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Abstract. Mobile app stores, such as Google Play, play a vital role in
the ecosystem of mobile apps. When users look for an app of interest,
they can acquire useful data from the app store to facilitate their deci-
sion on installing the app or not. This data includes ratings, reviews,
number of installs, and the category of the app. The ratings and reviews
are the user-generated content (UGC) that affect the reputation of an
app. Unfortunately, miscreants also exploit such channels to conduct
promotional attacks (PAs) that lure victims to install malicious apps. In
this paper, we propose and develop a new system called PADetective to
detect miscreants who are likely to be conducting promotional attacks.
Using a dataset with 1,723 of labeled samples, we demonstrate that the
true positive rate of detection model is 90%, with a false positive rate of
5.8%. We then applied PADetective to a large dataset for characterizing
the prevalence of PAs in the wild and find 289 K potential PA attackers
who posted reviews to 21 K malicious apps.
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1 Introduction

With more than four million apps [20], mobile app markets, such as Google Play
and Apple App Store, play a vital role in distributing apps to customers. To help
users look for apps and for developers to promote their apps, mobile app markets
provide various information about the apps, such as descriptions, screenshots,
and number of installations. In addition, most markets involve reputation sys-
tems, through which users can rate the apps and write down reviews, to facilitate
other users to select apps. Since apps with higher ratings usually get more down-
loads [12], recent studies report that some developers adopt unfair approaches
to manipulate their apps’ ratings and reviews [22,23], even if such behaviors are
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prohibited by FTC [9] and app markets. Note that attackers also employ such
approach to promote malicious apps and lure victims to install them. We call
such malicious apps campaign as promotional attacks (PAs).

Although a few recent studies have revealed the paid reviews [22] and colluded
reviewers [23], there have been no systematic examinations on the promotional
attacks in mobile app stores. To fill in the gaps, we conducted the first large-scale
investigation on PAs with the aim of answering the following two questions: (1)
How can we detect PAs systematically? and (2) How prevalent are PAs in the
wild?

It is non-trivial to address these two questions because the solution should
be accurate to capture PA attackers with low false positive rate, scalable to
handle millions of apps and reviews in app stores, and robust to raise the bar for
sophisticated attackers to evade the detection. Existing studies cannot achieve
these goals. For example, high computational complexity limits the scalability
of [22], and requiring the similar reviews in keyword level affects the accuracy
of [17,18]. Moreover, to our best knowledge, none of the existing studies have
examined market-scale apps.

To tackle these challenges, we propose and develop a novel system, named
PADetective, to identify PA attackers accurately and efficiently. PADetective
adopts supervised learning to characterize PA attackers according to 15 features
(e.g., day intervals, semantic similarity), and then applies the trained model to
detect other PA attackers. It is worth noting that these new and effective fea-
tures are carefully selected from not only UGC but also metadata in order to
enhance the robustness of PADetective. In particular, features from metadata
have not been used by existing works, and they could contribute to the robust-
ness of PADetective because it is easier for attackers to manipulate UGC than
metadata. We employ the information entropy and the coefficient of variation for
quantifying the features from metadata, and leverage the state-of-the-art NLP
technique (i.e., Paragraph vector [14]) to extract features from UGC because it
can extract similar reviews at semantic level and therefore increase the accuracy.
Moreover, we employ the TRUE-REPUTATION [19] algorithm to calculate the
true reputation scores for detecting abnormal ratings. These algorithms are light-
weight, and we only need to recompute the true reputation scores and similarity
word weight vectors for new UGC and metadata. This feature extraction app-
roach empowers PADetective to handle large-scale dataset. In our evaluation,
PADetective processed 57 million reviews in one day. We evaluate PADetective
using real PA data, and the result shows that PADetective’s true positive rate
is up to 90% with a low false positive rate of 5.8%.

