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Due to the increasing scale and complexity of software products, software maintenance especially on
bug resolution has become a challenging task. Generally in large-scale software programs, develop-
ers depend on software artifacts (e.g., bug report, source code and change history) in bug reposito-
ries to complete the bug resolution task. However, a mountain of submitted bug reports every day
increase the developers’ workload. Therefore, ‘How to effectively resolve software defects by utiliz-
ing software artifacts?’ becomes a research hotspot in software maintenance. Considerable studies
have been done on bug resolution by using multi-techniques, which cover data mining, machine learn-
ing and natural language processing. In this paper, we present a literature survey on tasks, challenges
and future directions of bug resolution in software maintenance process. Our investigation concerns
the most important phases in bug resolution, including bug understanding, bug triage and bug fixing.
Moreover, we present the advantages and disadvantages of each study. Finally, based on the investi-

gation and comparison results, we propose the future research directions of bug resolution.
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1. INTRODUCTION

1.1. Background

The ultimate aim of software maintenance is to not only improve
the performance but also fix defects and enhance attributes of
the software, which lead to better quality software. Software
bugs usually appear during software development process,
unfound bugs can lead to the loss of billions of dollars [1]. In
recent years, software maintenance has become more challeng-
ing due to the increasing number of bugs in large-scale and
complex software programs. The previous study [2] showed
that more than 90% of software development cost is spent
on maintenance and evolution activities. To coordinate and
avoid overlapping efforts, in large-scale open source software
projects, project teams usually utilize the bug tracking sys-
tems such as Bugzilla to keep track of reported software bugs.
A core component is the bug repository that stores the software
artifacts such as bug reports, source code and change history

produced by users and developers. The developers in project
teams depend on them to manage and fix the given bugs.

In the software maintenance process for large-scale soft-
ware programs, software artifacts, especially for bug reports,
become an important medium to help developers resolve bugs.
Specifically, a user or developer can report the software bug
in a fixed format (i.e., bug report) and upload it to a bug track-
ing system such as Bugzilla1 and FogBugz2. Then, a senior
developer is assigned to fix the reported bug according the
information shown in this submitted report. Figure 1 shows an
Eclipse bug report-Bug 395228 which is a representative sam-
ple that contains all basic elements, such as pre-defined fields,
freeform text and an attachment.

The pre-defined fields on the bug report provide a variety of
descriptive metadata, such as status (e.g., resolved fixed that

1 https://www.bugzilla.org/.
2 http://www.fogcreek.com/fogbugz/.
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FIGURE 1. An example of Eclipse bug report 395228.

stands for the bug report was resolved), importance (e.g., ‘P3
normal’ consists of the priority ‘P3’ and the severity ‘normal’),
component (e.g., UI) and product (e.g., JDT). These meta-
data contain the basic features of the bug report. The freeform
text consists of a summary, a description and comments. The
summary and description present detailed information of the
reported bug, and the comments are posted by developers who
participate in or have interests in the project and discuss how

to fix the bug. Generally, developers can attach non-textural
information to the bug report, such as patches and test cases.

For each bug report, the status in the pre-defined fields indi-
cates its life-cycle. Figure 2 shows the general life-cycle of bug
reports in Bugzilla. When a new bug report is submitted by
a reporter, the initial state is changed from ‘Unconfirmed’ to
‘New’ after the bug report is verified by a triager who is usu-
ally a senior developer or project manager. The triager is also

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, 2015

 at Pao Y
ue-K

ong L
ibrary on A

pril 2, 2016
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

 

http://comjnl.oxfordjournals.org/


A Literature Review of Research in Bug Resolution 3

FIGURE 2. The life cycle of bug resolution process in Bugzilla.

responsible to assign the bug report to an appropriate developer
to fix it. After that, a developer is nominated as the assignee
and the state of the bug report is changed to ‘Assigned’. If the
assignee completes the bug-fixing task, the state is changed to
‘Resolved’; otherwise, the triager will attempt to identify and
assign other developers to resolve the bug. Once the triager
verifies that the bug is fixed successfully, she or he ends the task
and the state becomes ‘Closed’. Afterward, if a developer finds
that the bug is not fixed in its entirety, this bug can be reopened
by the triager. The bug-fixing task is re-executed in a step-wise
manner through a cycle-regulated process as described above.

In the life-cycle of bug resolution process, a new submitted
bug report needs to undergo three phases, including bug under-
standing, bug triage and bug fixing so that the reported bug can
be fixed. Figure 3 shows the three phases and related tasks in all
life-cycle of bug report. We detail them as follows:

(1) Bug understanding: In the process of changing the
status from ‘Unconfirmed’ to ‘New’, triagers need to
fully understand the contents of given bug reports so
that they can summarize the important contents, filter
the duplicates and predict the features (e.g., priority,
severity and status for reopened/blocking) of reported
bugs. The major challenge results from the huge
amount of bug reports submitted every day. A moun-
tain of work can lengthen the fixing time and affect the
quality of task execution. Existing studies [3–35] aim
at developing automatic approaches to perform these
tasks.

(2) Bug triage: As a common process, triagers are respon-
sible for arranging the right developers to fix the given

bugs, and then mark the status of corresponding bug
reports to ‘Assigned’. Without a good understand-
ing of the bug reports, triagers may assign improper
developers to execute the task of bug fixing. It leads to
the bug re-assignment(s). In other words, the related
bugs need to be reassigned to other developers. Unfor-
tunately, Jeong et al. [36] showed that the more the
number of reassignments is, the lower the success
probability of bug fixing is. Except for reassignments,
processing a multitude of bug reports places a heavy
burden on triagers. To resolve this problem, several
automatic bug triage approaches [29, 30, 36–53] have
been proposed to recommend the best developers for
fixing the given bugs.

(3) Bug fixing: The assigned developers, usually called as
assignees, are responsible for fixing the reported bugs.
For a given bug, the assignee needs to find the source
code files where the bug is, and develop or update
patch code as a part of the bug-fixing process. Manual
bug localization and patch generation may render the
bug fixing process for fixing intractable due to the
ever-increasing bugs. Thus, researchers have devel-
oped automatic tools to locate the given bugs [54–66]
and generate the patches [67–71].

In Fig. 3, we present six tasks in three phases. Existing stud-
ies aim to perform them automatically. After utilizing natural
language processing techniques, including tokenization, stem-
ming and stop words removal, to pre-process the corresponding
software artifacts (e.g., bug reports, source code) in software
repositories, they adopted multiple techniques such as data
mining (DM) and machine-learning techniques to execute the
tasks. In this paper, we survey the previous papers covering
six tasks in three phases of bug resolution, and compare the
advantages and disadvantages of each proposed approach.
Moreover, we present the future directions of this research
field.

1.2. Survey process

We search the renowned journals and conference proceedings to
find the corresponding papers concerning the above-mentioned
three phases in bug resolution since 2004. The selected jour-
nals and conference proceedings mainly come from Software
Engineering (SE) field. To keep the wide coverage, we also
include some papers published in other fields such as DM
field, because these papers have strong connection with the
topics studies in this paper. Table 1 introduces the sources
of papers covering bug resolution. Note that 74 journal and
conference papers (five papers were published in the journal
and conference proceedings of other fields) were reviewed,
we checked each paper to guarantee the correctness and
relevance.
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FIGURE 3. Framework for bug resolution.

1.3. Inclusion and exclusion criteria

In the process of paper selection, the articles which satisfy the
following options were included in our survey:

(1) Papers must describe the methodology and experi-
ments. For example, the researchers should describe
how to utilize the proposed new algorithms to resolve
the given bugs.

(2) Papers must focus on the six tasks (i.e., bug sum-
marization, duplicate detection, feature prediction,
bug triage, bug localization and patch generation)
in the three phases of bug resolution, including bug
understanding, bug triage and bug fixing.

(3) Papers were published in peer-reviewed journals and
conference proceedings, because they are more repre-
sentative.

In addition, we exclude the papers which concern the follow-
ing problems:

(1) Papers do not show how to conduct the experiment and
the corresponding evaluation results.

(2) Papers are the duplicates of same study.
(3) Papers are not relevant with the survey topics in our

work even though they may concern the software arti-
facts such as bug reports or source code. For example,
papers discussing the classification of bug reports are
out of scope of our survey.

1.4. Analysis and classification method

We analyzed all papers appearing in Table 1 that we selected
according to their categories. In this survey paper, we clas-
sify each selected paper into a specific category for each task
based on the different algorithms presented in the papers. For
example, for the task of bug triage, some studies like [37, 38]
utilized machine-learning algorithms to recommend the appro-
priate bug fixers while [30, 50, 51, 53] used topic model to
complete the same task. On this occasion, we classify the
former into the class ‘Machine-learning-based recommender’,
and categorize the latter into the class ‘Topic model-based
recommender’.

1.5. Contribution: different points against prior surveys

This work presents the contributions to three phases of bug
resolution via software artifacts. Only a few previous surveys
[72, 73] are relevant to our work. In [72], Strate and Laplante
focus on bug reports analysis, including duplicates detection
and bug triage. Similar to [72, 73] mainly concerns the analysis
of bug reports, and discusses the SE tasks such as duplicates
detection and bug localization.

We have the following new contributions, which differentiate
our work from prior survey papers.

(1) Our work reviews papers in the three phases of bug res-
olution, which are much more than papers on the anal-
ysis of bug reports.
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TABLE 1. Sources of papers reviewed.

SE Journal Acronym No. of papers

IEEE Transactions on Software Engineering TSE 4
ACM Transactions on Software Engineering and Methodology TOSEM 1
Information and Software Technology IST 2
Journal of System and Software JSS 1
Automated Software Engineering ASE 1
Empirical Software Engineering EMSE 1
Total 10

SE Conference Proceedings
International Conference on Software Engineering ICSE 16
International Symposium on the Foundations of Software Engineering FSE 3
International Conference on Automated Software Engineering ASE 4
Working Conference on Reverse Engineering WCRE 6
European Conference on Software Maintenance and Reengineering CSMR 4
International Conference on Software Analysis, Evolution, and Reengineering SANER 1
Working Conference on Mining Software Repositories MSR 8
International Conference on Software Maintenance and Evolution ICSM(E) 6
International Conference on Program Comprehension ICPC 1
International Symposium on Empirical Software Engineering and Measurement ESEM 1
International Conference on Software Engineering and Knowledge Engineering SEKE 2
International Conference on Predictive Models in Software Engineering PROMISE 1
Asia-Pacific Software Engineering Conference APSEC 4
International Conference on Software Engineering Advances ICSEA 1
International Computer Software and Applications Conference COMPSAC 2
International Conference on Software Testing, Verification and Validation ICST 1
Total 59

Others
Journal of Computer Science and Technology JCST 1
International Conference on Dependable Systems and Networks DSN 1
International Conference on Advanced Data mining and Applications ADMA 1
International Conference on Intelligent Systems Design and Applications ISDA 1
International Conference on Machine Learning and Applications ICMLA 1
Total 5

Total Survey Papers 74

(2) The research objects of reviewed papers not only con-
cern the bug reports but also include other software arti-
facts such as source code and change history.

(3) The surveyed range of our work is more than other prior
surveys. In detail, we include the related papers pub-
lished in 2015, but [72, 73] do not cover the up-to-date
research articles.

Roadmap. We organize this article as follows, in Sections 2–4,
we categorize the previous studies as the different phases of
bug resolution, and analyze how previous studies realize these
approaches by utilizing the contents of bug reports and related
data resources (e.g., source code file). In Section 5, we describe

the techniques that were utilized in the previous studies, and
discuss the elements which can impact the performance of tasks
in the bug resolution process. We introduce the future research
directions in Section 6. In Section 7, we conclude this survey
paper.

2. BUG UNDERSTANDING

As the description in Section 1, the triager needs to under-
stand the content of each new submitted bug report rapidly
so that he/she can verify whether it is a duplicate of existing
bug reports. Moreover, he/she needs to mark the features such
as priority and severity levels or verify whether the reporter’s
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annotation is correct or wrong. To reduce the triagers’ work-
load when they face to a lot of new bug reports, existing studies
proposed a series of automatic approaches to implement bug
report summarization, duplicates detection and feature predic-
tion. In this section, we introduce these works and summarize
their advantages and disadvantages.

2.1. Survey on bug report summarization approaches

A vast number of bug reports often contain excessive descrip-
tion and comments, which may become a burden to the
developers. Automatic summarization of bug reports is one
way to help developers reduce the size of bug reports. As a
frequently used method, extraction approach selects a subset
of existing sentences to produce the summary so that it can be
utilized to produce the summary of bug reports. For bug report
summarization, the major challenge is how to select the sen-
tences from duplicate bug reports to generate the summary of
given bug reports. To resolve this problem, supervised learn-
ing and unsupervised learning approaches can be adopted to
determine which sentences are appropriate. We introduce how
the previous studies implement two different approaches in the
following subsections.

