
0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.2989002, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 1

Defining Smart Contract Defects on Ethereum
Jiachi Chen, Xin Xia, David Lo, John Grundy, Xiapu Luo and Ting Chen

Abstract—Smart contracts are programs running on a blockchain. They are immutable to change, and hence can not be patched for
bugs once deployed. Thus it is critical to ensure they are bug-free and well-designed before deployment. A Contract defect is an error,
flaw or fault in a smart contract that causes it to produce an incorrect or unexpected result, or to behave in unintended ways. The
detection of contract defects is a method to avoid potential bugs and improve the design of existing code. Since smart contracts contain
numerous distinctive features, such as the gas system. decentralized, it is important to find smart contract specified defects. To fill this
gap, we collected smart-contract-related posts from Ethereum StackExchange, as well as real-world smart contracts. We manually
analyzed these posts and contracts; using them to define 20 kinds of contract defects. We categorized them into indicating potential
security, availability, performance, maintainability and reusability problems. To validate if practitioners consider these contract as
harmful, we created an online survey and received 138 responses from 32 different countries. Feedback showed these contract defects
are harmful and removing them would improve the quality and robustness of smart contracts. We manually identified our defined
contract defects in 587 real world smart contract and publicly released our dataset. Finally, we summarized 5 impacts caused by
contract defects. These help developers better understand the symptoms of the defects and removal priority.

Index Terms—Empirical Study, Smart Contracts, Ethereum, Contract Defect

F

1 INTRODUCTION

The considerable success of decentralized cryptocurrencies has
attracted great attention from both industry and academia. Bit-
coin [1] and Ethereum [2], [3] are the two most popular cryp-
tocurrencies whose global market cap reached $162 billion by
April 2018 [4]. A Blockchain is the underlying technology of
cryptocurrencies, which runs a consensus protocol to maintain a
shared ledger to secure the data on the blockchain. Both Bitcoin
and Ethereum allow users to encode rules or scripts for processing
transactions. However, scripts on Bitcoin are not Turing-complete,
which restrict the scenarios of its usage. Unlike Bitcoin, Ethereum
provides a more advanced technology named Smart Contracts.

Smart contracts are Turing-complete programs that run on
the blockchain, in which consensus protocol ensures their correct
execution [2]. With the assistance of smart contracts, developers
can apply blockchain techniques to different fields like gaming
and finance. When developers deploy smart contracts to Ethereum,
the source code of contracts will be compiled into bytecode
and reside on the blockchain. Once a smart contract is created,
it is identified by a 160-bit hexadecimal address, and anyone
can invoke this smart contract by sending transactions to the
corresponding contract address. Ethereum uses Ethereum Virtual
Machine (EVM) to execute smart contracts and transaction are
stored on its blockchain.

• Jiachi Chen, Xin Xia and John Grundy are with the Faculty of Information
Technology, Monash University, Melbourne, Australia.
E-mail: {Jiachi.Chen, Xin.Xia, John.Grundy}@monash.edu

• David Lo is with the School of Information Systems, Singapore Manage-
ment University, Singapore.
E-mail: davidlo@smu.edu.sg

• Xiapu Luo is with the Department of Computing, The Hong Kong Poly-
technic University, Hong Kong.
E-mail: csxluo@comp.polyu.edu.hk

• Ting Chen is with the School of Computer Science and Engineering,
University of Electronic Science and Technology of China, China.
E-mail: brokendragon@uestc.edu.cn

• Xin Xia is the corresponding author.

Manuscript received ; revised

A blockchain ensures that all data on it is immutable, i.e.,
cannot be modified, which means that smart contracts cannot be
patched when bugs are detected or feature additions are desired.
The only way to remove a smart contract from blockchain is
by adding a selfdestruct [5] function in their code. Even worse,
smart contracts on Ethereum operate on a permission-less network.
Arbitrary developers, including attackers, can call the methods to
execute the contracts. For example, the famous DAO attack [6]
made the DAO (Decentralized Autonomous Organization) lose 3.6
million Ethers ($150/Ether on Feb 2019), which then caused a
controversial hard fork [7], [8] of Ethereum.

It is thus critical to ensure that smart contracts are bug-
free and well-designed before deploying them to the blockchain.
In software engineering, a software defect is an error, flaw or
fault in a computer program or system that causes it to produce
an incorrect or unexpected result, or to behave in unintended
ways [9], [10]. Contract defects are related to not only security
issues but also design flaws which might slow down development
or increase the risk of bugs or failures in the future. Detecting and
removing contract defects helps increase software robustness and
enhance development efficiency [11], [12]. Since the revolutionary
changes of smart contracts compared to traditional softwares, e.g.,
the gas system, decentralized features, smart contracts contain
many specific defects.

In this paper, we conduct an empirical study on defining smart
contracts defects on Ethereum platform, the most popular decen-
tralized platform that runs smart contracts. Please note that some
previous works [13]–[15] focus on improving the quality of smart
contracts from the security aspect. However, this is the first paper
that aims to provide a systematic study of contract defects from
five aspects: security, availability, performance, maintainability
and reusability. These previous works were not comprehensive
and did not validate whether practitioners consider these contract
defects as harmful. To address these limitations, we conducted our
results from 17,128 Ethereum.StackExchange1 posts and validated

1. https://ethereum.stackexchange.com/

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on August 12,2020 at 13:44:08 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.2989002, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 2

it by an online survey. To help developers better understand the
symptoms and distribution of smart contract defects, we manually
labeled a dataset and released it publicly to help further study. In
this paper, we address the following key research questions:
RQ1: What are the smart contract defects in Ethereum?

We identified and defined 20 smart contract defects from
StackExchange posts and real-world smart contracts. These 20
contract defects are considered from security, availability, per-
formance, maintainability and reusability aspects. By removing
the defined defects from the contracts, it is likely to improve the
quality and robustness of the programs.
RQ2: How do practitioners perceive the contract defects we
identify?

To validate the acceptance of our newly defined smart contract
defects, we conducted an online survey and received 138 responses
and 84 comments from developers in 32 countries. The options in
the survey are from ’Very important’ to ’Very unimportant’ and
we give each option a score from 5 to 1, respectively. The average
score of each contract defect is 4.22. The feedbacks and comments
show that developers believe removing the defined contract defects
can improve the quality and robustness of smart contracts.
RQ3: What are the distributions and impacts of the defects in
real-world smart contracts?

We manually labeled 587 smart contracts and found that more
than 99% of smart contracts contain at least one of our defined
defects. We then summarized 5 impacts that can help researchers
and developers better understand the symptoms of these contract
defects.

The main contributions of this paper are:

• We define 20 contract defects for smart contracts considering
five aspects: security, availability, performance, maintain-
ability and reusability. We list symptoms and give a code
example of each contract defects, which can help developers
better understand the defined contract defects. To help further
researches, we also give possible solution and possible tools
for the contract defects.

• We manually identify whether the defined 20 defects exist in
real-life smart contracts. Our dataset2 contains a collection
of 587 smart contracts, which can assist future studies on
smart contract analysis and testing. Also, we analyze the
impacts of the defined contract defects and summarize 5
common impacts. These impacts can help developers decide
the priority of defects removal.

• Our work is the first empirical study on contract defects for
smart contracts. We aim to identify their importance, and
gather inputs from practitioners. This work is a requirement
engineering step for a practical contract defects detection
tool, which is an important first step that can lead to the
development of practical and impactful tools to practitioners.

The remainder of this paper is organized as follows. In
Section 2, we provide background knowledge of smart contracts.
In Sections 3-5, we present the answers to the three research
questions, respectively. We discuss the implications, and challenge
in automatic contract defects detection in Section 6. In Section 7,
we introduce threats to validity. Finally, we elaborate the related
work in Section 8, and conclude the whole study and mention
future work in Section 8.

2. The dataset can be found at https://github.com/Jiachi-Chen/TSE-
ContractDefects

2 BACKGROUND

In this section, we briefly introduce background knowledge about
smart contracts as well as the Solidity programming language for
smart contract definition.

2.1 Smart Contracts - A Decentralized Program

A smart contract is “a computerized transaction protocol that exe-
cutes the terms of contract” [16]. Their bytecode and transactions
are all stored on the blockchain and visible to all users. Since
Ethereum is an add-only distributed ledger, once smart contracts
are deployed to a blockchain, they are immutable to be modified
even when bugs are detected. Once a smart contract is created, it is
identified by a unique 160-bit hexadecimal string referred to as its
contact address. The Ethereum Virtual Machine (EVM) is used to
run smart contracts. The executions of smart contracts depend on
their code. For example, if a contract does not contain functions
that can transfer Ethers, even the creator can not withdraw the
Ethers. Once smart contracts are deployed, they will exist as
long as the whole network exists unless they execute selfdestruct
function [5]. selfdestruct is a function that if it is executed, the
contract will disappear and its balance will transfer to a specific
address. In this paper, we describe smart contracts developed
using Solidity [5], the most popular smart contract programming
language in Ethereum.

2.2 Features of Smart Contracts

The Gas System. In Ethereum, miners run smart contracts on
their machines. As compensation for miners who contribute their
computing resources, the creators and users of smart contracts will
pay a certain amount of Ethers to the miners. The Ethers that are
paid to miners are computed by: gas cost * gas price. Gas cost
depends on the computational resource the transaction will take
and gas price is offered by the transaction creators. The minimum
unit of gas price is Wei (1 Ether = 1018 Wei). The miners have the
right to choose which transaction can be executed and broadcasted
to the other nodes on the blockchain [3]. Therefore, if the gas price
is too low, the transactions may not be executed. To limit the gas
cost, when a user sends a transaction to invoke a contract, there
will be a limit (Gas Limit) that determines the maximum gas cost.
If the gas cost exceeds the Gas Limit, the execution is terminated
with an exception often referred to as out-of-gas error.
Data location. In smart contracts, data can be stored in storage,
memory or calldata [5]. storage is a persistent memory area to
store data. For each storage variable, EVM will assign a storage
slot ID to identify it. Writing and reading storage variable is
the most expensive operation as compared with reading from the
other two locations. The second memory area is named memory.
The data of the memory variables will be released after their life
cycle finished. Writing and reading to memory is cheaper than
storage. Calldata is only valid for parameters of external contract
functions. Reading data from the Calldata is much cheaper than
memory or storage.

2.3 Solidity

Solidity is the most popular programming language that is used
to program smart contracts on the Ethereum platform. In this
subsection, we give a basic overview of Solidity programming
as well as a Solidity example.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on August 12,2020 at 13:44:08 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.2989002, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 3

Fallback Function. The fallback function [5] is the only unnamed
function in Solidity programming. This function does not have
arguments or return values. It is only executed when an error
function call happens. For example, a user calls function “δ” but
the callee contract does not contain this function. The fallback
function will be executed to handle the error. Also, if a fallback
function is marked by payable3, e.g., line 13 in listing 1, it will be
executed automatically when the contract receives Ethers.

