
814 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 3, MARCH 2019

NDroid: Toward Tracking Information Flows
Across Multiple Android Contexts

Lei Xue , Chenxiong Qian, Hao Zhou, Xiapu Luo , Yajin Zhou, Yuru Shao, and Alvin T. S. Chan

Abstract— For performance and compatibility reasons, devel-
opers tend to use native code in their applications (or sim-
ply apps). This makes a bidirectional data flow through multiple
contexts, i.e., the Java context and the native context, in Android
apps. Unfortunately, this interaction brings serious challenges to
existing dynamic analysis systems, which fail to capture the data
flow across different contexts. In this paper, we first performed
a large-scale study on apps using native code and reported some
observations. Then, we identified several scenarios where data
flow cannot be tracked by existing systems, leading to uncaught
information leakage. Based on these insights, we designed and
implemented NDroid, an efficient dynamic taint analysis system
that could track the data flow between both Java context and
native context. The evaluation of real apps demonstrated the
effectiveness of NDroid in identifying information leakage with
reasonable performance overhead.

Index Terms— Android application analysis, taint analysis,
Java native interface (JNI).

I. INTRODUCTION

THE popularity of Android platform is evident from the
tremendous number of activated devices and available

apps. As of May 2017, there are around 72.68% smartphone
running Android system [1]. At the same time, for better per-
formance reason and compatibility of legacy code, developers
tend to use native code in their apps and interface with Java
code through the JNI bridge. Developers can even create an
entire app using native code since Android 2.3.

Recent years witnessed a considerable increase in the
number of apps using native libraries. For example, from
204,040 applications collected in May.-Jun. 2011 from several

Manuscript received January 18, 2018; revised June 17, 2018; accepted
July 27, 2018. Date of publication August 21, 2018; date of current version
September 13, 2018. This work was supported in part by the Hong Kong
GRF under Grant PolyU 152279/16E and Grant PolyU 152223/17E and in
part by the Hong Kong RGC Project under Grant CityU C1008-16G. The
associate editor coordinating the review of this manuscript and approving
it for publication was Prof. Loukas Lazos. (Lei Xue and Chenxiong Qian
contributed equally to this work.) (Corresponding author: Xiapu Luo.)

L. Xue, H. Zhou, and X. Luo are with the Department of Com-
puting, The Hong Kong Polytechnic University, Hong Kong (e-mail:
csxluo@comp.polyu.edu.hk).

C. Qian was with the Department of Computing, The Hong Kong Polytech-
nic University, Hong Kong. He is now with the School of Computer Science,
Georgia Institute of Technology, Atlanta, GA 30332 USA.

Y. Zhou is with the Institute of Cyber Security Research, Zhejiang Uni-
versity, Hangzhou 310027, China, and also with the College of Computer
Science and Technology, Zhejiang University, Hangzhou 310027, China.

Y. Shao was with the Department of Computing, The Hong Kong Polytech-
nic University, Hong Kong. He is now with the University of Michigan, Ann
Arbor, MI 48109 USA.

A. T. S. Chan is with the Singapore Institute of Technology,
Singapore 138683.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIFS.2018.2866347

markets, Zhou et al. observed that 4.52% of them used native
code [2]. This percentage increased to 9.42% in 118,318 apps
collected by the same authors in Sep.-Oct. 2011 [3]. This trend
is further confirmed by the findings that 24% apps crawled
from Asian third-party mobile markets contain native code [4].

However, the popularity of native code in apps brings
serious challenges to existing dynamic analysis systems. First,
although there are many systems for analyzing apps or detect-
ing malware [2], [3], [5], only a few of them inspect the
native libraries in apps [6], [7], and none of them scrutinizes
the interactions between an app’s Java code and native code.
This leads to a security loophole, which could be abused by
malware to evade detection. Second, existing dynamic taint
analysis systems, including TaintDroid [8] and TaintART [9],
are limited in the taint propagation logic related to JNI. That is,
these systems could under-taint explicit data flow from native
code to Dalvik virtual machine (DVM), which we will show
in Section III-C. Third, DroidScope [10] is able to track the
whole system’s data flow by design. However, the overhead
is quite high since it reconstructs high level information from
the underlying machine instructions without considering JNI’s
semantic information. This may limit the capability to track
real data flow in Android apps in practice. For instance,
compared with Taintdroid, no new data flows were reported
by DroidScope.

In this paper, to fully understand the behaviors of apps using
native libraries, we first performed a study on 319,725 apps
crawled from Google Play and reported the results in
Section III. Then we identified several scenarios where data
flow cannot be tracked by existing dynamic taint analy-
sis systems, which leads to uncaught information leakage.
As a result, malicious apps can abuse these limitations to leak
sensitive data and evade the detection. This motivated us to
build a new system that can capture such information flows.

Based on these insights, we then designed and imple-
mented NDroid, an efficient dynamic taint analysis system
that could track data flow within native code, and more
importantly cross the boundary between Java code and native
code. We tackled multiple design and implementation chal-
lenges, including the support of different Android runtime,
i.e., both DVM and ART runtime, multilevel function hook-
ing, ARM/Thumb/Thumb2 instruction instrumentation, etc.
NDroid can be used to detect information leakages through
JNI and advanced malware samples that dynamically modi-
fies its Dex file through native code [11], which cannot be
detected by existing systems. The evaluation of real apps,
which circumvent existing systems, demonstrated the effec-
tiveness of NDroid. We further evaluated the performance

1556-6013 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-5321-5740
https://orcid.org/0000-0002-9082-3208

XUE et al.: NDroid: TOWARD TRACKING INFORMATION FLOWS ACROSS MULTIPLE ANDROID CONTEXTS 815

overhead of NDroid and found that it introduced much
lower overhead than DroidScope. In summary, our major
contributions include:
• We analyzed multiple scenarios where information leakage

could occur in Android apps, and shed light on the reasons
why the data leakage cannot be detected by existing tools.

• We designed and implemented NDroid: a tool for analyz-
ing apps with native code and can trace information leakage
through multiple contexts (i.e., Java context and native
context), which cannot be detected by existing systems. The
new NDroid will be released after paper publication.

• We carefully evaluated NDroid and the results illustrated
the effectiveness and efficiency of NDroid.
The rest of this paper is organized as follows. Section II

introduces the background, and then we report the study of
native libraries in Android framework APIs and 70,252 apps
using native code in Section III. The high-level design of
NDroid is introduced in Section IV, followed by the imple-
mentation on the DVM and ART in Section V and Section VI
respectively. After introducing related works in Section VIII,
we discuss our system’s limitations in Section IX, and con-
clude our work in Section X.

II. BACKGROUND

In this section, we will briefly introduce the necessary
background information to better understand this paper.

A. Java Native Interface and Android NDK

Java native interface (JNI) facilitates the interaction between
Java code and native libraries [12]. On one hand, using
JNI, Java code can pass parameters to native functions and
obtain the return values afterward. On the other hand, native
code could create and manipulate Java objects (e.g., invoking
methods and accessing fields) through JNI. To facilitate the
usage of native libraries in apps, Android provides a set of
libraries, tools, and header files through the NDK [13].

We find that there is a feature introduced by Android bring-
ing challenges to our system. Since version 4.0, Android uses
indirect references in native code rather than direct pointers
to reference objects. By doing so, when the garbage collec-
tor (GC) moves an object, it updates the indirect reference
table with the object’s new location. Consequently, native code
will hold valid object pointers every time GC moves objects
around [14]. To track information flows through JNI, NDroid
has to handle both indirect references and direct pointers.

B. The Off-the-Shelf Taint Propagation Tools

There are some existing systems that could track data flow
in Android apps. In the following, we describe these off-the-
shelf taint tracking systems.

1) TaintDroid: TaintDroid is an information-flow tracking
system for monitoring sensitive information in Android [8].
By modifying Android’s application framework and DVM,
TaintDroid attaches tags (i.e., taints) to sensitive data, propa-
gates the taints when apps are running, and checks whether
the taints will reach selected sinks. However, it under-taints

Fig. 1. TaintDroid stack structure.

information flows through JNI as explained in Section III.
NDroid not only overcomes these limitations but also works
seamlessly with TaintDroid on DVM to track information
flows in apps. For the ease of explaining NDroid for DVM
in Section V, we introduce the major data structures in
TaintDroid.

a) Stack structure: As shown in Fig. 1, TaintDroid
modifies DVM’s stack structure to increase stack size for
storing taint labels related to registers. For method invocation,
TaintDroid first stores the taint labels interleaved with the
parameters at the current stack frame’s outs area. Then it
allocates stack slots for callee’s local variables and lets the
frame pointer point to the new method’s first local variable.
After that, TaintDroid allocates a StackSaveArea on the top of
the stack for saving the caller’s information.

When a method returns, TaintDroid will save the return
value’s taint label into current thread’s InterpSaveState. If the
target is a native method, TaintDroid will store both the
parameters’ taint labels and the return value’s taint label that
is appended to the parameters. The return value’s taint label
is set by JNI Call Bridge according to TatintDroid’s taint
propagation policy, because native code cannot directly access
the return value’s taint label. The retrun value’s taint label will
also be copied to current thread’s InterpSaveState after the
native method returns.

b) Taint storage: For ArrayObject and StringObject that
contain an array of chars, TaintDroid sets a taint label in
the array object. For class static field and class instance
field, the taint labels are stored interleaved with variables in
Class’s or Object’s instance data area. For other Java objects,
TaintDroid only keeps the taint label of their references.

c) Taint propagation: The taint propagation policy is
a set of rules that define when and how taint should be
propagated. TaintDroid adds taints to the sources of sensitive
information (GPS data, SMS messages, IMSI, IMEI, etc.) of an
Android device. The taint labels in TaintDroid are represented
by 32bit integers, each bit of a taint label indicates one
type of sensitive information, and different types of sensitive
information are combined by the union operation of different
taint labels. TaintDroid tracks the taints of primitive type
variables and object references according to the logic of each
DVM instruction. When a native method is called, TaintDroid

816 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 3, MARCH 2019

adopts the taint propagation policy that the return value will
be tainted if any parameter is tainted.

