
Bug Report Enrichment with Application of
Automated Fixer Recommendation

Tao Zhang∗†, Jiachi Chen†, He Jiang‡, Xiapu Luo†a, Xin Xia§
∗College of Computer Science and Technology, Harbin Engineering University, China

†Department of Computing, The Hong Kong Polytechnic University, Hong Kong
‡School of Software, Dalian University of Technology, China

§Department of Computer Science, University of British Columbia, Canada

cstzhang@hrbeu.edu.cn, chenjiachi317@gmail.com, csxluo@comp.polyu.edu.hk, jianghe@dlut.edu.cn, xxia02@cs.ubc.ca

Abstract—For large open source projects (e.g., Eclipse, Mozil-
la), developers usually utilize bug reports to facilitate software
maintenance tasks such as fixer assignment. However, there are
a large portion of short reports in bug repositories. We find that
78.1% of bug reports only include less than 100 words in Eclipse
and require bug fixers to spend more time on resolving them
due to limited informative contents. To address this problem, in
this paper, we propose a novel approach to enrich bug reports.
Concretely, we design a sentence ranking algorithm based on a
new textual similarity metric to select the proper contents for bug
report enrichment. For the enriched bug reports, we conduct a
user study to assess whether the additional sentences can provide
further help to fixer assignment. Moreover, we assess whether the
enriched versions can improve the performance of automated
fixer recommendation. In particular, we perform three popular
automated fixer recommendation approaches on the enriched
bug reports of Eclipse, Mozilla, and GNU Compiler Collection
(GCC). The experimental results show that enriched bug reports
improve the average F-measure scores of the automated fixer
recommendation approaches by up to 10% for DREX, 13.37%
for DRETOM, and 8% for DevRec when top-10 bug fixers are
recommended.

I. INTRODUCTION

A bug repository is a collection of bug reports stored in a
defined directory structure. In the development process of large
open source projects, developers or users create and update
their bug reports. Bug reports are important resources that
help developers understand the bugs’ details and fix them. To
reduce the developers’ workload, some recent studies utilize
machine learning techniques to analyze the rich information
in bug reports for performing several software maintenance
tasks such as automated fixer recommendation [1]–[10]. For
example, Anvik et al. [2] utilized a machine learning technique
to predict a small number of developers suitable for fixing a
new reported bug.

A statistical analysis (See Section II) on bug reports from
three open source projects (i.e., Eclipse [11], Mozilla [12] and
GNU Compiler Collection (GCC) [13]) shows that short bug
reports occupy a high proportion. For example, 32,198 (78.1%)
bug reports collected from Eclipse only include less than 100
words. Unfortunately, these short bug reports may influence
the fixing time. Based on our statistical results(Section II-B),
the given bugs reported in short reports need more time to be
resolved than those in long reports. For instance, in Eclipse,

aCorresponding author

the average bug fixing time for bug reports with less than 100
words is 409.8 days, which is 121 days more than bug reports
with 400-499 words.

The reason why the short reports delay the fixing time
may lie in the lack of informative contents in bug reports.
Hooimeijer and Weimer reported that the lack of resource
often causes the delay of bug fixing [14]. According to
the results of the questionnaire on bug report quality [15],
Bettenburg et al. find that time delay is due to the absent
information for bug reports. Thus, we analyze the ingredients
of the bug reports in our data sets (See Section II). The
results show that most of short bug reports only contain
the textual contents written in natural language and lack
the important ingredients (i.e., stack trace(s), code
example(s), and patch(es)) defined by Bettenburg et al.
[15]. In addition, according to the results of the questionnaire
survey shown in Section II, most of developers working on
open source projects agree that lack of the ingredients will
extend the time of fixer assignment so that the overall fixing
time is prolonged. Therefore, it is promising to enrich bug
reports for avoiding fixing-time delay.