1 pragma s o l i d i t y ˆ 0 . 4 . 2 5 ;
2 c o n t r a c t Gamble{
3 a d d r e s s owner ;
4 a d d r e s s [] members ;
5 a d d r e s s [] p a r t i c i p a t o r s ;
6 u i n t p a r t i c i p a t o r I D = 0 ;
7 m o d i f i e r onlyOwner { /∗ T r a n s a c t i o n S t a t e Dependency

∗ /
8 r e q u i r e (t x . o r i g i n ==owner) ;
9 ; }

10 f u n c t i o n c o n s t r u c t o r () { / / c o n s t r u c t o r f u n c t i o n
11 owner = / / t h i s i s t h e a d d r e s s o f t x . o r i g i n
12 0xdCad . . . d1D3AD ; /∗Hard Code Address ∗ /}
13 f u n c t i o n () p a y a b l e { / / Execu ted when r e c e i v i n g

E t h e r s
14 R e c e i v e E t h () ;}
15 f u n c t i o n R e c e i v e E t h () p a y a b l e {
16 i f (msg . v a l u e !=1 e t h e r) {
17 r e v e r t () ; } / / msg . v a l u e i s t h e number o f

r e c e i v e d ETHs
18 members . push (msg . s e n d e r) ;
19 p a r t i c i p a t o r s [p a r t i c i p a t o r I D] = msg . s e n d e r ;
20 p a r t i c i p a t o r I D ++;
21 i f (t h i s . b a l a n c e ==10 e t h e r) { /∗ S t r i c t Ba l ance

E q u a l i t y ∗ /
22 ge tWinner () ;}}
23 f u n c t i o n ge tWinner () { / / choose a member t o be t h e

winner
24 /∗ Block I n f o Dependency ∗ /
25 u i n t winnerID = u i n t (b l o c k . b l o c k h a s h (b l o c k .

number)) % p a r t i c i p a n t s . l e n g t h ;
26 p a r t i c i p a n t s [winnerID] . send (8 e t h e r) ;
27 p a r t i c i p a t o r I D = 0 ;}
28 f u n c t i o n giveBonus () r e t u r n s (boo l) { / / send 0 . 1 ETH

t o a l l members a s bonus
29 /∗Unmatched Type Assignment , Nes ted C a l l ∗ /
30 f o r (v a r i = 0 ; i < members . l e n g t h ; i ++){
31 i f (t h i s . b a l a n c e > 0 . 1 e t h e r)
32 /∗DoS Under E x t e r n a l I n f l u e n c e ∗ /
33 members [i] . t r a n s f e r (0 . 1 e t h e r) ; }
34 /∗Miss ing R e t u r n S t a t e m e n t ∗ / }
35 f u n c t i o n s u i c i d e (a d d r e s s add r) onlyOwner{ / / Remove

t h e c o n t r a c t from b l o c k c h a i n
36 s e l f d e s t r u c t (add r) ;}
37 f u n c t i o n withDraw (u i n t amount) onlyOwner{ / /

wi thdraw c e r t a i n E t h e r s t o owner a c c o u n t
38 a d d r e s s r e c e i v e r = 0 x05f4 . . . d27 ;
39 r e c e i v e r . c a l l . v a l u e (amount) ;}}

Listing 1: A “Gamble” smart contract. However, this contract
contains several contract defects.

Ether Transfer and Receive. Solidity provides three APIs to
transfer Ethers between accounts, i.e., address.transfer(amount),
address.send(amount), and address.call.value(amount)(). transfer
and send will limit the gas of fallback function in callee contracts
to 2300 gas [5]. This gas is not enough to write to storage, call
functions, or send Ethers. Therefore, transfer and send functions
can only be used to send Ethers to External Owned Accounts
(EOA). 4 call will not limit the gas of fallback function. Therefore,

3. If a function wants to receive Ethers, it has to add payable
4. There are two types of accounts on Ethereum: externally owned accounts

which controlled by private keys, and contract accounts which controlled by
their contract code.

call can be used to send Ethers to either contract or EOA. The
difference between transfer and send is that transfer will throw
an exception and terminate the transaction if the Ether fails to
send, while send will return a boolean value instead of throwing
an exception.
Version Controller. Ethereum supports multiple versions of So-
lidity. When deploying a smart contract to the Ethereum, de-
velopers need to choose a specific Solidity compiler version to
compile the contract. Solidity is a young and evolving program-
ming language. There are more than 20 versions released up to
2019. Different versions might have several significant language
changes. If developers do not choose the correct version of
Solidity, the smart contract compilation might fail. To make code
reuse easier, a contract can be annotated with version pragma
that indicates the version that supported. The version pragma is
used as: “pragma solidity v̂ersion” or “pragma solidity version”.
For example, “pragma solidity 0̂.4.1” means that this contract
supports compile version 0.4.1 and above (except for v0.5.0) while
“pragma solidity 0.4.1” means that the contract only supports
compile version 0.4.1.
Permission Check. Smart contracts on Ethereum run in a
permission-less network; everyone can call methods to execute
the contracts. Developers usually add permission checks for
permission-sensitive functions. For example, the contract will
record the owner’s address in its constructor function as the
constructor function can only be executed once when deploying
the contract to the blockchain. In each transaction, the contract
compares whether the caller’s address is the same as the owner’s
address. Solidity provides msg related APIs to receive caller
information. For example, contracts can get the caller address from
msg.sender. Besides, Solidity also provides function modifiers to
add prerequisite checks to a function call. A function with a
function modifier can be executed if it passes the check of the
modifier.
Solidity Example. Listing 1 is a simple example of a smart
contract which is developed in Solidity. The contract is a gambling
contract, each gambler sends 1 Ether to this contract. When the
contract receives 10 Ethers, it will choose one gambler as the
winner and sends 8 Ethers to him.

The first line indicates the contract supports compiler version
0.4.25 to 0.5.0 (not included). The modifier on line 7 is used
to restrict the behavior of functions. For example, onlyOwner
requires the tx.origin equals to the owner, and tx.origin is used to
get the original address that kicked off the transaction, otherwise,
the transaction will be roll back. If a function contains modifiers
the function will first execute the modifiers. Line 10 is the
constructor function of the contract. This function can only be
executed once when deploying the contract to Ethereum. In the
constructor function, the contract assigns a hard-coded address
to the owner variable to restore the owner address. Fallback
function (L13) is a specific feature in smart contract as we
introduced in Section 2.2. When receiving Ethers, ReceiveEth will
be activated and the contract uses msg.value to check the amount
of Ethers they received (L16). If the amount that they received
not equal to 1 Ether, the transaction will be reverted. Otherwise,
the contract records the address of those who send the Ethers
(L18). When the balance equals to 10 Ethers, the contract will
execute the getWinner function and choose one gambler as the
winner (L21-22). The function uses block.hash and block.number
to generate a random number. This two block-related APIs is used
to obtain block related information. After getting the winner, the

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on August 12,2020 at 13:44:08 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.2989002, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 4

contract uses address.send() to send Ethers to the winer (L26).
address.send() is one method to send Ethers. This method will
return a boolean value to inform the caller whether the money is
successfully sent but do not throw an exception. address.transfer()
can also be used to send Ethers, but this function will throw
an exception when errors happen. Note that, these two functions
have gas limitation of 2300 if the recipient is a contract account
(See Section 2.2). address.call.value() in Line 39 can be used to
send Ethers to a smart contract, similar to address.send(). This
method also returns a boolean value to inform the caller whether
the money is successfully sent but does not throw an exception.

2.4 ERC-20 Token
In recent years, thousands of cryptocurrencies have been created.
However, most of them are implemented by smart contracts that
run on the Ethereum (also called tokens) rather than having
their own blockchain system. Ethereum provides several token
standards to standardize tokens’ behaviors. In this case, different
tokens can interact accurately and be reused by other applications
(e.g., wallets and exchange markets). The ERC-20 standard [17]
is the most popular token standard used on Ethereum. It defines
9 standard interfaces (3 are optional) and 2 standard events.
To design ERC-20 compliant tokens, developers must strictly
follow this standard. For example, the standard method transfer is
declared as “function transfer (address to, uint256 value) public
returns (bool success)”, which is used to transfer a number of
tokens to address to. The function should fire the TRANSFER
event to inform whether the tokens are transferred successfully.
The function also should throw an exception if the message caller’s
account balance does not have enough tokens to spend.

3 RQ1: CONTRACT DEFECTS IN SMART CON-
TRACTS

3.1 Motivation
Smart contracts cannot be patched after deploying them to the
blockchain. Detecting and removing contract defects is a good way
to ensure contacts’ robustness. Since the revolutionary changes
of smart contracts compared to traditional softwares, e.g., the
gas system, decentralized features, smart contracts might contain
many specific defects compared to traditional programs, e.g.,
Android Apps. To fill this gap, we try to define a set of new smart
contract defects from StackExchange posts in this section. We
give definitions, examples and possible solutions of our defined
contract defects specialized for Ethereum smart contracts.

3.2 Approach
3.2.1. StackExchange Posts: To define defects for smart contracts,
we need to collect issues that developers encountered. Program-
mers often collaborate and share experience over Q&A site like
Ethereum StackExchange [18], the most popular and widely-used
question and answer site for users of Ethereum. By analyzing posts
on Ethereum StackExchange, we can identify and define a set of
contract defects on Ethereum. In this paper, we crawled 17,128
StackExchange posts and analyzed them further.
3.2.2. Key Words Filtering: It is time-consuming to find important
information from thousands of Q&A posts. Therefore, we utilized
keywords to filter important information from StackExchange
posts. To ensure the completeness of our keywords list, two
authors of this paper read the solidity documents [5] carefully

TABLE 1: Classification scheme.

Category Description
Gas Limitation Bugs caused by gas limitation.
Permission Check Bugs caused by permission check failure.
Inappropriate
Logic

There are inappropriate logics inside a contract,
which can be utilized by attackers.

Ethereum Features Ethereum has many new features, e.g., Solidity, Gas
System. Developers do not familiar with the differ-
ences which might lead to mistakes.

Version Gaps Errors due to the update of Ethereum or Solidity.
Inappropriate Stan-
dard

Ethereum provides several standards, but many con-
tracts do not follow them.

Title

Description

Comments

Fig. 1: Example of a Card

and recorded the keywords they think are important. After that,
they merged the keywords list and used these keywords to filter
StackExchange posts. When reading the posts, we added new
keywords to enrich our list and filter new posts. We finally used
66 keywords to filter 4,141 posts.
3.2.3. Manually Filtering: In this paper, we aim to find Solidity-
related smart contract defects. However, the filtered 4,141 posts
which contain the keywords might not related to Solidity-related
contract defects. Many posts are about the web3 [19], development
environment (Remix [20], Truffle [21]), wallet or functionality. We
need to remove them from the dataset and only retain posts that
are related to contract defects. For example, the title of a post is
“Transfer ERC20 token from one account to another using web3”.
Although the post contains key words “ERC20”, the posts are
related to web3, not Solidity related contract defects. Therefore,
we emit it from our dataset. Two authors of this paper, who both
have rich experience in smart contract development, manually
analysed all of the posts and finally found that a total of 393
posts are related to Solidity-related smart contract defects. The
detailed analysis results of these 4,141 posts can be found at:
https://github.com/Jiachi-Chen/TSE-ContractDefects
3.2.4. Open Card Sorting: We followed the card sorting [22]
approach to analyze and categorize the filtered contract defects-
related posts. We created one card for each post. The card contains
the information of defect title, description, and comments. The
same two authors worked together to determine the labels of each
post. The detailed steps are:

Iteration 1: We randomly chose 20% of the cards. The same
two authors first read the title and description of the card to

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on August 12,2020 at 13:44:08 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.2989002, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 5

Title
Description

Comments

Fig. 2: Example of a Card for ”Block Info Dependency”

understand the defects that the post discussed. Then, they read
the comments to understand how to solve the defects. After that,
they discussed the root cause of the defect. If the root cause of
the card were unclear, we omitted it from our card sort. All of the
themes are generated during the sorting. After this iteration, the
first five categories shown in Table 1 are found.

Example of categorizing a card: Fig. 1 is an example of a
card for a defect reporting post. The card contains three parts, i.e.,
title, description, and two comments. The two authors first read the
title and description of the card to understand the contract defect(s)
described by the posts. After that, they read the comments. The
first comment gives a link to a previous similar post, and the
second comment introduces ideas on how to fix this particular
error. From the link, we can determine that the root cause of the
error is because “throw” is deprecated since Solidity version 0.4.5.
Therefore, the defect category for this card is “Version Gaps”.