2) DroidScope: DroidScope [10] is an Android analysis
platform based on the QEMU emulator [15]. It instru-
ments machine instructions by adding extra TCG (Tiny Code
Generator) instructions during the code translation phase.
When such extra analysis code are executed, DroidScope can
reconstruct OS-level knowledge, including processes, threads,
system calls, and memory maps, and DVM-level knowledge,
such as Dalvik instructions, DVM state, and Java objects.
NDroid adopts DroidScope’s OS-level view reconstructor,
and extends it to do instrumentation at different level for
different code (third party native libraries, system libraries,
etc.). With flexible instrumentation on native code, NDroid
completes taint propagation of native code at runtime. Besides,
DroidScope does not support the new ART runtime.

3) TaintART and ARTist: Both TaintART [9] and
ARTist [16] are proposed to conduct taint analysis on the
apps running on ART. They propagate taint tags by inserting
taint propagation instructions into the apps. In particular,
they modify the Android system tool dex2oat to inject the
taint propagation instructions when the apps’ Dalvik code are
compiled into native code by dex2oat. Unfortunately, they
cannot insert such instructions into the Dalvik code that are
not compiled into native code.

4) Malton: Malton [17] is proposed for only ART platform,
and it is implemented based on the dynamic instrumentation
framework Valgrind [18], which translates native instructions
into IR statements during execution. Hence, Malton conducts
taint analysis through inserting taint propagation IR statements
dynamically, and then it propagates taint information following
the logics of the executed IR statements.

III. NATIVE CODE ON ANDROID PLATFORM

In this section, we first survey the usage of native libraries
in Android platform and Android apps. Then, we analyze
different scenarios of information leakage in Android apps,
and explain why existing systems cannot detect such leakages.

A. Android Framework APIs

Android framework APIs provide apps the ability to conduct
critical operations and communicate with the underlying Linux
system. To fully understand how Android framework APIs are
using native libraries, we customize PScout [19] to analyze
7 versions of Android framework spanning version 2.2.3 up
to the recent released Android 7.0. On one hand, PScout
provides us the statistics of the Android framework such as
the number of public APIs (Num Public) and native meth-
ods (NumNative). On the other hand, we use the global call
graph constructed by PScout to calculate the total number of
public APIs that may reach native methods in their invocation
chains (Num PubNat). Note that PScout only treats methods
within packages, such as “android.∗” and “com.∗”, as the
entry point of the invocation chain. We remove this constraint
so that all public APIs become the entry points. Although
Android framework comprises a relatively small number of
native methods, more than 71% of public APIs invoke native
methods in their implementations, as shown in Table I.

TABLE I

THE STATISTICS OF FRAMEWORK APIS AND THE PERCENTAGE
OF PUBLIC APIS WHICH CALL NATIVE METHODS IN

SEVEN VERSIONS OF ANDROID

Fig. 2. The category distribution of native library.

B. Android Applications

We further analyze 319,725 apps downloaded from the
Google Play. We pick out three types of apps that may
use JNI for analysis, including (I) apps that invoke Sys-
tem.load() or System.loadLibrary() to load native libraries;
(II) apps that contain native libraries without calling Sys-
tem.load() or System.loadLibrary(); (III) apps written in pure
native code. Note that if the Java code in an app wants
to invoke methods in native code, it has to first use either
System.load() or System.loadLibrary() to load native libraries
into the memory. Type I apps have explicitly called these meth-
ods. Although type II apps do not contain such invocations,
as explained in the following paragraphs, we found that some
apps may equip themselves with the capability to load native
libraries by dynamically loading dex files containing the above
invocations.

1) Type I Apps: There are 70,252 type I apps. Following
the taxonomy of apps used by Google, we found that 33% of
them belong to the Game category, as shown in Fig. 2. It is as
expected because game apps care their performance and many
popular game engines are implemented in C/C++ code. The
following game engines are widely used in the apps under
investigation, including Unity, Box2D, Libgdx, and Cocos2D.
Moreover, we found that apps in the category of “Music And
Audio” always reuse existing native libraries and apps in the
category of “Communication” often employ native code to
hide communication protocols or encrypt data.

In type I, 9,890 apps do not contain native libraries.
We extracted the Java classes containing native method decla-
rations from these apps and sorted these Java classes according

XUE et al.: NDroid: TOWARD TRACKING INFORMATION FLOWS ACROSS MULTIPLE ANDROID CONTEXTS 817

Fig. 3. The potential paths of information leakage.

to the number of applications using them. Consequently,
we identified eight classes, which belong to an AdMob plugin
and are used by 48.1% of such apps. The dynamic analysis
showed that they are repackaged apps with many advertise-
ment components. Other reasons for such apps include: (1) the
required libraries have been loaded by the system; (2) the
App will not call the functions in native libraries but the related
code have not been deleted.

We collected the statistics of all the native libraries and man-
ually analyzed 20 most popular libraries. Most of the libraries
are from the famous game engine companies, such as Unity,
Libgdx, Box2D, etc. There are a large portion of libraries
relevant to video or audio processing. Other libraries, such as
“libstlport_shared.so”, “libcore.so”, “libstagefright_froyo.so”,
etc, are originally included in NDK or the system. They are
bundled with the applications for addressing Android’s poor
compatibility.

2) Type II Apps: Among 2,649 type II apps, we found
394 apps that have the capability to load native libraries.
More precisely, these apps have additional compressed Dex
files that can load native libraries. Therefore, once these apps
dynamically load the Dex files, they can load the native
libraries. Note that many apps use similar approaches to hide
the core business logic or enhance their functionality.

The other type II apps may not use their native libraries.
One possible reason is that the native libraries would not
be used during runtime (e.g., some libraries are for x86 and
other platforms) but the developers forgot to remove them. For
instance, for some libraries in open source projects, the code
for invoking them have been removed.

3) Type III Apps: We only found 16 type III apps, including
11 game apps and 5 apps for entertainment. The small number
of such apps may be due to the difficulty of developing such
apps and the limitations of NDK APIs.

C. Information Leakage in Android Apps

In the following, we will analyze the basic scenarios of
information leakage in Android apps, and then explain why
some scenarios of the information leakages cannot be detected
by existing systems.

Information leakage occurs if there is an information flow
from a sensitive source to a sink that can leak out the informa-
tion. We regard the functions that can obtain sensitive informa-
tion as the sources. The source and the sink are located in the
Java context or the native context. Fig. 3 shows the six basic
scenarios of information leakages in Android system. Since an
app can combine several basic scenarios to create complicated
scenarios, if the detection system misses one of the basic
scenarios, it may also miss the whole complicated scenarios.

• P1: The Java code obtains the sensitive data and then
passes it to the native code, which first processes the
sensitive data and eventually leaks it out.

TABLE II

VARIOUS TAINT ANALYSIS TOOLS ON DVM|ART PLATFORM

• P2: The sensitive data is collected by the Java code, and
then passed to the native code for processing. After that,
the result is obtained by the Java code again, and leaked
in the Java context.

• P3: The native code gets the sensitive data and then
passes it to the Java code, which first processes the
sensitive data and eventually leaks it out.

• P4: The native code first acquires the sensitive data and
then passes it to the Java code for processing. After that,
the sensitive data is transmitted back to the native code,
and it is eventually leaked in the native context.

• P5: Both the source and the sink are in the Java contest,
and the sensitive data is processed only by the Java code.

• P6: Both the source and sink are in the native contest, and
the sensitive data is processed only by the native code.

We also summarize the major capabilities of the popular
taint analysis tools for Android in Table II. TaintDroid [8] and
DroidScope [10] only support DVM. TaintDroid cannot support
the information leakages of P1, P3, P4 and P6, because it only
handles the information leakages of which both the source and
sink are in the Java context. The information leakage P2 could
be implemented by two ways. In the first approach, the Java
code obtains the sensitive data, then invokes JNI method to
process the data, and finally leaks out the returns of the JNI
method. In the second approach, the Java code also collects
the sensitive data and invokes a JNI method to process it. After
that, the Java code invokes another JNI method to obtain the
results from the native contest, and leaks the results in the
Java context. Note that TaintDroid cannot capture the second
approach of P2, because it just propagates the taint tags from
the parameters to the results of the JNI method whereas the JNI
method for processing data and the JNI method for obtaining
the results are different in the second approach. Similarly,
Since Androidperf [20] is developed on top of TaintDroid,
although it supports tracking information through JNI bridge,
it only supports DVM. Since the taint tracker of Droid-
scope is not released, we cannot get the details of the taint
tracker.

TaintART [9] and ARTist [16] were recently proposed to
conduct taint analysis on Android running ART. However, they
can only handle the information leak of P5, because they
need to insert additional taint propagation instructions into
the Java code by modifying dex2oat. Moreover, the new
system Malton [17], which can track information flow in

818 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 3, MARCH 2019

Fig. 4. NDroid architecture.

