission Restricted System Library Functions

	Generating Permission Specification
	Collecting App-Accessible Native Framework APIs
	Finding Permission Restricted Native Framework APIs

	Evaluation
	Permission Specification Analysis for Type-1 APIs
	Permission Specification Analysis for Type-2 APIs
	Permission Specification Analysis for Type-3 APIs

	Threat to Validity
	Related Work
	Conclusion
	Acknowledgment
	References