2.1.1. Supervised learning approaches
Supervised learning is a type of machine-learning algorithm
that builds a prediction model by training the labeled data to
execute the prediction task [74]. It is necessary to label the
data before performing a training process. Kupiec et al. [75]
first proposed the use of supervised machine learning for doc-
ument summarization. They think that the supervised learning
approach can freely use and combine any desired features.
Supervised learning approaches rely on the labeled summary
corpus for training to predict which sentences belong to a part
of the summary of a new bug report. Rastkar et al. [3] firstly
invited the human annotators to create summaries for 36 bug
reports, and then they applied three supervised classifiers such
as Email Classifier (EC), Email & Meeting Classifier (EMC)
and Bug Report Classifier (BRC) to verify whether a sentence
is a part of the extractive summary. By measuring the effec-
tiveness of these classifiers, they found that BRC out-performs
the other two classifiers by 20% in precision when producing
summaries of bug reports.

In an extended version (i.e., [4]) of [3], Rastkar et al. demon-
strated whether the generated bug report summaries can help
users perform the detection of duplicate bug reports better. As
a result, they found that the summaries helped the participants
save time with no evidence that the accuracy of duplicates
detection has been fallen off.

Note that supervised learning-based summarization
approaches still need the manual effort on building corpus
and gold summarizes, therefore the execution cost is increased
obviously.

2.1.2. Unsupervised learning approaches
Different from supervised learning approaches which require
large supervised or labeled data, the training data for unsu-
pervised learning approaches are not labeled (i.e., merely the
inputs) [76]. Mani and his colleagues [5] applied four unsu-
pervised approaches, including Centroid, Maximum Marginal
Relevance (MMR), Grasshopper and Diverse Rank (DivRank),
to summarize the given bug reports. At first, they designed a
noise reducer to filter out redundant sentences from historical
bug reports and then executed four unsupervised algorithms to
generate the corresponding summaries. Unsupervised summa-
rization methods choose sentences that are central to the input
bug report. This centrality can be measured in various ways.
For example, centroid is a simple technique to achieve this
goal. In this algorithm, each sentence of bug report is repre-
sented as a weighed vector of tf − idf [77]. For each sentence,
the algorithm defines Centroid Value. It is calculated as the
sum of the term weights in the centroid sentence, which is a
pseudo-sentence whose vector has a weight equal to the average
of all the sentence vectors in the report. When the centroid val-
ues of sentences have been calculated, the summary is formed
by selecting sentences in the decreasing order of their centroid
values. Mani et al. compared the efficiency of the proposed
unsupervised methods with supervised approaches proposed
by Rastkar et al. [3] The evaluation results showed that MMR,
DivRank and Grasshopper algorithms performed on par with
the best of the supervised approach but saved on the running
cost because it avoids manual annotation.

Lotufo et al. [6] developed an unsupervised summariza-
tion approach to generate the summaries of given bug reports
without need for configuration nor of manual annotation. This
approach is based on a hypothetical model which assumes
the reader will have to review a lot of sentences within a lim-
ited time and focus on the important ones. The authors create
three hypotheses on what kinds of sentences a reader would
find relevant: sentences that highlight frequently discussed
topics, sentences that are evaluated by other sentences, and
sentences that focus on the topics in the title and description
of the bug reports. By using this hypothetical model, they
applied PageRank [78] to calculate the probabilities of sen-
tences being read and compose the summary of the given bug
report. The experimental results showed that the proposed
approach improved the performance of automatic bug report
summarization by comparing with EC developed by Rastkar
et al. [3].

2.1.3. Comparison of summarization approaches
We provide the detailed comparison between different summa-
rization approaches [3–6] in Table 2. Note that [5, 6] utilized
unsupervised approaches to automatically generate summaries
of bug reports. By comparing with [3, 4] that adopted supervised
classifiers, they achieved satisfactory precision, while avoiding
the human-annotation.
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TABLE 2. Comparison of automatic summarization approaches.

Works Mechanism Method summary Advantages Disadvantages

[3, 4] Supervised classifier Utilized EC, EMC and BRC
to generate the probability
of each sentence being part
of a summary

Demonstrated that BRC
achieved <60% precision
that outperformed EC and
EMC classifier for 36 bug
reports chosen from
Eclipse Platform, Gnome,
Mozilla and KDE.

Needs to create the
human-annotated
standard summaries

[5] Unsupervised summarizer Utilized centroid, MMR,
Grasshopper and DivRank
to summarize bug reports

Avoids human-annotation
and reduces the noise data

Factors may affect the
dependent variables

[6] Unsupervised summarizer Modeled a user reading
process and used this
model to rank sentences
for generating summaries

Improved the performance
of [3] by up to 12% in
terms of precision for a
random set of bug reports
from the Debian,
Launchpad, Mozilla and
Chrome projects

Additional cost to test the
hypotheses that decided
the rank of each
candidate sentence

2.2. Survey on duplicates detection approaches

Duplicate bug reports [79] occur when more than one devel-
oper submits a similar description for the same bug. Verifying
whether a new bug report is a duplicate or not is a major task
of triagers before bug assignment. Unfortunately, it is a tedious
and time-consuming work for triagers due to potentially large
number of submitted bug reports and diversity in reporting
style of users. Automatic duplicate detection is necessary in
order to avoid the manual process. How to train an effective
discriminative model to check whether a newly arrived bug
report is a duplicate or non-duplicate of existing bug reports
becomes a challenging problem. In recent years, there are a
number of research works [7–17] on automatic duplicates
detection to identify and locate duplicates. We classify these
approaches into two categories, including textual information
analysis-based detection and hybrid information analysis-based
detection, which are introduced in the following subsections.

2.2.1. Textual information analysis-based detection
Textual information analysis-based approaches only utilize the
provided textual contents such as summaries, descriptions and
comments of bug reports to detect the duplicates. As an early
study, Runeson et al. [7] applied NLP techniques to process
bug reports, then adopted Vector Space Model (VSM) [80] and
cosine similarity [81] to measure the textual similarity between
a new bug report and historical reports so that they can iden-
tify which reports are duplicates of the given bug report. The
evaluation showed that about tow-thirds of the duplicates can
be found.

Sun et al. [10] developed a discriminative model to check
whether a new bug report is duplicate or not. In this study, they

only considered to use idf which is inverse document frequency
for getting the term weights and utilized them to get the tex-
tual similarity between two bug reports. In detail, the authors
denoted the three types of idf computed within the three corpora
by idfsum, idfdesc and idfboth, respectively. For three corpora,
one corpus is the collection of summaries, one corpus is the
collection of descriptions and the other is the collection of the
hybrid data sets including both of summaries and descriptions.
They calculated the different similarities according to the dif-
ferent types of idf and employed them as the features of Support
Vector Machine (SVM) so that discriminative model can be
developed to detect the duplicates of the given bug report. The
evaluation results showed that this duplicates detection method
outperformed the approaches proposed in [7].

Different from the previous studies such as [7, 10] which
adopted word-level representation of bug reports, Sureka
and Jalote [15] proposed a new representation way, namely
character-level representation to express the title and descrip-
tion of each bug report. By building the character-level n-gram
model, they can capture the important linguistic characteris-
tics (i.e., discriminatory features) of bug reports to execute the
duplicates detection. This approach is evaluated on a bug repos-
itory consisting of >200 thousand bug reports from Eclipse
project. The recall rate for the top-50 results reached up to
33.93% for 1100 randomly selected test cases and 61.94% for
2270 randomly selected test cases.

2.2.2. Hybrid information analysis-based detection
In order to further improve the accuracy of duplicates detec-
tion, combining other non-textual information is necessary. As
a early study, Jalbert and Weimer [8] built a classifier for given
bug reports that combines their surface features (e.g., severity
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and daily load), textual similarity metrics and graph cluster-
ing algorithms to identify duplicates. The proposed approach
performed up to 1% better than that of the study proposed by
Runeson et al. [7] and reduced the development cost by filtering
out 8% of duplicate bug reports.

Wang and his group [9] improved the accuracy of duplicates
detection by combining natural language description and exe-
cution information (i.e., execution traces) of reported bugs. In
detail, they calculated the natural language-based similarities
and the execution information-based similarities between a
new bug report and existing bug reports by using VSM and
cosine similarity measure; then they combined two similarities
to detect duplicate bug report. The experimental results showed
that this hybrid approach can detect higher-proportional dupli-
cate bug reports than the method [7] using natural language
information alone.

Sun and his group [11] proposed REP, which is a new similar-
ity measure function, which can not only compute the similarity
of textual content in summary and description of bug reports but
also calculate the similarity of non-textual fields such as prod-
uct, component and version. BM 25Fext was introduced to com-
pute the similarities. By using REP, they can effectively detect
the duplicate of bug reports. They validated this technique on
three large software bug repositories from Mozilla, Eclipse and
OpenOffice, the results showed that it can improved the accu-
racy over SVM-based duplicates detection.

Tian et al. [16] utilized REP [11], which adopted an exten-
sion of BM 25F to measure the similarity of two bug reports, and
adopted the feature, i.e., ‘product’ of bug report, to help in iden-
tifying whether two bug reports are duplicate or not. Further-
more, they defined a new notion of relative similarity that help
to decide if the similarity between two bug reports is significant.
The experimental results showed that this approach can improve
the accuracy of the previous study [8] by ∼160%.

Nguyen and colleagues [12] not only used BM 25F to com-
pute the textual similarity between a new bug report and histor-
ical bug reports but also calculated the similarity between the
new report and the duplicate report groups which could share
same topic(s) built by Latent Dirichlet Allocation (LDA) [82].
By combining the textual similarity via BM 25F and the topic
similarity, Nguyen et al. can effectively detect the duplicates of
the given bug report. The evaluation results demonstrated that
the proposed technique improved the approach in [11] by up to
20% in accuracy.

In [13] and its extended version [14], Alipour et al. devel-
oped a contextual approach to further improve the accuracy
of duplicates detection. Specifically, they built a contextual
word collection, including six word lists labeled as efficiency,
functionality, maintainability, portability, reliability and usabil-
ity, then computed the similarity between these word lists and
each bug report using BM 25F. Moreover, they combined the
primitive textual and categorical features of bug reports, such
as description, component, type and priority. Finally, some
well-known machine-learning techniques such as C4.5 [83],

K-Nearest Neighbor (KNN), Logistic Regression [84] and
Naive Bayes were applied to execute the detection task for
duplicate bug reports. Alipour et al. demonstrated that the con-
textual duplicates detection method performed better than the
approach provided by Sun et al. [11].

Aggarwal et al. [17] proposed a method called the software-
literature context method, which utilized the lists of contextual
words from SE textbooks and project documentation to detect
the duplicate bug reports via the similarity measure BM 25F.
The adopted lists are different from [13], these software-
literature context word lists reflect the software development
processes, and the evolution of project. The experimental
results are similar to the results reported by Alipour et al.,
however, this approach requires far less time and effort. For
example, the SE textbook and project documentation features
were 1.48% less accurate on Android dataset than labeled LDA
features utilized in [13] but these features took only 0.5 h to
extract, while the labeled LDA features took 60 h to extract due
to annotation.

Note that hybrid information can help to improve the perfor-
mance of duplicates detection, however, these approaches need
to extract further features or build the complex model (e.g.,
topic model) to implement the task. In the following subsection,
we summarize and compare the above mentioned approaches
on duplicate bug reports detection.

2.2.3. Comparison of automatic duplicate detection methods
We summarize the comparison of different automatic dupli-
cate detection approaches [7–17] in Table 3. Note that multiple
information retrieval (IR) and machine-learning techniques
are effective ways to detect the duplicate bug reports in these
studies. Moreover, different features lead to different detec-
tion accuracy. For example, due to additional features such as
contextual and categorical information, the proposed approach
in [13] performed better than the method in [11].

2.3. Survey on feature prediction approaches

Features (e.g., priority, severity and status for reopened/block-
ing) of reported bugs can provide clear guide to developers
in fixing the given bugs. In detail, the priority helps devel-
opers verify which bugs should be given attention first; the
severity is a critical feature in deciding how soon the bug
needs to be fixed; the status for ‘reopened’ means that the bugs
should be reopened due to existing unsolved problems, and
‘blocking’ bugs are software bugs which can prevent other
bugs from being fixed, both of them can increase the software
development cost and the workload of bug fixers. Thus, it is
necessary to predict the corresponding features of bug reports
for helping to improve the bug-fixing process. We group these
features into two difference categories (i.e., priority/severity
and reopened/blocking) due to similar characteristics, which
are presented as following subsections.
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TABLE 3. Comparison of automatic duplicates detection approaches.