Android apps, only supports the ART runtime and just tracks
information leakage in one process. Although TaintMan [21]
supports both ART and DVM, it needs to insert additional
instructions into the target apps through repackaging, and
thus it can neither handle packed Android apps nor track
information flow in native libraries.

To address the limitations of these systems, we proposed and
implemented a novel taint analysis system NDroid, which
tracks information leakage in multiple contexts (i.e., Java con-
text and native context) and supports all the aforementioned
six basic scenarios of information leakages in Android system.

IV. THE HIGH-LEVEL DESIGN OF NDROID

Each Android app runs on the top of a modified Linux
kernel, with the support of Android application framework,
and the Android platform contains a set of system libs. Fig. 4
illustrates the architecture of NDroid, a virtualization-based
dynamic taint analysis system. QEMU is an open-source
machine emulator [22], through which we can instrument
instructions at translation phase and monitor each machine
instruction at execution phase. To track information flows
through multiple contexts, NDroid introduces six major mod-
ules into QEMU including: (1) the instrumentation manager
controls when and how we do instrumentation on different
modules (the JNI bridge, system libraries and apps’ own
native libraries) at translation phase; (2) the JNI tracker
deals with the taint propagation when JNI APIs and related
functions are called; (3) the instruction tracer parses each
executed instruction (ARM/Thumb/Thumb2) and propagates
taint information according the semantics of these instructions;
(4) the native tracker conducts the taint propagation of the
compiled code, and all these three handlers complete taint
propagations with interfaces provided by (5) the taint engine
which also maintains taint storages for both registers and
memories. Moreover, (6) we employ TaintDroid as the taint
tracer (i.e., DVM tracer) in DVM and implement an ART
tracer module to trace the taint information in ART runtime.
Note that, as NDroid currently supports both DVM and ART
runtime, there are differences between the implementations on
DVM and ART. We will detail the implementation of NDroid
in the following subsections.
NDroid also contains a customized OS-level view recon-

structor motivated by DroidScope for obtaining the informa-
tion of processes and memory map in Linux. Therefore, our
instrumentation manager can selectively instrument specific

Fig. 5. Instrumentation manager.

processes and modules. What’s more, since TaintDroid care-
fully handles the taint propagation in the framework and DVM,
we reuse the modules modified by TaintDroid and keep the
taints added by NDroid consistent with TaintDroid’s format
so that they can work together smoothly.

V. NDROID FOR DVM

This section details the implementation of our system on
DVM, the default Android runtime below version 5.0.

A. Instrumentation Manager

When an app sends sensitive data to its own native code
by invoking native methods, the data first goes through the
JNI bridge before it steps into native codes, then native codes
will handle the data and possibly invoke system library calls.
Therefore, the JNI bridge, apps’ third party native libraries
and system libraries must be instrumented in order to trace
information flows through JNI.

As shown in Fig. 5, for an app’s own native code
(i.e., libNDroidDemo.so), the instrumentation manager instru-
ments it at two different levels: (1) basic block level
(i.e., indicated by BLOCK_END arrow) – if a block of code
ends at invoking system library method or JNI API call,
we do instrumentation at the end of it; (2) instruction level
(i.e., indicated by INSN_BEGIN arrow) – each instruction is
instrumented before being executed. By doing so, whenever
an app’s native code calls system library methods and JNI
APIs we are interested in (e.g., open(), NewObject(), etc.),
we can conduct analysis before and after they are invoked.
Note that system libraries and JNI bridge are not instrumented
all the time. Instead, we only instrument them when they
are used by an app’s own native code. However, certain
methods (e.g., dvmCallJniMethod(), dvmAllocObject(), etc.)
related to JNI bridge are instrumented at both beginnings/ends
of their first/last basic blocks. Details about these methods will
be discussed in Section V-B.

It is necessary to know the offsets of the methods that
need instrumentation. Since it is time-consuming to calculate

XUE et al.: NDroid: TOWARD TRACKING INFORMATION FLOWS ACROSS MULTIPLE ANDROID CONTEXTS 819

Listing 1. ‘dvmCallJNIMethod’.

Listing 2. ‘SourcePolicy’.

those offsets manually, we prepare scripts to disassem-
ble libraries (e.g., libc.so, libm.so, libdvm.so, etc.), extract
offsets, and generate template codes for handlers in following
subsections.

B. JNI Tracer

A critical step in tracking information flow through JNI
is to maintain and propagate taints between two different
runtime contexts (i.e., the Java context and the native context).
It is non-trivial to correctly get and set taints when the
context switches. For example, although TaintDroid properly
handles the taints when an App is in the Java context, it
does not store the corresponding taints to the native runtime
stack when information flows enter into the native context,
thus failing to track such information flows. To address this
issue, the JNI bridge handler deals with instrumented JNI
APIs and relevant functions, through which information flows
across the boundary between the Java context and the native
context. These functions can be roughly classified into five
groups according to their functionality, including (1) JNI entry;
(2) method calling; (3) object/string/array operation; (4) field
access; and (5) exception, each of which is detailed as follows.

1) JNI Entry: This category is supposed to include functions
facilitating Java codes to invoke native methods. However,
since JNI does not provide such interfaces, we analyzed
the process of Java codes calling native methods and found
that before DVM hands over control to native methods, it
calls dvmCallJNIMethod() (as listed in 1) to do preparations.
By hooking this method, we locate the parameters and their
taints according to the first parameter “args”, which is the
frame pointer described in Fig. 1. Moreover, we identify the
native method’s address, access flag and signature through
the third parameter “method”, which points to a Method
structure. We define a customized structure SourcePolicy
(as shown in Listing 2) to record information of the native
target: method_address indicates the address of the native
method’s first instruction; tR0 - tR3 stores the taints of the
first four parameters in registers R0-R3; stack_args_num is the
number of remaining parameters on stack; stack_args_taints
stores taints of the parameters on stack. Note that the ARM
procedure call standard defines that the first four parame-
ters are passed in R0 to R3, and the remaining parameters

TABLE III

JNI METHODS FOR INVOKING JAVA METHODS. TYPE ∈ {OBJECT,
BOOLEAN, BYTE, CHAR, SHORT, INT, LONG,

FLOAT, DOUBLE, VOID}

Fig. 6. Native Code Call Java Method: ① allocate a Java Method Frame;
② initialize stack with parameters and clear taint slots; ③ convert indirect
inferences to real object addresses.

are pushed onto stack, and the return value is put in R0;
method_signature describes the types of the parameters and the
return value; access_flag indicates the method’s access mode.
Note that the first parameter of non-static method is “this”.

Therefore, by hooking “dvmCallJNIMethod()”, we allocate
a SourcePolicy for each native method to be executed
and we use a hash map to store the pairs of < addr,
SourcePolicy>, where the key “addr” is the native
method’s address. Once the instruction locates at “addr” is
being executed, NDroid initializes corresponding registers
and memories with proper taint values according to the
SourcePolicy paired with “addr”.

2) Method Calling: This category includes functions facil-
itating native codes to call Java methods. The first column
of Table III lists these JNI APIs, and they will then call
the corresponding methods in the second column. We use
dvmCallMethod∗() to denote the methods in the second
column. Finally, dvmInterpret() will be called before DVM
interprets the target method. For instance, as shown in Fig. 6,
when an app’s native code calls a Java method by invoking
CallVoidMethodA(), the following steps will be conducted:
(1) allocating a Java method frame on the DVM stack
(as depicted in Fig. 1); (2) putting the parameters onto the
stack and clearing the taint slots; (3) scanning parameters
and converting the indirect references to real object addresses.
After that, “dvmInterpret()” is called to hands over control to
the Java method.

Note that as “dvmCallMethod*()” methods clear the slots
used to store taint tags in Java method frames, we instrument
“dvmInterpret()” to set taint tags just before Java meth-
ods run. Moreover, since we cannot get indirect references
of reference type parameters through instrumenting “dvmInter-
pret()” (③ in Fig. 6) and indirect references are used

820 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 3, MARCH 2019

Fig. 7. Multilevel Hooking ① call CallVoidMethodA() ② dvmCallMethodA()
is called ③ dvmInterpret() is called ④ dvmInterpret() return ⑤ dvmCall-
MethodA() return ⑥ return from CallVoidMethodA().

in our taint storage of native context, we also instrument
“dvmCallMethod*()”.

The overhead will be high if we instrument these func-
tions whenever they are called, because methods “dvmCall-
Method*()” and “dvmInterpret()” may also be triggered by
other codes rather than the native codes under investigation. To
address this issue, we propose a multilevel hooking technique
to assure that the instrumentation of “dvmCallMethod*()” and
“dvmInterpret()” is performed only when they are triggered
by the native codes of interest. Its basic idea is to define and
check a sequence of preconditions before instrumenting certain
methods.

We use the method “dvmCallVoidMethodA()” as an example
to explain the multilevel hooking technique, as shown in Fig. 7.
We define six thread-specific conditions T1, T2 . . . , T6 to
determine whether the corresponding steps of instrumentation
in Fig. 7 can be performed. Let Icurr represents the address
of the instruction being executed, I f rom indicates the last
instruction executed and Ito denotes the target address of
branch instructions:

1) T1 is true if Icurr is within the native code and Ito equals
the start address of “CallVoidMethodA()”.

2) T2 is true if T1 is true, Icurr equals the start address
of “dvmCallMethodA()” and I f rom is within “CallVoid-
MethodA()”.

3) T3 is true if T2 is true, Icurr equals the start address
of “dvmInterpret()” and I f rom is within “dvmCall-
MethodA()”.

