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Abstract— Smart contracts are full-fledged programs that
run on blockchains (e.g., Ethereum, one of the most popular
blockchains). In Ethereum, gas (in Ether, a cryptographic curren-
cy like Bitcoin) is the execution fee compensating the computing
resources of miners for running smart contracts. However, we
find that under-optimized smart contracts cost more gas than
necessary, and therefore the creators or users will be overcharged.
In this work, we conduct the first investigation on Solidity, the
recommended compiler, and reveal that it fails to optimize gas-
costly programming patterns. In particular, we identify 7 gas-
costly patterns and group them to 2 categories. Then, we propose
and develop GASPER, a new tool for automatically locating gas-
costly patterns by analyzing smart contracts’ bytecodes. The
preliminary results on discovering 3 representative patterns from
4,240 real smart contracts show that 93.5%, 90.1% and 80%
contracts suffer from these 3 patterns, respectively.

I. INTRODUCTION

The success of Bitcoin, a decentralised cryptographic cur-
rency that reached a capitalisation of 10 billions of dollars
since its launch in 2009 [1], has attracted lots of attentions
from both industry and academia to investigate the underlying
technology of cryptocurrencies, the blockchain. One promi-
nent application on blockchains is to execute smart contracts,
which can be considered as full-fledged programs running on
blockchains from the perspective of software engineering.

Ethereum is one of the most popular blockchains where
more than 10 million transactions had occurred [2] . The
term “blockchain” and “smart contract” refer to the Ethereum
blockchain and its smart contracts, respectively, below without
special declaration. A smart contract can be developed in
Solidity (the recommended language), Serpent, or LLL. No
matter which programming language is used, the source of a
smart contract will be complied into bytecodes that can be
executed in the Ethereum Virtual Machine (EVM for short).

Smart contracts run on the machines of miners, who can
earn Ethers (i.e., the cryptographic currency circulated in
Ethereum) by contributing their computing resources. The
creators and users of smart contracts will be charged certain
amount of gas for purchasing the computing resources from
miners. The charge of a transaction equals to the multiplication
of the gas consumed by executing the transaction and the price
of gas (Ether per unit). Moreover, when deploying contracts,
the creators will also be charged of gas, the amount of which
are related to the size of smart contracts in bytecodes.
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We find that under-optimized smart contracts cost more
gas than necessary, and therefore the creators or users will
be overcharged. To save money, developers had better follow
gas-efficient programming patterns. Unfortunately, there is not
such a guideline yet, and it is difficult for developers to identify
gas-costly bytecode and replace them with gas-efficient ones,
because it requires deep understanding of EVM’s instructions,
the gas consumption for different operations, the data locations
accessed by operations, the amount of data read or written
etc. Hence, a compiler that can optimize the bytecode for
minimizing gas consumption is highly desired.

In this paper, we conduct the first investigation on Solidity,
the recommended compiler for Ethereum, and reveal that it
fails to optimize gas-costly programming patterns. More pre-
cisely, we identify 7 gas-costly patterns and divide them into 2
categories: useless-code related patterns, and loop-related pat-
terns. Furthermore, we propose and develop GASPER (short for
GAS-costly Patterns checkER), a new tool for discovering gas-
costly patterns in bytecode automatically. GASPER leverages
symbolic execution and it currently can locate 3 representative
patterns, which cover the two categories. By applying GASPER
to analyze all deployed smart contracts until Nov. 5th, 2016,
we find that 93.5%, 90.1% and 80% smart contracts suffer
from these 3 patterns, respectively. It is worth noting that
although the list of our patterns is by no means of complete,
this research sheds light on this important issue and hopefully
stirs more research on it.

Overall, we make the following contributions:

• To our best knowledge, this is the first investigation
revealing that lots of smart contracts, generated by the
recommended compiler, contain gas-costly bytecodes,
which can be replaced with gas-efficient bytecodes to
save money.

• We propose and develop GASPER, a new tool based on
symbolic execution for automatically discovering gas-
costly patterns in bytecode. The current version covers
3 representative patterns in 2 categories, and is being
extended to support more patterns.

• We apply GASPER to all deployed smart contracts until
Nov. 5th, 2016, and find that 93.5%, 90.1% and 80%
smart contracts suffer from these 3 patterns, respectively.



II. BACKGROUND

Gas is used for purchasing computing resources from miners
since smart contracts run on miners’ machines. Gas can be
considered as money with equivalent value. For example, the
average gas price on Nov. 11, 2016 is 0.000000024334480804
Ether [3], which is roughly equal to 2.5×10−7 US dollars [4].
Note that the gas price and the exchange rate of Ether to US
dollar are determined by the market and keep changing.