Moreover, we conduct the first large-scale investigation on PA by applying
PADetective to 1 million apps in Google Play, which has 57 million reviews
posted by 14 million users. PADetective flagged 289 K reviewers as suspicious
promotional attackers. These reviewers posted reviews to 136 K apps, which
included 21 K malicious apps. Among the top 1 K reviewers who were flagged as
promotional attackers with high probability score, 136 reviewers posted reviews
only for malicious apps, and another 113 reviewers posted reviews for apps where
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more than half of the apps were detected as malicious. It is worth noting that PAs
detected by PADetective can contribute to the detection of potentially malicious
apps.

Major contributions of this work are summarized as follows:

– We developed a novel system, named PADetective, which aims to detect PA
attackers from a large volume of reviewers with high accuracy and low false
positive rates. The extensive experiments demonstrated that PADetective can
achieve 90% true positive rate with low false positive rate of 5.8% (Sect. 4).

– Using the PADetective, we conducted the first large-scale measurement study
on PAs by examining 57 million reviews, posted by 14 million users for 1 mil-
lion apps in Google Play, and obtained interesting observations and insights
(Sect. 5).

– Our extensive analyses revealed that the detected PAs can be used to discover
potentially malicious apps, which have not been detected by popular anti-
virus scanners (Sect. 5).

2 Problem Statement

This section specifies the problem we address in this paper by first presenting
the high-level overview of the problem and then describing its mathematical
formulation. Figure 1 presents the high-level overview of the problem. Although
this work targets Google Play, the model is applicable to other mobile app stores
as well. In the model, a reviewer posts review comments and rating scores for
several apps published in the app store. For the apps commented/rated by the
reviewer, we can extract the UGC and the metadata associated with the apps.
The UGC includes comment posting time, review comment, and rating score;
these are generated by the reviewer. The app metadata includes the number of
installs, a set of developers of the app, and a set of the categories of the app;
these are the data of the apps commented/rated by the reviewer.

Our goal is to determine whether a given reviewer is a PA attacker or not
by analyzing the UGC and the metadata associated with apps commented on
or rated by the reviewer. To achieve it, we first extract a feature vector from
the UGC and app metadata, and then train a classifier using labeled data. After
that, we apply the trained classifier to differentiate legitimate reviewers and a
PA attackers.

To formulate the problem in a mathematical way, we introduce the variables
summarized in Table 1. It is worth noting that we only examine the reviewers
with mi ≥ 3 because it takes time and efforts for promotional attackers to
create zombie accounts for commenting apps and therefore they often reuse
these accounts for posting reviews. We discuss how to relax this restriction in
Sect. 6. Of the variables shown in Table 1, cij , sij , and tij are UGC data and
nij , dij , and kij are the metadata. Using these six values for all the apps in
A(ri), we compute a feature vector F(ri) = {f i

1, f
i
2, . . . f

i
15} for a given reviewer

ri. Our goal is to build an accurate classifier g(F(ri)) that determines whether
ri is promotional attacker or not. The details of computing a feature vector from
the observed variables will be described in the next section.
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Fig. 1. High-level overview of the
problem.

Table 1. Notations used for our
problem.

Symbol Definition

ri the i-th reviewer (i = 1, 2, . . .)

A(ri) a set of apps reviewed by the

reviewer ri

mi number of apps reviewed by the

reviewer ri. mi = |A(ri)|
cij review comment posted by the

reviewer ri for the j-th app.

j = 1, 2, . . . ,mi

sij rating score posted by the

reviewer ri for the j-th app.

j = 1, 2, . . . ,mi

tij time at which the reviewer ri
posted a comment for the j-th

app. j = 1, 2, . . . ,mi

nij number of installs for the j-th

app reviewed by the reviewer ri.

j = 1, 2, . . . ,mi

dij developer of the j-th app

reviewed by the reviewer ri.

j = 1, 2, . . . ,mi

kij category of the j-th app reviewed

by the reviewer ri.

j = 1, 2, . . . ,mi

Information 
  Entropy 

      TRUE-
REPUTATION  
    algorithm 

$

Large-scale Measurement

Fig. 2. Overview of PADetective.