In this paper, we propose a new approach to enrich bug
reports. The concept “enrich” means adding more detailed
information (e.g., the reason why a bug appears) to a given
bug report. When a new bug report comes, our approach
automatically supplements its textual content by a list of
sorted sentences, which are extracted from historical bug
reports. Moreover, we leverage these enriched versions to
conduct automated fixer recommendation in bug reposito-
ries. In detail, we select three popular approaches, including
DREX (Developer Recommendation with k-nearest-neighbor
search and EXpertise ranking) [3], DRETOM (Developer
REcommendation based on Topic Models) [4], and DevRec
[5], to assess the usefulness of the enriched bug reports.
Note that these approaches utilize the different elements (i.e.,
social network, topic model, hybrid model of social network
and topic model) related to bug reports. DREX utilized K-
Nearest-Neighbor search with bug similarity and the ranking
of developers to recommend bug fixers. DRETOM captured
developers’ interest in bug resolving activities and expertise
by using the topic models to build the ranking algorithm for
fixer recommendation. DevRec combined bug reports analysis
and developer based analysis to recommend a list of ranked

2017 IEEE 25th International Conference on Program Comprehension (ICPC)

978-1-5386-0535-6/17 $31.00 © 2017 IEEE

DOI 10.1109/ICPC.2017.28

230

2017 IEEE 25th International Conference on Program Comprehension (ICPC)

978-1-5386-0535-6/17 $31.00 © 2017 IEEE

DOI 10.1109/ICPC.2017.28

230

2017 IEEE 25th International Conference on Program Comprehension (ICPC)

978-1-5386-0535-6/17 $31.00 © 2017 IEEE

DOI 10.1109/ICPC.2017.28

230

2017 IEEE 25th International Conference on Program Comprehension (ICPC)

978-1-5386-0535-6/17 $31.00 © 2017 IEEE

DOI 10.1109/ICPC.2017.28

230

2017 IEEE 25th International Conference on Program Comprehension (ICPC)

978-1-5386-0535-6/17 $31.00 © 2017 IEEE

DOI 10.1109/ICPC.2017.28

230

2017 IEEE 25th International Conference on Program Comprehension (ICPC)

978-1-5386-0535-6/17 $31.00 © 2017 IEEE

DOI 10.1109/ICPC.2017.28

230

2017 IEEE 25th International Conference on Program Comprehension (ICPC)

978-1-5386-0535-6/17 $31.00 © 2017 IEEE

DOI 10.1109/ICPC.2017.28

230

2017 IEEE 25th International Conference on Program Comprehension (ICPC)

978-1-5386-0535-6/17 $31.00 © 2017 IEEE

DOI 10.1109/ICPC.2017.28

230

bug fixers. The experimental results on Eclipse, Mozilla, and
GCC show that enriched bug reports can improve the average
F-measure scores of the fixer recommendation approaches by
up to 10% for DREX, 13.37% for DRETOM, and 8% for
DevRec when we recommend top-10 bug fixers.

To help researchers and developers reproduce our work, we
open all data sets, source code, and experimental results at
https://github.com/BREnrich/Enriching-Bug-Report.

We summarize the major contributions as follows:

• To our best knowledge, this is the first study on enriching
bug reports. We analyze the descriptions of all bug reports
in our data sets, and the result reveals the reason why the
short bug reports cause the delay of bug fixing, namely,
the lack of some important ingredients such as stack
trace(s), code example(s), and patch(es).

• We propose a novel approach to enrich bug reports by
adding the sentences in historical bug reports, which are
strongly related to the given bug report. The user study
shows that the enriched bug reports are useful to the
manual fixer assignment.

• We conduct careful experiments to evaluate whether the
enriched bug reports can effectively improve the perfor-
mance of automated fixer recommendation. The results
show that the enriched bug reports obviously increase
the average F-measure scores of the automated fixer
recommendation approaches.