4) T4 is true if T3 is true, Icurr equals the end address
of “dvmInterpret()” and Ito is within “dvmCall-
MethodA()”.

5) T5 is true if T2 is true, Icurr equals the end address
of “dvmCallMethodA()” and Ito is within “CallVoid-
MethodA()”.

6) T6 is true if T1 is true, Icurr is within the native code and
I f rom equals the end address of “CallVoidMethodA()”.

With multi-level hooking, we can determine whether “dvm-
CallMethodA()” (or “dvmInterpret()”) should be instrumented
according to T2 (or T3).

3) Object/String/Array Operation: JNI provides interfaces
for native codes to do object/string/array operations. For exam-
ple, native codes can create new object/string/array through

TABLE IV

JNI – CREATE NEW OBJECT

TABLE V

JNI METHODS TO GET/SET FIELD. TYPE ∈ {OBJECT, BYTE,
SHORT, INT, LONG, FLOAT, DOUBLE, BOOLEAN, CHAR}

JNI functions listed in the first column of Table IV, which
are denoted as NOF. These functions will invoke the corre-
sponding methods in the second column of Table IV, which
are denoted as MAF. MAF allocates memory for objects,
strings or arrays. Note that NOF will convert the real object
address returned by MAF to indirect reference. NDroid
maintains the mapping between the indirect reference and the
taint of the new object in the native context. The real object
address is also required because NDroid needs to locate the
newly created object (i.e., StringObject or ArrayObject) before
tainting it. Therefore, to get the new object’s indirect reference
and real address, we apply the multilevel hooking technique to
instrument both NOF and the corresponding MAF. Moreover,
other JNI APIs related to object/string/array operations are
also hooked, such as functions of global and local references,
functions about releasing string and getting/setting array, etc.

4) Field Access: Since native codes can access a Java
object’s fields through the functions listed in Table V, by
hooking these methods, NDroid can add taints to the corre-
sponding field before executing “Set∗Field()” functions or get
a field’s taint after executing “Get∗Field()” functions.

5) Exception: Native codes can communicate with Java
codes through throwing an exception carrying sensitive
information. The JNI function “ThrowNew()” first creates
a new exception object and then initializes it by invoking
“initException()”, which creates a string object based on the
third parameter of “ThrowNew()” and calls the exception
object’s constructor through “dvmCallMethod()”. To track this
information flow, we use the multilevel hooking technique
to instrument functions including “ThrowNew()”, “initExcep-
tion()”, “dvmCallMethod()” and “dvmInterpret()”, and add
the taint of the third parameter of “ThrowNew()” to the string
object in the new exception object.

C. Instruction Tracer

For tracing information flows in apps’ native codes, the
native instructions are instrumented by the instrumentation
manager, and the instruction tracer carries out the taint prop-
agation of each instruction before it is executed. When an

XUE et al.: NDroid: TOWARD TRACKING INFORMATION FLOWS ACROSS MULTIPLE ANDROID CONTEXTS 821

TABLE VI

TAINT PROPAGATION LOGIC FOR ARM/THUMB/THUMB2 INSTRUCTIONS: SYMBOL “◦” INDICATES BINARY OPERATORS AND SYMBOL “∼” INDICATES
UNARY OPERATORS; FOR M[addr : addr + n] IN LDR* AND STR*, n CAN BE 1, 2 OR 4; f (regList) COUNTS NUMBER OF 1 IN REGLIST

TABLE VII

MODELED STANDARD METHODS

TABLE VIII

IMPORTANT STANDARD LIBRARY CALLS

instruction is fed into the instruction tracer, it first parses
the semantics of the instruction, and then propagates the
taint tags of the operands according to the semantics of the
instruction. Note that the instruction tracer is implemented
based on darm [23], which is a light-weight and efficient
ARMv7/Thumb/Thumb2 dissembler, and we extend darm to
enable it to propagate taint tags according to the semantics of
the instruction during parsing. We list the taint propagation
logic for the general types of ARM/Thumb/Thumb2 instruc-
tions that can affect taint propagation in Table VI.

D. Native Tracer

Apps’ own native codes frequently call system library
methods, and it will cause high performance overhead if
we instrument each instruction of those methods. Therefore,
we model the taint propagation of the selected system library
methods, which are listed in Table VII and Table VIII.
Moreover, we prepare scripts to generate template codes for
all system library methods, which makes it easier for users to
model taints propagation of certain methods have not been
implemented yet. More precisely, they just need to enable
the instrumentation of those methods and implement the taint
propagation model with the help of APIs provided by the taint
engine. Using the function memcpy() as an example, Listing 3
illustrates how to model its taint propagation operation.

Listing 3. Handler of function ‘memcpy’.

Note that Table VIII lists the important system library meth-
ods (e.g., file read/write, network operation, etc.), including
those sink methods with ∗. The system library handler records
more detailed information when these methods are called, and
it regards the situations as a possible information leakage when
the tainted data reaches sink methods.

E. Taint Engine

The taint engine maintains shadow registers and a taint map
to store registers’ taints and memories’ taints respectively. The
taint granularity is byte-level. That is, for each byte, there
is a taint flag marking it tainted or not. Moreover, if certain
tainted operand is used as the memory address, we also taint
the memory at the address.

The taint engine provides flexible interfaces for other
modules to set/get taints easily, such as interfaces (e.g., set-
Mem2ToReg(), setMem4ToReg(), etc.) for setting certain reg-
ister’s taint with taints got from multiple memory addresses.

1) Taint Protection: The taints for apps’ native codes are
stored in the QEMU process, and hence they are transparent
for apps. However, malicious native codes can easily access
DVM stack and heap to override taints for Java codes. One of
the reasons why TaintDroid disables apps to load third party
native libraries is to protect the taints on DVM stack and heap.
In order to avoid introducing vulnerability by our extension

822 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 3, MARCH 2019

to TaintDroid, we design a practical approach to protect taints
maintained by TaintDroid.

An intuitive and fine-grained method to protect those taints
is to firstly label the memories allocated for taints on DVM
stack and heap and then monitor native codes’ accesses to
those labeled memories. This method will incur unacceptable
overhead because TaintDroid directly stores taints interleaved
with related values instead of allocating special memory
spaces for taints so that NDroid has to perform heavy-
weight instrumentation for locating the memories allocated
for taints. Therefore, we adopt a more practical and coarse-
grained approach to protect taints for Java codes – forbidding
native codes to directly access or call system library methods
to indirectly access DVM stack and heap. This approach works
because benign native codes will never write/read DVM stack
and heap neither directly nor indirectly.

To monitor native codes’ accesses to DVM stack and heap,
it is necessary to get relevant address spaces. We get the stack’s
start address and stack size through reading the fields “interp-
StackStart” and “interpStackSize” stored in current thread,
and hence obtain the stack’s address space as [StackStar t −
StackSi ze, StackStar t]. The DVM heap’s address space can
be obtained by looking for the memory module with name
“/dev/ashmem/dalvik-heap”, because it is specifically allo-
cated for heap using. Note that the static fields’ taints are
stored in the same memory space used for class definition,
which is not located in DVM stack or heap. Instead, we can
obtain this address space by looking for the memory module
named “/dev/ashmem/dalvik-LinearAlloc”.

With these sensitive address spaces containing Java codes’
taints, we forbid apps’ native codes to access them by (1) mon-
itoring each instruction’s execution and (2) hooking system
library methods related to memory reading/writing.

VI. NDROID FOR ART

To improve the performance of Android system, Android
has replaced DVM with ART. ART appears as an alternative
runtime in Android 4.4 and becomes the default runtime since
Android 5.0. Instead of executing Dalvik instructions, ART
compiles the Dalvik bytecode of apps into native code during
the installation and then runs them directly [24]. Hence, ART
may render NDroid useless because it is quite different from
DVM. In the following, we will illustrate our extensions to
support the ART runtime in NDroid. To make the description
more clear, we denote it as NDroid-ART in this section.

A. Thread-Level View Reconstructor

NDroid-ART supports tracing taint propagations among
different threads of a process simultaneously by monitoring
the creation of a new thread and capturing the switch opera-
tion between different threads. More precisely, NDroid-ART
instruments the kernel function do_fork() because it must be
called when a new thread is created. As to thread switch,
the kernel function _switch_to() realizes the task sched-
uler in Linux kernel. Through monitoring the invocation of
this function and getting its arguments and return value,
NDroid-ART can locate and fetch the task_struct of the

thread being switched to from the kernel’s memory space.
Then, NDroid-ART decides whether this thread is being
traced or not. If that is the case, NDroid-ART monitors this
thread.

Different threads in one process share the same memory
space except registers, stacks and other non-shared resources.
Therefore, it is necessary to separate the taints in different
threads for correct taint analysis. NDroid-ART uses thread
local storage (TLS) to achieve it. A self-defined structure,
named tls_taint, is attached to each traced thread, which
records important information for taint propagation in each
thread, such as ARM registers, etc. NDroid-ART also records
information of the current executing method, such as whether
it is a native method, its return value, invocation type and
so on, because the information is bound to the method and
the same method can be invoked in different threads. When a
thread is traced, some global variables will point to the thread’s
local storage so that the private taint data cannot be interrupted
by other threads’ taint propagation.

It is worth noting that although DroidScope collects thread
information, it does not separate the taint information in
different threads, thus taints in different threads may inter-
fere with each other [10]. Moreover, DroidScope monitors
the change of the page based address register to detect the
switch of processes but the switch of lightweight processes
(i.e. threads) has no effect on the page based register.