3 PADetective System

This section details PADetective (Fig. 2), especially its four major components
including: data collection, data preprocessing, feature extraction, and detection.

3.1 Data Collection and Preprocessing

Collection. We first create a list of apps to be downloaded by using the list of
package names in [21]. Then, we collect metadata for each app by accessing its
description page according to its package name and employing our HTML parser
to extract the metadata in the page. Moreover, we develop a UGC crawler by
leveraging the review collection API [4] provided by Google Play Store. Figure 3
shows the statistics of the number of reviews in each app. Note that the Google
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Fig. 3. Histogram for the number of
reviews in each app.

Fig. 4. Percentage of review numbers
with different rating.

Play review collection service only allows 4, 500 most recent reviews to be crawled
for each app. To circumvent this limitation, we could fetch the reviews continu-
ously thanks to our automated process of data collection. To follow the accept-
able use policy of the API, we deployed our crawler on 100 servers around the
world to collect UGC for a large number of apps. We used the crawler to collect
UGC and metadata for 1,058,259 apps from the Google Play app store in Novem-
ber 2015. The data set involved 57,868,301 reviews from 20,211,517 unique users.
Figure 4 shows the statistics for the collected rating data. The rating scale in the
Google Play Store ranges from 1 to 5. We can see that over 55% of ratings are
5 stars.

Preprocessing. Before creating the feature vector for the classifier, we develop
a 8-step process to remove the noisy and meaningless data. Step 1: Remove all
reviews under the default reviewer name “A Google User”, because we cannot
extract the string features from the default reviewer name. Step 2: Extract the
reviewers who have commented on at least three apps. The limitation introduced
by this step is discussed in Sect. 6. Step 3: Remove reviews written in languages
other than English as PADetective currently only handles English. Step 4: Split
all sentences into words. Step 5: Transform all letters into lowercase. Step 6:
Remove all stop words such as “is”, “am”, “the”. Step 7: Consolidate variant
forms of a word into a common form (i.e., word stemming), for example, con-
vert “running” to “run.”. Step 8: Correct the misspelled English words for all
the reviews. For Steps 3–8, we implement the natural language processing based
on NLTK [5] and TextBlob [7]. TextBlob enables us to realize language detec-
tion and spelling correction. After data preprocessing, our dataset for feature
extraction includes 2,606,791 reviewers.

3.2 Feature Extraction

We profile each reviewer ri using 15 features extracted from UGC and metadata.
These features form a feature vector F(ri) = {f i

1, f
i
2, . . . f

i
15}, and are described

as follows.
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f i
1: Day intervals. PA Attackers are likely to launch PA attacks within a short

day interval. For example, Xie and Zhu found that reviewers hired by app pro-
motion web services tend to complete their review promotion missions within
120 days [23]. Therefore, we calculated the day intervals between the earliest and
the latest post time max(Ti)−min(Ti), where Ti = {ti1, . . . , timi

}, and defined
f i
1 = max(Ti) − min(Ti).

f i
2: Day entropy. PA Attackers are likely to write reviews within the same day,

because they may use automated posting process or want to finish the task as
quickly as possible. To measure the proportion of same-day reviews, we defined
f i
2 using the information entropy: f i

2 = H(X) = −∑mi

j=1 P (tij) log P (tij), where
P (tij) is the frequency of same-day reviews: tij/sum and sum =

∑mi

j=1 tij is the
sum of days reviewed by reviewer ri. If all the reviews are posted on the same
day, the entropy of the post time will be 0.
f i
3: Bi-gram matching. PA attackers often post similar reviews. Detecting

similar reviews is important due to the presence of made-up words that are
used to express strong feelings, such as “goooooood” and “coooooool”. Made-up
words cannot be reformed by existing spelling correction algorithms because they
are designed to correct misspelled words instead of intentionally created words.
To address this problem, we converted each word into a bi-gram and then used
bag of bi-gram to build a feature vector for each cij . Finally we calculated the
average of the cosine similarity score of each pair of reviews by the reviewer
ri. In other words, f i