Deploying and executing smart contracts cost money. For
instance, an addition operation that sums up the top two items
of the stack takes 3 units of gas, about 7.5×10−7 US dollars.
One may argue that the cost for an addition is so low that
we do not need to optimize it. However, it is worth noting
that real smart contracts consist of lots of operations and
some operations consume much more gas than the addition
operation, as shown in Table I. Moreover, smart contracts
usually provide public methods that can be called unlimited
times by various clients and contracts. Hence, an optimized
smart contract can save obvious gas (i.e., money) than its un-
optimized counterpart due to the scale effect.

TABLE I: Gas cost of different operations, a complete list can
be found in Ethereum’s yellow paper [5]

Operation Gas Description
ADD/SUB 3

Arithmetic operationMUL/DIV 5
ADDMOD/MULMOD 8

AND/OR/XOR 3 Bitwise logic operation
LT/GT/SLT/SGT/EQ 3 Comparison operation

POP 2 Stack operationPUSH/DUP/SWAP 3
MLOAD/MSTORE 3 Memory operation

JUMP 8 Unconditional jump
JUMPI 10 Conditional jump
SLOAD 200 Storage operation
SSTORE 5,000/

20,000
BALANCE 400 Get balance of an account
CREATE 32,000 Create a new account using CREATE

CALL 25,000 Create a new account using CALL

Stack operations (e.g., POP, PUSH), arithmetic operations
(e.g., ADD, SUB), bitwise operations (e.g., OR, XOR), and
comparison operations (e.g., LT/GT) are cheap because being
a stack-based virtual machine, EVM favors such stack-related
operations. Loading a word (i.e., 256 bits) from the memory
(e.g., MLOAD) or saving a word to the memory (e.g., MSTORE)
are also cheap. The term “memory” referred in Ethereum
stands for a special memory area, of which a contract obtains
a freshly cleared instance for each message call. For example,
the data attached in a message call is stored in memory. It
is worth noting that the gas consumption will be multiplied if
many words in memory are read or written. Moreover, memory
can be expanded when accessing a previously untouched
memory location. Every expanded word needs 3 units of gas.

Loading a word from the storage (i.e., SLOAD) or saving a
word to the storage (i.e., SSTORE) are expensive. The term
“storage” referred in Ethereum is a persistent memory area
where any changes to the storage by one call of a contract can
be observed by subsequent calls of that contract. A SSTORE
operation costs 20,000 units of gas if the storage word is set
to non-zero from zero; otherwise, it costs 5,000. It is worth

noting that although the caller of a contract will be refunded
15,000 units of gas if a SSTORE operation sets a non-zero
storage word to zero, the refund will not be committed until
the transaction completes successfully.

EVM has a number of blockchain-specific operations which
are very expensive, such as BALANCE, CREATE and CALL.
Moreover, a conditional jump (i.e, JUMPI) is more expensive
that an unconditional jump (i.e., JUMP). The gas consumption
of each operation is susceptible to change due to the fast
evolving of Ethereum. Roughly speaking, users are charged
proportionally to the consumed computing resources.

III. GAS-COSTLY PROGRAMMING PATTERNS

We identify 7 gas-costly patterns, which can be classified
into two categories: useless-code related patterns and loop-
related patterns. The former introduces additional cost due
to the increased size of bytecode during the deployment and
the removable bytecode in runtime. The latter involves using
expensive operations in the loop. We have validated all these
patterns using the latest Solidity (V 0.4.4) whose optimization
is enabled. More precisely, we feed Solidity the gas-costly
patterns in source code, and then check whether the gas-costly
patterns are converted into gas-efficient ones in the generated
bytecode. The results show that none of these patterns has
been optimized by Solidity. For the ease of illustration, we
present the patterns in source code rather than bytecode.

A. Category 1: Useless-code related Patterns

1  function p1 ( uint x ){

2    if ( x > 5)

3  if ( x*x < 20)

4  XXX }

1  function p2 ( uint x ){

2    if ( x > 5)

3  if ( x > 1)

4  XXX }
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Fig. 1: Pattern 1: dead code, and Pattern 2: opaque predicate
1) Dead code. Fig.1 (Pattern 1) gives an example of

dead code where Line 4 will not be executed because the
predicate “x*x<20” at Line 3 is evaluated to false under all
circumstances. Solidity does not remove Line 3 and 4 from
the generated bytecode and hence wastes money.