Works Mechanism Method summary Advantages Disadvantages

[7] Textual information
analysis-based
detection

Adopted VSM and cosine measure to
compute the textual similarity
between a new bug report and
historical bug reports so that
duplicates were found.

Reducing the effort to
identify duplicate
reports with 40% at
Sony Ericsson Mobile
Communications.

Relatively lower accuracy
(42% for a top list size
of 15, the maximum
recall rate can achieve
66.7%).

[10] Textual information
analysis-based
detection

Built a discriminative model via SVM
to verify whether a given bug report
is the duplicate or non-duplicate
report.

Achieved 17–31%,
22–26% and 35–43%
relative improvement
over [7–9] in
OpenOffice, Firefox
and Eclipse,
respectively.

Needs more features.

[15] Textual information
analysis-based
detection

Built a character-level n-gram model to
detect the duplicates

Run at the large-scale data
sets (200 thousand bug
reports from Eclipse
project)

Relatively lower recall
rate (33.92% for 1100
random cases and
61.94% for 2270
random cases).

[8] Textual information and
feature analysis-based
detection

Built a classifier for that combines
surface features, textual similarity
metrics, and graph clustering
algorithms to identify duplicates.

Performed better than [7]
by up to 1% accuracy
and reduce the
development cost for a
dataset of 29,000 bug
reports from the
Mozilla project.

Performance improvement
(∼1%) is not obvious
and needs more
features.

[9] Textual information and
execution information
analysis-based
detection

Used VSM and cosine measure to
compute the textual similarity and
execution information similarity
between a new bug report and
historical bug reports, then combined
them as a hybrid algorithm to detect
the duplicates.

Detected 67–93% of
duplicate bug reports in
the Firefox bug
repository, which is
much better than
43–72% using natural
language alone.

Increased the complexity
of the algorithm.

[11] Textual information and
feature analysis-based
detection

Utilized BM 25Fext to compute the
textual similarity and feature (i.e.,
product and component) similarity
between a new bug report and
historical bug reports to detect the
duplicates.

Achieved 10–27% relative
improvement in recall
rate than SVM-based
detection method, and
improved the recall rate
of [15] by up to
37–71% on three bug
repositories from
Mozilla, Eclipse and
OpenOffice.

Needs more features.

[16] Textual information and
feature analysis-based
detection

Utilized REP and the feature ‘product’
to identify the duplicates.

Improve the accuracy
of [8] by 160% for the
Mozilla project.

Needs more feature.

[12] Textual information and
topic analysis-based
detection

Used BM 25F to compute the textual
similarity between a new bug report
and historical bug reports, and also
calculated the similarity between the
new report and the duplicate groups
sharing the same topic(s); then
combined two similarities to verify
whether the new bug report is
duplicate or non-duplicate.

Improved over [11] with
higher accuracy from 4
to 6.5% for OpenOffice
and 5–7% for Mozilla.

Needs to adjust the
number of topics while
running the algorithm
in different data sets.

continued.
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TABLE 3. continued.

Works Mechanism Method summary Advantages Disadvantages

[13, 14] Textual information
and contextual
analysis-based
detection

Introduced BM 25F to calculate the
contextual similarity between the
word lists and a given bug report,
then combined the textual and
categorical features as the input of
multiple machine-learning
algorithms (e.g., KNN) so that the
duplicates were detected.

Improved prediction
accuracy by 11.55%
over [11] for Android,
Eclipse, Mozilla and
OpenOffice projects.

Needs the contextual word
lists from bug reports.

[17] Textual information and
domain knowledge
analysis-based
detection

Utilized the lists of contextual words
from SE textbooks and project
documentation to detect the duplicate
bug reports via BM 25F.

Required only 0.5 h to
extract the features
while the approach [13]
spent 60 h to extract
them at Android,
Eclipse, Mozilla and
OpenOffice projects.

Needs the domain
knowledge of SE field.

2.3.1. Priority/severity prediction approaches
For each bug report, in terms of precedence, generally there
are five priority levels that can be denoted as P1, P2, P3, P4
and P5; P1 being the highest priority, while P5 represents the
lowest priority. The severity varies from trivial, minor, nor-
mal, major, critical to blocker, which indicate the increasing
severity of the given bugs. Bug triagers need to understand
the information provided by reporters in the submitted bug
reports and decide the appropriate factors. Even if clear guide-
lines [85] exist on how to assign the factors of a reported bug,
it is still a time-consuming manual process. Therefore, it is
necessary to develop an approach to predict the bug severity
and priority. Essentially, both the priority and severity predic-
tions belong to the classification problem, which means that a
bug report should be arranged to a category labeled by sever-
ity level or priority level. However, we need to address the
challenge on how to utilize the textual contents and features
of a new bug report to classify it into a correct category (i.e.,
priority level or severity level). Thus, the selection of features
and classifiers become the key to address the problem. Various
approaches were proposed to predict the priority [18–22] and
the severity [23–30] of reported bugs. Since all approaches
adopted machine-learning algorithms to conduct the prediction
tasks, we consider the different implement means to categorize
them into two classes, including coarse-grained prediction and
find-grained prediction.

Coarse-grained prediction For coarse-grained prediction, the
approaches do not predict each priority and severity levels.
In other words, these previous studies only predicted a rough
classification (e.g., ‘non-severe’ and ‘severe’) for each new
bug report.

Alenezi and Banitaan in [21] adopted Naive Bayes, Deci-
sion Trees [86] and Random Forest [87] to execute the priority

prediction. They used tf to get the weight of words in each bug
report as the first feature set, and introduced component, oper-
ating system and severity as the second feature set to perform
three machine-learning algorithms. The results of the evalua-
tion experiments showed that the algorithms using the second
feature set performed better than using the first feature set, and
also demonstrated that Random Forests and Decision Trees
outperformed Naive Bayes.

In [23], Lamkanfi et al. proposed a severity prediction
approach by analyzing the textual description of a given bug
report. In this study, they divided the severity levels trivial and
minor into ‘severe’, while grouped major, critical and blocker
into ‘non-severe’. Then they used Naive Bayes classifier which
is based on the probabilistic occurrence of terms to catego-
rize the given bug report into ‘severe’ or ‘non-severe’. The
evaluation results indicated that this Naive Bayes-based classi-
fication method can reach a reasonable accuracy for Mozilla,
Eclipse and GNOME. As a follow-up work, Lamkanfi and
colleagues [24] tried to compare four text mining algorithms
namely Naive Bayes [88], Naive Bayes Multinomial [89],
KNN [90] and SVM [91] for predicting the severity of a
reported bug. They found that Naive Bayes Multinomial
reached the best performance than other algorithms.

The studies [26, 27, 29] adopted the different ways to
improve the performance of coarse-grained severity predic-
tion. In [26], Yang et al. utilized feature selection schemes
such as Information Gain, Chi-Square and Correlation Coeffi-
cient to improve the performance of severity prediction using
Multinomial Naive Bayes classification approach. The exper-
imental results showed that these feature selection schemes
can effectively extract potential severe and non-severe indica-
tors and thus improve the prediction performance in over half
the cases. In [27], Bhattacharya et al. proposed a graph-based
characterization of a software system to facilitate the task of
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severity prediction. In detail, they used NodeRank to verify
critical functions and modules which are likely to indicate
high-severity bugs. The major function of NodeRank is to mea-
sure the relative importance of a node (i.e., function or module)
in the module collaboration graphs. Thus they can identify how
critical a function or module is. In [29], Xuan et al. addressed
the problem of developer prioritization to rank the contribu-
tions of developers based on social network, then they used the
results of the prioritization to improve the performance of three
software maintenance tasks that include severity prediction.
By combining the features adopted by [23], they used Naive
Bayes to execute the prediction task. The results showed that
the developer prioritization can improve the performance by
∼1% for precision, recall and F-measure.

Fine-grained prediction Different from coarse-grained predic-
tion, fine-grained prediction approaches can predict the priority
and severity levels.

Yu et al. [18] proposed a new approach to predict the
priority-level based on Neural Network [92]. In detail, they first
manually classified the bugs, followed by automated learning
by artificial neural network (ANN), then predicted the priority
levels with the learned ANN. Moreover, they extracted nine
attributes, including milestone, category, module, severity,
main workflow, function, integration, frequency and tester,
from bug reports as the inputs of ANN model. The result of
evaluation showed that this prediction approached based on
ANN performed better than Naive Bayes. For example, for
the priority-level P1, the F-measure of ANN achieves 88%,
which is much better than 34.7% produced by using Naive
Bayes.

Kanwal and Maqbool [19] used Naive Bayes and SVM to
present a comparison with evaluate which classifier performs
better in terms of accuracy. The evaluation results on all prior-
ity levels showed that the performance of SVM is better than
Naive Bayes when adopting text features (i.e., summaries and
long descriptions of bug reports), while for categorical features
such as component, severity and platform Naive Bayes per-
formed better than SVM. The highest accuracy is achieved with
SVM when combining the text and categorical features. For
the category including the combining features, the precision
of SVM reached up to 54%, which is better than Naive Bayes
(40%).

Sharma et al. [20] applied SVM, Naive Bayes, KNN and
Neural Network to predict the priority of the newly arrived bug
reports. They calculated the term weight in each bug report
using tf ∗ idf , then utilized these machine-learning algorithms
to classify the given bug reports into different categories (i.e.,
priority levels from P1 to P5). They performed cross-validation
in the evaluation experiment and demonstrated that the accu-
racy of different machine-learning algorithms reached <70%
except for the Naive Bayes.

By analyzing the multiple factors-temporal, textual, author
(e.g., reporter), related report, severity and product that

potentially affect the priority of bug reports, Tian and her
colleagues [22] extracted them as features to train a discrimina-
tive model that can verify which priority level a new bug report
belongs to. In detail, the proposed approach introduced linear
regression to capture the relationship between the features and
the priority levels, then they employed a thresholding approach
to adjust the different thresholds to decide the priority levels.
The experimental results showed that the proposed approach
outperformed the method presented in [25], which was used to
predict the priority of bug reports.

Menzies and Marcus [25] proposed a fine-grained bug sever-
ity prediction approach. They utilized InfoGain [93] to rank all
terms appearing in the bug reports based on the term weight
calculated by tf ∗ idf , then a data miner was adopted to learn
rules that predict the severity levels using the top-k terms. The
case study results showed that the developed prediction tool
can effectively predict the bug severity levels.

Tian, Lo and Sun’s study [28] also focuses on fine-grained
severity prediction. To realize this goal, an IR-based nearest
neighbor solution was proposed. They first calculated the sim-
ilarity of different bug reports and based on this similarity the
historical bug reports that are most similar to a new bug report
are identified. These reports are marked as duplicates which
can help to identify the different severity level of the given bug.
In this work, authors adopted BM 25Fext [94] which is an exten-
sion version of BM 25F to compute the similarity between the
new bug report and the historical reports. In detail, BM 25F is
developed to compute the textual similarity of a short document
(which is marked as query) and a longer document. However,
bug reports are longer documents. In order to calculate the
similarity of two bug reports, Tian et al. adopted BM 25Fext

and then they found the duplicate bug reports as the nearest
neighbors to predict the severity level of the new bug report.
Compared with the severity prediction algorithm proposed by
Menzies and Marcus [25], the proposed approach exhibits a
significant improvement.

For the same reason, Yang et al. [30] developed a new algo-
rithm to predict the severity of a new reported bug from another
angle. They utilized topic model and multiple factors such
as priority, component and product to find the historical bug
reports which have the strong relevance with the given bug.
Then KNN was adopted to predict the severity levels. The
evaluation results showed that this algorithm can improve the
performance of other studies, namely single KNN and Naive
Bayes.

Comparison of priority prediction approaches: A detailed
comparison of priority prediction approaches [18–22] is pro-
vided in Table 4. Note that the studies [18–20, 22] executed
the fine-grained prediction for priority levels of bug reports
while the coarse-grained prediction that only considered two
category ‘high priority’ and ‘low priority’ implemented in [21].
The fine-grained prediction is actually a multi-class classifi-
cation task and the coarse-grained prediction is a two-class
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TABLE 4. Comparison of priority prediction approaches.

Works Mechanism Method summary Advantages Disadvantages

[21] Coarse-grained prediction Adopted Naive Bayes,
Decision Trees and
Random Forest to execute
priority prediction.

