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ABSTRACT

Being a new kind of software leveraging blockchain to execute real
contracts, smart contracts are in great demand due to many advan-
tages. Ethereum is the largest blockchain platform that supports
smart contracts by running them in its virtual machine. To ensure
that a smart contract will terminate eventually and prevent abuse
of resources, Ethereum charges the developers for deploying smart
contracts and the users for executing smart contracts. Although our
previous work shows that under-optimized smart contracts may
cost more money than necessary, it just lists 7 anti-patterns and the
detection method for 3 of them. In this paper, we conduct the first
in-depth investigation on such under-optimized smart contracts.
We first identify 24 anti-patterns from the execution traces of real
smart contracts. Then, we design and develop GasReducer, the
first tool to automatically detect all these anti-patterns from the
bytecode of smart contracts and replace them with efficient code
through bytecode-to-bytecode optimization. Using GasReducer to
analyze all smart contracts and their execution traces, we detect
9,490,768 and 557,565,754 anti-pattern instances in deploying and
invoking smart contracts, respectively.
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1 INTRODUCTION

Leveraging blockchain techniques, a smart contract is an autonomous

computer program, which, once started, can execute automatically
and mandatorily according to the program logic defined before-
hand [9]. Due to many unique advantages (e.g., automatic execution
in deterministic manner, without trusted intermediaries, highly re-
sistant to forgery, etc.), smart contracts have the power to reshape a
number of industries, in which retail banking, insurance, financial
exchange, and content platforms are the most impacted [7].
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Ethereum is the largest blockchain supporting smart contracts,
and has already 599,959 deployed smart contracts as of June, 2017
(https://etherscan.io/). Smart contracts are typically developed in
a high-level language (e.g., Solidity) and then compiled into the
bytecode form, dubbed EVM bytecode [9]. Since every node of
Ethereum maintains the same and complete copy of the blockchain,
after a smart contract is deployed, all nodes will have a copy of it in
their disk space. Moreover, when a user invokes a smart contract
by sending a transaction, all nodes will execute it in their Ethereum
Virtual Machines (EVM) and communicate the execution result
for achieving consensus, and thus the computing resources on all
nodes will be consumed. Therefore, to ensure that a smart contract
will terminate eventually and prevent abuse of resources, Ethereum
introduces the gas mechanism that charges the developers for de-
ploying smart contracts and the users of smart contracts for the
execution of every EVM operation. The execution fee is computed
by gas_price × gas_cost [9]. gas_price is the monetary value of one
unit of gas, which is determined by the market. gas_cost is the
amount of gas consumed by all executed operations, and the gas
required by individual EVM operation is defined in [9]. Besides,
the developers of smart contracts will also be charged[5] since the
deployment of smart contracts consumes resources (e.g., disk), and
the gas needed for deployment is proportional to the size of smart
contracts in bytecode.

Our previous work shows that under-optimized smart contracts
may cost more money than necessary [4]. However, it just lists
7 anti-patterns and the detection method for 3 of them. In this
paper, we conduct the first in-depth investigation on such smart
contracts. We first identify 24 anti-patterns from the execution
traces of real smart contracts (Section 2). An anti-pattern denotes
an EVM operation sequence that can be replaced with another one
that has the same semantics but needs less gas. It is non-trivial to
identify such anti-patterns and the corresponding efficient code
because of the huge number of possible EVM operation sequences.
Then, we design and develop GasReducer (Section 3), the first tool
to automatically detect all these anti-patterns from the bytecode
of smart contracts and replace them with efficient code through
bytecode-to-bytecode optimization. To keep the optimized smart
contract valid, we also address the challenge of recomputing the
targets of control flow transfers.
Using GasReducer to analyze all deployed smart contracts (i.e.,

599,959) as of 10 June, 2017, we detect 9,490,768 instances of anti-
patterns, whichwaste 2,040,892,224 units of gas, for deploying smart
contracts. Furthermore, by reproducing and inspecting all execution
traces (i.e., 9,250,400) of these deployed smart contracts, we discover
557,565,754 instances of anti-patterns, which waste 7,185,048,532
units of gas, for invoking smart contracts. We also examine whether
existing compiler optimizations can eliminate these anti-patterns,
and find that 506 out of the 515 open-source smart contracts after
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compiler optimization still contain 15,205 instances of anti-patterns.
This research sheds light on the development and optimization of
smart contracts.
The major contributions of this work are as follows.