Iteration 2: Two authors independently categorized the re-
maining 80% of the cards into the initial classification scheme
by following the same method, described in iteration 1. During
the categorizing process, they found another category named
“Inappropriate Standard”, which is common in the remaining
cards. After that, they compared their results and discussed any
differences. Finally, they categorized the defects into 6 themes;
the detailed information is shown in Table 1. We used Cohen’s
Kappa [23] to measure the agreement between the two authors.
Their overall Kappa value is 0.82, indicating ah strong agreement.
3.2.5. Defining Contract Defects From Posts: After categorizing
the filtered posts, we summarized 6 high-level root causes from
StackExchange posts. Then, the same two authors read the cards
again, with the aim to find more detail behaviors for the defini-
tion of the contract defects. Finally, we summarized 16 contract
defects. Following are two examples:

Example 1. Deprecated APIs: The error described in the
Fig. 1 is classified into “Version Gaps”, which shows the high-
level root cause. It is not difficult to find the reason of the error
as the user has made use of a deprecated API, i.e., throw. We
thus conclude that we obtain a contract defect category named
“Deprecated APIs”.

Example 2. Block Info Dependency: Fig. 2 is another
example that belongs to the defect category “Ethereum Features”.
From the post, we can determine that if the profit of the controlling
contract is higher than what a miner earns by mining a single
block (5 ETH), there is a high probability that the contracts will
be controlled by the miner. Therefore, using BLOCKHASH to

generate random numbers is not safe. Finally, we infer a contract
defect named “Block Info Dependency” from this card.
3.2.6. Dataset Labeling: In order to assist future studies on smart
contract analysis and testing, we manually identified whether the
defined contract defects exist in our dataset, which consists of
578 real-world smart contracts. To build this dataset, we first
crawled all 17,013 verified smart contracts from Etherscan. Then,
for the scalability reasons, we randomly chose 600 smart contracts
from these 17,013 contracts. We filtered out 13 smart contracts as
they do not contain any functions in their contracts. Finally, we
obtained 587 smart contracts with 231,098 lines of code. The total
amount of Ethers in these accounts are more than 4 million Ethers.
3.2.7. Defining Contract Defects From Code: During the process
of labeling, we found some smart contracts have high similarity
but also have some small differences. For example, there are two
functions; the only differences for these two functions is the first
function denotes a return value but does not return anything. The
second function denotes the return value and correctly returns the
statement. Therefore, from the difference, we defined a contract
defect named “Missing Return Statement”. We totally defined
4 contract defects from real-world smart contracts. i.e., Missing
Return Statement, Strict Balance Equality, Missing Reminder, and
Greedy Contract . Finally, we defined 20 contract defects.

3.3 Results

In this part, we define and give examples of each defects. We
divide these defects to five categories according to their conse-
quences, i.e., Security defects, Performance defects, Availability
defects, Maintainability defects, and Reusability defects. We first
give a brief definition of each contract defects in Table 2. Then,
we give detailed definitions and code examples in the followed
paragraphs:

3.3.1 Security Defects
In this subsection, we define 9 contract defects that can lead
to security issues. These may be exploited by attackers to gain
financial benefits or attack vulnerable contracts.

(1) Unchecked External Calls: To transfer Ethers or call
functions of other smart contracts, Solidity provides a series of
external call functions for raw addresses, i.e., address.send(), ad-
dress.call(), address.delegatecall() [5]. Unfortunately, these meth-
ods may fail due to network errors or out-of-gas error, e.g., the
2300 gas limitation of fallback function introduced in Section 2.
When errors happen, these methods will return a boolean value
(False), but never throw an exception. If callers do not check
return values of external calls, they cannot ensure whether code
logic is correct.

Example: An example of this defect is given in Listing 1.
In function getWinner (L23), the contract does not check the
return value of send (L26), but the array participants is emptied
by assigning participatorID to 0 (L25). In this case, if the send
method failed, the winner will lose 8 Ethers.

Possible Solution: Using address.transfer() to instead ad-
dress.send() and address.call.value() if possible, or Checking the
return value of send and call.

(2) DoS Under External Influence: When an exception is
detected, the smart contract will rollback the transaction. However,
throwing exceptions inside a loop is dangerous.

Example: In line 33 of Listing 1, the contract uses transfer
to send Ethers. However, In Solidity, transfer and send will limit

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on August 12,2020 at 13:44:08 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.2989002, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 6

TABLE 2: Definitions of the 20 contract defects.

Contract Defect Definition Contract Defect Definition
Unchecked External Calls Do not check the return value of external call functions. DoS Under External Influ-

ence
Throwing exceptions inside a loop which can be influ-
enced by external users

Strict Balance Equality Using strict balance quality to determine the execute
logic.

Unmatched Type Assign-
ment

Assigning unmatched type to a value, which can lead to
integer overflow

Transaction State Depen-
dency

Using tx.origin to check the permission. Re-entrancy The re-entrancy bugs.

Hard Code Address Using hard code address inside smart contracts. Block Info Dependency Using block information related APIs to determine the
execute logic.

Nested Call Executing CALL instruction inside an unlimited-length
loop.

Deprecated APIs Using discarded or unrecommended AIPs or instructions.

Unspecified Compiler Ver-
sion

Do not fix the smart contract to a specific version. Misleading Data Location Do not clarify the reference types of local variables of
struct, array or mapping.

Unused Statement Creating values which never be used. Unmatched ERC-20 stan-
dard

Do not follow the ERC-20 standard for ICO contracts.

Missing Return Statement A function denote the type of return values but do not
return anything.

Missing Interrupter Missing backdoor mechanism in order to handle emer-
gencies.

Missing Reminder Missing events to notify caller whether some functions
are successfully executed.

Greedy Contract A contract can receive Ethers but can not withdraw
Ethers.

High Gas Consumption
Function Type

Using inappropriate function type which can increase gas
consumption.

High Gas Consumption
Data Type

Using inappropriate data type which can increase gas
consumption.

the gas of fallback function in callee contracts to 2,300 gas [5].
This gas is not enough to write to storage, call functions or send
Ethers. If one of member[i] is an attacker’s smart contract and the
transfer function (L33) can trigger an out-of-gas exception due
to the 2,300 gas limitation. Then, the contract state will rollback.
Since the code cannot be modified, the contract can not remove
the attacker from members list, which means that if the attacker
does not stop attacking, no one can get bonus anymore.

Possible Solution: Avoid throwing exceptions in the body of
a loop. We can return a boolean value instead of throwing an
exception. For example, using “if(msg.send(...) == false) break;”
instead of using “msg.transfer(...)”.

(3) Strict Balance Equality: Attackers can send Ethers to
any contracts forcibly by utilizing selfdestruct(victim address)
API [5]. This way will not trigger the fallback function, meaning
the victim contract cannot reject the Ethers. Therefore, the logic of
equal balance check will fail to work due to the unexpected ethers
send by attackers.

Example: Attackers can send 1 Wei (1 Ether = 1018 Wei)
to Contract Gamble in Listing 1 by utilizing selfdestruct method.
This method will not trigger fallback function (L13). Thus, the
Ethers will not be thrown by ReceiveEth (L16). If this attack
happens, the getWinner() (L23) would never be executed, because
the getWinner can only be executed when the balance of the
contract is strictly equal to 10 Ethers (L21).

Possible Solution: Since the attackers can only add the amount
of the balance, we can use a range to replace “==”. In this case,
attackers cannot affect the logic of the programs. Using the defect
in Listing 1 as an example, we can modify the code in L21 to “if
(this.balance ≥ 10 ether&& this.balance <11 ether)”

(4) Unmatched Type Assignment: Solidity supports different
types of integers (e.g., uint8, uint256). The default type of integer
is uint256 which supports a range from 0 to 2 ˆ 256. uint8
takes less memory, but only supports numbers from 0 to 2 ˆ 8.
Solidity will not throw an exception when a value exceeds its
maximum value. The progressive increase is a common operation
in programming, and performing an increment operation without
checking the maximum value may lead to overflow.

Example: The variable i in line 30 of Listing 1 is assigned to
uint8, because 0 is in range of uint8 (0-255). If the members.length
is larger than 255, the value of i after 255 is 0. Thus, the loop will
not stop until running out of gas or balance of account is less than

0.1.
Possible Solution: Using uint or uint256 if we are not sure of

the maximum number of loop iterations.
(5) Transaction State Dependency: Contracts need to check

whether the caller has permissions in some functions like suicide
(L33 in Listing 1). The failure of permission checks can cause
serious consequences. For example, if someone passes the per-
mission check of suicide function, he/she can destroy the contract
and stole all the Ethers. tx.origin can get the original address that
kicked off the transaction, but this method is not reliable since the
address returned by this method depends on the transaction state.

Example: We can find this defect in line 8 of Listing 1. The
contract uses tx.origin to check whether the caller has permission
to execute function suicide (L35). However, if an attacker uses
function attack in Listing 4 to call suicide function (L35 in
Listing 1), the permission check will fail. suicide function will
check whether the sender has permission to execute this function.
However, the address obtained by tx.origin is always the address
who creates this contract (0xdCad...d1D3AD L12 in Listing 1).
Therefore, anyone can execute the suicide function and withdraw
all of the Ethers in the contract.

Possible Solution: Using msg.sender to check the permission
instead of using tx.orign.

(6) Block Info Dependency: Ethereum provides a set of APIs
(e.g., block.blockhash, block.timestamp) to help smart contracts
obtain block related information, like timestamps or hash number.
Many contracts use these pieces of block information to execute
some operations. However, the miner can influence block informa-
tion; for example, miners can vary block time stamp by roughly
900 seconds [24]. In other words, block info dependency operation
can be controlled by miners to some extent.

Example: In Listing 1 line 25, the contract uses blockhash to
generate which member is the winner. However, the gamble is not
fair because miners can manipulate this operation.

Possible Solution: To generate a safe random number in Solid-
ity, we should ensure the random number cannot be controlled by
a single person, e.g., a miner. We can use the information of users
like their addresses as their input numbers, as their distributions
are completely random. Also, to avoid attacks, we need to hide
the values we used from other players. Since we cannot hide the
address of users and their submitted values, a possible solution
to generate a random number without using block related APIs is

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on August 12,2020 at 13:44:08 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.2989002, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 7

using a hash number. The algorithm has three rounds:
Round 1: Users obtain a random number and generate a hash

value in their local machine. The hash value can be obtained
by keccak256, which is provided by Solidity. After obtaining the
random number, users submit the hash number.

Round 2: After all users submit their hash number, users are
required to submit their original random number. The contract
checks whether the original number can generate the same hash
number.

Round 3: If all users submit the correct original numbers,
the contract can use the original numbers to generate a random
number.

(7) Re-entrancy: Concurrency is an important feature of
traditional software. However, Solidity does not support it, and
the functions of a smart contract can be interrupted while running.
Solidity allows parallel external invocations using call method. If
the callee contract does not correctly manage the global state, the
callee contract will be attacked – called a re-entrancy attack.

Example: Listing 2 shows an example of re-entrancy. The
Attacker contract invokes Victim contract’s withDraw() function
in Line 11. However, Victim contract sends Ethers to attacker
contract (L6) before resetting the balance (L7). Line 6 will invoke
the fallback function (L9) of attacker contract and lead to repeated
invocation.

Possible Solution: Using send() or transfer to transfer Ethers.
send() and transfer have gas limitation of 2300 if the recipient
is a contract account, which are not enough to transfer Ethers.
Therefore, these two functions will not cause Re-entrancy.