2) Opaque predicate. The outcome of an opaque predicate
is known to be true or false without execution. For example,
the predicate “x>1” in Fig.1 (Pattern 2) is an opaque predicate.
Since the predicate at Line 3 is evaluated to true under all
circumstances, it should be removed for saving gas.

B. Category 2: Loop-related Patterns

1  uint sum = 0;

2  function p3 ( uint x ){

3    for ( uint i = 0 ; i < x ; i++)

4  sum += i; }

1  function p4 () returns ( uint ){

2    uint sum = 0;

3    for ( uint i = 1 ; i <= 100 ; i++)

4  sum += i;

5    return sum; }
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Fig. 2: Pattern 3: expensive operations in a loop, and Pattern
4: constant outcome of a loop

1) Expensive operations in a loop. The expensive opera-
tions in a loop are worth attention because they may execute
multiple times in one invocation. Moving the expensive op-
erations out of the loop can save gas. For example, in Fig.2
(Pattern 3), since the variable sum is stored in the storage,
Line 4 involves a SLOAD for loading sum to the stack and a



SSTORE for saving the outcome of the ADD to the storage.
Note that the storage-related operations are very expensive.

An advanced compiler should assign sum to a local variable
(e.g., tmp) that resides in the stack, then add i to tmp inside
the loop, and finally assign tmp to sum after the loop. Such
optimization reduces the storage-related operations from 2x to
just 2, i.e., one SLOAD and one SSTORE.

2) Constant outcome of a loop. In some cases, the outcome
of a loop may be a constant that can be inferred in compilation.
As shown in Fig.2 (Pattern 4), the storage variable sum in p4
equals to 5050 after the loop. Hence, the body of p4 should
be simplified as “return 5050;”.

3) Loop fusion. It combines several loops into one if
possible and thus reduces the size of bytecode. In particular,
it can reduce the amount of operations, such as conditional
jumps and comparison, etc., at the entry points of loops. The
two loops shown in Fig.3 (Pattern 5) can be combined into
one loop, where both m and v get updated.

1  function p5 ( uint x ){

2    uint m = 0;

3    uint v = 0;

4    for ( uint i = 0 ; i < x ; i++)

5      m += i;

6    for ( uint j = 0 ; j < x ; j++)

7      v -= j; }

1  uint x = 1;

2  uint y = 2;

3  function p6 ( uint k ){

4    uint sum = 0;

5    for ( uint i = 1 ; i <= k ; i++)

6      sum = sum + x + y; }
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Fig. 3: Pattern 5: loop fusion, and Pattern 6: repeated compu-
tations in a loop

4) Repeated computations in a loop. In some cases, there
may be expressions that produce the same outcome in each
iteration of a loop. Hence, the gas can be saved by computing
the outcome once and then reusing the value instead of
recomputing it in subsequent iterations, especially, for the
expressions involving expensive operands. For example, in
Fig.3 (Pattern 6), the gas consumption is very high due to
the repeated computations. More precisely, the summation of
two storage words (i.e., “x+y” at Line 6) is quite expensive
because x and y should be loaded into the stack (i.e., SLOAD)
before addition. To save gas, this summation should be finished
before the loop, and then the result is reused within the loop.

1  function p7 ( uint x , uint y ) returns ( uint ){

2    for ( int i = 0 ; i < 100 ; i++)

3      if ( x > 0 )  y+=x;

4    return y; }
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Fig. 4: Pattern 7: Comparison with unilateral outcome in a
loop

5) Comparison with unilateral outcome in a loop. It
means that a comparison is executed in each iteration of a loop
but the result of the comparison is the same even if it cannot
be determined in compilation (i.e., not an opaque predicate).
For instance, in Fig.4, the comparison at Line 3 should be
moved to the place before the loop.
Summary. Adequate optimizations can reduce the cost of con-
tract creators if the size of smart contracts can be reduced (e.g.,
eliminating dead code, removing unnecessary comparisons),
and the cost of contract users if the computations of smart
contracts can be reduced (e.g., moving expensive operations
out of a loop). It is worth noting that the loop-related patterns
will cost more gas with the increase of the loop count.

IV. GASPER

We propose and develop GASPER to automatically discover
gas-costly programming patterns from the bytecode of smart
contracts. GASPER handles bytecode directly without the need
of source code, because only a few (728 until Nov. 29th,
2016) smart contracts open their sources. As an early research
achievement, the current version of GASPER can find all
patterns in category 1 and one representative pattern (i.e.,
expensive operations in a loop) in category 2. The detection
of other patterns is in development.