(1)We identify 24 anti-patterns, which waste gas in deploying and
invoking smart contracts, and determine the corresponding effi-
cient code for replacing the anti-pattern instances.
(2)We design and develop GasReducer, the first tool for automat-
ically detecting these anti-patterns from the bytecode of smart
contracts and replacing them with efficient code. GasReducer will
be released after paper publication.
(3)We conduct experiments on all deployed smart contracts and
their execution traces, and detect lots of anti-pattern instances for
deploying and invoking smart contracts.
The remainder of this paper is organized as follows. Section 2

introduces anti-patterns. Section 3 details the design of GasReducer.
Section 4 presents experimental results. Section 5 reviews related
work. Section 6 concludes with future plan.

Figure 1: Identify P1 from an execution trace.

2 ANTI-PATTERNS

2.1 Definition

The state of EVM is defined as a tuple σ = {д,pc,m, s, st} for de-
noting the remaining gas, program counter, memory, runtime stack
(EVM is a stack-based VM), and storage. The memory is associating
with each transaction that provides parameters to a smart contract
and stores return values of the invoked functions [9]. The storage
is a permanent space, like a database, to store information (e.g., the
balance of an account, bytecode of smart contracts). The execution
of an operation OP can be defined as applying a function ξ to an
EVM state σ and transferring it to another state σ ′. σ ′ = ξ (OP,σ ),
where д′ = ξ (OP,д), ..., st ′ = ξ (OP, st).

In a smart contract, an operation sequence OS1 is an anti-pattern

instance if there exists another operation sequence OS2 that is
semantically equivalent with OS1 but consumes less gas. Given the
current state σ , if the state (except the field д) after executing OS1 is
the same as that after executing OS2, OS1 and OS2 are semantically
equivalent. Let дd1, дe1, дd2 and дe2 denote the amount of gas
required for deploying and executing OS1 and OS2, respectively.
Then, OS2 ismore efficient thanOS1 if (дd1−дd2)+(дe1−дe2)×T > 0,
where T denotes the expected times of invoking the host smart
contract. Note that a smart contract can only be deployed once but
will be executed many times.

2.2 Discovering Anti-Patterns

We identify the anti-patterns by looking for their instances from the
execution traces of deployed smart contracts. An execution trace is
an ordered sequence of executed EVM operations. We first collect
N execution operations from the trace (N=10,000 by default), and
then employ a sliding window to generate operation sequences. The
window size (i.e., the number of operations in a window) ranges
from 1 to 5 in this study. Consequently, 286,647 different operation
sequences in total are collected. By manually scrutinizing all of

those operation sequences, we discover lots of instances of anti-
patterns and generalize them into 24 anti-patterns.
A simple way to get execution traces is to invoke the API, de-

bug.traceTransaction(txid) provided by Ethereum. It will return the
execution trace triggered by the transaction whose hash value is
txid. However, this API is very slow because all transactions hap-
pened before txid will be replayed to construct the exact state for
replaying the transaction txid, and hence this API is not suitable
for batch processing. To address this issue, we propose a new ap-
proach that records the execution traces during synchronization
by instrumenting EVM. Note that synchronization is necessary
for the blockchain to ensure that all nodes are in the same state.
More precisely, we insert logging code into each handler in EVM
for interpreting the corresponding EVM operation (e.g., opAdd()
is responsible for executing the addition operation). Moreover, to
identify different transactions, we insert logging code into Apply-
Transaction() in /core/state_processor.go, which is the entry point
of applying individual transactions.