3 =
∑mi

j=1

∑mi

k=1 cosim(cij , cik)/m2
i . Where cosim is cosine

similarity score. We set the threshold of cosine similarity as 0.9.
f i
4: Semantic similarity. Since reviewers may use different words and expres-

sions to express the same feeling, we identify similar words and expressions using
the the Paragraph Vector (PV) algorithm [14], because it performs a semantic
analysis in discovering similar words and expressions. By applying the PV algo-
rithm realized in the Python library gensim [3] to 57, 868, 301 reviews in our
dataset, we get the predicted model after around 1 h. We defined f i

4 as the aver-
age of the similarity scores predicted from the trained model for each pair of
reviews. f i

4 =
∑mi

j=1

∑mi

k=1 D(cij , cik)/m2
i , Where D is the distance of two dif-

ferent documents computed by PV algorithm. Table 2 presents some examples
of the similarity scores computed by the trained PV model. It is clear that
the model can infer the correlations between not only different words with the
same purpose but also security-related similarity words without using the labeled
data. Note that although we used words to demonstrate the effectiveness of the
approach, we actually apply the algorithm to the entire review texts.
f i
5: Sentiment analysis. PA attackers usually post positive reviews to promote

apps for monetary benefit and/or luring victims to install malicious apps. Sen-
timent analysis classifies the attitude of a text into three categories: negative,
neutral, positive. Using sentiment analysis, we could reveal potential PA attack-
ers if all the reviews are positive. We use TextBlob [7] to conduct the sentiment
analysis of all the reviews. The sentiment analysis in TextBlob was implemented
by a supervised learning naive Bayes classifier that is trained on the labeled
movie reviews provided by NLTK. We define f i

5 as the average score for each
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Table 2. Examples of similarity score
computed with the trained Paragraph
vector model.

word1 word2 similarity score

adware malware 0.88

ads spam 0.64

camera permission 0.74

hack access 0.71

internet location 0.62

good nice 0.60

Table 3. Example of score predicted
by sentiment analysis classifier

Sentence The score of sentiment

analysis

That is my

opinion

0.0

Awesome game 0.3

Nice graphics

and I love it

0.55

Very bad game −0.65

I hate all the

covers I’m here

to look for the

songs made by

the artist not

covers

−0.8

pair of reviews predicted by the sentiment analysis classifier. Table 3 shows an
example of the scores predicted by the sentiment analysis classifier. If the score is
zero, it means the sentiment of the review is neutral. It shows that our classifier
can correctly identify the sentiment of the reviews.
f i
6: The average length of the reviews. Fake reviews injected by promotional

attackers are likely to be short, because they may use an automated posting
process or want to get income as quickly as possible. Therefore, we defined f i

6

as the average length of the reviews written by the reviewer ri.
f i
7: True Reputation Score. Users often rely on the average ratings of the

apps, computed by the app stores, in selecting the apps. Unfortunately, PA
attackers can easily manipulate the average ratings by giving high ratings to
their target apps. We defined f i

7 as the average of the margin between the app’s
rating and the reviewer’s rating based on the true reputation score of each app
instead of the average rating. This score is calculated according to the TRUE-
REPUTATION algorithm [19], which takes into account the user confidence in
terms of user activity, user objectivity, and user consistency. f i

7 is computed as:
f i
7 =

∑mi

i=1(sij − uaj)/mi, where mi is the number of apps reviewed by reviewer
ri. a is an app and ua is true reputation score for app a.
f i
8: Average ratings. Since PA attackers give high ratings to malicious apps

for attracting more downloads, we defined f i
8 as the average ratings posted by

reviewer ri. f i
9: Coefficient of variation of ratings. We defined f i

9 as the
coefficient of variation of all the ratings posted by each reviewer to measure
their distribution. It is the ratio of the standard deviation to the mean: f i

9 =
σ(Si)/

∑mi

j=1 sij , where σ is standard deviation and Si = {si1, . . . , simi
}. If a

reviewer posts identical ratings, f i
9 will be 0.