B. Taint Propagation Through JNI

It is challenging to conduct dynamic taint analysis on
JNI methods due to the complex procedure of invoking JNI
methods in ART. Each native method declared in Dex file
is compiled to a set of instructions in ART, which is called
a stub. These instructions are responsible for initialing JNI
environment, calling the real method in so files, and cleaning
JNI environment. When the stub method calls the real imple-
mentation for the first time, it will invoke a trampoline method
that first loads the real implementation and then jumps to it.
When the real implementation is finished, the program returns
back to the stub directly. After that, the stub calls the real
implementation directly.

Native methods call Java methods through APIs like
CallTYPEMethod(), where TYPE represents the type of the
return value of the Java method [12], such as, “Object”,
“Boolean”, etc. After the class and methodID are obtained
through APIs FindClass() and GetMethodID(), the tar-
get Java method can be called. After the invocation of
CallTYPEMethod() series APIs, the ArtMethod object, which
represents the target Java method, can be obtained. Finally,
the ArtMethod::Invoke() method is called to invoke the real
Java method. When the target Java method is finished, the pro-
gram returns back to CallTYPEMethod(). Finally it goes back
to the so file.

To accomplish the taint propagation between native meth-
ods and Java methods, NDroid-ART instruments the key
points of the JNI invocation procedure. For propagating taints
from Java context to native context, NDroid-ART instru-
ments the positions including (1) before the invocation of

XUE et al.: NDroid: TOWARD TRACKING INFORMATION FLOWS ACROSS MULTIPLE ANDROID CONTEXTS 823

the native method, (2) before the execution of the native
code related to the native method, (3) after the execution of
native code, and (4) after the invocation of the native method.
For conveying taints from native context to Java context,
NDroid-ART hooks the positions including (1) before the
invocation of CallTYPEMethod() series APIs, (2) before the
invocation of the target Java method, (3) after the invocation
of the target Java method, and (4) after the invocation of
CallTYPEMethod() series APIs.

C. ART Tracer

As TaindDroid does not support ART runtime, we imple-
ment the component ART tracer in NDroid-ART to conduct
taint propagation for the ART methods. Since instruction-level
taint propagation will introduce heavy overhead, we employ
function-level taint propagation when analyzing Android
framework APIs to improve performance. The whole pro-
cedure consists of three steps. First, for each framework
API, we model the taint propagation relationship among
its parameters and return value. Second, we identify and
recognize each framework API to be invoked. More precisely,
by performing instrumentation after each basic block is exe-
cuted, NDroid-ART obtains the address of the next basic
block to be executed, and then uses the address to determine
the API. Third, we design a general hook function which
takes in framework APIs and their taint propagation models.
This function will be called before and after invoking each
framework API, hence NDroid-ART can conduct the taint
propagation.

Before modeling the taint propagation behavior of frame-
work APIs, we extract their Dalvik instructions from
system@framework@boot.oat and convert them into Java
bytecode using the tool dex2jar. We built a static analysis
tool to construct the control flow graph (CFG) and obtain a
set of executable paths associated with parameters for each
framework API. The tool then performs data flow analysis
to determine whether the taint(s) will be propagated from
one or more parameters to other parameters and/or the return
value. If so, the taint propagation relationship among para-
meters and return value are recorded in a map data structure
denoted as TaintF A.

In order to improve the performance of the static taint
analysis, we develop a tool to obtain the offset addresses
of the functions in the app’s Oat file and the Android
framework (boot.oat) by parsing Oat files of both the target
apps and the Android framework, and put these addresses
into a configuration file. When performing instrumentation,
NDroid-ART will check whether an instruction belongs to
the relevant functions according to its address. If that is the
case, the taint analysis will be performed.

Once a framework API is called, we obtain its taint prop-
agation model from TaintF A, and then propagate the taint
according to the model directly, thus shortening the process-
ing time. We acknowledge that such models are not very
precise because they only consider the relationships among
parameters and return values. However, creating more accurate

Fig. 8. Log of QQPhoneBook.

models for framework APIs is out of the scope of this paper.
Besides, NDdroid-ART also has the capacity of conduct-
ing instruction level taint propagation for the compiled ART
methods. Hence, to improve the accuracy of taint propagation,
users can specify NDdroid-ART to propagate the taint tags
in instruction level for the ART methods.

VII. EVALUATION

NDroid is implemented in QEMU. NDroid for DVM
(i.e., NDroid-DVM) runs Android 4.3 and NDroid for
ART (i.e., NDroid-ART) runs Android 5.0. NDroid-DVM
tracks information flow in the Java context through Taint-
Droid, and NDroid-DVM focuses on tracking the information
flows through JNI. We use two real apps (i.e., QQPhone-
Book 3.5 and ePhone 3.3.3) to evaluate NDroid-DVM. Since
TaintDroid does not support taint propagation in ART run-
time, NDroid-ART propagates taint tags in both Android
framework and JNI bridge. We employ two real malware
(i.e., SpyBubble and PlusLock) to evaluate NDroid-ART.
Moreover, we evaluate the performance of NDroid-DVM and
NDroid-ART using CaffeineMark [25]. This section answers
the following questions.

• RQ1: Can NDroid-DVM track the information leaked
through JNI bridge in DVM runtime?

• RQ2: Can NDroid-ART propagate taint information
through multiple threads?

• RQ3: Can NDroid-ART track the information leakage
through JNI bridge in ART runtime?

• RQ4: Do NDroid-DVM and NDroid-ART have rea-
sonable performance during taint propagation?

A. Experiments on DVM

1) QQPhoneBook: NDroid-DVM discovers that QQPhone-
Book 3.5 can send sensitive information related to contacts
and SMS to a server named “info.3g.qq.com”. Fig. 8 shows
the major functions in the information flow identified by
NDroid, which is an example of leaking sensitive informa-
tion through pattern P2. In the first step, by invoking the
native method “makeLoginRequestPackageMd5()”, the Java

824 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 3, MARCH 2019

Fig. 9. Log of ePhone.

code transmits sensitive information through the fourth para-
meter (i.e., “args[3]”) to the native context. This parameter
is of the type String and its taint is “0×202”. NDroid-DVM
creates an entry in the taint Map to associate the memory
address 0x4127deb8 with the taint “0×202”.

Then, the Java code calls another native method “getPos-
tUrl()” (i.e., step 2) with parameters that do not have taints.
“getPostUrl()” invokes “NewStringUTF()” (i.e., step 2.1) to
create a new String object based on the tainted memory
(i.e., 0x4127deb8) and return this new String object to the Java
code that eventually send out the sensitive data. NDroid-DVM
not only adds a taint to the new String object and the return
value but also tracks the information flow until it reaches
the sink “send()”, thus capturing this information leakage.
Note that TaintDroid alone cannot identify such information
leakage, because it does not taint the new String object and
the return value of “getPostUrl()”.

2) ePhone: NDroid-DVM finds that ePhone sends
contacts related information to a name named “soft-
phone.comwave.net”. Fig. 9 shows the major functions in
the information flow tracked by NDroid-DVM. The ePhone’s
Java code first calls a native method callregister() that passes
tainted information related to contacts to its native code.
Then, the native code converts the tainted Java string to C
string through the method “GetStringUTFChars()” and further
invokes many system calls (i.e., memcpy(), memmove, fwrite,
etc.) to process the tainted information. Finally, it invokes
sendto() to send the tainted information to the server.

Answer to RQ1: The experimental result shows that
NDroid-DVM can successfully track the information leaked
through JNI bridge in DVM runtime.

B. Experiments on ART

1) SpyBubble: Spybubble [26] is a malicious app that steals
and leaks the sensitive information, such as device id, phone
number, geographical location, etc. Besides, Spybubble gathers
and leaks sensitive information in different threads. Fig. 10
shows the details of aforementioned malicious behaviors per-
formed by Spybubble.

When Spybubble starts, a service named “GPSLocation-
Service” is created to collect phone’s device ID through
invoking Android framework API getDeviceId(), which is
specified as the taint source by the NDroid, When the result
(i.e., device ID) of getDeviceId() is returned, it is attached with
specific taint tag by NDroid. The tainted device ID is encoded
into an XML-liked string and stored into a global variable.
In addition, another service named “OfflineConnection” of

Fig. 10. Taint propagation through multiple threads.

Fig. 11. Taint propagation through JNI.

Spybubble periodically reads the XML-liked string stored
in the global variable, and writes the string into a hidden
file named “.testFile.txt”. That is, the sensitive information
(i.e., device ID) is obtained and leaked by the services
“GPSLocationService’ and “OfflineConnection” respectively,
Answer to RQ2: The experimental result shows that
NDroid-ART can discover the information leakage flow
through multiple threads.

2) PlusLock: PlusLock [27] is a malicious app that collects
sensitive information, such as phone number, MAC address,
device ID, etc., and then uploads the collected information to
its own server or Email account. Fig. 11 depicts three JNI
related malicious behaviors performed by PlusLock.

Once the main activity of PlusLock is launched, three JNI
methods, i.e., stringIPBank(), stringUser() and stringPass-
word(), are called to retrieve a suspicious website address,
the username of an Email account and the password of
this account, respectively. In this experiment, we config-
ure these three types of sensitive information with different
taint tags (i.e., 0×10, 0×80 and 0×100). Note that, these
three types of information are stored in three variables in the
native code (i.e., libhello-jni.so) of this app. Besides, each of
these three variables is passed to JNI API NewStringUTF()
as its parameter, and then converted into a java.lang.String
object. Thus, the return values of these three JNI methods are
attached with the corresponding taint tags. All these string
objects are stored in an instance of SharedPreferences. After
that, the website address is used to establish a connection with
its own server (i.e., http://mfdrhg.vicp.com) for uploading sen-
sitive information. We also find that this malware can leak the
user’s phone number through Email. For example, as shown
in Fig. 11, “hjgyfjhg1010@126.com” and “zxcv1234” are the
username and password of the Email account, respectively.