1 c o n t r a c t Vic t im {
2 mapping (a d d r e s s => u i n t) p u b l i c u s e r B a l a n n c e ;
3 f u n c t i o n withDraw () {
4 u i n t amount = u s e r B a l a n n c e [msg . s e n d e r] ;
5 i f (amount > 0){
6 msg . s e n d e r . c a l l . v a l u e (amount) () ;
7 u s e r B a l a n n c e [msg . s e n d e r] = 0;}} . . . }
8 c o n t r a c t A t t a c k e r {
9 f u n c t i o n () p a y a b l e {

10 Vic t im (msg . s e n d e r) . withDraw () ;}
11 f u n c t i o n r e e n t r a n c y (a d d r e s s add r) {
12 Vic t im (add r) . withDraw () ;} . . . }

Listing 2: Attacker contract can attack Victim contract by utilizing
Re-entrancy

(8) Nested Call: Instruction CALL is very expensive (9000
gas paid for a non-zero value transfer as part of the CALL
operation [3]). If a loop body contains CALL operation but does
not limit the number of times the loop is executed, the total gas
cost would have a high probability of exceeding the gas limitation
because the number of iterations may be high and it is hard to
know its upper limit.

Example: In Listing 1, the function giveBonus (line 28) uses
transfer (L33) which generates CALL to send Ethers. Since the
members.length (L30) does not limit its size, giveBonus has a
probability to cause out of gas error. When this error happens, this
function can not be called anymore because there is no way to
reduce the members.length.

Possible Solution: The developers should estimate the max-
imum number of loop iterations that can be supported by the
contract and limit these loop iterations.

(9) Misleading Data Location: In traditional programming
languages like Java or C, variables created inside a function are
local variables. Data is stored in memory and the memory will
be released after the function exits. In Solidity, the data of struct,

mapping, arrays are stored in storage even they are created inside
a function. However, since storage in solidity is not dynamically
allocated, storage variables created inside a function will point to
the storage slot5 0 by default [5]. This can cause unpredictable
bugs.

Example: Function reAssignArray (L6) in Listing 3 creates a
local variable tmp. The default data location of tmp is storage,
but EVM cannot allocate storage dynamically. There is no space
for tmp, but instead, it will point to the storage slot 0 (variable
in L3 of Listing 3). For the result, once function reAssignArray is
called, the variable variable will add 1, which can cause bugs for
the contract.

Possible Solution: Clarifying the data location of struct,
mapping, and arrays if they are created inside a function.

1 pragma s o l i d i t y ˆ 0 . 4 . 2 5 ; / ∗ U n s p e c i f i e d Compi le r
V e r s i o n ∗ /

2 c o n t r a c t Defec tExample{
3 u i n t v a r i a b l e ;
4 u i n t [] i n v e s t L i s t ;
5 f u n c t i o n () p a y a b l e {}
6 f u n c t i o n r e A s s i g n A r r a y () {
7 /∗ M i s l e a d i n g Data L o c a t i o n ∗ /
8 u i n t [] tmp ;
9 tmp . push (0) ;

10 i n v e s t L i s t = tmp ;}
11 f u n c t i o n c h a n g e V a r i a b l e (u i n t va lue1 , u i n t v a l u e 2) {
12 /∗Unused S t a t e m e n t ∗ /
13 u i n t newValue = v a l u e 1 ;
14 v a r i a b l e = v a l u e 2 ;}
15 /∗High Gas Consumption F u n c t i o n Type ∗ /
16 f u n c t i o n highGas (u i n t [2 0] a) p u b l i c r e t u r n s (u i n t)

{
17 r e t u r n a [1 0]∗2 ;}
18 f u n c t i o n lowGas (u i n t [2 0] a) e x t e r n a l r e t u r n s (u i n t

) {
19 r e t u r n a [1 0]∗2 ;}}

Listing 3: DefectExample

1 c o n t r a c t a t t a c k e r {
2 . . .
3 f u n c t i o n a t t a c k (a d d r e s s addr , a d d r e s s myAddr) {
4 Gamble gamble = Gamble (add r) ;
5 gamble . s u i c i d e (myAddr) ;}}

Listing 4: An attacker contract by utilizing Transaction State
Dependency.

3.3.2 Availability Defects
We define 4 contract defects related to availability. These may not
be utilized by attackers but are bad designs for contracts that can
lead to potential errors or financial loss for the caller.

(1) Unmatched ERC-20 Standard: ERC-20 Token Stan-
dard [17] is a technical standard on Ethereum for implementing
tokens of cryptocurrencies. It defines a standard list of rules for
Ethereum tokens to follow within the larger Ethereum ecosystem,
allowing developers to predict the interaction between tokens
accurately. These rules include how the tokens are transferred
between addresses and how data within each token is accessed.
The function name, parameter types and return value should
strictly follow the ERC20 standard. ERC-20 defines 9 different
functions and 2 events to ensure the tokens based on ERC20
can easily be exchanged with other ERC20 tokens. However, we
find that many smart contracts miss return values or miss some
functions.

5. Each storage variables has its own storage slot to identify its position.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on August 12,2020 at 13:44:08 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.2989002, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 8

Example: transfer and transferFrom are two functions defined
by ERC20. They are used to transfer tokens from one account to
another. ERC20 defines that these two functions have to return a
boolean value, but many smart contracts miss this return value,
leading to errors when transferring tokens.

Possible Solution: Checking that the contract has strictly
followed the ERC20 standard.

(2) Missing Reminder: Other programs can call smart con-
tracts through the contracts’ Application Binary Interface (ABI).
ABI is the standard way to interact with contracts in the Ethereum
ecosystem, both from outside the blockchain and for contract-
to-contract interaction. However, the ABIs can only tell the caller
what the inputs and outputs of a function are, but it will not inform
them whether the function call is successful or not. Throwing
an event to notify a caller whether the function is successfully
executed can reduce unnecessary errors and gas waste.

Example: A typical scenario of this contract defect is missing
reminders when receiving Ethers. In Listing 1, users may not
understand the game rules clearly, and send Ethers which not equal
to 1 Ether (line 16-17). However, the smart contract will check
whether the received Ether is equal to 1 Ether, then the Ether
will return back. There are several reasons for invoking failures.
For example, the user may mistakenly believe the error is caused
by network and resend the Ethers, which can lead to gas waste.
Adding reminders (throwing events) to notify caller whether some
functions are successfully executed can avoid unnecessary failure.

Possible Solution: Adding reminders for functions that are
interacting with the outside.

(3) Missing Return Statement: Some functions denote return
values but do not return anything. For these, EVM will add a
default return value when compiling the code to bytecode. Since
the callers may not know the source code of the callee contract,
they may use the return value to handle code execution and lead
to unpredictable bugs.

Example: Function giveBonus (L28) in Listing 1 declares
the return type bool, but the function does not return true or
false. Then, EVM will assign the default return value as false.
If developers call this function, the return value will always be
the false and some functions in the caller contracts may never be
executed.

Possible Solution: Adding the return statements for each
function.

(4) Greedy Contract: A contract can withdraw Ethers by
sending Ethers to another address or using selfdesturct function.
Without these withdraw-related functions, Ethers in contracts
can never be withdrawn and will be locked forever. We define
a contract to be a greedy contract if the contract can receive
ethers (contains payable fallback function) but there is no way
to withdraw them.

Example: In Listing 3, the contract has a payable fallback
function in line 5, which means this contracts can receive Ethers.
However, the contracts cannot send Ethers to other contracts or
addresses. Therefore, the Ethers in this contract will be locked
forever.

Possible Solution: Adding withdraw method if the contract
can receive Ethers.

3.3.3 Performance Defects

We define 3 contract defects related to performance. The contracts
with these defects can increase their gas cost.

(1) Unused Statement: If function parameters or local
variables do not affect any contract statements nor return a value,
it is better to remove these to improve code readability.

Example: function parameter value1 and local variable new-
Value in function changeVariable (L11 of Listing 3) are useless,
because they never affect contract statements nor return values.
Although the compiler will remove these useless statements when
compiling source code to binary code, these can reduce contract
readability.

Possible Solution: Removing all unused statements in the
contract to make it easier to read.

(2) High Gas Consumption Function Type: For public
functions, Solidity immediately copies function arguments (Ar-
rays) to memory, while external functions can read directly from
calldata [3]. Memory allocation is expensive, whereas reading
from calldata is cheap. To lower gas consumption, if there are no
internal functions call this function and the function parameters
contain array, it is recommended to use external instead of public.

Example: In Listing 3, function highGas (L16) and function
lowGas (L18) have the same capabilities. The only difference is
that highGas is modified by public which can be called by external
and internal functions. lowGas is modified by external which can
only be called by external. Calling function highGas costs 496 gas
while calling lowGas only costs 261 gas.

Possible Solution: Using external instead of public if the
function can only be called by external.

(3) High Gas Consumption Data Type: bytes is dynamically-
sized byte array in Solidity, byte[] is similar with bytes, but bytes
cost less gas than byte[] because it is packed tightly in calldata.
EVM operates on 32 bytes a time, byte[] always occupy multiples
of 32 bytes which means great space is wasted but not for bytes.
Therefore, bytes takes less storage and costs less gas. To lower gas
consumption, it is recommended to use bytes instead of byte[].

Example: Replacing byte[] by bytes can save a small amount
of gas for each function call. However, as the contract is called
more times, a large amount of gas can potentially be saved.

Possible Solution: Using bytes instead of byte[].

3.3.4 Maintainability Defects

We define 2 contract defects related to maintainability. These
contract defects can shorten the life cycle of the contract.

(1) Hard Coded Address: Since we cannot modify smart
contracts after deploying them, hard coded addresses can lead to
vulnerabilities.

Example: There are two main kinds of errors this contract
defect can lead to. The first is Illegal Address. Ethereum uses
a mixed-case address checksum to verify whether an address is
legal or not. The rule is defined in EIP-55 [25]. There is an
error address in line 12 of Listing 1. The owner address is an
illegal address, the last bit of the address should be ‘F’, but
by mistake, it becomes ‘D’. The illegal address makes no one
that can withdraw the amount of this contract. The second is
Suicide Address. selfdestruct function (L36) can remove the code
from the blockchain and make the contract become a suicide
contract, but it is potentially dangerous. If someone sends Ether
to suicide contracts, the Ether will forever be lost. receiver (L38)
is a smart contract who contains selfdestruct function. Its address
is hardcoded in line 38 of Listing 1 and cannot be modified. If
the receiver performed the selfdestruct function, it will become a
suicide contract. All the Ethers sent to receiver will be lost forever.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on August 12,2020 at 13:44:08 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.2989002, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 9

Possible Solution: Removing the hard coded addresses and
inputting the addresses as function parameters.

(2) Missing Interrupter: When bugs are detected by attack-
ers, they can attack the contracts and steal their Ethers. The DAO
lost $50 million Ethers due to a bug in the code that allowed an
attacker to draw off the Ethers [6] repeatedly. The interrupter is
a mechanism to stop the contract when bugs are detected. We
cannot modify contracts after deploying them to the blockchain.
However, if a contract contains interrupter, the owner of the victim
contract can reduce their losses.

Example: When bugs are found in Listing 1, the Ethers on
the contract can be stolen by attackers. Fortunately, the contract
contains an interrupter on suicide function (L35). So, the owner of
the contract can call suicide. Then, the remain Ethers will be sent
to the given address. After fixing the bugs, the contracts can be
redeployed.

Possible Solution: The easiest interrupter is adding a self-
destruct function [5], Ethers on the contracts can be withdrawn
and the contracts destroyed when attacks happen. Adding an
interrupter to the contracts, if the contract holds a large amount
of Ethers.

3.3.5 Reusability Defects
We define 2 contract defects related to reusability. These contract
defects can increase the difficulty of code reuse.