Demonstrated that the second
feature set (i.e., factors of bug
reports) outperformed the first
feature set (i.e., term weight)
by 17.8% average F-measure
for high-class priority of given
bugs in Eclipse and Firefox
projects.

Only two projects (i.e.,
Eclipse and Firefox) are
utilized.

[18] Fine-grained prediction Used Neural Network to
predict the priority levels.

Reached up to 81.4% average
F-measure, which is better
than Naive Bayes (47.9%) for
bug reports at Hospital
Information System, Software
Development Tools, ERP
system and Word Processing
Software from an international
medical device maker.

Needs more features.

[19] Fine-grained prediction Adopted Naive Bayes and
SVM to present a
comparison to evaluate
which classifier performs
better in terms of accuracy.

SVM with the combining
features achieved 54%
precision, which is better than
Naive Bayes (40%) for the
Eclipse Platform project.

Needs more features.

[20] Fine-grained prediction Utilized SVM, Naive Bayes,
KNN and Neural Network
to predict the priority of the
newly arrived bug reports.

Demonstrated that the accuracy
of different machine-learning
techniques (except Naive
Bayes) can successfully
predict the priority of <70%
bugs from Eclipse and
OpenOffice projects.

The prediction accuracy
depends on the quality of
bug report summaries.

[22] Fine-grained prediction Extracted multi-factors (e.g.,
severity, product, etc.) as
features to implement
linear regression and
thresholding algorithm for
predicting the priority
levels of a new bug report.

Outperformed SVM-MultiClass
by a relative improvement of
58.61% for Eclipse project.

Needs more features.

classification problem. Both of them adopted machine-learning
algorithms such as SVM, Naive Bayes to predict the priority
levels. We found that the feature selection has the significant
effect to the performance of prediction. For example, in [21],
the adopted algorithms utilizing the second feature set that
includes component, operating system and severity performed
better than them used the first feature set that contained the
weighed words extracted from bug reports; in [19], SVM with
the combing features including text features and categorical
features performed better than Naive Bayse, however, when

only using the categorical features, SVM performed worse than
Naive Bayes.

Comparison of severity prediction approaches: A detailed
comparison of severity prediction approaches [23–30] is
provided in Table 5. Note that [23, 24, 26, 27, 29] focused
on coarse-grained prediction, while [25, 28, 30] developed
fine-grained prediction algorithms. For the coarse-grained pre-
diction approaches, the studies [26, 27, 29] adopted the different
mechanisms such as feature selection, graph-based analysis
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TABLE 5. Comparison of severity prediction approaches.

Works Mechanism Method summary Advantages Disadvantages

[23] Coarse-grained
prediction

Utilized Naive Bayes classifier to
categorize bug reports into
‘non-severe’ and ‘severe’,
respectively.

Predicted the severity with a reasonable
accuracy (both precision and recall
ranged between 65–75% with
Mozilla and Eclipse, and 70–85% for
GNOME)

Relies on the presence of a
causal relationship between
the contents of the fields in the
bug report and the severity of
the bugs.

[24] Coarse-grained
prediction

Utilized Naive Bayes, Naive Bayes
Multinomial, KNN and SVM to
predict the bug severity and
compared their performance.

Demonstrated that the average accuracy
of Naive Bayes Multinomial reached
up to 73% and 85.7% for all products
of Eclipse and GNOME,
respectively, which performed better
than Naive Bayes, SVM and KNN.

Relies on the presence of a
causal relationship between
the contents of the fields in the
bug report and the severity of
the bugs.

[26] Coarse-grained
prediction

Utilized feature selection schemes
to improve the performance of
severity prediction using
Multinomial Naive Bayes.

Improved the prediction performance in
over half the cases at Mozilla and
Eclipse.

The feature selection schemes do
not consider the semantic
relations.

[27] Coarse-grained
prediction

Used graph-based analysis to
facilitate severity prediction.

Worked at both function and module
level and predicted bug severity
before a bug report is filed.

Additional cost for building the
graphs.

[29] Coarse-grained
prediction

Utilized developer prioritization to
enhance the performance of
severity prediction.

Improved the accuracy of severity
prediction only using the
machine-learning algorithm by 1%
at Eclipse and Mozilla.

Additional cost for building the
social network to prioritize the
developers.

[25] Fine-grained
prediction

Used InfoGain to rank all the terms
in the data set based on the term
weight tf ∗ idf and then adopted
a data miner to learn rules that
predict the severity levels using
the top-k terms.

Achieved an average precision, recall
and F-measure of up to 50.5, 80 and
50.5%, respectively, for all severity
levels of bugs in NASA by using
little domain knowledge.

Relatively lower accuracy
for Severity 4 (8% precision)
and used only one data set
(i.e., NASA).

[28] Fine-grained
prediction

Adopted BM 25Fext to calculate the
similarity between bug reports for
finding the most similar reports
with a new bug report and used
them as the nearest neighbors so
that the severity level of the given
bug can be predicted.

Achieved a precision, recall and
F-measure of up to 72, 76 and 74%
for predicting a particular class of
severity labels, which performed
better than [25] at Eclipse,
OpenOffice and Mozilla.

Needs to adjust the value of
parameter k (the number of
nearest neighbors) while using
different data set.

[30] Fine-grained
prediction

Employed topic model and multiple
factors (e.g., component) to
predict the severity levels.

Produced higher accuracy (<70%) than
traditional classifiers such as KNN
(10–14% improvement) and Naive
Bayes (3–8% improvement) for
Eclipse and Mozilla.

Needs to adjust the value of
parameter k (the number of
topics) while using different
data set.

and developer prioritization to improve the prediction perfor-
mance by only using the traditional two-class machine-learning
algorithms. For the fine-grained prediction algorithms, [28]
reached a better performance than [25] which introduced
only one data set for evaluation while [30] performed better

than KNN and Naive Bayes. The authors [28, 30] evalu-
ated their methods in three different open source projects,
respectively, however, these algorithms also need to adjust the
corresponding parameters for adapting to the different data
sets.
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2.3.2. Reopened/blocking prediction approaches
In some cases, the bugs marked as ‘closed’ can be reopened
due to many reasons. For example, if a bug was not incorrectly
fixed and reappeared, in this situation, the status of this bug
can be regarded as ‘reopened’. Blocking bugs are software
defects that prevent other defects from being fixed. Under
the environment, the developers cannot fix the bugs because
the components that they are fixing depend on other compo-
nents that have unresolved bugs. Obviously, the reported bugs
marked as ‘reopened’ or ‘blocking’ increase the bug-fixing
cost and fixers’ workload, therefore some scholars devoted to
study the reasons why the bugs can be reopened or marked as
‘blocking’, and predict whether a new given bug is reopened or
blocking. For example, Zimmermann et al. [95] characterized
the overall process of reopen process by conducting a survey to
a large population of experienced developers on the fundamen-
tal reasons for bug reports, and built a statistical descriptive
model to identify statistically the most important factors affect-
ing reopened bugs. But their study did not predict whether
an individual bug is reopened or not. Garcia and Shihub [34]
found that blocking bugs take approximately two to three times
longer to be fixed compared with non-blocking bugs, and built
the prediction models for identifying the blocking bugs. In our
reviewed papers, we found that the studies [29, 31–33] pro-
posed a prediction model for reopened prediction while the
works [34, 35] devoted to predict the blocking bugs. We do
not classify these studies like other tasks, because all studies
utilized machine-learning algorithms with the features of bug
reports to predict the reopened or blocking bugs. They have the
same implementation way (i.e., two-class classification) and
the similar algorithms (i.e., machine-learning algorithms), thus
there is no need for categorizing them.

We introduce the above-mentioned studies and show the com-
parison among them as following subsections.

The prediction approaches for reopened bugs In order to pre-
dict whether a new bug will be reopened or not, the machine
learning algorithms such as SVM, decision tree are utilized
to build a two-class discriminative model for classifying the
given bugs. Moreover, the features (e.g., component and prod-
uct) of bug reports are adopted to enhance the performance of
prediction.

Shihab et al. [31] first extracted the features of bug reports to
structure four dimensions, including the work habits dimension
(e.g., the initial closed time), the bug report dimension (e.g.,
component), the bug fix dimension (e.g., fixing time) and the
people (team) dimension (e.g., the fixers’ experience), then
they created decision trees based on these dimensions to pre-
dict whether a bug will be reopened. The predictions model can
reach up to 62.9% precision and 84.5% recall.

Xuan et al. [29] added two factors, i.e., the reporter priority
score and the fixer priority score, into the people dimension
presented in [31]. Then they implemented the same approach

proposed by Shihab et al., the results showed that these two
factors brought the slight improvement for the performance of
the method claimed in [31]. Xuan and his colleagues explained
that the small size of training set may limits the predictive abil-
ity of two factors so that the performance improvement is not
significant.

Xia et al. [32] evaluated the effectiveness of various super-
vised learning algorithms (e.g., KNN, SVM, Decision Table,
Bagging and Random Forest) to predict whether a bug report
will be reopened. The experimental results showed that Bag-
ging and Decision Table achieved the best performance. They
reached up to accuracy score of 92.9 and 92.8%, respectively.
These results improved F-measure of the approach proposed
by Shihab et al. [31] by up to 23.5%.

In the following work, Xia and his group proposed Reopen-
Predictor [33], which combined the multiple type of features
(i.e., description features, comment features and meta features)
and adopted the corresponding classifiers, including a descrip-
tion classifier, a comment classifier and a meta classifier to
achieve a higher performance than previous approaches such
as [31]. The experimental results showed that ReopenPredictor
achieved an improvement in the F-measure of the prediction
approach proposed by Shihab et al. by 33.33, 12.57 and 3.12%
for Eclipse, Apache HTTP and OpenOffice, respectively.

A detailed comparison of the prediction approaches [29, 31–
33] for reopened bugs is provided in Table 6. Note that all of
approaches adopted machine-learning algorithms to predict the
reopened bugs, thus the selection of machine-learning algo-
rithms and features of bug reports can necessarily affect the
prediction performance. For example, Xia et al. [33] proposed
ReopenPredictor combined the multiple features and the cor-
responding classifiers to predict whether a given bug will be
reopened or not so that it performed better than the approach
proposed by Shihab et al. [31].

The prediction approaches for blocking bugs: Similar to the
prediction for reopened bugs, predicting blocking bugs also
adopted machine-learning algorithms and features in the pre-
vious studies [34, 35] because this prediction task is also a
two-class classification problem.

In [34], Garcia and Shihab extracted 14 features such as the
textual description of bug reports and the bug location from the
bug tracking systems to build decision trees for each project to
predict whether a bug will be a blocking bug or not. Moreover,
they analyzed these features to find which features have the best
influence to indicate the blocking bugs. As the results, the pro-
posed method achieved F-measure of 15–42%, and the features,
including comment text, comment size, the number of develop-
ers and the reporter’s experience, were found as the most impor-
tant indicators for identifying the blocking bugs.

Xia et al. [35] proposed ELBloker to identify blocking bugs.
This method first randomly divided the training data into mul-
tiple disjoint sets, and for each disjoint set, a classifier is built
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TABLE 6. Comparison of prediction approaches for reopened bugs.

Works Mechanism Method summary Advantages Disadvantages

[31] Machine-learning-based
prediction with multi-features

Utilized decision trees based
on four dimensions
including 22 features to
predict reopened bugs.

Implemented effective
prediction for reopened
bugs by 62.9% precision
and 84.5% recall at the
Eclipse Platform project.

Needs more features.

[29] Machine-learning-based
prediction with multi-features

Utilized developer
prioritization to improve
the prediction for reopend
bugs.

Improved the prediction
accuracy of the approach
proposed by Shihab
et al. [31] by up to 0.7% at
Eclipse.

Needs to extract the features
by prioritizing developers
and slight improvement for
prediction performance.

[32] Machine-learning-based
prediction with multi-features

Evaluated the effectiveness of
various supervised learning
algorithms to predict
reopened bugs.

Improved F-measure of the
approach proposed by
Shihab et al. [31] by up to
23.5% at the Eclipse
Platform project.

Additional evaluation cost.

[33] Machine-learning-based
prediction with multi-features

Utilized multiple features and
corresponding classifiers to
predict the reopened bugs.

Achieved an improvement in
the F-measure of the
prediction approach
proposed by Shihab et al.
by 33.33, 12.57 and 3.12%
for Eclipse, Apache HTTP
and OpenOffice,
respectively.