f i
10: Average number of installs. Since the number of installs is an important

metric affecting users’ selection of apps, we defined f i
10 as the average number

of installs for reviewer ri. f i
10 =

∑mi

j=1 nij/mi.
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f i
11: Coefficient of variation of the number of installs. To measure the

distribution of the number of installs, we define f i
11 as the coefficient of variation

of the number of installs for reviewer ri. The computation of f i
11 can be referred

to the equation defined by f i
10. If a reviewer posts reviews to apps with the same

number of installs, the coefficient of variation will be 0.
f i
12: Developer Entropy. PA attackers are more likely to promote apps from the

same developer because the targeted malicious apps should be associated with
each other. Therefore, we defined f i

12 as the entropy of developer for reviewer
ri. The computation of f i

12 can be referred to the equation defined by f i
2. If a

reviewer only posts reviews for apps from the same developer, his/her f12 will
be 0.
f i
13: Category Entropy. PA attackers tend to promote apps having a small

number of distinct categories, possibly due to the automated posting process.
Similar to f i

12, we defined f i
13 as the entropy of category for reviewer ri. The

computation of f i
13 can also be referred to the equation defined by f i

2. If a
reviewer only posts reviews for apps having a small number of distinct categories,
his/her f13 will be 0.
f i
14: Length of reviewer name. Legitimate reviewers usually use their own

name as the reviewer name, whereas the reviewer names selected by PA attackers
are likely to be unusually short or long. Hence, we defined f i

14 as the length of
the reviewer name.
f i
15: Number of digits and symbols in reviewer name. The reviewer names

of promotional attackers are often randomly generated, and therefore they are
likely to contain digits and symbols such as “!”, “*”, “@.”According to this
observation, we defined f i

15 as the number of digits and symbols in the reviewer
names.

3.3 Effectiveness of Feature and Description of Detection Model

Effectiveness of feature. To demonstrate how our features facilitate the detec-
tion, we compute the importance of our features. For the space limitation, we
present the top-3 features that had the largest contributions (f i

1: Day inter-
vals, f i

10: Average number of installs, f i
12: Developer Entropy). We extracted

these three features by using tree-based feature selection method [2], which uses
forests of trees to evaluate the importance of features.

Figure 5 shows the CDF of the day intervals of promotional attackers and
those of normal reviewers. We can see that promotional attackers usually have
shorter day intervals than normal reviewers. It is likely that promotional attack-
ers want to get revenue quickly or are required by their employers to do so.
Figure 6 shows the CDF of the number of installs of promotional attackers and
those of normal reviewers. We can figure out that promotional attackers tend to
promote apps whose number of installs is not very large due to the prohibition
of promotion activity by Google Play [1]. Figure 7 shows the CDF of the devel-
oper entropy of promotional attackers and those of normal reviewers. We can see
that promotional attackers tend to promote apps produced by the same devel-
oper. Because promotional attackers are probably hired by the same developer.
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Fig. 5. f i
1: Day intervals. Fig. 6. f i

10: Average number
of installs.

Fig. 7. f i
12: Developer

Entropy

We note that these three features are informative for identifying promotional
attackers from normal reviewers. We also found that the features extracted from
metadata are more effective than those from UGC in PA detection, because it is
not easy for attackers to manipulate the metadata such as developer and number
of installs.

Description of detection model. We build our detection model using the
library scikit-learn [6] because it is efficient, and implement several supervised
learning algorithms, including support vector machine (SVM), k-nearest neigh-
bor (KNN), random forest, decision tree, and adaBoost. To determine the best
algorithm and parameters, we test the algorithms and parameters using our
labeled dataset. The detailed model selection process and its results are pre-
sented in Sect. 4. Finally, we use the best detection model to perform a large-scale
analysis of our real-world dataset.

4 Performance Evaluation

This section presents the evaluation result of PADetective. We first introduce
how we prepare the labeled dataset (i.e., the ground truth), and then describe
the evaluation method and the result, respectively.