(1) Deprecated APIs: Solidity is a young and evolving
programming language. Some APIs will be discarded or updated
in the future. In this case, Solidity documentation usually uses
warning to inform developers that some APIs will be deprecated
in the future. These APIs might still be supported by the current
compiler version. However, if developers use these APIs, they
might need to refactor the code for the code reuse, which leads to
resource waste.

Example: CALLCODE operation will be discarded in the
future [5], throw, suicide, sha3 are replaced by revert, selfdestruct,
keccak256 respectively in the recent version.

Possible Solution: Following the latest Solidity document and
using the latest APIs.

(2) Unspecified Compiler Version: Different versions of
Solidity may contain different APIs/instructions. In Solidity pro-
gramming, multiple APIs only be supported in some specific ver-
sions. If a contract do not specify a compiler version, developers
might encounter compile errors in the future code reuse because
of the version gap.

Example: In the first line of Listing 3, pragma solidityˆ0.4.25
means that this contract supports compile version 0.4.25 and above
(except for v0.5.0) while pragma solidity 0.4.25 means that the
contract only supports compile version 0.4.25. Since it is hard
to foresee the language constructions in the future version, it is
recommended to indicate a specific compiler version to avoid
unnecessary bugs.

Possible Solution: Fixing the compiler version used by the
contract.

4 RQ2: PRACTITIONERS’ PERSPECTIVE

4.1 Motivation

To validate whether our defined contract defects are harmful, we
created an online survey to collect opinions from real-world smart
contract developers.

4.2 Approach
4.2.1 Validation Survey
We followed the instructions of Kitchenham et al. [26] for
personal opinion surveys and utilized an anonymous survey [27] to
increase response rates. Respondents can choose to leave an email
address, as all respondents could choose to take part in a raffle to
win two $50 Amazon gift cards. We first conducted a small scale
survey to test and refine our questions. These participants give
feedback about: (1) whether the expression of the contract defects
is clear and easy to understand, and (2) whether the length of each
question is suitable. Finally, we modified our survey based on the
feedback we collected.

4.2.2 Survey Design
To help respondents better understanding the aim of our survey,
we explained what is contract defect at the beginning of the survey
and gave detailed definitions and examples of the 20 contract
defects in related questions. We first captured the following
pieces of information to collect demographic information about
the respondents:

Demographics:
• Professional smart contract developer? : Yes / No
• Involved in open source software development? : Yes / No
• Main role in developing smart contract.
• Experience in years
• Current country of residence
• Highest educational qualification
Examples of Contract Defects: Next, we gave detailed

definitions and examples of the 20 contract defects. We asked
respondents to rate the importance of these contract defects, i.e.,
removing them can improve the security, reliability, or usability
of a project. Since some of the defined contract defects are not
easy to understand, we added an option “I don’t understand”
to ensure results are reliable. Finally, we give each question six
options (i.e., Very important, Important, Neutral, Unimportant,
Very unimportant and I don’t understand). We also give each
question a textbox to enable respondents to give their opinions.

Other Questions: We give a textbox so respondents can tell
us if they have any other comments, questions, or concerns.

4.2.3 Recruitment of Respondents
In order to get a sufficient number of respondents from different
backgrounds, we first sent our survey to our partners who are
working or study in world-famous companies or academic insti-
tutions. We sent our email to 1489 practitioners who contribute
to open source smart contract related projects on GitHub. All
respondents could enter their email to take part in a raffle to win
two $50 Amazon gift cards.

4.3 Results
We totally received 138 responses (The response rate is about
9.27%) from 32 different countries, and we received 84 comments
on our defined contract defects. 113 (81.88%) of these respondents
are involved in open source software development efforts. The top
two countries in which the respondents reside are China (38.41%)
and USA (7.97%). The average years of experience in developing
smart contracts are 1.95 years. Since the Ethereum was published
only in late 2015, we believe the average year of 1.95 years
shows that the respondents have good experience in developing

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on August 12,2020 at 13:44:08 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.2989002, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 10

TABLE 3: Survey results, distributions, and impacts of the 20 contract defects.

Contract Defect Distribution Score #Defects Impacts Contract Defect Distribution Score #Defects Impacts

Unchecked External Calls 4.50 25 (4.26%) IP3 DoS Under External Influence 4.31 6 (1.02%) IP2

Strict Balance Equality 4.28 5 (0.85%) IP2 Unmatched Type Assignment 4.42 22 (3.75%) IP2

Transaction State Dependency 4.54 5 (0.85%) IP1 Reentrancy 4.66 12 (2.04%) IP1

Hard Code Address 4.10 84 (14.31%) IP3 Block Info Dependency 4.05 42 (7.16%) IP3

Nested Call 4.45 13 (2.21%) IP2 Deprecated APIs 4.06 247 (42.08%) IP5

Unspecified Compiler Version 3.84 532 (90.63%) IP5 Misleading Data Location 4.28 1 (0.17%) IP2

Unused Statement 4.04 10 (1.70%) IP5 Unmatched ERC-20 standard 4.29 45 (7.67%) IP4

Missing Return Statement 4.16 263 (44.80%) IP4 Missing Interrupter 4.06 523 (89.10%) IP4

Missing Reminder 4.06 27 (4.60%) IP4 Greedy Contract 4.25 6 (1.02%) IP3

High Gas Consumption
Function Type

4.08 422 (71.89%) IP5 High Gas Consumption Data
Type

4.07 0 (0%) IP5

smart contracts. We do not remove the feedback from developers
with little experience as their feedback is also very useful as
they might be the ones actually authoring the contracts with
defects. Among these respondents, 89 (64.49%), 17 (12.32%), 16
(11.59%), 7 (5.07%) described their job roles as development,
testing, management and security audit respectively. The other 9
responses said they have multiple roles.

Table 3 shows the results of our survey. The first column
indicates each contract defect and the second column illustrates
the distribution of respondents’ choice. The distribution is from
“Very unimportant” (left-most red bar) to “Very important” (right-
most green bar). To clearly show the result, we give each option a
score and count the weighted average score which is shown in the
third column. To be specific, we give “very important” a score 5
and give “very unimportant” a score 1.

We received very positive feedback from developers with
almost all contract defects’ scores are larger than 4, and
the average score is 4.22. The score of “Unspecified Compiler
Version” is 3.84 but it is also a positive score. To understand the
reasons, we reviewed comments about this defect. We found that
many developers who voted “unimportant” mentioned the differ-
ence among different minor versions in the same major version
(e.g., 0.4.19 and 0.4.20) is small. However, they admitted that the
difference among different major versions (e.g., 0.4.0 and 0.5.0)
is significant. Some developers gave comments that removing
this contract defect is very important when they want to reuse
code in the future. Besides, we also found many examples from
StackExachange posts that many developers failed to compile the
contracts because these contracts do not specify their compiler
versions. Therefore, we believe this defect is important on code
reuse.

“Missing Interrupter”, “Missing Reminder”, and “Unspecified
Compiler Version” received the top three most negative feedbacks
(“Unimportant” and “Very unimportant”). For “Missing Inter-
rupter”, 5 developers mentioned that adding interrupters in smart
contracts will ensure the benefits for the smart contract owners.
However, such a back-door mechanism may cause users to distrust
the contracts. This worry makes sense, but we believe it can be
fixed if the contract owners add some insurance mechanism to the
contracts. For example, they can define rules to detect abnormal
states, and the back-door mechanism can only be executed when
the abnormal state is detected. For “Missing Reminder”, we
did not receive comments from respondents who chose negative
options. We sent emails to the developers who gave their email
address and received three feedbacks. All mentioned that the
smart contracts they developed are used inside their companies.

They will write a detailed document of each function. If other
developers in their companies have problems, then they fix the
problems using face to face discussion. Therefore, this contract
defect is not important for them. However, we believe that if the
smart contracts are deployed on Ethereum and other developers
can call the functions, removing this contract defect can reduce
potential problems. For “Unspecified Compiler Version”, we
found 4 developers who gave negative feedback mention that there
are only very few differences between the versions under the same
large version, e.g., between 0.4.21 and 0.4.22. However, we do not
agree with this observation. As we have mentioned, even if two
versions only have a small difference, but it is hard to foresee
language constructions in the future version. Thus, it is possible
that there might be two versions that contain a big difference
in the future. Besides, refuting this feedback, version 0.4.0 (the
first version of 0.4+) and 0.4.25 (the latest version of 0.4+) do
indeed have big differences, as many APIs like throw have been
deprecated.

We also received 18 negative comments for the other 7 smart
contract defects. The negative comments of “Unmatched type
assignment”, “Re-entrancy”, “Hard Code Address”, “Mis-
leading Data location”, and “High Gas Consumption Function
Type” all mentioned that these contract defects have been re-
moved in the latest version of Solidity. However, when developers
deploy smart contracts to Ethereum, they need to choose a Solidity
version by themselves. Most developers choose old versions of
Solidity instead of the latest version [28]. This means that these
defects are still potentially harmful. “Strict Balance Equality”
received 3 negative comments. Two developers said this is not a
common case, and another developer said receiving Ether cannot
be prevented. Thus, it might be hard to avoid exact balance
checks in some situations. We admit that defect is not common
in Ethereum smart contracts. However, this defect is still harmful
and can open up another attack vector to attackers. Developers
can use other logic, such as “≥ && <” to avoid “==” (see
possible solution for this defect introduced in Section 3.3.1).
“Unmatched ERC-20 standard” received 2 negative comments.
These comments mentioned that this contract defect could only
be used for ICO smart contracts, which limits its usage scenario.
However, ICO smart contracts are very popular in Ethereum, and
they hold a large amount of Ethers. Thus, we I believe this defect
category is still useful.

Certainly, We receive many positive comments. Some positive
comments we received included:

• You provide a very good summary of some very important
security checkpoints.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on August 12,2020 at 13:44:08 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.2989002, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 11

• Those controls and warnings should be integrated into the
Solidity compiler, and displayed in common development
tools like Remix and Truffle.

• It is nice to have such a summary of these vulnerabilities
among smart contracts, I think it would be very helpful for
the blockchain practitioners as well as the researchers.

• These suggestions above are very useful to avoid various
kinds of flaws.

• Generally speaking, all of these contract defects can lead to
serious problems. I learned a lot from this survey.

5 RQ3: DISTRIBUTION AND IMPACT OF CON-
TRACT DEFECTS

5.1 Motivation
To help developers and researchers better understand the impacts
of our defined smart contract defects, we summarized 5 impacts
and manually label 587 smart contracts to show their distribution
in the real-world smart contracts. Our labeling results provided
ground truth for future studies on smart contract defects detection.
As it is not easy to remove all contract defects due to tight project
schedules or financial reasons, the impacts and distributions of
different contract defects can help developers decide which defect
should be fixed first.

5.2 Approach
Distribution: We obtained 587 smart contracts from real-world
Ethereum accounts. The first and last authors of this paper in-
dependently read these smart contracts and determined whether
the contracts contained our defined contract defects. They each
have three-year experience on smart-contract-based development
and have published three smart-contract-related papers together.
Their overall Kappa value was 0.71, which indicates substantial
agreement between them. After completing the labeling process,
they discussed their disagreement and gave a final result. Finally,
we generate a dataset which shows the distribution of the contract
defects we defined.
Impact Level Definition: To summarize the impacts of each
contract defect, we consider from three dimensions, i.e., con-
tract dimension (unwanted behavior), attacker dimension (attack
vector), and user dimension (usability), which can be found on
Table 5.