Needs more features.

based on random forest algorithm. Then it combined these mul-
tiple classifiers to determine an appropriate imbalance decision
boundary to distinguish blocking bugs from non-blocking bugs.
ELBloker improved the F-measure over the approach proposed
by Garcia and Shihab [34] by 14.69%.

A detailed comparison of the prediction approaches [34, 35]
for blocking bugs is provided in Table 7. Note that combining
more features and classifiers can improve the prediction per-
formance. For example, ELBloker [35] combined the multiple
classifiers and utilized more features to enhance the prediction
model so that it can produce the better performance than the
prior method presented in [34] by up to 14.69% F-measure.
However, the better approach may increase the running cost
due to more extracted features and utilized classifiers.

3. BUG TRIAGE

Triagers are responsible to assign the new bug reports to the
right assignees for fixing the given bugs. Automatic bug triage
can reduce the probability of re-assignment and reduce triagers’
time by recommending the most appropriate assignees. How-
ever, it throws out a challenge on how to verify the candidate
assignees and how to rank them. Existing approaches utilize
a series of approaches (e.g., machine-learning algorithms,
social network metrics) to quantify developers’ experience so
that they can rank the assignees and find the most appropriate

one. In this section, we survey the related works and show the
advantages and disadvantages.

By employing multiple techniques such as machine-learning
algorithms and social network analysis, the previous stud-
ies [29, 30, 36–53] can achieve the purpose of automatic
assignee recommendation. According to the different tech-
niques, we classify these studies into five category such as
machine learning-based recommender, expertise model-based
recommender, tossing graph-based recommender, social
network-based recommender and topic model-based rec-
ommender, which are detailed in the following subsections,
respectively.

3.1. Machine-learning-based recommender

Since machine-learning algorithms can learn from the data,
previous studies utilized machine-learning algorithms, such
as Naive Bayes and SVM, to decide the most appropriate
developer for fixing the given bug.

As a pioneering study, Čubranić and Murphy [37] proposed
an automatic bug triage approach to recommend the best devel-
opers for fixing the given bugs. In this work, the problem of
assigning developers to fix bugs was treated as an instance of
text classification. For this classification problem, each assignee
was considered to be a single class and each bug report was
assigned to only one class. Therefore, authors used a traditional
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TABLE 7. Comparison of prediction approaches for blocking bugs.

Works Mechanism Method summary Advantages Disadvantages

[34] Machine-learning-based
prediction with
multi-features

Utilized decision trees based
on 14 features to predict
blocking bugs.

The prediction models
achieved F-measures of
15–42%, which is a two- to
four-fold improvement
over the baseline random
predictors for the bug
reports extracted from
Chromium, Eclipse,
FreeDesktop, Mozilla,
NetBeans and OpenOffice.

Lower percentage of blocking
bugs causes the classifier
not to learn to predict the
blocking bugs very well.

[35] Machine-learning-based
prediction with
multi-features

Combined the multiple
classifiers to determine an
appropriate imbalance
decision boundary to
identify blocking bugs.

Improved the prediction
performance of the
approach proposed by
Garcia and Shihab [34] by
up to 14.69% F-measure at
Chromium, Eclipse,
FreeDesktop, Mozilla,
NetBeans and OpenOffice.

Needs to extract more
features and build the
multiple classifiers for all
disjoint sets.

machine-learning algorithm-Naive Bayes to determine which
category a new bug report belongs to and then recommend the
best assignee. However, the accuracy is not very high (only
30% bug assignees were predicted correctly).

In order to improve the performance of automatic bug
triage, Anvik and colleagues in their article [38] and the
following extended work [44] employed several different
machine-learning algorithms (e.g., Naive Bayes, SVM, C4.5)
to recommend a list of appropriate developers for fixing a new
bug. They demonstrated that SVM performed better than others
on their data sets from open source projects such as Eclipse,
Mozilla Firefox. In detail, in [38], they have reached preci-
sion levels of 57 and 64% on the Eclipse and Firefox projects,
respectively. In [44], they improved the precision by up to 97%
for Eclipse and 70% for Firefox by utilizing component-based
developer recommender.

Lin et al. [40] proposed two automatic bug triage approaches,
namely text information-based developer recommender and
non-text information (e.g., bug type, bug class and priority)-
based recommender. Note that this is a first work to conduct
developer recommendation using Chinese text. In detail, they
adopted SVM to implement Chinese text-based automatic
bug triage, and utilized C4.5 decision tree to perform non-text
information-based automatic bug triage. The results showed
that the accuracy of the text-based approach achieved 63%,
which is close to 67% accuracy of manual approach for bug
assignment. In addition, the accuracy of the non-text approach
reached up to 77.64%, which outperforms the text-based
approach and the manual approach.

Ahsan et al. [41] reduced the dimensionality of the obtained
term-to-document matrix by using feature selection and Latent

Semantic Indexing (LSI) [96]. They utilized several machine-
learning algorithms to recommending the bug fixers, and the
results showed that the best obtained bug triage system is based
on LSI and SVM. The average precision and recall values
reached up to 30 and 28%, respectively.

Xuan et al. [42] proposed a semi-supervised text classifica-
tion approach for bug triage. In order to avoid the deficiency
of labeled bug reports in existing supervised approaches,
this method enhanced Naive Bayes classifier by utilizing
expectation–maximization based on the combination of labeled
and unlabeled bug reports to recommend the appropriate bug
fixers. The experimental results showed that the accuracy can
be improved by up to 6% by comparing with the recommender
using original Naive Bayes classifier.

Zou et al. [47] utilized the feature selection algorithm and the
instance algorithm to reduce the size of training set by remov-
ing the noisy data, respectively. Then they adopted Naive Bayes
to execute the task of automatic bug triage. The experimental
results showed that the feature selection can improve the perfor-
mance using original Naive Bayes by up to 5%, but the instance
algorithm lowered the performance even though it can reduce
the size of training set.

Xia et al. [52] proposed an accurate approach called DevRec
for recommending the bug fixers. DevRec combined two kinds
of analysis, including bug reports-based analysis (BR-based
analysis) and developer-based analysis (D-based analysis).
Based on Multi-Label KNN, BR-based analysis can find the
k-nearest bug reports to a new given bug by using the features
(i.e., terms, product, component and topics) of bug reports. For
D-based analysis, Xia and his colleagues measured distances
between a developer and a term, a product, a component and a
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topic. Then they built a composite model to combine the results
of BR-based analysis and D-based analysis for executing auto-
matic bug triage. The experimental results showed that DevRec
improved the recall values of Bugzie [45] and DREX [46] by
39.39 and 89.36%, respectively when recommending top-10
developers.

3.2. Expertise model-based recommender

Building the expertise model can capture the developers’ exper-
tise on historical fixing activities. Matter et al. [39] modeled
developers’ expertise using the vocabularies found in their
source code files and compare them to the terms appearing in
corresponding bug reports. In detail, they adopted cosine mea-
sure to compute the similarity between two term vectors. The
evaluation results showed that this method can achieve 33.6%
precision when recommending top-1 assignee and 71% recall
while recommending top-10 assignees.

Tamrawi et al. [45] proposed Bugzie, an automatic bug triag-
ing tool based on fuzzy set and cache-based modeling of the
bug-fixing expertise of developers. Bugzie extracted the mul-
tiple technical aspects of the software systems, each of which
is associated with technical terms. For each technical term, it
used a fuzzy set to represent the developers who have able to
fix the bugs related to the corresponding aspect. In this work,
a candidate developer’s membership score was used to reflect
the fixing correlation of the developer. For a new bug report,
Bugzie combined the fuzzy sets corresponding to the terms
and ranked the developers based on their membership scores.
According to the reported evaluation results, Bugzie performed
better than other approaches [37–39, 43]. For example, for
Eclipse, in term of top-5 recommended developers, Bugzie
spent only 22 minutes and achieved 72% accuracy, which is 49
times faster and relatively 19% more accurate than SVM [38],
which is second best model.

Servant et al. [49] developed a developer recommender to
fix the given bugs. This tool consists three components, includ-
ing bug localization, history mining to find which developers
changed each line of source code and expertise assignment to
map locations to developers. In detail, the expertise assignment
algorithm combined the history information of code changes
and the diagnosis information about the location of bugs to
provide a ranked list of developers in terms of expertise in
these locations. As a result, the proposed developer recom-
mender can achieve 81.44% accuracy when recommending
top-3 developers.

3.3. Tossing graph-based recommender

Jeong et al. [36] proposed a tossing graph model to capture bug
tossing history. By revealing developer networks which can be
used to discover team structure, it can find suitable assignees for
a bug-fixing task. In this study, a tossing process starts with the
first assignee and moves from one assignee to another until it

reaches the final assignee. Each move is called a tossing step
and a set of tossing steps of a bug report is called a tossing path.
Suppose an original tossing graph A → B → C → D, authors’
goal is predicting a path to D with fewer steps. They tried to
reduce the tossing graph to avoid unnecessary tossing for timely
bug fixing. The experiments on Eclipse and Mozilla data sets
demonstrated the tossing graph model can improve the accuracy
of automatic bug triage using machine-learning algorithms such
as Naive Bayes and Bayesian Network [97] only.

In [43], Bhattacharya and Neamtiu improved the accuracy
of bug triage and reduced tossing path lengths by utilizing sev-
eral techniques such as refined classification using additional
attributes and intra-fold updates during training, a precise
ranking function for recommending potential tosses in toss-
ing graphs, and multi-feature tossing graph. The experimental
results on Mozilla and Eclipse showed that the recommenda-
tion accuracy achieved 84 and 82.59%, respectively. Moreover,
the proposed method can reduce the length of tossing paths by
up to 86% for correct recommendations.

In the following work [48], Bhattacharya et al. utilized
Naive Bayes coupled with product-component features, toss-
ing graphs and incremental learning to enhance the developer
recommender. As the results, the accuracy achieved up to 85%
for Mozilla and 86% for Eclipse, which is higher than their
early study [43]. In addition, this claimed method reduced the
length of the tossing paths by up to 86%, which kept the same
value with [43].

3.4. Social network-based recommender

In recent years, social network technique [98] has been intro-
duced to find the potential experienced assignees for fixing
each new reported bug. It is a better way to analyze the relation-
ship between developers in the bug-fixing process. Generally,
the commenting activities in this process become the object
in the social network. Figure 4 shows an example of social
network revealing the commenting activities between devel-
opers (i.e., assignees and commenters). Note that there are
four nodes which represent four developers A, B, C and D.
The links represent the commenting activities between devel-
opers. In this example, developers discuss how to resolve the
given bugs by posting the comments. The number on each link
captures the number of comments posted by the commenter
towards the assignee who was assigned to fix the reported
bugs. For instance, the number ‘3’ on the link from developer
A to B means that B posted the comments three times on the
bug reports assigned to A. In some special cases, developers
may post the comments to the bug reports assigned to them-
selves. We called these cases as ‘self-links’ (e.g., 1 time for
developer C). When analyzing the social network, the number
of ‘self-links’ are usually not considered. Depending on the
analysis of the commenting activities among developers, we
can understand the developers’ experience on the fixing tasks
for the specific bugs so that the potential assignees for a new
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FIGURE 4. An example of social network between developers.

reported bug can be found. Both [29, 46] are representative
studies which employed the social network technique.

In [46], Wu and colleagues adopted KNN to search the his-
torical bug reports that are similar to a new bug report, and then
extracted the developers who posted the comments to these
bug reports as the candidates. As a final step, they used simple-
frequency and six social network metrics, including in-degree
centrality, out-degree centrality, PageRank, betweenness cen-
trality and closeness centrality. Thereinto, simple-frequency
was used to compute the candidates’ participation records in the
comments; in-degree centrality was defined as the number of
links (commenting activities) directed to the node (developer);
out-degree centrality was defined as the number of links that
the node directs to other nodes; degree centrality was defined
as the number of links that the node has; PageRank was applied
to measure the score for each node; betweenness centrality was
introduced to compute the number of shortest paths from all
vertices to all others that pass through that node and closeness
centrality was introduced to compute the number of shortest
paths between a vertex and all other vertices reachable from it.
By evaluating simple-frequency and all social network metrics,
authors found that simple-frequency and out-degree showed
the best performance.

Xuan et al. [29] achieved developer prioritization via social
network analysis to improve the performance of automatic bug
triage using SVM or Naive Bayes only. In the prioritization pro-
cess, they gave a score si for each developer di and ranked all
the developers based on these scores. By analyzing the social
network between developers in the commenting activities, they
calculated a weight ωji which denoted the number of all the
comments in a link from developer dj to di and the out-degree
oj of developer dj. By ranking the developers who participated
the commenting activities in the past bug-fixing tasks, Xuan
and his colleagues utilized the prioritization results to redo
the developer recommendation using Naive Bayes and SVM,

respectively. The results showed that developer prioritization
via social network analysis can further improve the accuracy of
automatic bug triage using machine-learning algorithms only.