XUE et al.: NDroid: TOWARD TRACKING INFORMATION FLOWS ACROSS MULTIPLE ANDROID CONTEXTS 825

Fig. 12. Performance of NDroid.

Answer to RQ3: The experimental result shows that
NDroid-ART can track the information leakage through
multiple contexts.

C. Performance of NDroid

To evaluate the performance of NDroid, we run Caf-
feineMark 30 times with NDroid, and QEMU respectively.
In average, compared with Qemu, the NDroid incurs 10.7 and
10.1 times overall slowdown (i.e., Fig. 12) to the DVM runtime
and ART runtime respectively. Since DroidScope brings at least
11 times slowdown, NDroid introduces less slowdown than
DroidScope that only supports DVM runtime.

Answer to RQ4: As a dynamic taint analysis tool, NDroid
has reasonable performance during taint propagation on both
DVM and ART runtime.

VIII. RELATED WORK

Only a few existing systems take into account the native
libraries in Android apps. Some of them dynamically collect
system calls through system call hijacking [28], [29] or tools
like ptrace [30], [31], strace [32], and ltrace [4]. The sequence
of system calls, along with other function calls within DVM,
could be used to characterize an application’s behavior [33].
Based on QEMU, CopperDroid combines system calls and
Android specific behaviors observed from binder to detect
malware [34]. Fedler et al. proposed measures to control
the execution of native code on the Android platform [35].
Sun et al. developed NativeGuard that controls the native
codes of an app by forcing them to run in a non-privileged
application [36]. Appcage sandboxes the native libraries to
confine the app’s behavior [37], but it does not track the
information flow inside native libraries. Since dynamic analy-
sis system is usually not scalable and could not cover all
execution paths, static analysis approaches have been designed
to scan native codes for detecting malware [3], [6], [38].
For example, DroidNative uses specific control flow patterns
to detect mobile malware using native code [6]. However,
static analysis is usually hindered by various obfuscation
techniques [39]–[41].

Orthogonal to monitoring functions calls, information flow
tracking empowers users to understand how a program
processes tainted data [33]. There are two pioneering sys-
tems for this purpose: TaintDroid [8] and DroidScope [10].

TaintDroid modified DVM to carry out dynamic taint analysis
and introduces low performance overhead. However, as illus-
trated in Section VII, it under-taints information flows through
JNI. AppFence is based on TaintDroid and does not process
third-party native libraries [42]. DroidScope tracks information
flow at the instruction level by enhancing QEMU, and it
may incur 11 to 34 times slowdown [10]. Moreover, Droid-
Scope did not report new information flows through JNI than
TaintDroid [10]. Similarly, Androidperf [20] is implemented
based on TaintDroid, although it supports tracking information
through JNI bridge, it also only supports DVM platform and
requires modification of the Android framework. We identify
the information flows missed by these systems, and NDroid
can capture them with much lower overhead than DroidScope.
A recent system called Malton [17] tracks information flow in
Android apps. However, it only supports ART and cannot track
the information leakage crossing multiple processes.

The majority of existing systems for analyzing Android
apps do not consider native libraries [43]–[47]. Instead, they
usually inspect required permissions [2], [48]–[51], invoked
APIs [2], [52]–[54], information flows in Java code [55], [56],
and related textual information [57]–[61]. For example,
WoodPecker conducts intra-procedural path-sensitive static
analysis to identify capability leaks in applications of several
stock Android smartphones [62], while CHEX employs inter-
procedural, flow- and context-sensitive analysis to discover
component hijacking vulnerabilities in applications [55].

The security of JNI in the Java virtual machine (JVM)
has been investigated. Tan et al. discovered vulnerabilities in
JNI based programs through static analysis [63] and designed
sandbox to enable trustworthy execution of native codes [64].
Jinn defines 11 finite state machines and uses them to detect
interface violations related to JNI [65]. Note that these sand-
boxes were designed for JVM instead of the DVM.

Dynamic taint analysis has been widely used in many
applications, such as detecting vulnerabilities [66], malware
analysis [67], understanding network protocols [68], to name
a few [69], [70]. Despite many dynamic taint systems have
been designed for either binary executables [69], [71], [72]
or managed runtime [73], there are still many open questions
in dynamic taint analysis, such as conduct control flow taint
and deal with implicit information flows [69], [70]. Although
NDroid shares the limitations of dynamic taint analysis,
it decreases the false negatives related to native codes by
carefully tracking information flows through JNI.

This paper is an extension of paper [74] with many new
contents, which are summarized as follows. First, we conduct
a new analysis of native code on Android platform. Specifi-
cally, we investigate the framework APIs of various Android
systems (i.e. from Android 2.2.3 to Android 7.0), and find that
more than 71% Android framework APIs involve native code
in their internal implementations. We also examine much more
Android apps using native code in this paper than the previous
work [74]. Based on the above analysis, we summarize six
basic scenarios of information leakage in Android platform in
Section III-C. Second, we re-design NDroid with the support
of the new Android runtime ART in Section IV, and introduce
its implementation details in Section VI, whereas the work

826 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 3, MARCH 2019

of [74] only supports DVM runtime. Third, to evaluate the
extended version of NDroid, we conduct new experiments in
Section VII with three aims: (1) can NDroid track the infor-
mation leakage through multiple threads (Section VII-B.1);
(2) can NDroid track the information flow involving various
contexts (Section VII-B.2); and (3) how is the performance of
NDroid (Section VII-C). The experimental results illustrate
that NDroid can efficiently and effectively track the infor-
mation flows leaked through multiple threads and involving
various contexts (i.e., Java context and Native contest) with
reasonable performance.

IX. DISCUSSION

Similar to all dynamic analysis systems, NDroid executes
one path at a time and cannot cover all execution paths.
It is difficult to test apps because their behaviors are usually
triggered by user interactions (e.g., clicking a button, turning
off the screen) and they can extend their functionality through
dynamical class loading. Experiment results in Section VII
have shown that simple tools like monkeyrunner [75] cannot
enumerate all possible paths in an app and thus NDroid
may miss information leakage. In future work, we will equip
NDroid with advanced input generation system [76].

Common to most virtualization-based systems is the dif-
ficulty of emulating the whole real hardware environment.
The Android emulator misses some important information
sources (e.g., GPS). Hence, NDroid cannot track information
flows from these sources. On possible solution is to pro-
vide fake information that cannot be emulated as suggested
by [77], [78]. Moreover, advanced malware may exploit the
difference between an emulator and a real smartphone to per-
form emulator detection. Using the virtualization technology
supported by CPUs (e.g., Trustzone in ARM [79]) may be a
promising approach to evade such detection.

Similar to TaintDroid and Droidscope, NDroid does not
track control flows. Therefore, it could be evaded by apps that
use the same control flow based techniques for circumven-
tion [80]. Since fully supporting control flow tracking may
cause high overhead and false positives, we will investigate it
and support more ARM/Thumb operations in future work.

Hybrid apps [81], [82] leverage the advantages of both tradi-
tional apps written in Java (with/without native code) and web
apps using various web techniques (e.g., JavaScript, HTML 5)
to speed up the development for multiple platforms. They
introduce the JavaScript context in WebView [83], and rely on
two mechanisms provided by Android platform to support the
interaction between Java code and Javascript code: callback
communication and bridge communication [81]. Using the
former mechanism, developers override the callback methods
in WebViewClient and WebChromeClient to react on
the corresponding events [84], which can be triggered by
JavaScript code with additional information as methods para-
meters. In the latter mechanism, developers can inject a Java
object to WebView through addJavascriptInterface
so that JavaScript running in WebView can call the methods of
this Java object [84]. Existing dynamic taint analysis systems
as well as NDroid presented in this paper do not sup-
port tracking information flows going through the JavaScript

context switch. Since tracking such information flows is non-
trivial and deserves another paper, we here discuss the possible
approaches to achieve this purpose and will investigate them
in future work.

To track the information flow through the JavaScript con-
text, we need to track the information flow outside and
inside the JavaScript runtime, separately, and carefully handle
the taint propagation across the boundary between the Java
context and the JavaScript context. NDroid can track the
information flow outside the JavaScript runtime for both
DVM and ART runtime. For tracking the information flow
within JavaScript runtime, we can achieve it by modify-
ing the JavaScript interpreter in WebView or conducting
JavaScript source code instrumentation [85]. To propaga-
tion taint information across the contexts, we will first
hook the important functions in the callback communications
(e.g., various callback methods [84]) and the bridge communi-
cation (e.g., JavaInstanceJobject::invokeMethod
for executing JavaScript methods) to capture the data to be
transferred across the contexts and the corresponding taint
labels. Then, we will carefully map the data in one context to
the variable in another context and properly set its taint label.
We will develop this functionality for NDroid in future work.

X. CONCLUSION

We conducted a large-scale study on the usage of native
libraries of Android apps, and identified several scenarios
where data leakage cannot be captured by existing systems.
Based on these insights, we proposed and implemented
NDroid, an efficient dynamic taint analysis system for track-
ing information flows across different contexts. The evalu-
ation of real apps illustrated that NDroid can effectively
identify information leaks through JNI and discover poly-
morphic malicious apps realized by JNI with reasonable
performance overheads. We will release the new NDroid in
https://github.com/rewhy/NDroid.