Fig. 1 illustrates how to extract an anti-pattern from an execution
trace. The trace contains 347 EVM operations and we show a frag-
ment with 5 operations for the ease of presentation. The content
before ‘|’ indicates EVM operations, and the numbers after ‘|’ are
the gas available after the execution of those operations. Hence,
the gas for executing an operation can be computed by subtraction
(e.g., the gas cost of add is 3 = 276, 360 − 276, 357). Fig. 1 also
shows the operation sequences extracted from the execution trace
by sliding window. Different sequences are separated by ‘;’, and we
find an instance of anti-pattern (i.e., P1, underlined, explained later)
by manually checking all 15 operation sequences.

2.3 Selected Anti-Patterns

We only present 5 anti-patterns due to page limit, and give a com-
plete list in https://goo.gl/wJpAZ6. The operation sequence before
→ denotes an anti-pattern and the sequence after→ is the corre-
sponding efficient code after optimization (delete means the anti-
pattern instance should be removed). Currently, the consistency of
anti-patterns and their corresponding efficient code is examined
manually. We will explore automated approaches (e.g., symbolic
execution) in future.
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Figure 2: Workflow of GasReducer

P1— {swap(X), swap(X)}→ delete, 1 ≤ X ≤ 16. () indicates a number
inside instead of a part of an operation. swap(X) exchanges the 1st
and the (X + 1)th stack items. The two consecutive swap(X)s can be
removed since the execution of them has no effect. The anti-pattern
accounts for two bytes (e.g., the bytecode of swap1 is 0x90 [9]) and
its deployment wastes 136 units of gas (every non-zero bytecode
requires 68 units [9]). The execution of this pattern wastes 6 units
of gas because the execution of a swap(X) needs 3 units [9].
P2 — {M consecutive jumpdests}→ {jumpdest}, M ≥ 2. jumpdest

marks a valid jump target (i.e., any valid jump operation must jump
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to a jumpdest) [9]. M consecutive jumpdests can be replaced with
one because they point to the same operation (i.e., the operation
after the final jumpdest). The deployment and invocation of this
anti-pattern waste 68 × (M − 1) units and (M − 1) units of gas (the
execution of a jumpdest needs 1 unit of gas [9]), respectively.
P3 — {OP, pop}→ {pop}, OP ∈ {iszero, not, balance, calldataload,
extcodesize, blockhash, mload, sload}. OP consumes the top stack
item, produces an outcome, and pushes the outcome on stack [9].
pop removes the top stack item. This anti-pattern is semantically
equivalent with one pop because the outcome of OP is immediately
removed by pop. Due to page limit, we cannot explain the seman-
tics of every EVM operation, and interested readers can refer to
Ethereum’s yellow paper [9]. The anti-pattern wastes 68 units of
gas in deployment, and the amount of gas wasted by executing the
anti-pattern instance depends on gas_cost of OP.
P4 — {swap1, swap(X), OP, dup(X), OP}→ {dup2, swap(X+1), OP,
OP}, 2 ≤ X ≤ 15, OP ∈ {add, mul, and, or, xor}. dup(X) duplicates
Xth stack item on stack top. Let the first three stack items be i0, i1
and i2, X be 2, and OP be add. After executing this anti-pattern, the
number of stack items decreases by 1 and the top two items become
i0 + i1 + i2, i1. Hence, one swap can be removed since OP(e.g. add)
is commutative. The anti-pattern wastes 68 units and 3 units of gas
for deployment and execution of a swap, respectively.
P5— {OP, stop}→ {stop}, OP can be any operation except jumpdest,
jump, jumpi and all operations that change storage. stop halts the
execution of the smart contract and then stack and memory are
cleared [9]. For example, let OP be add, after the execution of stop,
the outcome of add on stack will be discarded, and hence add can be
removed. On the other hand, those operations involved in control
flow transfer or changing the permanent storage space cannot be
removed.