3.5. Topic model-based recommender

Topic model can help to find historical bug reports similar to
a new bug report, which share the same topic(s). The scholars
expect to introduce topic model for improving the accuracy
of automatic bug triage. Studies [30, 50, 51, 53] adopted topic
model to recommend the best developers for fixing the given
bugs.

In [50], Xie et al. proposed a fixer recommender called
DRETOM, which used Stanford Topic Modeling Toolbox
(TMT)3 to build topic model for grouping the bug reports
which share the same topic(s). Given a new bug report, it is
easy to know which topic(s) this bug belongs to. Then they
analyzed the developers’ interests and experiences on the bug
reports belonging to the corresponding topic(s) in the past
fixing records so that the proposed algorithm can work well
for recommending the appropriate fixers. The experimental
results showed that the proposed method performed better than
machine-learning algorithms (i.e., SVM and KNN) and social
network analysis-based recommender.

LDA is a generative probabilistic model for arranging the dis-
crete data into different topics [82]. Naguib et al. [51] adopted
LDA to cluster the bug reports into topics. Then they created the
activity profile for each developer of the bug tracking repository
by mining history logs and bug report topic models. An activ-
ity profile consists of two parts, including developer’s role and
developer’s topic associations. By utilizing activity profile and
a new bug’s topic model, they proposed a ranking algorithm to
find the most appropriate developer to fix the given bug. The
result showed that the claimed approach can achieve an average
hit ration of 88%.

Yang et al. [30] also used TMT to generate the topic model
for verifying the topic(s) that a new bug report belongs to.
Then, they extracted candidate developers from historical bug
reports on the same topic(s) and same multi-features such as
product, component, priority and severity with the given bug
report. Next, based on a social network analysis between these
candidates, Yang and his colleagues captured their commenting
activities and committing activities which reflected the changes
in the source code files related to the given bug so that the
developed recommender can effectively execute automatic bug
triage. The evaluation results showed that it outperformed the
recommender proposed in [50] and the social network metric
out-degree [46].

Zhang et al. [53] utilized LDA to extract the topics from
historical bug reports. By capturing the developers’ behavior
on historical bug reports belonging to a same topic with the
given bug report, they can verify whether the developer has

3 http://nlp.stanford.edu/software/tmt/tmt-0.4/
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interest in this topic. In addition, they analyzed the relations
between the developers (i.e., bug fixers and commenters) and
the bug reporter whose bug reports attracted the most number
of comments. By combining the correlation score and the rela-
tion score, the proposed approach can improved F-measure of
DRETOM [50] and Activity Profile [51] for Eclipse project by
up to 3.3 and 16.5%, respectively.

3.6. Comparison of automatic bug triage approaches

The comparison of different approaches [29, 30, 36–53] pro-
posed for automatic bug triage is summarized in Table 8. Note
that using feature selection technique or composite model can
enhance the machine- learning algorithms and consequently
improve the accuracy of automatic bug triage. For example,
Zou et al. [47] utilized feature selection mechanism to enhance
the recommender using Naive Bayes by up to 5% accuracy,
and DevRec [52] proposed a composite model combining
BR-based analysis and D-based analysis for achieving higher
performance than DREX [46] and Bugzie [45]. Moreover,
introducing the new popular techniques such as social net-
work techniques and topic model can improve the accuracy of
developer recommendation using machine-learning algorithms
only. For instance, social network analysis-based recom-
mender [29] performed better than SVM and Naive Bayes, and
DRETOM [50] showed a better performance than SVM, KNN,
out-degree and degree centrality.

4. BUG FIXING

Bug fixing is the ultimate purpose of bug resolution. Assignees
should find the location of the given bugs, and then produce the
patches in the fixing process. Bug localization and automatic
patch generation can reduce the assignees’ workload and the
fixing time. In this section, we summarize the previous studies
in these areas.

4.1. Survey on bug localization approaches

When a new bug report is assigned to an assignee for fixing,
the assignee needs to find where the bug is. Obviously manual
bug localization increases the assignees’ workload. Therefore,
the automatic bug localization method needs to be developed
for avoiding the manual process. The major challenge is how to
verify the relationship between the source code files and a new
reported bug. IR-based models can be adopted to search the
relevant source files and rank them to find the correct location
file. In these IR-based approaches, each bug report was treated
as a query, and the source code files to be searched comprise the
document corpus. A ranked list of candidate source code files
where the bug may appear can be returned. Besides IR-based
models, some studies [61–66] also adopted other information
or model to improve the performance of bug localization. We
introduce these different studies as following subsections.

4.1.1. IR-based bug localization
By utilizing IR-based techniques, the existing studies can
find the candidate source code files that are related to a new
bug, and then rank them to verify which file(s) the given bug
appears. Lukins et al. [54, 55] utilized LDA to execute the
source code retrieval for bug localization. In this study, they
adopted GibbsLDA++ to find the topics from the source code
files as well as get the term-topic and topic-document (i.e.,
bug report) probability distributions. When a new bug report
arrives, its title and description are extracted as a query to ver-
ify which topic the bug report belongs to. Thus, a method (or
a class) in the source code file is relevant to the query if it has
the high probability of generating the terms in the query. By
calculating the similarities between the query and each method
(or class) sharing the same topic, it is easy to know which topic
the query belongs to so that authors can provide a ranked list
to recommend corresponding methods (or classes) for locating
the given bug. In [54], the method returned a relevant method in
the top-10 for 77% of 35 bugs in the open source project-Rhino.
In the extended version [55], Lukins et al. analyzed 322 bugs
across 25 versions of two software systems that include Eclipse
and Rhino. The evaluation results showed that over one-half
of the bugs were located successfully. Moreover, the search
space (i.e., the number of methods that a debugger must check)
in Eclipse was reduced to <0.05% of the total methods and in
Rhino was reduced to <0.5%.

Rao and Kak [56] evaluated different IR methods’ per-
formance of bug localization, including smoothed Uni-
gram Model [99], VSM, Latent Semantic Analysis Model
(LSA) [100], LDA and Cluster Based Document Model
(CBDM) [101]. The experimental results showed that smooth
UM and VSM are more effective at retrieving the buggy files
of the given bugs.

Different configurations of IR models (e.g., LDA, VSM,
and LSI) can affect the performance of bug localization. For
example, different number of topics in LDA can affect the
results of IR [30, 53, 54]. Thomas et al. [57] evaluated the
influence on the performance of bug localization by adopting
different configurations of three IR-based classifiers (i.e., LDA,
VSM and LSI) and one Entity Metrics-based classifier [102]
so that they can find the best one for each classifier. Then
they combined the best-performing classifiers based on the
logic that classifiers using different data sources as input. The
experimental results showed that the combination can achieve
the improvements ranged from −2 to 12%, depending on the
different project and combination method used.

Davies et al. [58] measured the similarity between the text
used in a new bug report and the text of existing fixed bug reports
to enhance the previous localization approach by only calculat-
ing the similarity between the given bug report and the source
code. The experimental results showed that using the measure-
ment results between bug reports (i.e., BUG) can improve the
performance by only measuring the similarity between the given
bug report and the source code (i.e., SOURCE). Specifically, the
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TABLE 8. Comparison of automatic bug triage approaches.

Works Mechanism Method summary Advantages Disadvantages

[37] Machine-learning-based
recommender

Utilized Naive Bayes to
verify which developer is
an appropriate assignee.

Adopted fewer features (e.g.,
summary and description) of
bug report.

Relatively lower accuracy (30%)
for Eclipse bug reports.

[38] Machine-learning-based
recommender

Used Naive Bayes, SVM, and
C4.5 to predict the
potential assignee.

Demonstrated that SVM-based
recommender achieved
precision levels of 57 and
64% on the Eclipse and
Firefox projects, respectively,
which performed better than
Naive Bayes and C4.5.

Achieved only 8% precision
for gcc project when
recommending one developer.

[44] Machine-learning-based
recommender

Used component-based
technique to enhance the
developer recommender
presented in [38].

Improved the precision value
of [38] by up to 97% for
Eclipse and 70% for Firefox.

Needs to extract the feature
‘component’.

[40] Machine-learning-based
recommender

Proposed Chinese text
information-based
developer recommender
and non-text
information-based
developer recommender.

Demonstrated that the non-text
information recommender
(77.65% accuracy)
outperformed the text-based
approach and the manual
approach for the bug reports
from the SoftPM project.

Needs more features.

[41] Machine-learning-based
recommender

Used feature selection and
LSI to enhance the
machine learning
algorithms such as SVM to
execute the developer
recommendation.

Demonstrated LSI and SVM
performed best among all
machine-learning algorithms.

Relatively lower precision and
recall values by up to 30 and
28%, respectively, for the
Mozilla project.

[42] Machine-learning-based
recommender

Utilized expectation-
maximization based on the
combination of labeled and
unlabeled bug reports to
enhance Naive Bayes
classifier.

Improved 6% accuracy by
comparing with the
recommender using Naive
Bayes only at Eclipse.

Additional cost to
probabilistically label the
unlabeled bug reports.

[47] Machine-learning-based
recommender

Utilized the feature selection
algorithm to enhance the
original Naive Bayes
classifier by removing the
noisy data.

Reduced the size of training set
and improved the performance
of original Naive Bayes
classifier by up to 5% at the
Eclipse project.

Needs more features.

[52] Machine-learning-based
recommender

Combined bug report-based
analysis and develop-based
analysis to develop an
accurate developer
recommender.

Improved the recall of
Bugzie [45] and DREX [46]
by 39.39 and 89.36%,
respectively when
recommending top-10
developers for the Gcc,
OpenOffice, Mozilla,
NetBeans and Eclipse
projects.

Needs to extract more features to
characterize the bug reports.
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TABLE 8. continued.

Works Mechanism Method summary Advantages Disadvantages

[39] Experience model-based
recommender

Built a experience model to
verify who has more
experience on the new
bug-fixing task.

Did not need to train the
historical data.

Relatively lower precision
(33.6% for top-1
recommendation) for
Eclipse.

[45] Experience model-based
recommender

Utilized fuzzy set and
cache-based techniques to
model the developers’
expertise for
recommending the bug
fixers.

Bugzie spent the less time
(only 22 minutes) and
achieved the higher accuracy
(72%) for the Firefox,
Eclipse, Apache, NetBeans,
FreeDesktop, Gcc and Jazz
projects.

Additional cost to build a list
of technical terms
extracted from the
software systems.

[49] Experience model-based
recommender

Utilized location information
of bugs, change history
and expertise mapping to
recommend the appropriate
bug fixers.

Achieved satisfying accuracy
by up to 81.44% when
recommending top-3
developers for the AspectJ
project.

Additional cost to locate the
given bugs.

[36] Tossing graph-based
recommender

Reduced the tossing graph to
improve the performance
of developer
recommendation.

Improved the precision
accuracy of Naive Bayes and
Naive Bayes Network-based
recommender by up to 22.98
and 15.84%, respectively for
Eclipse and Mozilla.

Additional cost to predict the
path from the first assignee
to the final assignee (real
bug fixer).

[43] Tossing graph-based
recommender

Adopted multiple techniques
such as refined
classification, ranking
function and multi-feature
tossing graph to reduce the
tossing path for improving
the performance of fixer
recommendation.

Reduced the length of tossing
paths by up to 86% and
achieved satisfying accuracy
by up to 84% for Mozilla
and 82.59% for Eclipse.

Needs more features to build
multi-feature tossing
graph.

[46] Social network-based
recommender

Utilized KNN with
simple-frequency and
social network metrics to
execute automatic bug
triage.

Demonstrated that both of two
metrics-Outdegree and
simple frequency achieved
60% recall when
recommending top-10
developers in Mozilla
Firefox project.

Additional cost to adjust
parameters of the
algorithm.

[29] Social network-based
recommender

Introduced a developer
prioritization method via
social network analysis to
improve the fixer
recommendation accuracy.

Improved the average
prediction accuracy of SVM
and Naive Bayes by 10 and
2%, respectively, at Mozilla
and Eclipse.

Additional cost to analyze the
developers’ relationship.
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TABLE 8. continued.

Works Mechanism Method summary Advantages Disadvantages

[50] Topic model-based
recommender

Developed DRETOM based on
topic model to recommend the
best developers for fixing new
bugs.

Achieved higher recall up to
82 and 50% with top-5 and
top-7 recommendations for
Eclipse JDT and Mozilla
Firefox, respectively,
which performed better
than SVM, KNN,
out-degree and degree
centrality based
recommender.