Training Dataset. We first generate the training dataset with the ground truth.
Since legitimate reviewers may comment bad apps and/or post reviews to mali-
cious apps, we define a PA attacker as a reviewer who only posts reviews to mali-
cious apps and comments at least three malicious apps. We determine whether
an app was malicious by submitting the app to VirusTotal [8] and making the
decision based on the results from a set of antivirus systems. Note that we did
not verify all the apps in our dataset to generate the training dataset because
of the limitation of time and computer resources. We also note that VirusTotal
usually classifies malicious apps into two categories: malware and adware. We
did not distinguish between these categories because PAs would likely be used
to promote both malware and adware apps. With this approach and additional
manual inspection, we identified 723 promotional attackers. Aside from this, we
randomly selected 1,000 legitimate users to create the training dataset. The rea-
son why we randomly sampled legitimate users was to achieve a good balance
between the two classes when we trained our classifiers.
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Evaluation Method. We randomly divided the labeled data into two sets.
Containing 70% of labeled data, the first dataset is the training dataset used to
optimize each machine learning model and select the best model. For optimizing
the machine learning algorithms, we specify a set of carefully chosen values for
each parameter used in those algorithms (e.g., for random forest, we set parame-
ter “n estimators” to a set of values: 50, 100, 150, 200, 250). Then, we evaluate
the machine learning algorithms with different parameters through 10-fold cross-
validation. Finally, we select the best result in consideration of accuracy, false
positive and false negative. Having 30% of labeled data, the second dataset is the
test dataset utilized to evaluate PADetective’s performance after the best model
is selected. To measure the accuracy of various supervised learning algorithms,
we use three metrics: false positive rate (FPR), false negative rate (FNR) and
accuracy (ACC), where FPR = FP/(FP +TN), FNR = FN/(TP +FN), and
ACC = (TP + TN)/(TP + TN + FP + FN), respectively. TP is true positive,
FP is false positive, TN is true negative and FN is false negative. We also show
the performance of the best detection model through the ROC curve, which can
be used to determine the best combination of true and false positive rates.

Table 4. Classification accuracy. The means and standard deviations are calculated
using 10-times 10-fold cross-validation tests for each machine learning algorithm.

Machine learning Algorithm ACC FPR FNR

mean std mean std mean std

SVM 0.661 0.041 0.059 0.072 0.372 0.048

RandomForest 0.933 0.014 0.083 0.033 0.053 0.036

KNN 0.894 0.020 0.162 0.027 0.050 0.022

DecisionTrees 0.902 0.020 0.091 0.035 0.100 0.033

AdaBoost 0.918 0.022 0.100 0.030 0.066 0.034

Evaluation Result. Table 4 lists the accuracy of different machine learning
algorithms used by PADetective. Most of these algorithms discover the PA
attackers with high accuracy and low false negative or false positive rate. Among
the five machine learning algorithms we tested, RandomForest achieves the high-
est accuracy (i.e., 0.933) with the lowest false positive (i.e., 0.083) and false neg-
ative (i.e., 0.053) rates. Moreover, its standard deviations of the accuracy, false
positive rate, and false negative rate of RandomForest are also low, indicating
that RandomForest can identify promotional attackers effectively. We use the
grid search to determine the best parameter for RandomForest, and find that 50
is the optimal number of trees. Based on these results, we select RandomForest
as our detection model.

To better understand the root causes of false negative rate and false positive
rate in our system, we conduct error analysis with manual inspection. It turns out
that PADetective failed to detect the PA attackers who had posted reviews for a
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Fig. 8. Evaluation of detection model using test set.

period of two years or longer. On the other hand, PADetective wrongly flagged
the legitimate reviewers whose behaviors were similar to a PA attacker (e.g., their
reviews seemed to be fake, but the apps were not flagged as malware/adware by
VirusTotal). Note that advanced malware may evade the online virus checkers.
Finally, using the optimized RandomForest algorithm, we test PADetective’s
accuracy using the test dataset. Figure 8 shows that it can achieve 90% true
positive rate with low false positive rate of 5.8%.