GASPER conducts symbolic execution on bytecode to cover
all reachable code blocks (a block is a straight-line code se-
quence with no branches in except to the entry and no branches
out except at the exit). Given a smart contract, GASPER first
disassembles its bytecode using disasm provided by Ethereum.
Then, GASPER constructs the Control Flow Graph (CFG). It is
worth noting that the CFG will be improved gradually during
symbolic execution if new control flow transfers are found.
Symbolic execution starts from the root node of the CFG,
and traverses the CFG. If GASPER encounters a conditional
jump, it checks which branches (i.e., true or false) are feasible
by querying the Z3 solver [6]. If both are feasible, GASPER
selects one branch following the depth-first search.

A. Detection of Dead Code

GASPER detects dead code through three steps. First, it logs
the addresses of all executed blocks by symbolic execution.
Then, it collects the addresses of all blocks by scanning the
CFG. Finally, GASPER reports all blocks that are found in the
CFG but not executed by symbolic execution as dead code.

B. Detection of Opaque Predicates

To detect opaque predicates, GASPER executes the smart
contract symbolically, and records the executed branch (i.e.,
true or false) when a conditional jump is encountered. After
that, the conditional jump with one never-executed branch is
regarded as an opaque predicate.

C. Detection of Expensive Operations in a Loop

GASPER detects this pattern through two steps. First,
GASPER looks for loops in the bytecode. Second, it searches
loop bodies for expensive operations. More precisely, GASPER
firstly searches for back edges in the CFG, which indicate
the existence of loops, and then identifies the entry block and
exit block for each loop. Afterwards, using Dijkstra algorithm,
GASPER calculates the distances between each block with the
entry block and exit block, respectively. The distance between
two nodes is the least number of edges from one node to the
other. A block is considered to be in a loop if it is closer
to the exit block than to the entry block. Currently, GASPER
supports detecting 3 expensive operations, including SLOAD,
SSTORE and BALANCE. More operations will be included in
future work.



V. EVALUATION

We have implemented GASPER based on OYENTE [7], and
evaluated it using all smart contracts deployed on Ethereum.
More precisely, we scan all addresses in the blockchain
because each deployed contract must be associated with an
unique address. We find 566,907 addresses till November
5th, 2016, of which 539,617 addresses contain no bytecodes.
Therefore, we download 27,290 contracts’ bytecodes in total.
Moreover, we find that many contracts are exactly the same
(i.e., their bytecodes are identical). After eliminating identi-
cal contracts, 4,669 contracts are left. During experiments,
429 (less than 10%) contracts cannot be examined because
OYENTE crashes due to its internal errors(e.g., Unknown
Instructiondelegatecall, Stack Underflow, Unknown Instruc-
tionextcodesize) or OYENTE runs out of time. Eventually,
4,240 contracts are successfully inspected.
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Fig. 5: Overview of gas-costly patterns: 1, 2, 3 indicate dead
code, opaque predicates, and expensive operations in a loop,
respectively.

The number of smart contracts that have the 3 gas-costly
patterns are illustrated in Fig.5. More than 70% contracts
contain all these patterns, indicating that their bytecodes have
not been properly optimized for reducing gas. Besides, more
than 90% contracts have dead code or opaque predicates.
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Fig. 6: Distribution of dead code blocks and opaque predicates
in smart contracts.

Fig.6 presents the distribution of dead code blocks and
opaque predicates in smart contracts. Each point (a, b) in-
dicates that a smart contracts contain b dead code blocks
or opaque predicates. Note that the contracts without these
two patterns are not counted. The distributions of dead code
blocks and opaque predicates demonstrate similar trends:
51.7% contracts contain more than 20 dead code blocks and
52.6% contracts contain more than 10 opaque predicates.

Fig.7 demonstrates that 69.9%, 78.5% and 21% contracts
have SLOAD, SSTORE and BALANCE operations in a loop,
respectively. Moreover, if a contract has SSTORE operations
in a loop (the percentage is 69.9%), it may contain SLOAD
operations (69.3%) as well. Interestingly, if a contract uses
BALANCE operations in a loop (21%), it likely contains both
SLOAD and SSTORE operations (18.6%).
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Fig. 7: Number of contracts containing expensive operations
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Fig. 8: Distribution of SSTORE and SLOAD within a loop in
smart contracts.