Needs to adjust the
parameters of topic model.

[51] Topic model-based
recommender

Adopted LDA to cluster the bug
reports and created the activity
profile for each developer
based on history log and topic
models, then used the activity
profile to rank the developers
for finding the appropriate bug
fixers.

Achieved satisfying accuracy
(average hit ratio of 88%)
for the ATLAS
Reconstruction, Eclipse
BIRT and UNICASE
projects.

Additional cost to adjust the
parameters of LDA.

[30] Topic model and social
network-based
recommender

Adopted topic model to find the
similar bug reports with the
new reported bug, then used
multi-factors and social
network techniques for finding
the best fixers.

Improved prediction accuracy
of DRETOM [50], activity
file-based
recommender [51] and
Out-Degree [46] by 2–9,
5–11 and 2–10%,
respectively, for Eclipse,
Mozilla and NetBeans Java
projects.

Additional cost to adjust the
parameters of LDA and
analyze the social network.

[53] Topic model and social
network-based
recommender

Utilized LDA to extract the
topics from historical bug
reports and captured the
developers’ relations in the
same topic based on the social
network, then adopted the
features extracted from these
relations to rank the
developers for finding the
most appropriate fixers.

Improved F-measure of
DRETOM [50] and
Activity Profile [51] for
Eclipse project by up to 3.3
and 16.5%, respectively.

Additional cost to adjust the
parameters of LDA and
analyze the social network.

approach combining BUG and SOURCE can successfully locate
27 bugs when recommending top-1 localization, which is much
better than six bugs by only using SOURCE.

Zhou and his colleagues [59] proposed BugLocator to rank
all source code files based on textual similarity between a
new bug report and source code files, and combined the sim-
ilarity between the new bug report and historical reports. By
utilizing this hybrid similarity measure algorithm, Zhou et al.
demonstrated that the BugLocator outperformed other bug
localization methods using VSM, LDA, LSI and smoothed
UM.

Kim et al. [60] proposed two-phase model to improve the
performance of bug localization. In Phase 1, they utilized Naive
Bayes to filter out the uninformative bug reports before pre-
dicting files to fix; in Phase 2, the prediction model accepted
‘predictable’ bug reports obtained from Phase 1 as the input
to predict where a new bug should be fixed. The two-phase
model can successfully predict buggy files to fix for 52–88%
of all bug reports in eight modules of the Mozilla Firefox and
Mozilla Core projects, with an average of 70%. The perfor-
mance outperformed one-phase model that only used Naive
Bayes to execute bug localization and BugScout [61].
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4.1.2. IR-based bug localization with combined information
Nguyen et al. [61] proposed BugScout, a topic-based approach
to locate the candidate buggy files for a new bug report. They
utilized a topic model to represent the technique aspects of the
software systems as topics, and correlated bug reports and corre-
sponding buggy files via their shared topics. Thus BugScout can
retrieve the correct buggy files where the given bug is. The eval-
uation results showed that BugScout can recommend buggy files
correctly up to 45% of cases when recommending top-10 files.

Sisman and Kak [62] extracted the version histories of soft-
ware project to estimate a prior probability distribution for bug
proneness related to the buggy file in a given version of the
project. Next, these prior knowledges are used in an IR frame-
work to determine the posterior probability of a file being the
location of a given bug. The evaluation results indicated that
the proposed method can achieve <80% improvement in hit
ratio for BugScout [61].

In the following study [63], Sisman and Kak proposed
an automatic Query Reformulation (QR) to enrich a user’s
search query with certain specific additional terms extracted
from the highest-ranked artifacts retrieved in response to the
initial query. Then these additional terms were injected into
an original query so that it can improve the performance of
search engine for bug localization. In this work, they used the
TF-IDF framework as a baseline [103] to evaluate the retrieval
accuracy. The experimental results showed that the proposed
QR approach can achieve a large accuracy improvement for
original IR method by up to 66% for Eclipse and 90% for
Chrome.

Saha et al. [64] developed BLUiR which is an IR-based
open source toolkit to locate the given bugs. This toolkit not
only uses the natural language information but also extracts
the structure information of source code files, such as class
and method names, to perform more accurate bug localization.
Specifically, given a new bug report, the summary and descrip-
tion were extracted as two various document fields and source
code files were parsed into four different document fields,
including class, method, variable and comments. By introduc-
ing VSM (i.e., tf*idf model) to calculate the sum of the eight
types of similarity values among these six kinds of document
fields coming from the new bug report and the candidate source
file, a ranked list of all candidate source files were generated
so that the most appropriate location file can be found. The
evaluation results showed that BLUiR performed better than
BugLocator.

Wang and Lo [65] integrated version history, similar bug
reports and structure information of source code to develop
a new bug location tool called AmaLgam to retrieve rel-
evant buggy files. They implemented AmaLgam on four
open source projects, including AspectJ, Eclipse, SWT and
ZXing to localize <3000 bugs. According to the evaluation
results, compared with the approach proposed by Sisman and
Kak [62], AmaLgam achieved 46.1% improvement in terms
of mean average precision (MAP). For BugLocator [59], the

improvement reached up to 24.4% in terms of MAP. Compared
with BLUiR [64], AmaLgam achieved 16.4% improvement in
terms of MAP.

Wang, Lo and Lawall [66] proposed a compositional VSMs
for improving the performance of bug localization. This com-
posite model VSMcomposite combined various VSM variants.
VSM is represented by tf ∗ idf . VSM variants are different
combination types of tf and idf variants. Thereinto, tf includes
five variants: tfn(t, d)(i.e., natural term frequency), calculates
the number of times that term t occurs in document d; tfl(t, d),
takes the logarithm of the natural term frequency; tfL(t, d),
normalizes tfl(t, d) by dividing it by the average logarithm of
the other terms in the document d; tfa(t, d), normalizes tfn(t, d)

by dividing it by the frequency of the term appearing the most
times in document d; tfb(t, d)(i.e., boolean term frequency),
ignores the actual term frequency and only considers whether or
not a term appears in a document d. idf contains three variants:
idfn(t, D), gives the same weight for all terms in the document
corpus D; idfl(t, D), is a standard inverse document frequency
which computes the logarithm of the reciprocal of the docu-
ment frequency; idfr(t, D), computes the logarithm of the ratio
of documents not containing the term t and those containing
the term t. Therefore, there are 15 VSM variants in the compos-
ite model VSMcomposite. Given a bug report b and a candidate
source file f , the similarity score between b and f is calculated
by the composite model. By adopting this similarity measure,
the potential location source files can be found. The evaluation
results demonstrated that VSMcomposite outperformed VSM
with the standard tf-idf weighting schema.

Note that combining structure information of source code
files or utilizing the compositional VSMs can help to improve
the performance of bug localization. However, the running cost
and algorithm complexity are also increased.

4.1.3. Comparison of bug localization approaches
We provide the comparison results of bug localization
approaches in Table 9. Note that these representative stud-
ies also adopted IR-based bug localization method to search
the source files where the reported bug is. By considering
the additional information such as structure information [64]
or combining more VSM variants [66], the accuracy of bug
location recommendation has shown to improve.

4.2. Survey on automatic patch (repair) generation
approaches

After assignees fix the given bugs, some software patches
(repairs) will be generated in the fixing process. Unfortunately,
the process is tedious and requires intensive human resources
to generate patches. To address this problem, it is necessary to
develop the automatic patch generation approach. However,
automatic patch generation faces two challenges. Firstly, we
must extract the fix patterns from human-written patches or
bug reports; secondly, we need to verify the correctness of
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TABLE 9. Comparison of automatic bug localization approaches.

Works Mechanism Method summary Advantages Disadvantages

[54, 55] IR-based bug localization Used LDA to execute the
source files retrieval.

Only needs to extract the
textual information of
given bug report and
source files.

Needs to adjust the number
of topics K for different
data sets such as Mozilla
and Eclipse.

[56] IR-based bug localization Evaluated the different
performance of bug
localization by using the
different IR models such as
smoothed UM, SVM,
LDA, LSA and CBDM.

Demonstrated that smooth
UM and VSM achieved the
MAP value by up to 14.54
and 7.96%, respectively,
which performed better
than others at the AspectJ
project.

Needs to adjust the
parameters of appropriate
IR models for different
data set.

[57] IR-based bug localization Combined the
best-performing classifiers
by adopting their best
configurations to search
the buggy file.

Achieved the improvements
ranged from −2 to 12%
according to different
projects (i.e., Eclipse,
Mozilla and Jazz) and
combination methods used.

Additional cost to evaluate
the best configurations of
each classifier.

[58] IR-based bug localization Combined the similarity
between bug reports and
the similarity between the
new bug report and the
source code to execute the
bug localization.

Successfully located 27 bugs
when recommending top-1
buggy file at ArgoUML,
JabRef, jEdit and
muCommander, which is
much better than six bugs
by only measuring the
similarity between the new
bug report and the source
code.

[59] IR-based bug localization Computed textual similarity
between a new bug report
and source files, and
combined the similarity
between the new report
and historical bug reports
to find the correct location
file.

Successfully located <30, 50
and 60% bugs when
recommending top-1, top-5
and top-10 buggy files,
which performed better
than VSM, LDA, LSI and
SUM for Eclipse, SWT,
AspectJ and ZXing
projects.

Additional cost to adjust the
weighting vector for
different data set.

[60] IR-based bug localization Utilized Naive Bayes to filter
out the uninformative bug
reports and predicted the
buggy files of the given
bug.

Successfully predicted files to
fix for 52–88% of all bug
reports in eight modules of
Mozilla Firefox and
Mozilla Core projects,
which outperformed
one-phase model-based
localization approach that
only used Naive Bayes and
BugScout [61].

Additional cost to filter the
uninformative bug reports.

continued.
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TABLE 9. continued.

Works Mechanism Method summary Advantages Disadvantages

[61] IR-based bug localization
with technique aspects

Utilized topic model to
retrieve the buggy files
belonging to the same
topics related to technique
aspects with the given bug.

Reduced the search space. Relatively lower accuracy
(45% of bugs were
located) for Jazz, Eclipse,
AspectJ and ArgoUML.

[62] IR-based bug localization
with version history

Utilized version history to
enhance the performance
of bug localization.

Achieve <80% improvement
in hit ratio for
BugScout [61] at the
AspectJ project.

Needs to adjust the
parameters.

[63] IR-based bug localization
with Query Reformulation

Adopted Query
Reformulation (QR) to
enrich a user’s search
query for improving the
performance of bug
localization.

Achieved the accuracy
improvement for original
IR method by up to 66%
for Eclipse and 90% for
Chrome.

Needs to adjust the
parameters.

[64] IR-based bug localization
with structure information

Combined the natural
language and structure
information to compute the
similarity between a new
bug report and source files
for locating the bugs.

Relatively higher accuracy
(60% for AspectJ and 63%
for Eclipse) than
BugLocator [59] (56% for
AspectJ and Eclipse) and
BugScout[61] (35% for
AspectJ and 31% for
Eclipse) when
recommending top-10
buggy files.

Needs to extract and parse
the structure information.

[65] IR-based bug localization
with hybrid information

Integrated version history,
similar bug reports and
structure information to
retrieve relevant buggy
files.

Improved the accuracy
of [59, 62, 64] by 46.1%,
24.4%, and 16.4%,
respectively, for the bug
reports from AspectJ,
Eclipse and SWT.

Additional cost to extract and
pre-process the version
history and structure
information.

[66] IR-based bug localization
with the composite model

Utilized the composite model
combining 15 VSM
variants to compute the
similarity between a new
bug report and source files
to locate the buggy files.

Improved hit ratio at top-5
buggy files of standard
VSM by 18.4% for the
AspectJ, Eclipse, SWT and
ZXing projects.

Increased the algorithm
complexity.

generated patches. To overcome these difficulties, the textual
parsing and machine-learning-based classification techniques
are introduced. The related automatic patch generation meth-
ods [67–71] have been proposed to replace the manual patch
generation.

4.2.1. GP-based patch (repair) generation
As an early research, Weimer et al. introduced Genetic pro-
gramming (GP) [67], which is a computational method in
biological evolution theoretical system, to maintain variants of
the software program by using crossover operators and muta-
tion operators such as statement addition, replacement and

removal. Given the test cases, the proposed approach can eval-
uate each variant until one of the variants passes all test cases.
This variant passing all test cases was regarded as a successful
patch. Authors reported the experimental results demonstrating
that the proposed method can generate patches for 10 different
C programs with the average success rate of 54%. However,
this GP-based patch generation approach relies on random
program mutations so that it may generate nonsensical patches.