5 Promtional Attacks in the Wild

Using PADetective, we examined a large-scale data collected from the Google
Play Store, and found 289, 000 potential PA attackers from 2,605,068 reviewers.
Table 5 summarizes the number of reviewers/apps detected by PADetective. The
number of unique malicious apps reviewed by the potential PA attackers was
20,906, accounting for approximately 65% of the malicious apps reviewed by all
observed reviewers. Many malicious apps having reviews were associated with
the potential PA attackers. Moreover, the majority of malicious apps detected by
VirusTotal had no user reviews. It may be due to the fact that the malicious apps
were detected and deleted by mobile app stores in the early stage of distribution,
and hence there are no comments on such apps. Another possibility is that
mobile app stores deleted both malicious apps and their information including
reviews simultaneously, and therefore we can not collect the reviews. We ranked

Table 5. Statistics of detected promotional attackers and apps. “–” indicates that we
were not able to perform the evaluation due to the lack of resources.

# reviewers # apps # malicious apps # apps deleted by app store

All observed reviewers 2, 605, 068 234, 139 32, 367 –

Potential promotional

attackers

289, 000 135, 989 20, 906 –

Detected promotional

attackers with high

probability

1, 000 2, 904 486 148
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the reviewers in descending order according to the probability of being a PA
attacker, and investigated top 1,000 reviewers. The top 1,000 reviewers posted
reviews for 2, 904 of apps, which include 486 of malicious apps and 148 of apps
deleted by the app store for some reasons, e.g., malware or potentially harmful
apps.

Among the 1,000 promotional attackers, 136 reviewers (13.6%) posted
reviews only for malicious apps or the deleted apps. We found that other detected
reviewers posted reviews for not only malicious apps, but also for apps that were
not regarded as malware/adware by VirusTotal. We acknowledge that using the
online virus checkers might lead to false detection, and leave the checking of
those undetected apps in future work.

Figure 9 shows the top 10 categories of the apps reviewed by PA attackers.
Three categories (approximately 15% in total) are related to games, which was
the primary target of the PAs. To study the impact of apps promoted by PA
attackers, Fig. 10 illustrates the top 10 number of installs of the apps reviewed
by PA attackers. It shows that the majority of such apps do not have many
installs. This observation indicates that PAs are used when the app is not so
popular. There may be other reasons that the data was captured when the PA
was just launched (i.e., not yet finished).

We also investigate whether the detected PA attackers can be used to discover
malicious apps. More precisely, we compare the time when the PA attackers
posted reviews on malicious apps and the time when the malicious app was
first submitted to VirusTotal. If all the posting times are earlier than the first
submission time, then our PA detection scheme has the potential to identify
malicious apps that have not been listed in Virustotal. We examine the top
241 detected PA attackers who only reviewed malicious apps, and find that 72
of them reviewed malicious apps before these malicious apps were detected by
VirusTotal. Among all the apps reviewed by these 72 promotional attackers, 217
apps were labeled as malicious app by VirusTotal. It is worth noting that other
apps reviewed by the PA attackers might also be suspicious.

Fig. 9. Top 10 categories of apps
reviewed by the detected promotional
attackers.

Fig. 10. Top 10 number of installs for
apps reviewed by the detected promo-
tional attackers.
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6 Discussion

This section discusses some limitations of PADetective and future research
directions.

Evasion. Advanced attackers may evade the PADetective system by employ-
ing lots of user accounts with different names and/or mimicking the reviewing
behaviors of normal users. It is worth noting that such evasion strategies require
much more resources and efforts. For example, attackers may acquire lots of fake
user accounts and use each account to just post one comment in order to degrade
the detection accuracy of PADetective. However, since mobile app stores (e.g.,
Google Play) usually adopt advanced techniques [10] to deter automated account
registration, it will cost the attackers lots of resources and efforts to create many
accounts and it does not benefit the attackers if these accounts are just used to
post one comment. Note that the primary goal of the attackers is to increase the
success rate of attacks with lower costs [16]. Even if an attacker affords to adopt
such an expensive approach, the stakeholders of mobile app stores can enhance
PADetective with additional information about each account, such as IP address
which could be correlated with user accounts to detect malicious users [24]. The
attackers may also mimic the reviewing behaviors of normal users by writing
short/long reviews, reviewing both legitimate and malicious apps, adjusting the
posting time, and etc. It will also significantly increase the cost of attacks. We
leave the challenge of differentiating such advanced attacks and human reviewers
in future work.