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous reviewers
for their quality reviews and suggestions.

REFERENCES

[1] (2017). Mobile Operating System Market Share Worldwide. [Online].
Available: http://gs.statcounter.com/os-market-share/mobile/worldwide

[2] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, you, get off of my
market: Detecting malicious apps in official and alternative Android
markets,” in Proc. NDSS, 2012, pp. 50–52.

[3] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang, “RiskRanker:
Scalable and accurate zero-day Android malware detection,” in Proc.
MobiSys, 2012, pp. 281–294.

[4] M. Spreitzenbarth, F. Echtler, F. Freiling, T. Schreck, and J. Hoffmann,
“Mobile-sandbox: Having a deeper look into Android applications,” in
Proc. SAC, 2013, pp. 1808–1815.

[5] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos, “ProfileDroid: Multi-
layer profiling of Android applications,” in Proc. MobiCom, 2012,
pp. 137–148.

[6] S. Alam, Z. Qu, R. Riley, Y. Chen, and V. Rastogi, “DroidNative:
Automating and optimizing detection of Android native code malware
variants,” Comput. Secur., vol. 65, pp. 230–246, Mar. 2017.

[7] V. Afonso et al., “Going native: Using a large-scale analysis of Android
apps to create a practical native-code sandboxing policy,” in Proc. NDSS,
2016, pp. 1–15.

XUE et al.: NDroid: TOWARD TRACKING INFORMATION FLOWS ACROSS MULTIPLE ANDROID CONTEXTS 827

[8] W. Enck et al., “TaintDroid: An information-flow tracking system for
realtime privacy monitoring on smartphones,” in Proc. USENIX OSDI,
2010, pp. 1–15.

[9] M. Sun, T. Wei, and J. Lui, “Taintart: A practical multi-level information-
flow tracking system for Android runtime,” in Proc. ACM CCS, 2016,
pp. 331–342.

[10] L. K. Yan and H. Yin, “DroidScope: Seamlessly reconstructing the OS
and Dalvik semantic views for dynamic Android malware analysis,” in
Proc. USENIX Secur., 2012, pp. 569–584.

[11] (2013). Android Security Analysis Challenge: Tampering Dalvik Byte-
code During Runtime. [Online]. Available: http://bluebox.com/labs/
android-security-challenge/

[12] S. Liang, The Java Native Interface: Programmer’s Guide and Specifi-
cation. Reading, MA, USA: Addison-Wesley, 1999.

[13] (2013). Android NDK. [Online]. Available: https://developer.android.
com/ndk

[14] E. Hughes. (2011). JNI Local Reference Changes in ICS. [Online].
Available: https://goo.gl/5PkWUX

[15] F. Bellard, “QEMU, a fast and portable dynamic translator,” in Proc.
USENIX ATC, FREENIX Track, 2005, pp. 1–6.

[16] M. Backes, S. Bugiel, O. Schranz, P. von Styp-Rekowsky, and
S. Weisgerber. (Jul. 2016). “ARTist: The Android runtime instrumen-
tation and security toolkit.” [Online]. Available: https://arxiv.org/abs/
1607.06619

[17] L. Xue, Y. Zhou, T. Chen, X. Luo, and G. Gu, “Malton: Towards on-
device non-invasive mobile malware analysis for ART,” in Proc. USENIX
Secur., 2017, pp. 289–306.

[18] N. Nethercote and J. Seward, “Valgrind: A framework for heavy-
weight dynamic binary instrumentation,” in Proc. ACM PLDI, 2007,
pp. 89–100.

[19] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “PScout: Analyzing the
Android permission specification,” in Proc. CCS, 2012, pp. 217–228.

[20] L. Xue, C. Qian, and X. Luo, “AndroidPerf: A cross-layer profiling
system for Android applications,” in Proc. IWQoS, 2015, pp. 115–124.

[21] W. You, B. Liang, W. Shi, P. Wang, and X. Zhang, “TaintMan: An ART-
compatible dynamic taint analysis framework on unmodified and non-
rooted Android devices,” IEEE Trans. Dependable Secure Comput., to
be published.

[22] (2013). Qemu. [Online]. Available: http://wiki.qemu.org/Main_Page
[23] (2017). A Light-Weight and Efficient Disassembler Written in C for

the ARMv7 Instruction Set. [Online]. Available: https://github.com/
jbremer/darm

[24] (2017). Android Runtime. [Online]. Available: https://goo.gl/peCC18
[25] (2017). CaffeineMark. [Online]. Available: http://www.benchmarkhq.

ru/cm30/
[26] (2017). SpyBubble. [Online]. Available: http://www.prospybubble.com
[27] (2017). Pluslock. [Online]. Available: https://goo.gl/wdqFGd
[28] T. Bläsing, L. Batyuk, A.-D. Schmidt, S. A. Camtepe, and S. Albayrak,

“An Android application sandbox system for suspicious software detec-
tion,” in Proc. MALWARE, 2010, pp. 55–62.

[29] Y. Shao, X. Luo, and C. Qian, “RootGuard: Protecting rooted Android
phones,” Computer, vol. 47, no. 6, pp. 32–40, Jun. 2014.

[30] G. Portokalidis, P. Homburg, K. Anagnostakis, and H. Bos, “Paranoid
Android: Versatile protection for smartphones,” in Proc. ACSAC, 2010,
pp. 347–356.

[31] M. Zheng, M. Sun, and J. C. S. Lui, “DroidTrace: A ptrace based
Android dynamic analysis system with forward execution capability,”
in Proc. IWCMC, 2014, pp. 128–133.

[32] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid: Behavior-
based malware detection system for Android,” in Proc. SPSM, 2011,
pp. 15–26.

[33] M. Egele, T. Scholte, E. Kirda, and C. Kruegel, “A survey on automated
dynamic malware analysis techniques and tools,” ACM Comput. Surv.,
vol. 44, no. 2, pp. 1–49, 2012.

[34] A. Reina, A. Fattori, and L. Cavallaro, “A system call-centric analysis
and stimulation technique to automatically reconstruct Android malware
behaviors,” in Proc. EuroSec, 2013, pp. 1–6.

[35] R. Fedler, M. Kulicke, and J. Schütte, “Native code execution control
for attack mitigation on Android,” in Proc. SPSM, 2013, pp. 15–20.

[36] M. Sun and G. Tan, “NativeGuard: Protecting Android applications from
third-party native libraries,” in Proc. WiSec, 2014, pp. 165–176.

[37] Y. Zhou, K. Patel, L. Wu, Z. Wang, and X. Jiang, “Hybrid user-level
sandboxing of third-party Android apps,” in Proc. ACM ASIACCS, 2015,
pp. 19–30.

[38] A.-D. Schmidt et al., “Static analysis of executables for collaborative
malware detection on Android,” in Proc. ICC, 2009, pp. 1–5.

[39] A. Moser, C. Kruegel, and E. Kirda, “Limits of static analysis for
malware detection,” in Proc. ACSAC, 2007, pp. 421–430.

[40] Y. Zhang, X. Luo, and H. Yin, “DexHunter: Toward extracting hidden
code from packed Android applications,” in Proc. ESORICS, 2015,
pp. 293–311.

[41] L. Xue, X. Luo, L. Yu, S. Wang, and D. Wu, “Adaptive unpacking of
Android apps,” in Proc. ICSE, 2017, pp. 358–369.

[42] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall, “These
aren’t the droids you’re looking for: Retrofitting Android to protect data
from imperious applications,” in Proc. CCS, 2011, pp. 639–652.

[43] P. Faruki et al., “Android security: A survey of issues, malware pen-
etration, and defenses,” IEEE Commun. Surveys Tuts., vol. 17, no. 2,
pp. 998–1022, 2nd Quart., 2015.

[44] Sufatrio, D. J. J. Tan, T.-W. Chua, and V. L. L. Thing, “Secur-
ing Android: A survey, taxonomy, and challenges,” ACM Com-
put. Surv., vol. 47, no. 4, 2015, Art. no. 58. [Online]. Available:
https://dl.acm.org/citation.cfm?id=2733306

[45] Y. Acar, M. Backes, S. Bugiel, S. Fahl, P. McDaniel, and M. Smith,
“SoK: Lessons learned from Android security research for appified
software platforms,” in Proc. IEEE Symp. Secur. Privacy, May 2016,
pp. 433–451.

[46] M. Xu et al., “Toward engineering a secure Android ecosystem: A survey
of existing techniques,” ACM Comput. Surv., vol. 49, no. 2, 2016,
Art. no. 30.

[47] K. Tam, A. Feizollah, N. B. Anuar, R. Salleh, and L. Cavallaro,
“The evolution of Android malware and Android analysis techniques,”
ACM Comput. Surv., vol. 49, no. 4, 2017, Art. no. 76.

[48] H. Peng et al., “Using probabilistic generative models for ranking risks
of Android apps,” in Proc. CCS, 2012, pp. 241–252.

[49] W. Enck, M. Ongtang, and P. McDaniel, “On lightweight mobile phone
application certification,” in Proc. CCS, 2009, pp. 235–245.

[50] K. Chen et al., “Contextual policy enforcement in Android applications
with permission event graphs,” in Proc. NDSS, 2013.

[51] B. P. Sarma, N. Li, C. Gates, R. Potharaju, C. Nita-Rotaru, and I. Molloy,
“Android permissions: A perspective combining risks and benefits,” in
Proc. SACMAT, 2012, pp. 13–22.