Fig.8 shows that a large number of contracts contain many
expensive operations in a loop. For example, 57.1% and
51.5% of contracts have more than 7 SSTORE and 20 SLOAD
operations in a loop, respectively. Note that contracts without
such expensive operations in a loop are not counted.

As expected, contracts with larger size are likely to
contain more gas-costly patterns. Fig.9 shows the rela-
tionship between the number of SLOAD/SSOTRE and
the size of smart contracts. For example, a contrac-
t, named ARK, which is of 34,767 bytes and deployed
in 0x37b4869e73B7cE1284D6502B01aC81d500b50237, has
304 SLOAD and 168 SSTORE operations in loops.
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193  function indexOf ( string _haystack , string _needle ) internal returns ( int )

194  {

195    bytes memory h = bytes ( _haystack );

196    bytes memory n = bytes ( _needle );

197    if ( h . length < 1 || n . length < 1 || ( n . length > h . length ))

198      return - 1;

199    else if ( h . length > ( 2 ** 128 - 1 ))

200      return - 1 ;

  ...

Fig. 10: Gas-costly code in FirstContract

A. Real Case 1: FirstContract

FirstContract is open source and deployed at the ad-
dress 0x68C7147205A8bEB9D99fD19908b93462CdFfC60d.
GASPER discovers dead code at Line 200 (i.e., pattern 1) and
an opaque predicate (i.e., pattern 2) at Line 199, as shown in
Fig.10. The function indexof takes in two strings, haystack
and needle. At Line 195, haystack is converted into a set
of bytes, h. At Line 199, the length of h is compared to
2 ∗ ∗128 − 1. However, the predicate will never be evalu-
ated to true because “∗∗” stands for exponential arithmetic.
Consequently, the code at Line 200 cannot be executed.

B. Real Case 2: Ballot

29  Proposal [] public proposals;

   ...

57  function winningProposal () constant returns ( uint8 winningProposal){

58    uint256 winningVoteCount = 0 ;

59    for ( uint8 proposal = 0 ; proposal < proposals . length ; proposal ++)

   ...

Fig. 11: Gas-costly code in Ballot

Ballot is also open source and deployed at the address
0x5A4964bb5FDd3CE646bB6AA020704F7D4db79302.
GASPER finds a SLOAD operation in a loop and it can be
moved outside the loop, as shown in Fig.11.

Since the array proposals (defined Line 29) is in the storage,
getting access to its length (i.e., proposals.length at Line
59) involves the SLOAD operation. Moreover, the number of
executing SLOAD is proposals.length, because the length of
proposals is accessed in each iteration of the loop. This costly
code can be optimized by assigning proposals.length to a
stack variable, and then using the stack variable to do the
comparison with proposal at Line 59. After optimization, the
number of using SLOAD can be reduced to only one.

VI. RELATED WORK

There are a few studies on blockchain and smart contracts,
but none of them investigates the gas consumption from the
same viewpoint as ours. Luu et al. develop OYENTE [7],
a novel symbolic execution based tool, to discover security
bugs in Ethereum smart contracts. Bhargavan et al. use formal
verification to analyze smart contracts (e.g., whether contracts
check the return value of a send operation because send may
fail) [8], [9]. HAWK [10] is a decentralized smart contract
system enabling developers to write privacy-reserved smart
contracts. Juels et al. find that smart contracts can facilitate
crimes [11] and show how criminal smart contracts can facili-
tate leakage of confidential information, theft of cryptographic
keys, and various real world crimes. TOWN CRIER [12] aims

to provide trustworthy data to smart contracts because many
applications of smart contracts need data from outside the
blockchain. Atzei et al. survey a series of attacks which
exploit the vulnerabilities of contracts to steal or tamper the
assets [13].

VII. CONCLUSION AND FUTURE WORKS

We perform the first investigation to expose that lots of
smart contracts, generated by the recommended compiler
Solidity, contain gas-costly bytecodes, which can be replaced
with gas-efficient bytecodes to save money. In particular,
we identify 7 gas-costly patterns belonging to 2 categories.
Moreover, we propose and develop GASPER that leverages
symbolic execution to automatically discover 3 representative
gas-costly patterns in bytecode. By applying GASPER to all
deployed smart contracts until Nov. 5th, 2016, we find that
93.5%, 90.1% and 80% smart contracts suffer from these
3 patterns, respectively. In future work, we will extend this
research from the following aspects: (1) identifying more gas-
costly patterns and the corresponding gas-efficient patterns; (2)
extending GASPER to cover all these patterns; (3) improving
compilers to produce gas-efficient bytecode.
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