Number of apps reviewed by each reviewer. PADetective does not consider
reviewers who posted comments for only one or two apps. This constraint origi-
nates from the fact that computing some features such as entropy or coefficient
variants require more than two samples. In this work, we empirically set the num-
ber as 3 because increasing the number was not sensitive to the final outcomes.
Since attackers usually employ the accounts to post a number of comments as
we discussed above, we believe that this number is reasonable to capture promo-
tional attackers. As the number of apps reviewed by a reviewer may exceed the
threshold, 3, over time, PADetective could identify them by continuously collect-
ing and analyzing the comments. We will construct a real-time detection system
for fetching and examining UGC and the metadata continuously in future work.

7 Related Work

Review Analysis. Kong et al. [13] designed AutoREB to automatically identify
users’ concerns on the security and privacy of mobile apps. They applied the
relevance feedback technique for the semantic analysis of user reviews and then
associated the results of the user review analysis to the apps’ behaviors by using
the crowd-sourcing technique. Mukherjee et al. [17,18] proposed new approaches
to detect fake reviewer groups from Amazon product reviews. They first used a
frequent itemset mining method to identify a set of candidate groups, and then
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adopted several behavioral models based on the relationships among groups such
as the review posting time and similarities. Fu et al. [11] proposed WisCom to
provide important insights for end-users, developers, and potentially the entire
mobile app ecosystem. They leveraged sentiment analysis, topic model analysis,
and time-series analysis to examine over 13 M user reviews.

Rating Analysis. Xie et al. [22] proposed a new method for discovering colluded
reviewers in app stores. They built a relation graph based on the ratings and the
deviations of the ratings, and applied a graph cluster algorithm to detect collu-
sion groups. Oh et al. [19] developed an algorithm that calculates the confidence
score of each app. Market operators can replace the average rating of each app
with the confidence score to defend against rating promotion/demotion attacks.
Lim et al. [15] devised an approach to measure the degree of spam for each
reviewer based on the rating behaviors, and evaluated them using an Amazon
review dataset.

Among previous works mentioned above, [17,18,22] are closely related to
our work. The major differences between PADetective and Xie et al. [22] is
the scalability. More precisely, their system is not scalable because it is not
possible to build a tie graph of large-scale dataset in physical memory. Moreover,
they performed the evaluation on a small and local dataset (200 apps collected
from the china apple store). In contrast, since our detection model uses static
features, our system can conduct large-scale analysis. Moreover, we investigate
the prevalence of PAs in the official Android app store by collecting information
on more than 1 M apps. The method of review analysis is the main difference
between PADetective and [17,18]. Since they aimed to identify copy reviews used
by spammers, their method only extracts the similar reviews in keyword level,
e.g., “good app” and “good apps”. Since users can express the same opinion using
different words and expressions, e.g., “nice app” and “good app”, we leveraged
the state-of-the-art NLP technique called Paragraph vector [14] to extract similar
reviews at the semantic level for better accuracy.

8 Conclusion

In this study, we developed PADetective to detect PA attackers in mobile app
stores using UGC and metadata as well as machine-learning techniques. The
large-scale evaluation revealed that we can exploit the PA attackers identified by
PADetective to discover potentially malicious apps effectively and efficiently. We
believe that this research sheds a new light on the analysis of UGC and metadata
of app stores as a complementary channel to find malicious apps for enhancing
the widely used anti-malware tools or for market operators and malware analysts.
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