[52] M. Fan et al., “Android malware familial classification and representative
sample selection via frequent subgraph analysis,” IEEE Trans. Inf.
Forensics Security, vol. 13, no. 8, pp. 1890–1905, Aug. 2018.

[53] L. Yu, T. Zhang, X. Luo, L. Xue, and H. Chang, “Toward automatically
generating privacy policy for Android apps,” IEEE Trans. Inf. Forensics
Security, vol. 12, no. 4, pp. 865–880, Apr. 2017.

[54] L. Yu, T. Zhang, X. Luo, and L. Xue, “AutoPPG: Towards automatic
generation of privacy policy for Android applications,” in Proc. SPSM,
2015, pp. 39–50.

[55] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “CHEX: Statically vetting
Android apps for component hijacking vulnerabilities,” in Proc. CCS,
2012, pp. 229–240.

[56] C. Qian, X. Luo, Y. Le, and G. Gu, “VulHunter: Toward discovering
vulnerabilities in Android applications,” IEEE Micro, vol. 35, no. 1,
pp. 44–53, Jan./Feb. 2015.

[57] R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie, “WHYPER: Towards
automating risk assessment of mobile applications,” in Proc. USENIX
Secur., 2013, pp. 527–542.

[58] Z. Qu, V. Rastogi, X. Zhang, Y. Chen, T. Zhu, and Z. Chen, “AutoCog:
Measuring the description-to-permission fidelity in Android applica-
tions,” in Proc. CCS, 2014, pp. 1354–1365.

[59] L. Yu, X. Luo, C. Qian, and S. Wang, “Revisiting the description-
to-behavior fidelity in Android applications,” in Proc. SANER, 2016,
pp. 415–426.

[60] L. Yu, X. Luo, C. Qian, S. Wang, and H. K. N. Leung, “Enhancing the
description-to-behavior fidelity in Android apps with privacy policy,”
IEEE Trans. Softw. Eng., to be published.

[61] L. Yu, X. Luo, X. Liu, and T. Zhang, “Can we trust the privacy policies
of Android apps?” in Proc. DSN, 2016, pp. 538–549.

[62] M. C. Grace, Y. Zhou, Z. Wang, and X. Jiang, “Systematic detection of
capability leaks in stock Android smartphones,” in Proc. NDSS, 2012,
p. 19.

[63] G. Tan and J. Croft, “An empirical security study of the native code in
the JDK,” in Proc. USENIX Secur., 2008, pp. 365–378.

[64] M. Sun and G. Tan, “JVM-portable sandboxing of Java’s native
libraries,” in Proc. ESORICS, 2012, pp. 842–858.

[65] B. Lee, B. Wiedermann, M. Hirzel, R. Grimm, and K. S. McKinley,
“Jinn: Synthesizing dynamic bug detectors for foreign language inter-
faces,” in Proc. PLDI, 2010, pp. 36–49.

828 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 3, MARCH 2019

[66] J. Newsome and D. Song, “Dynamic taint analysis for automatic
detection, analysis, and signature generation of exploits on commodity
software,” in Proc. NDSS, 2005, pp. 1–43.

[67] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda, “Panorama:
Capturing system-wide information flow for malware detection and
analysis,” in Proc. CCS, 2007, pp. 116–127.

[68] G. Wondracek, P. Comparetti, C. Kruegel, and E. Kirda, “Automatic
network protocol analysis,” in Proc. NDSS, 2008, pp. 1–18.

[69] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you ever wanted to
know about dynamic taint analysis and forward symbolic execution (but
might have been afraid to ask),” in Proc. IEEE Symp. Secur. Privacy,
May 2010, pp. 317–331.

[70] B. Livshits, “Dynamic taint tracking in managed runtimes,” Microsoft
Res., Tech. Rep. MSR-TR-2012-114, 2012. [Online]. Available:
https://www.microsoft.com/en-us/research/publication/dynamic-taint-
tracking-in-managed-runtimes/

[71] D. Zhu, J. Jung, D. Song, T. Kohno, and D. Wetherall, “TaintEraser:
Protecting sensitive data leaks using application-level taint tracking,”
SIGOPS Oper. Syst. Rev., vol. 45, no. 1, pp. 142–154, 2011.

[72] V. P. Kemerlis, G. Portokalidis, K. Jee, and A. D. Keromytis, “Libdft:
Practical dynamic data flow tracking for commodity systems,” in Proc.
VEE, 2012, pp. 1–12.

[73] V. Haldar, D. Chandra, and M. Franz, “Dynamic taint propagation for
Java,” in Proc. ACSAC, 2005, p. 311.

[74] C. Qian, X. Luo, Y. Shao, and A. T. S. Chan, “On tracking information
flows through JNI in Android applications,” in Proc. IEEE DSN,
Jun. 2014, pp. 180–191.

[75] (2017). Monkeyrunner. [Online]. Available: https://goo.gl/x2JhA1
[76] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An input generation

system for Android apps,” in Proc. FSE, 2013, pp. 224–234.
[77] (2013). AppUse—Android Pentest Platform Unified Standalone Environ-

ment. [Online]. Available: https://appsec-labs.com/AppUse
[78] L. Bordoni, M. Conti, and R. Spolaor, “Mirage: Toward a stealthier and

modular malware analysis sandbox for Android,” in Proc. ESORICS,
2017, pp. 278–296.

[79] ARM Ltd. (2017). Trustzone. [Online]. Available: https://goo.gl/
mvH17K

[80] G. S. Babil, O. Mehani, R. Boreli, and M.-A. Kaafar, “On the effective-
ness of dynamic taint analysis for protecting against private information
leaks on Android-based devices,” in Proc. SECRYPT, 2013, pp. 1–8.

[81] S. Lee, J. Dolby, and S. Ryu, “HybriDroid: Static analysis framework
for Android hybrid applications,” in Proc. ASE, 2016, pp. 250–261.

[82] X. Jin, X. Hu, K. Ying, W. Du, H. Yin, and G. N. Peri, “Code injection
attacks on HTML5-based mobile apps: Characterization, detection and
mitigation,” in Proc. CCS, 2014, pp. 66–77.

[83] Webview. Accessed: 2017. [Online]. Available: https://developer.
android.com/reference/android/webkit/WebView

[84] N. Gok and N. Khanna, Building Hybrid Android Apps With Java
and JavaScript: Applying Native Device APIs (Japplying Native Device
Apis). Newton, MA, USA: O’Reilly Media, 2013.

[85] K. Sen, S. Kalasapur, T. Brutch, and S. Gibbs, “Jalangi: A selective
record-replay and dynamic analysis framework for JavaScript,” in Proc.
ESEC/FSE, 2013, pp. 488–498.

Lei Xue received the Ph.D. degree in computer sci-
ence from The Hong Kong Polytechnic University.
He is currently a Post-Doctoral Research Fellow
with the Department of Computing, The Hong Kong
Polytechnic University. His current research focuses
on network security, mobile security, and network
measurement.

Chenxiong Qian is currently pursuing the Ph.D.
degree with the School of Computer Science, Geor-
gia Tech. He was with The Hong Kong Polytechnic
University as a Research Assistant from 2013 to
2014. His research focuses on system security and
privacy, and using program analysis to solve system
security and privacy problems.

Hao Zhou received the B.S. and M.S. degrees from
the Nanjing University of Posts and Communica-
tions. He is currently pursuing the Ph.D. degree
with the Department of Computing, The Hong Kong
Polytechnic University. He was with PolyU as a
Research Assistant from 2016 to 2018. His current
research focuses on system security, mobile security,
IoT security and software testing.

Xiapu Luo received the Ph.D. degree in computer
science from The Hong Kong Polytechnic Uni-
versity. He was a Post-Doctoral Research Fellow
with the Georgia Institute of Technology. He is
currently an Assistant Professor with the Department
of Computing and an Associate Researcher with the
Shenzhen Research Institute, The Hong Kong Poly-
technic University. His current research focuses on
smartphone security and privacy, network security
and privacy, and Internet measurement.

Yajin Zhou received the Ph.D. degree in com-
puter science from North Carolina State Univer-
sity, Raleigh, NC, USA. He is currently a ZJU
100 Young Professor with the Institute of Cyber
Security Research and the College of Computer
Science and Technology, Zhejiang University, China.
His research mainly focuses on smartphone and sys-
tem security, such as identifying real-world threats
and building practical solutions, mainly in the con-
text of embedded systems (or IoT devices).

Yuru Shao is currently pursuing the Ph.D. degree
with the University of Michigan at Ann Arbor,
Ann Arbor. He was a Research Assistant with The
Hong Kong Polytechnic University from 2013 to
2014. His research generally focuses on network and
system security, mobile security, industrial network
security, cyber-physical systems security, and vul-
nerability discovery and analysis.

Alvin T. S. Chan received the B.Eng. degree (Hons.)
from Leeds University, U.K., and the Ph.D. degree
from the University of New South Wales, Australia.
He had extensive industrial experience as a Research
Scientist with CSIRO, Australia, and as a Pro-
gram Manager with NUS. He joined The Hong Kong
Polytechnic University as an Academic. He is cur-
rently with the Singapore Institute of Technology
and is appointed as the Deputy Cluster Director for
ICT and Program Director for the Digipen Programs.
His research has produced over 120 publications in

international journals and conferences. His research interests primarily focus
on Internet of Things for industry, cyber security for industrial automation
systems, Industry 4.0, machine-to-machine communications, middleware tech-
nologies and software engineering.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