The contract dimension focuses on the severity level of the
contract defect. From our survey, 27 developers claimed that
defects, e.g., Reentrancy, Dos Under External Influence, might
enable attackers to attack the contracts, and 9 of them mentioned
that attackers can utilize defects like Reentrancy to stole all the
Ethers on the contract. Also, 16 developers agree that defects, e.g.,
High Gas Consumption Function Type, Deprecated APIs, will not
affect the normal running of the contract, but have bad effects for
the users or callers. From the StackExchange posts, we can also
find the comments of the posts mentioned that the defects could
lead to the crashing, losing all Ethers, and losing a part of the
Ethers. Finally, we totally find the defects can lead to 5 common
consequences to the contracts. They are crashing, being controlled
by attackers, losing all Ethers, losing a part of the Ethers, normal
running but have bad effects for the users or caller. We have split
the 5 common consequences into three severity levels, i.e., critical,
major, and trivial. Critical represents contract defects, which can
lead to the crashing, being controlled by attackers, or can lose all

Ethers. Major represents the contract defects that can lead to the
loss of a part of the Ethers. Contracts with trivial severity level
will not affect the normal running of the contract.

The attacker dimension focuses on attackers’ behaviors. Since
financial services are the most attractive targets for attackers, we
believe that if attackers can use the defects to steal Ethers, the
impact level should be higher. Whether the defect can be triggered
by attackers is also an important aspect.

The users dimension focuses on the external influence of the
defects. This dimension contains three aspects, i.e., potential errors
for caller, gas waste, and mistakes on code reuse. Some defects
do not affect the normal running of the contracts. However, they
can lead to the errors of the caller programs. Some defects can
also increase the gas costs of the callers and users. As code reuse
is important in software engineering, some defects can make the
contracts hard to be understand and reuse.

We only consider the worst-case scenario outcome for each
contract defect, even though some defects will have different
impact levels under different application scenario. We use Hard
Code Address as an example. In most situations, Hard Code
Address will not lead to the loss of Ethers. However, if the hard-
coded address is a self-destructed contract, a contract with this
defect can lose a part of its Ethers. Thus we consider Hard Code
Address can lead to major unwanted behavior.

After defining the three dimensions, we map each contract
defect onto one or more. The detailed results are shown in Table.
We found there are 5 common types of distribution. According to
the distribution, we summarized 5 impact levels and assigned each
contract defect to have one impact level.

5.3 Results
We use Table 5 to clarify the difference between each impact
level. IP1 is the highest, and IP5 is the lowest. Contract defects
with impact level 1-2 can lead to critical unwanted behaviors,
like crashing or a contract being controlled by attackers. Contract
defects with impact level 3 can lead to major unwanted behaviors,
like lost ethers. Impact level 4-5 can lead to trivial problems, e.g.,
low readability, which would not affect the normal running of the
contract.

The detailed definition of the five impact levels are as follows:
Impact 1 (IP1): The smart contracts containing the related con-
tract defects can lead to critical unwanted behaviors. Unwanted
behaviors can be triggered by attackers, and they can make profits
by utilizing the defects.
Impact 2 (IP2): The smart contracts containing the related con-
tract defects can lead to critical unwanted behaviors. Unwanted
behaviors can be triggered by attackers, but they cannot make
profits by utilizing the defects.
Impact 3 (IP3): There are two types of IP3. Type 1: The
smart contracts containing the related contract defects can lead
to critical unwanted behaviors, but unwanted behaviors cannot be
triggered externally. Type 2: The smart contracts containing the
related contract defects can lead to major unwanted behaviors.
The unwanted behaviors can be triggered by attackers, but they
cannot make profits by utilizing the defects.
Impact 4 (IP4): The smart contracts containing the related con-
tract defects can work normally. However, the contract defects can
lead to potential risks of errors when outside programs call the
contracts.
Impact 5 (IP5): The smart contracts containing the related con-
tract defects can work normally and will not lead to the errors for

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on August 12,2020 at 13:44:08 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.2989002, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 12

TABLE 4: Features of Each Contract Defects

Contract Defects
Unwanted Behavior Attack Vector Usability

Critical Major Trivial Triggered by
External

Stolen
Ethers

Potential Errors
for Callers

Gas Waste Mistakes on
Code Reuse

Unchecked External Calls X
Dos Under External Influence X X

Strict Balance Equality X X
Unmatched Type Assignment X X
Transaction State Dependency X X X

Reentrancy X X X
Hard Code Address X

Block Info Dependency X X
Nested Call X X

Deprecated APIs X X X
Unspecified Compiler Version X X X

Misleading Data Location X X
Unused Statement X X X

Unmatched ERC-20 standard X X
Missing Return Statement X X X

Missing Interrupter X X
Missing Reminder X X
Greedy Contract X

High Gas Consumption Function Type X X X
High Gas Consumption Data Type X X X

TABLE 5: Features of Each Impact Level

Impact Level
Unwanted Behavior Attack Vector Usability

Critical Major Trivial Triggered by External Stolen Ethers Potential Errors for Callers Gas Waste Mistakes on Code Reuse
IP1 X X X
IP2 X X
IP3 T1 T2 T2
IP4 X X
IP5 X X X

the callers. However, the contract defects can lead to gas waste,
and make the contracts hard to understand and reuse.

Table 3 lists the detailed distribution of each contract defect
(the fourth column) in our dataset and its related impact (the
last column). We find the distribution for Impacts 1 – 5 to be
2.90%, 7.16%, 27.09%, 93.86%, 99.14%, respectively. Note that
one smart contract can have multiple defects of different impacts
simultaneously.

“Unspecified Compiler Version” is the most common contract
defect in our dataset (90.63% contracts contain this defect). We
also found that this contract defect is the most popular one among
the 20 defects when we analyze StackExchange posts. Many
developers want to reuse the contracts but encounter compiler
errors. These contracts usually do not specify a compiler version.
In this case, developers have to try different compiler versions or
refactor the code, which increases the workload for code reuse.

“Missing Interrupter” is also very popular in our dataset
(89.1% contracts contain this defect). This defect receives the
greatest number of comments in our the survey. On the one
hand, developers admit that adding interrupter is important for
contracts when emergencies happen. On the other hand, some
developers also worried that the interrupter could lead to distrust
by the contract users. Better understanding attitudes to this defect
may need further research effort. For example, researchers can
design a survey for developers to investigate the reasons why
they add or do not add interrupters. By knowing the reason why
developers do not add it, researchers might design a better method
to implement interrupter. By knowing the reason why developers
add interrupters, researchers can investigate whether contracts
with interrupters in our dataset are consistent with these reasons,
and what are the most popular reasons.

99.82% of smart contracts in our dataset contain at least one
contract defect of the impact 4 or impact 5. These contract defects

will not affect the normal running of the contracts, but it may have
unpredictable impacts to the caller or code reuse. The distribution
may illustrate that the developers focus more on the functionality
but do not consider the code reuse or handle unpredictable be-
haviors caused by attackers. This finding is similar to Chen et.
al [29]. They found that 96% of smart contracts are involved in
no more than 5 transactions, and they are not be used anymore,
indicating that many developers do not consider future reuse of
these contracts.

About 32.03% of smart contracts contain contract defects at
levels 1-3, which can lead to unwanted behaviors. However, we
found that only 7.33% of smart contract contains defects that
can lead to critical unwanted behaviors, e.g., crashing or being
controlled by attackers.

We also found that ERC-20 related smart contracts are the
most popular (36.11%) in Ethereum. However, 21.22% of them
do not strictly follow the ERC-20 standards. We did not find any
smart contracts which contain High Gas Consumption Data Type.
Since the size of our dataset is limited, and this contract defect has
related posts on StackExchange, this contract defect might exist if
we investigate more contracts. In summary, our findings showed
that defined contract defects are very common in real-world smart
contracts.

6 DISCUSSION

In this section, we first give the implications of our work for
researchers, practitioners and educators. Then, we list three chal-
lenges for future research on automatic contract defect detection.

6.1 Implications
For Researchers: Research Guidance. In this paper, we defined
20 contract defects. Several previous studies analyzed some of

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on August 12,2020 at 13:44:08 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.2989002, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 13

them. We have investigated whether there are existing tools that
can detect some of the contract defects identified by our work. We
show the results in Table 6. We first collected the titles of papers
which were published at CCS, S&P, USENIX Security, NDSS,
ACSAC, ASE, FSE, ICSE, TSE, TIFS, and TOSEM from 2016 to
2019, since Ethereum went live on July 30, 2015 [30]. Then, we
used the keywords “smart contract”, “Ethereum”, “blockchain”,
“Contracts” to search for papers which are related to the smart
contract technology. After that, we read the abstract of each paper
to verify its relevance. Finally, we found a total of 4 related papers
(i.e., Oyente [13], [31] , Zeus [15], Maian [14] and Contractfuzzer
[32]). We provide a description of these four tools in Section 8.
We find that 7 contract defects can be detected by these existing
tools and most of them are security related defects. These tools
focus more on the security aspects but do not consider the other
two aspects considered as equally important by practitioners.
Therefore, researchers can pay more attention to developing tools
that can detect the other 13 contract defects.
Behavior vs. Perception [33]. The belief of whether a contract de-
fect is important or not may result in prioritizing testing effort. The
survey results and contract defect distribution shown in Table 3 can
help us investigate whether the practitioners’ perception is consis-
tent with their behavior. We find that the top two most frequent
contract defects are ‘Unspecified Compiler Version’ and ‘Missing
Interrupter’ (according to the column No. Defects in Table 3).
Their survey scores are also the lowest (3.92 and 4.0 according to
the column Score in Table 3), indicating that practitioners do not
perceive them as important as other defects, and thus they pay less
attention to them in practice which causes them to appear more
than other contract defects. The appearance of these two contract
defects is consistent with practitioners’ perception. However, there
are many inconsistent examples. According to the definition of 5
impacts introduced in Section 5.3, it is clear that IP1 can cause
the most serious problems compared to other impacts. We find
the ‘Unchecked External Calls’ has the second highest survey
score (4.64), which shows that developers think this defect is very
important. However, its impact is IP3, which shows that there
is an inconsistency between the practitioners’ perception (high
survey score) and their behavior (medium impact to the project).
Future contract defect detection tools should provide rationales
that explicitly describe the connection between contract defects
and its impact. This could assist developers better prioritize testing
efforts, and understand the detection results well.
Contract Defects in Other Smart Contract Platforms. We propose
a method which summarizes contract defects from online posts.
Our study focused on defining contract defects for Ethereum smart
contracts, but the same method can be applied to other popular
blockchain platforms, e.g., EOS [34], Hyperledger [35]. These
blockchain platforms also support the running of smart contracts
and have their unique features. There are thousands of posts
on StackExchange related to these platforms. Researchers can
analyze the related posts and find specific features and contract
defects of these smart contract platforms. Our work defined 20
contract defects and provide a dataset which identifies these
contract defects on 587 contract accounts, which point out a new
direction for future research. For example, researchers can develop
automatic contract defect detection tools, and our dataset can be
used as ground truth to validate the performance of these tools.
For Practitioners: We are the first to conduct an empirical study
by analyzing many online StackExchange posts to understand and
define contract defects for smart contracts, and utilize an online

TABLE 6: Tools that detect some contract defects identified by
our study.

Contract Defects Tools
Unchecked External Calls Oyente, Zeus, Contractfuzzer

Reentrancy Oyente, Zeus, Contractfuzzer
Block Info Dependency Oyente, Zeus, Contractfuzzer

Transaction State Dependency Zeus
DoS Under External Influence Zeus
Unmatched Type Assignment Zeus

Greedy Contract Maian

survey to validate the acceptance of the defined contract defects
among real-world developers. Our results showed that most of
the smart contracts in our dataset contained at least one of the
defined contract defects. The results may indicate that developers
do not consider future use and handle unpredictable attacks.
However, since the smart contracts are immutable to patch, the
consideration of future use and unpredictable attacks is very
important. We also concluded 5 impacts of the defined contract
defects to help practitioners better understand the consequences.
The defined contract defects can be regarded as a coding guidance
for practitioners when they develop smart contracts. By removing
the defined contract defects, they can develop robust and well-
designed smart contracts.