3 GASREDUCER

3.1 Workflow

We develop GasReducer to automatically detect all 24 anti-patterns
in the bytecode of smart contracts and conduct bytecode-to-bytecode

optimization by replacing the gas-costly code with efficient code.
GasReducer (Fig. 2) takes in the bytecode of a smart contract and
outputs the optimized bytecode. More precisely, GasReducer firstly
disassembles the bytecode into assembly code (e.g., add), which
is readable by human using the disasm command provided by
Ethereum (step 1). Then, it conducts anti-pattern detection on the
assembly code (step 2). If found, a report containing the location of
each discovered instance of anti-pattern and the corresponding ef-
ficient code will be produced. Otherwise, the assembly code will be
assembled into bytecode using the asm command (step 3). Leverag-
ing the report, GasReducer replaces the instances of anti-patterns
with efficient code (step 4) and then reconstructs the assembly
code (step 5, Section 3.2). GasReducer iterates the detection and
optimization until no anti-patterns can be found in the assembly
code.

3.2 Reconstruction of Assembly Code

After replacing gas-costly code with efficient code, the structure
of assembly code may be broken. Specifically, Ethereum’s protocol
specifies that the jump target of a control flow transfer (e.g., jump)
should be determined in compilation and a jumpdest should be

Table 1: Experimental results

# contracts/traces # instances wasted disk (byte) wasted gas

deploy 386,906 9,490,768 32,426,256 2,040,892,224

invoke 5,663,971 557,565,754 / 7,185,048,532

placed in the jump target [9]. The replacement procedure may cause
the jump operation to point to a wrong position, leading to runtime
exceptions when executing the optimized smart contract.

GasReducer reconstructs the assembly code by three steps. First,
it computes the location of every jumpdest in the assembly code
after optimization by searching for jumpdest according to the report.
Afterwards, GasReducer associates a jump operation (e.g., jumpi)
with its corresponding jumpdest. In most cases, a jump operation
is immediately preceded by a push operation whose operand is the
location of jumpdest. The association can be identified by matching
the operand of push with the location of jumpdest. However, the
matching approach does not always work because the jump target
can be computed by a sequence of operations.
To tackle the issue, our approach uses emulated execution to

find the association. Specifically, we execute EVM operations in an
emulated environment until the jump operation, and then get the
location of jump target on stack, because right before executing a
jump, the location of its jump target should be stored on stack [9].
Note that it is enough to just emulate all stack operations (e.g.,
push1), arithmetic operations (e.g., add), bitwise operations (e.g.,
and) and comparison operations (e.g., iszero). Finally, we replace the
sequence of operations that set the jump target with a push(X), 1 ≤
X ≤ 32. The operand of that push(X) is obtained through emulated
execution.

4 EXPERIMENTS

We conduct experiments to answer three research questions. RQ1:
how many units of gas are wasted in deploying smart contracts?
RQ2: how many units of gas are wasted in using smart contracts?
RQ3: can existing compiler optimizations eliminate all anti-patterns?

To investigate the gas wasted in deployment, we need to obtain
the bytecode of smart contracts. Since all smart contracts are stored
in the blockchain and Ethereum provides the API (i.e., getCode()) to
download bytecode, we use this API to download all (i.e., 599,959)
deployed smart contracts as of 10 June, 2017. Since 145,907 smart
contracts have no code (i.e., they have been removed from the
blockchain), GasReducer processes the remaining 454,052 smart
contracts. To examine the gas wasted in using smart contracts, we
need to identify anti-pattern instances in the historical executions
of smart contracts. It is non-trivial to obtain historical executions
since they are not stored in the blockchain. We tackle this issue
by instrumenting EVM to record all execution traces (detailed in
Section 2). Consequently, we obtain all (i.e., 9,250,400) execution
traces from the launch of Ethereum to 10 June, 2017 and adapt
GasReducer to analyze them.