In the following work, Goues et al. [68] extended their pre-
vious work [67] to propose GenProg, an automated method for
generating the repairs (i.e., patches) for real-world bugs. Gen-
Prog adopted an extended form of GP to evolve a program vari-
ant that retains required functionality but is not susceptible to a

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, 2015

 at Pao Y
ue-K

ong L
ibrary on A

pril 2, 2016
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

 

http://comjnl.oxfordjournals.org/


26 T. Zhang et al.

given bug. GenProg used the input test cases to evaluate the fit-
ness, and the variants with the high fitness are selected for con-
tinued evolution. The GP process is successful when the variant
passes all tests encoding the required behavior and does not fail
those encoding the bug. Experimental results showed that Gen-
Prog can successfully generate the patches in 16 C programs.

In [69], Goues et al. proposed an algorithm improvement
for their prior work GenProg [68]. This new approach used
off-the-shelf cloud computing as a framework for exploiting
search-space parallelism as well as a source of grounded cost
measurements. The experimental results showed that the new
approach can find 68% more patches than previous work [67].

4.2.2. Pattern-based patch (repair) generation
In order to avoid the problem existing in GP-based patch gen-
eration, Kim and his group [70] proposed a pattern-based
automatic patch generation method (i.e., PAR). By mining
the common patches using groums (A groum is a graph-based
model for representing object usage) from human-written
patches, they got six patterns to create 10 fix templates, which
are automatic program editing scripts. Specifically, PAR first
extracted the bugs from an open source project and identified
bug locations. Then, it generated program variants by using
fix templates. These templates modified the source code that
appears in the source files. The variants were treated as the
patch candidates, and were evaluated by using test cases. The
patch candidate that passed all test cases is verified as the cor-
rect patch of the given bug. The evaluation results showed that
PAR produced more acceptable patches than GP-based patch
generation approach [67].

4.2.3. Bug report analysis-based patch (repair) generation
Different from the patch generation methods proposed in [67–
71], Liu and his colleagues [71] proposed a bug-fixing patch
generation approach-R2Fix to automatically produce the
patches based on bug reports without test cases and specifi-
cations. R2Fix contains three components: Classifier, Pattern
Parameter Extractor and Patch Generator. Classifier is respon-
sible for classifying bug reports into the target bug types after
shorting and parsing them; Pattern Parameter Extractor is used
to analyze the candidate bug reports and source code to extract
pattern parameters (e.g., pointer names, buffer lengths, etc.);
Patch Generator uses the pattern parameters, the fix patterns
for each target bug type, and the source code repository to gen-
erate patches automatically. The experimental results showed
that R2Fix can generate the 57 correct patches and saved the
time of bug diagnosis and patch generation time.

4.2.4. Comparison of automatic patch (repair) generation
approaches

In Table 10, we summarize the comparison results of three
different automatic patch generation approaches [67–71]. Note
that the studies [67–70] need to utilize test cases to evaluate
whether a candidate patch is correct or not. However, Liu et al.

proposed an approach in [71] to generate the patches based
on bug report analysis without test cases. This approach can
generate more correct patches and save the patch generation
time.

5. DISCUSSION

5.1. Bug resolution using multi-techniques

By investigating the research papers on each task in bug reso-
lution, we find that various knowledge and techniques coming
from non-SE area were utilized to resolve the problems that exist
in software maintenance. Table 11 summarizes the techniques
adopted in each task of bug resolution, respectively.

In this table, we note that most software phases except patch
generation adopted NLP to pre-process the bug reports and
source code files. Patch generation is a special case because
the proposed methods do not need to utilize the extracted terms
from documents to execute IR-based approaches, including
VSM, BM25 and TM. Moreover, other popular techniques like
machine learning and VSM were employed in most of phases.
Through our investigation and analysis, machine-learning
techniques (e.g., SVM, KNN) are useful for verifying which
sentences may form the summary of a new bug report, predict-
ing the factors, recommending the fixers and generating the
patches, and VSM is a simple and effective method to calculate
the similarity measure between two documents. Social network
was introduced to analyze the relationship between developers
so it can only be used to execute bug triage. As another simi-
larity measure, BM25 that includes BM 25F and BM 25ext has
been shown to have the relatively higher accuracy than VSM
so that it has been widely employed in factor prediction and
duplicates detection. Topic model is one of IR model, which is
a way to categorize the documents so that it can be adopted to
execute the severity prediction, duplicates detection, bug triage
and bug localization tasks.

5.2. Which elements affect the performance of bug
resolution?

According to the investigation and analysis of previous studies
using multi-techniques on bug understanding, bug triage and
bug fixing, we found that some elements can impact the per-
formance of bug resolution. These elements are summarized as
follows.

(1) Data element: Additional non-textual information
such as execution information and structure informa-
tion can improve the performance of bug resolution.
For example, execution information increased the
accuracy of duplicates detection [9], and structure
information improved the accuracy of bug local-
ization [64]. Moreover, some non-textual factors
of bug reports such as product, component, prior-
ity and severity can enhance the capability of bug
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TABLE 10. Comparison of automatic patch (repair) generation approaches.

Works Mechanism Method summary Advantages Disadvantages

[67] GP-based patch (repair)
generation

Utilized test cases to evaluate
program variants
maintained by GP until a
variant passing all test
cases. This variant was
regarded as the correct one.

Does not require
specifications, program
annotations or special
coding practices.

Random program mutations
may lead to nonsensical
patches.

[68] GP-based patch (repair)
generation

Adopted an extended form of
GP to implement automatic
patch generation.

Successfully generated the
patches in 16 C programs
such as gcd, zune, etc.

Non-deterministic properties
of test cases may affect the
generation results.

[69] GP-based patch (repair)
generation

Used cloud computing as a
framework for improving
the performance of
GenProg introduced
in [68] by exploiting its
search-space parallelism.

Generated 68% more patches
than previous work [67]
for eight open source
projects, including fbc,
gmp, gzip, libtiff, lighttpd,
php, python and wireshark.

Non-deterministic properties
of test cases may affect the
generation results.

[70] Fix pattern-based patch
(repair) generation

Utilized the fix patterns
mining from
human-written patches to
generate the candidate
patches, the patch passing
all test cases was regarded
as the correct one.

Successfully generated
patches for 27 of 119 bugs,
which is better than
GenProg [67, 68] for only
16 bugs in Mozilla, Eclipse
and Apache projects.

Needs test cases to evaluate
the candidate patches.

[71] Bug report analysis-based
patch (repair) generation

Combined past fix patterns,
machine- learning
techniques and semantic
patch generation
techniques to automatically
generate the patches at
three projects, including
the Linux kernel, Mozilla
and Apache.

Does not require any
specifications or test cases,
and can save the patch
generation time.

Increased the cost of
algorithm running.

resolution. For example, multi-factors without priority
were used to predict the priority of bug reports and
showed the acceptable prediction accuracy (The F-
measure achieved a relative improvement of 58.61%
than SVM-MultiClass) [22], and the multiple factors
were adopted to increase the accuracy of duplicates
detection [11].

(2) Human element: In the whole bug fixing activity,
developers constitute a social network which influ-
ences the process of bug understanding, bug traige and
bug fixing. Therefore, social network-based analysis
is very useful for facilitating the tasks in three phases.
For instance in [46], by capturing developers’ behav-
ior (i.e., commenting activities) on bug fixing, a series
of social network metrics like out-degree were utilized
to execute the task of assignee recommendation and
showed a better accuracy.

(3) Technique element: An effective technique generally
can help to improve the performance of predictive
tasks. For example, topic model can improve the
accuracy of duplicates detection [12]; and it was
also utilized to increase the accuracy of assignee rec-
ommendation [50]. Using more-accurate similarity
measures like BM 25Fext [28] or adopting the vari-
ants of VSM (e.g., 15 different VSMs in [66]), the
accuracy of IR-based bug resolution approaches is
improved.

Even if these good practices can help us improve the accu-
racy of automatic bug resolution, employing them needs addi-
tional cost to execute the corresponding algorithms. Therefore,
it is necessary to find the trade-off between the performance and
cost.
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TABLE 11. Automatic bug resolution using multi-techniques.

Technique

Phase NLPa MLb SNc VSMd BM25e TMf

Summarization [3–6] [3–5] N [5, 6] N N
Duplicates detection [7–17] [8, 10, 13, 16] N [7–10] [11–13, 16, 17] [12, 14]
Priority prediction [18–22] [18–22] N [19–21] [22] N
Severity prediction [23–26, 28–30] [23–26, 28–30] N [24, 25, 29] [28] [30]
Reopened status prediction [33] [29, 31–33] [29] [33] N N
Blocking status prediction N [34, 35] N N N N

Bug triage [36–44] [36, 37, 37, 38, 40–43] [30, 53] [39–43] N [30, 50]
[29, 30, 46–48, 50–53] [29, 44, 46–48, 52] [29, 46] [29, 46–48] [52, 53]

Bug localization [54–66] [60] N [56–59, 62–66] N [54–57, 61]

Patch generation N [71] N N N N

aNatural language processing.
bMachine learning.
cSocial network.
dVSM and variants.
eBM25 and variants.
fTopic model.

6. FUTURE RESEARCH DIRECTIONS FOR BUG
RESOLUTION

In the future, some new research directions on bug resolution
may be further studied. We describe them according to the dif-
ferent phases of bug resolution, including bug understanding,
bug triage and bug fixing.

6.1. Bug understanding

In the phase of bug understanding, the previous studies focus
on bug summarization, duplicates detection and feature predic-
tion. We found that most of the proposed approaches utilized
traditional machine-learning algorithms such as Naive Bayes,
SVM and KNN to execute the above-mentioned three tasks. In
the future, some more effective machine-learning algorithms
such as deep learning [104] may be adopted to implement
these tasks. Deep learning has already been widely imple-
mented in image and text processing [105]. Different from
traditional machine-learning algorithms such as SVM, it mod-
els high-level abstractions in data using model architectures
which may improve the performance of related tasks based on
natural language processing [106] in the bug understanding
phase.

The quality of bug reports [107, 108] is a very important fac-
tor to affect the performance of the tasks on bug understanding.
Obviously, a bug report that includes more noisy data and lacks
the detailed description of the related bug cannot help develop-
ers complete the tasks in the phase of bug understanding. Thus,
enhancing bug report is a necessary step to improve the quality

of bug reports by removing the noisy sentences and adding the
detailed bug description so that it can improve the results of bug
understanding.

6.2. Bug triage

The purpose of bug triage is recommending the most appropriate
developers to fix the given bugs. The previous studies devoted to
utilize the historical bug reports to develop the automatic recom-
mender. Actually, in real open source and commercial projects,
other types of communication such as email and instant messag-
ing are also used to discuss how to fix the given bugs [109]. Thus,
except for bug reports, other software artifacts such as emails
from other data resources (e.g., email repositories) can provide
further knowledge to help us develop more effective algorithms
for performing bug triage. For example, the information showed
in emails can help to analyze the developers’ activities [110] so
that extracting the email data may enhance the developer recom-
mender.

6.3. Bug fixing

Bug localization and patch generation are the two major tasks
in bug fixing. The previous studies developed a series of
automatic tools for locating the bugs and producing the corre-
sponding patches. These works mainly served for traditional
desktop software. Recent years, with increasing number of
mobile applications (apps), resolving the bugs appearing in
apps becomes an important and challenging research direction
[111, 112]. Due to the different characteristics (e.g., little spread
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of historical data in each app) with traditional desktop software,
the previous approaches for bug localization and patch genera-
tion in desktop software may not be used in mobile apps. Thus
the new bug fixing methods for apps need to be developed in
the future.

In the tasks of bug localization and patch generation, code
analysis plays an important role. For example, in the previ-
ous IR-based bug localization approaches, in order to find
the correct buggy file, the general way is to compute the tex-
tual similarity between the bug report and the source code.
The source code files are the structured documents [64],
thus, some code analysis techniques such as graph-based
analysis approaches [113] and graph-based similarity mea-
sures [114, 115] can further provide more detailed information
and features so that they can be utilized for improve the per-
formance of bug localization and patch generation in the
future.

7. CONCLUSION

In this paper, we survey the previous studies on bug under-
standing, bug triage and bug fixing, and show their advantages
and disadvantages. Moreover, we summarize multi-techniques
which were utilized to implement each task in three phases of
bug resolution, and present the factors which affect the perfor-
mance of these tasks. Finally, we introduce the future research
directions on bug resolution. We expect that this complete sur-
vey article can contribute to both scholars and developers who
work on the field of software maintenance.
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