Developing contract defect detection tools is also a good direc-
tion. Our online survey received many comments from managers
of smart-contract-related companies, some listed in Section 4.3.
They showed much interest in developing and using related tools
and highlighted that such detection tools should be integrated into
Solidity compiler and development tools.
For Educators: Educators should emphasize the importance of
removing contract defects before deploying smart contracts to
blockchain. A survey [36] shows that more than 20% of top
50 universities are offering blockchain courses until Oct. 2018.
However, most courses focus on teaching basic grammar rule of
Solidity programming or blockchain related knowledge but ignore
other concerns (security, architecture, usability). The distribution
of the defined contract defects also indicates that many developers
do not realize the importance for the reuse of smart contracts
and handling unpredictable attacks. Educators can improve such
conditions by helping students to better understand the impacts of
the contract defects. Thus, it is highly recommended that educators
pay more attention to teaching contract defect related problems for
smart contract development.

6.2 Challenge in Detection Contract Defects

We point out three challenges to give a guideline for future
research on automatic contract defect detection.
(1) Program Understanding. Some contract defects do not
have a specific pattern, which increase the difficulty of automatic
defection. For example, there are multiple methods to implement
interrupter for the contracts. Developers can use selfdestruct func-
tion to kill the contract. They can also write a method to stop the
contract when attack happens. To detect these kinds of contract
defects, we need to understand the smart contracts. However,
automatically understanding code is not easy.
(2) Bytecode Level Detection. When deploying a smart contract
to Ethereum, EVM will compile the source code to the bytecode
and the bytecode will be stored on the blockchain. Everyone
can check the bytecode of the smart contracts, but source code
may not visible to the public. Smart contracts usually call other

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on August 12,2020 at 13:44:08 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.2989002, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 14

contracts, but the callee contracts may not open their source code
to inspection. In other words, they do not know whether the smart
contract they called is safe or not. Therefore, detecting contract
defects through bytecode is very important because each smart
contract’s bytecode can be found on Ethereum but only around
0.45% of smart contracts have opened up their source code by
Jan. 2019 [37]. However, it is not easy to detect contract defects
from bytecode level as it loses the most semantic information.
(3) EVM Operation. When compiling a smart contract to
bytecode, EVM will optimize the source code, which means
some information will be removed or optimized, so it is hard to
know the original information on the source code. For example,
detecting whether a function has return value on source code level
is straightforward. However, it is not easy to detect it at bytecode
level as even we do not add a return value for a function, the EVM
will add a default value for it. Therefore, we cannot know whether
the return value is added by EVM or developers.

6.3 Possible Detection Methods

In this section, we discuss possible detection methods for each of
the contract defects that we have defined. Since 7 defects shown
in Table 6 have already been detected by previous tools, we only
discuss the remaining 13 defects.

6.3.1 Bytecode Level Detection

Detecting contract defects by bytecode is important for smart
contracts in Ethereum, as all the bytecode of the contracts can be
found on the Ethereum, but only less than 1% contracts have open
source code. To detect contract defects by bytecode, the defects
should have regular patterns. For example, Nested Call can be
found in a loop which does not limit its loop times and contains
the CALL instruction. Missing Interrupter does not have a regular
pattern, as there are multiple ways to realize interrupter. To the
best of our knowledge, we have found 6 contract defects that can
be detected by bytecode among our 13 smart contract defects. A
common method to detect defects by bytecode is using symbolic
execution as it can statically reason about a program path-by-
path [13].. The method usually converts bytecode to the opcode
and splits them into several blocks.6 A basic block is a straight-
line code sequence with no branches in except to the entry and no
branches out except at the exit. Then, we can symbolically execute
the instruction and construct a control flow graph (CFG) for each
contract, which can be used to detect the contract defects.

(1) Nested Call: After obtaining the CFG, we can identify
which blocks belong to loops. If the loop body contains CALL
instructions and does not limit its loop iterations, the loop contains
a Nested CALL defect.

(2) Strict Balance Equality: To get the balance of the
contract, the contract will generate a BALANCE instruction. We
can start from this instruction; If a BALANCE instruction is read
by EQ (the EQ instruction is used to compare whether two values
are equal), it means there is a strict balance equality check. If
this check happens at a conditional jump expression, it means this
contract contains a Strict Balance Equality defect.

(3) Hard Code Address: Addresses of Ethereum strictly
follow the EIP55 [25] standard. We need to identify whether the
opcode contains a 20-byte-value and follow the EIP55 standard.

6. A basic block is a straight-line code sequence with no branches in except
to the entry and no branches out except at the exit.

The default bytecode stored on Ethereum is called runtime byte-
code, which does not contain the constructor function. However,
many hard code addresses are stored in the constructor function.
To obtain the constructor function, we can check the value of the
first transaction of the contract.

(4) Unmatched ERC-20 standard: The ERC-20 standard
contains 9 functions (3 are optional). From bytecode, we can get
the hash value of each function. The hash value is obtained from
its function name and parameter types. For example, the hash
value of “transfer (address, uint256)” is “A9059CBB”. Therefore,
we can identify whether a contract is an ERC20 token contract
by comparing the hash value of each function. Then, we need to
check whether each function strictly follows the ERC-20 standard.

(5) High Gas Consumption Function Type: We can identify
the public functions through CFG. If a public function is not
be called by any other function this means the function can be
changed to an “external” function.

(6) High Gas Consumption Data Type: To detect this defect,
we need to identify the pattern of byte[] from opcode. byte[] is
easy to identify as it always occupies multiples of 32 bytes.

6.3.2 Source Code Level Detection
As we introduced in Section 6.2 (3), a part of the information will
be removed or optimized when compiling the source code to the
bytecode. Therefore, the remaining 7 contract defects need to be
detected from smart contract source code.

(1) Deprecated APIs: Solidity document does not suggest
using some APIs in the latest version, as they will be deprecated
in the future. However, these APIs can still be compiled. When
compiling to the bytecode, their instructions might be the same
as the recommended APIs. To detect deprecated APIs, we need
to use the latest version of Solidity and detect which APIs are
deprecated.

(2) Unused Statement: Since some unused statements will be
optimized by the EVM, this defect should be detected from source
code. To detect this defect, we can compile the contract by using
the Solidity compiler [38] and compare it to the original contract.
There might be some unused statements that cannot be optimized
by EVM. To detect these unused statements, we can utilize the
CFG and detect whether all the paths can be executed.

(3) Unspecified Compiler Version: When compiling source
code to bytecode, developers need to choose a specific version
of the Solidity compiler. In this case, we cannot detect the defect
from its bytecode. To detect this defect, we need to check its
pragma solidity. [5]

(4) Misleading Data Location: If a smart contract has a
Misleading Data Location, we will find that the contract modified
the value on a specific storage position. However, we cannot know
whether this operation is due to the contract defect. In this case,
we need to detect the defect from source code. To detect it, we
first need to check whether there is an array, struct, or mapping
created in a function. Then, if the contract pushes a value before
assigning to a storage value, this defect is detected.

(5) Missing Return Statement: The reason for this has been
introduced in Section 6.2.3. To detect this defect, we can split
source code into functions by using AST (abstract syntax tree),
and check whether a function is missing a return statement.

(6) Missing Interrupter: There are multiple ways to realize
interrupters, so we cannot find a method to detect this defect
from bytecode. To detect the defect, we first need to summarize
common methods of realizing interrupters. Then, we detect each

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on August 12,2020 at 13:44:08 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.2989002, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 15

kind of interrupter. For example, adding a selfdestructor function
is one of the interrupters. In this case, we just need to detect
whether a contract contains a selfdestructor function.

(7) Missing Reminder: There are also many kinds of func-
tions that need to add reminders. To detect this defect, we all need
to summarize what kind of functions need to add a reminder, then
detect the defect one by one. For example, when receiving Ethers,
we might use a reminder to throw an event to inform the user.
In this case, we first need to locate function that can receiving
Ethers. Then, verifying whether the function throws an event to
inform users.

6.4 Code Smells in Ethereum

In software engineering, code smells are the symptoms in the
source code that possibly indicate deeper problems [39]. Code
smells are related to not only security issues but also design flaws,
which might slow down development or increase the risk of bugs
or failures in the future. Detecting and refactoring out code smells
helps increase software robustness and enhance development effi-
ciency [11]. In this paper, we defined 20 contract defects. There
are many similarities between code smells and contract defects.
According to Martin Fowler’s book [39], code smells do not
directly trigger bugs but can lead to “potential” program faults.
This definition is similar to the definition of Impact level 4 and
5. According to our definition, the contracts containing contract
defects with impact level 4 and 5 can work normally, but they
can lead to potential risks of errors when outside programs call
the contracts, or increase the difficulty of code reuse. In this case,
the contract defects with IP4 and IP5, e.g., “Unused Statements”,
“Unspecified Compiler Version”, can also be considered as smart
contract code smells.

7 THREATS TO VALIDITY

7.1 Internal Validity

We used keywords to filter StackExchange posts. The scale of our
keywords dataset determines how much manual effort we need to
pay. It is not easy to cover all keywords, which means we may not
cover all contract defects. Due to the time and human resource
limitation, we defined 20 contract defects in this study, but
researchers can define more contract defects by using our methods.
To reduce this threat, we manually labeled 587 smart contracts to
validate the existing of these contract defects. To provide a more
stable labeling process, we followed the card sorting process, and
two authors labeled the smart contracts independently. However,
it is still possible that some errors exist in our dataset because
of misunderstanding of smart contracts. To reduce the errors,
we choose the most experienced authors to label the contracts.
They each have three-year experience on smart contract based
development and have published several smart contract related
papers.

The impact of smart contract defects depend on our under-
standing of each contract defect. However, different researchers
and developers may have different understandings. To minimize
this threat, we read the related posts and real-world examples and
discussed with several smart contracts developers to help improve
the correctness. We also considered feedback and comments from
our survey.

It is difficult to ensure that all developers have a good
understanding about all of the contract defects and are indeed

paying attention when doing our survey. It is possible that some
feedback might contain incorrect information. For example, some
survey respondents give “very important” or “very unimportant”
feedback to all defects. To reduce the influence of this situation,
we first added an option “I don’t understand” to each question and
removed these responses when analyzing our survey data. We also
made each question optional. Therefore, if developers find that a
question is hard to understand or they lose their patience, they can
skip the question instead of giving incorrect answers. Finally, we
remove feedbacks given by developers whose answers are all the
same when analyzing the survey data, e.g., all “very important”,
all ”very unimportant”. In addition, to help Chinese developers
better understand our contract defects, three Chinese authors of
this paper translated the survey into Chinese and reviewed the
translated version to make sure the translation is correct.

7.2 External Validity

Solidity is a fast-growing programming language. In 2018, 9
versions were updated and released [40], which means many
features may be added or removed in the future. Ethereum can
also be updated through hard fork [7]. The latest hard fork named
Constantinople will happen on the first half of 2019 [41]. Con-
stantinople will add five new Ethereum Improvement Proposals
(EIPs) to ensure proof-of-work more energy efficient. Some new
opcodes will be added (e.g., CREATE2) and some opcodes will be
modified (e.g., SSTORE). This means some new contract defects
may be created, or existing contract defects will be modified.
Thousands of new smart contracts may quickly be deployed to
the blockchain. The distribution of the contract defects on real-
world smart contracts may change with new developments of
smart contract technology. Many new posts are uploaded to the
StackExchange, and these posts can expose new contract defects.
Our method can also be applied to this situation, but it needs
further effort.