Figure 3: Amount of wasted gas
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We have noticed that a proportion of smart contracts are not
optimized (perhaps due to the ignorance of developers or the con-
sideration of program stability), even if they have opportunities to
be optimized during compiling. This observation does not offset the
value of our empirical study because the deployed smart contracts
cannot be modified due to the immutability of the blockchain. Table
1 lists the number of smart contracts or execution traces containing
anti-patterns (column 2), the number of discovered anti-pattern
instances (column 3), the size of disk space wasted to store under-
optimized smart contracts (column 4), and the amount of wasted
gas (column 5) in two scenarios including the deployment and the
execution of smart contracts if applicable. These results empower
us to answer RQ1 and RQ2: the deployment and invocation of smart

contracts waste 2,040,892,224 and 7,185,048,532 units of gas. It is worth
noting that the amount of wasted gas reported in the paper is the
lower bound because the anti-patterns identified by us are by no
means complete.
Fig. 3 shows the wasted gas detected in the execution traces of

every week. We observe a steadily increasing trend (y-axis is in
log scale) except four consecutive weeks (circled, will be explained
later) as time goes on, indicating that users waste more gas with
the increasing popularity of Ethereum. By checking the execution
traces in the abnormal four consecutive weeks, GasReducer dis-
covers 93,637,713 sequences of {extcodesize, pop} and 8,207,970
sequences of {balance, pop}. These sequences match P3, and can be
replaced with a single pop. It turns out that our analysis result is
accordant with the report about the DoS attacks aiming to exhaust
the computing resources of Ethereum’s nodes by repeatedly execut-
ing extcodesize, balance etc. [8]. More precisely, attackers exploit
the fact that the two operations are resource-consuming but set low
gas_cost [8]. Interestingly, our bytecode-to-bytecode optimization
can prevent DoS attacks by replacing those resource-consuming
sequences with a cheap pop.

Figure 4: Number of instances in smart contracts

We further examine the effectiveness of optimizations in most re-
cent and recommended compiler (i.e., Solidity 0.4.17) for smart con-
tracts on removing anti-pattern instances. We download the source
code of smart contracts from Etherscan (https://etherscan.io/), and
compile them using Solidity 0.4.17 with optimization turned on. By
applying GasReducer to the compiled smart contracts, we found
that 506 out of 515 compiled smart contracts still have 15,205 in-
stances of anti-patterns. After processing by GasReducer, 1,688,560
units of gas are saved. Each point (x , y) in Fig. 4 indicates that there
are y smart contracts containing no more than x anti-patterns in-
stances. Hence, the answer to RQ3 is: existing compiler optimizations

cannot eliminate all anti-patterns.

5 RELATEDWORK

We proposed GASPER in [4], which lists 7 anti-patterns and de-
tects 3 of them. There are significant differences between it and
GasReducer. First, the anti-patterns identified in this paper are
bytecode-level operation sequenceswhereas the anti-patterns found
in [4] are high-level structures (e.g., dead code). Moreover, we deter-
mine 24 anti-patterns whereas only 7 anti-patterns are listed in [4].
Third, GasReducer can detect 24 anti-patterns and remedy them
whereas GASPER only detects 3 anti-patterns. Third, we quantify the
gas wasted for deploying and executing smart contracts. Although
there are studies on low-level anti-patterns [2] and approaches to
derive anti-patterns automatically [1], they cannot be applied to
our work directly for two reasons. First, they focus on accelerating
execution instead of saving gas, and hence their anti-patterns are
not proper to smart contracts. Second, since low-level anti-patterns
are architecture-dependent, considerable efforts are needed to iden-
tify anti-patterns for EVM bytecode. Formal methods were used to
check the properties of smart contracts [3]. OYENTE is a symbolic
executor to discover security bugs in smart contracts [6].

6 CONCLUSION

We conduct the first in-depth investigation into under-optimized
smart contracts by identifying 24 anti-patterns and developing
GasReducer to automatically detect these anti-patterns from the
bytecode of smart contracts and remedy them. Applying GasReducer
to all deployed smart contracts and their execution traces, we detect
lots of anti-pattern instances. This study could foster more research
on the smart contracts, such as new development and optimization
techniques for developers, new algorithms to drive all anti-patterns
and remove them from smart contracts.
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