8 RELATED WORK

Atzei et al. [42] proposed the first systematic exposition survey
on attacks on Ethereum smart contracts. They introduce 12 kinds
of security vulnerabilities from Solidity, EVM, and Blockchain
level. Besides, they also introduce some attacks, which can be
used by the attackers to make profits. The work claims that security
vulnerabilities introduced in the paper are obtained from academic
literature, Internet blogs, discussion forums, and based on authors’
practical experience on programming smart contracts. However,
the paper does not introduce the detailed steps of finding the vul-
nerability and does not validate whether developers consider these
vulnerabilities as harmful. Another difference with our work is that
our work does not only focus on the security aspect. Instead, we
consider from security, availability, performance, maintainability
and reusability aspects.

Oyente [13], [31] is the first bug detection tool of smart
contracts, which utilizes symbolic execution to detect four security
issues, i.e., mishandled exception, transaction-ordering depen-
dence, timestamp dependence and reentrancy attack. First, Oyente
builds a skeletal control flow graph for the input contracts. Then,
they faithfully simulate EVM code and execute the instructions
to produce a set of symbolic traces. After that, Oyente defines
different patterns to check whether the tested contracts contain
the security problems or not. Oyente measured 19,366 existing

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on August 12,2020 at 13:44:08 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.2989002, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 16

Ethereum contracts and found 8,519 of them contain the defined
security problems.

Kalra et al. [15] found many false positives and false negatives
in Oyente’s results. They developed a tool called Zeus, an up-
graded version of Oyente. Their tool feeds Solidity source code as
input and translates them to LLVM bitcode. Zeus detects 7 security
issues, 4 of them are the same as Oyente and other 3 problems are
unchecked send, Failed send, Integer overflow/underflow. To eval-
uate their tool, Kalra crawled 1524 distinct smart contracts from
Etherscan [37], Etherchain [43] and EtherCamp [44] explorers.
The result indicates about 94.6% of contracts contain at least one
security problem.

Jiang et al. [32] focus on 7 security vulnerabilities, i.e., Gasless
Send, Exception Disorder, Reentrancy, Timestamp Dependency,
Block Number Dependency, Dangerous DelegateCall and Freez-
ing Ether. They also developed a tool named ContractFuzzer
to detect these issues. Their tool consists of an offline EVM
instrumentation tool and an online fuzzing tool. Based on smart
contract ABI, ContractFuzzer can automatically generate fuzzing
inputs to test the defined security issues. They tested 6,991 smart
contracts and found that 459 of them have vulnerabilities.

Nikolic [14] et al. focus on security issues that can lead to a
contract not able to release Ethers, can transfer Ethers to arbitrary
addresses, or can be killed by anybody. Their tool, MAIAN, takes
as input data either Bytecode or source code. MAIAN contains
two major parts: symbolic analysis and concrete validation. Like
Oyente, simulates an Ethereum Virtual Machine, utilizes symbolic
execution, and defines several execution rules to detect these
security issues. Their results were deduced from 970,898 smart
contracts and found that a total of 34,200 (2,365 distinct) contracts
contain at least one of these three security issues.

Gao [45] et al. designed a tool named SMARTEMBED, which
detect bugs in smart contracts by using a clone detection method.
SMARTEMBED contains a training phase and a prediction phase.
In the training phase, there are two kinds of dataset, i.e., source
code database and bug database. Source code database contains
all the verified (open sourced) smart contracts in the Etherscan.
The bug database records the bugs of each smart contract in their
source code database. To build the prediction modle, SMARTEM-
BED first converts each smart contract to an AST(abstract syntax
tree). After normalizing the parameters and irrelevant information
on the AST, SMARTEMBED transfers the tree structure to a
sequence representation. Then, they use Fasttext [46] to transfer
code to embedding matrices. Finally, they compute the similarity
between the given smart contracts with contracts in their database
to find the clone contracts and clone related bugs.

We defined 20 contract defects from three different aspects.
The above four papers introduce some security problems while
we focus on a broader problem coverage. We do not just focus on
security problems but help developers build better smart contracts.
We also define patterns to help developers increase software
usability and architecture. While these works show several security
problems, but did not validate whether practitioners consider these
problems as harmful. Our work not only validated our defined
defects by an online survey, but also analysis their impacts and
distribution, which can give a clear guidances for developers.

9 CONCLUSION AND FUTURE WORK

We conducted the first empirical study to understand and char-
acterize smart contract contract defects. We first selected 4,141

warning related StackExchange posts from 17,128 posts. Then
we manually analyzed these posts and defined 20 smart contract
defects from five aspects – security, availability, performance,
maintainability and reusability problems. To validate our defined
contract defects, we created an online survey. The feedback
from our survey indicates our contract defects are important
and addressing them can help developers improve the quality of
their smart contracts. We analyzed the impacts for each contract
defect and labeled 587 real-world smart contracts from Ethereum
platform.

Two groups can benefit from this study. For smart contract
developers, they can develop more robust and better-designed
smart contracts. The 5 impacts could help developers decide
the priority of removal. For software engineering researchers,
our dataset can provide ground truth for them to develop smart
contract defect detection tools. We plan to develop automated
contract defect detection tools to detect these defined contract
defects. We also plan to extend our contract defect list and dataset,
when more posts will be published in StackExchange, and more
features will be added into Solidity in the future.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[2] E. Foundation, “Ethereum’s white paper.” https:

//github.com/ethereum/wiki/wiki/White-Pape, 2014.
[3] G. Wood, “Ethereum: A secure decentralised generalised transaction

ledger,” Ethereum Project Yellow Paper, 2014.
[4] (Apr., 2018) marketcap. [Online]. Available: https://www.ccn.com/

marketcap/
[5] (Mar., 2018) Solidity document. [Online]. Available: http://solidity.

readthedocs.io
[6] (Apr., 2018) Understanding the dao attack. [Online]. Available:

https://www.coindesk.com/understanding-dao-hack-journalists/
[7] (Jan., 2019) Blockchain hard fork. [Online]. Available: https:

//en.wikipedia.org/wiki/Fork (blockchain)
[8] (Apr., 2018) Ethereum classic. [Online]. Available: https:

//ethereumclassic.github.io/
[9] (Jan., 2020) Software defects. [Online]. Available: https://en.wikipedia.

org/wiki/Software defect/
[10] R. Chillarege et al., “Orthogonal defect classification,” Handbook of

Software Reliability Engineering, pp. 359–399, 1996.
[11] E. Van Emden and L. Moonen, “Java quality assurance by detecting

code smells,” in Reverse Engineering, 2002. Proceedings. Ninth Working
Conference on. IEEE, 2002, pp. 97–106.

[12] F. Khomh, M. Di Penta, and Y.-G. Gueheneuc, “An exploratory study
of the impact of code smells on software change-proneness,” in Reverse
Engineering, 2009. WCRE’09. 16th Working Conference on. IEEE,
2009, pp. 75–84.

[13] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2016, pp. 254–269.

[14] I. Nikolić, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor, “Finding the
greedy, prodigal, and suicidal contracts at scale,” in Proceedings of the
34th Annual Computer Security Applications Conference. ACM, 2018,
pp. 653–663.

[15] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “Zeus: Analyzing safety
of smart contracts,” in 25th Annual Network and Distributed System
Security Symposium (NDSS’18), 2018.

[16] D. Tapscott and A. Tapscott, Blockchain revolution: how the technology
behind bitcoin is changing money, business, and the world. Penguin,
2016.

[17] (April., 2018) Erc20. [Online]. Available: https://github.com/ethereum/
EIPs/blob/master/EIPS/eip-20.md

[18] (Jan., 2018) Stackexchange. [Online]. Available: https://ethereum.
stackexchange.com/

[19] (Jan., 2020) web3. [Online]. Available: https://web3js.readthedocs.io/en/
v1.2.4/

[20] (Jan., 2020) Remix. [Online]. Available: http://remix.ethereum.org/
[21] (Jan., 2020) Truffle. [Online]. Available: https://www.trufflesuite.com/
[22] D. Spencer, Card sorting: Designing usable categories. Rosenfeld

Media, 2009.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on August 12,2020 at 13:44:08 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.2989002, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. , NO. , 17

[23] J. Cohen, “A coefficient of agreement for nominal scales,” Educational
and psychological measurement, vol. 20, no. 1, pp. 37–46, 1960.

[24] (Apr., 2018) Ethereum foundation. block validation algorithm. [Online].
Available: https://github.com/ethereum/wiki/wiki/Block-Protocol-2.0#
block-validation-algorithm/

[25] (Jan., 2016) Eip-55. [Online]. Available: https://github.com/ethereum/
EIPs/blob/master/EIPS/eip-55.md

[26] B. A. Kitchenham and S. L. Pfleeger, “Personal opinion surveys,” in
Guide to advanced empirical software engineering. Springer, 2008, pp.
63–92.

[27] P. K. Tyagi, “The effects of appeals, anonymity, and feedback on mail
survey response patterns from salespeople,” Journal of the Academy of
Marketing Science, vol. 17, no. 3, pp. 235–241, 1989.

[28] (Jan., 2019) Etherscan verified contract. [Online]. Available: https:
//etherscan.io/contractsVerified/

[29] T. Chen, Y. Zhu, Z. Li, J. Chen, X. Li, X. Luo, X. Lin, and X. Zhange,
“Understanding ethereum via graph analysis,” in IEEE INFOCOM 2018-
IEEE Conference on Computer Communications. IEEE, 2018, pp.
1484–1492.

[30] (Jan., 2019) Ethereum introduction. [Online]. Available: https:
//en.wikipedia.org/wiki/Ethereum/

[31] (Mar., 2018) An analysis tool for smart contracts. [Online]. Available:
https://github.com/melonproject/oyente

[32] B. Jiang, Y. Liu, and W. Chan, “Contractfuzzer: Fuzzing smart contracts
for vulnerability detection,” in Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering. ACM,
2018, pp. 259–269.

[33] P. Devanbu, T. Zimmermann, and C. Bird, “Belief & evidence in
empirical software engineering,” in 2016 IEEE/ACM 38th International

Conference on Software Engineering (ICSE). IEEE, 2016, pp. 108–119.
[34] (Feb., 2019) Eos. [Online]. Available: https://eos.io/
[35] (Feb., 2019) Hyperledger. [Online]. Available: https://www.hyperledger.

org/
[36] (Oct., 2018) College cryptocurrency blockchain

courses. [Online]. Available: https://www.accounting-degree.org/
college-cryptocurrency-blockchain-courses/

[37] (Mar., 2018) Etherscan. [Online]. Available: https://etherscan.io/
[38] (Mar., 2018) The solidity contract-oriented programming language.

[Online]. Available: https://github.com/ethereum/solidity
[39] M. Fowler and K. Beck, Refactoring: improving the design of existing

code. Addison-Wesley Professional, 1999.
[40] (Jan., 2019) Releases of solidity. [Online]. Available: https:

//github.com/ethereum/solidity/releases
[41] (Jan., 2019) Ethereum.org. [Online]. Available: https://www.ethereum.

org/
[42] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on ethereum

smart contracts.” IACR Cryptology ePrint archive, vol. 2016, p. 1007,
2016.

[43] (Mar., 2018) Etherchain. [Online]. Available: https://www.etherchain.
org/contracts/

[44] (Mar., 2018) Ethercamp. [Online]. Available: https://live.ether.camp/
[45] Z. Gao, V. Jayasundara, L. Jiang, X. Xia, D. Lo, and J. Grundy,

“Smartembed: A tool for clone and bug detection in smart contracts
through structural code embedding,” 35th IEEE International Conference
on Software Maintenance and Evolution (ICSME), 2019.

[46] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word
vectors with subword information,” Transactions of the Association for
Computational Linguistics, vol. 5, pp. 135–146, 2017.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on August 12,2020 at 13:44:08 UTC from IEEE Xplore. Restrictions apply.