Roadmap. Section II introduces the background knowledge
and motivation of our research. Section III details how to
enrich the given bug reports. We detail the research questions
for evaluation in Section IV, and then present the evaluation
results of manual fixer assignment and automated fixer rec-
ommendation in Section V and Section VI, respectively. After
introducing the threats to validity in Section VII and the related
work in Section VIII, we summarize this paper and present
future work in Section IX.

II. BACKGROUND KNOWLEDGE AND MOTIVATION

Bug reports play a pivotal role when developers perform the
activities of software maintenance. For example, developers
need to read bug reports to understand how bugs occur. In
this section, we introduce what is a bug report and show the
motivation of our work.

A. What is a bug report?

Bug reports detail how the bugs occur, and they can help
triagers assign the correct developers to fix the corresponding
bugs. Fig. 1 shows an example of bug report #41321 from
GCC. Note that this bug report consists of non-textual in-
formation and free text. The non-textual information includes
factors (e.g., component, product); the main free-text
contains the summary (or title) and description. The
summary presents a high-level overview of the bug while
the description is the main body of a bug report, which
provides the detailed information of the given bug.

�������	�
�

Bug�41321 �������	����
	���	����������������	�

�	�	�����������	
����
���������

��
���	����
�
��
���	����	�����	�����	�����

�����
������ ������
�	�����!"	���#�$

�����	 ����	
�����%�&	

!��
�	���'&&()&()&(*+"(,-.	�/	0���
.$�����

�������'& &) &)& 	 1+�1	,-.	�23����/�
��"��	�'	�����	������
#
�	�45*6*�)��7����)������%�((� *
�����	�45*6*�)��7����)������%�((� *
$�����45*6*�)��7����)������%�((� *�������

���������
� %&&'�&'�&'()�*'�%(+��

-��	8����3��	66����63�3�68$���	�����9�	��$$	��#�:83�3�:�	����	��#;3$��	��	��<��	8��	45*6*��	��	$��7�	$37�	
=3�"'>	�����34>	�#4>	�/�4>	
���<��>	���	�;��<��	��?�	���	��#�	;���$�#>	���	��3�	3�	�����83�#���

Fig. 1: An example of bug report in GCC

���� ������� ������� ������� ������� 	
���
�

���

�

���

�

���

�

������
�

�����

�
�
��
�
�
�
�
��
��
��
�
�
�
��
��

�
��
�

� !"���
#$$
%�&"!!'

����
���(�

)����* ��� ��� �* ����) *���(��*

*���

����(

����
�)��

�**�

���

Fig. 2: The distribution of bug reports with their lengths (words)

B. Motivation

Bug reports vary in their quality of content. For instance,
some bug reports do not describe enough information about the
bug to be fixed. Unfortunately, we find that most of bug reports
are short by investigating the length of bug reports from three
open source projects, namely, Eclipse, Mozilla, and GCC. For
each project, we only collect the bug reports of fixed bugs,
which are denoted by ‘resolved’ or ‘closed’. The details of
the data sets are shown in Table I. The time span covers more
than 10 years (e.g., from 2001 to 2015 in Eclipse). Fig. 2
shows the distribution of all bug reports according to their
lengths (i.e., the number of words in the descriptions) in three
projects.

Note that most bug reports only include less than 100 words.
With the growth of the length, the number of bug reports
sharply decreases. For example, there are only 60 bug reports
with more than 500 words in Mozilla. This statistical result
illustrates that developers or users tend to write short bug
reports. In this case, we throw out a question: “Are these short
bug reports enough to fix bugs?”

In order to look for the answer, we analyze the relationship
between the fixing time and the length of bug reports. Fig. 3
shows the average fixing time for the bug reports in three open
source bug repositories with different length. For the short
bug reports, developers have to spend more time in fixing the
corresponding bugs. For example, developers averagely spend
409.8 days in fixing the Eclipse bug reports which only contain
less than 100 words. The lack of important information in bug
reports may be a reason to the extended fixing time. Since bug
fixers have to collect more detailed information from other
channels (e.g., duplicate bug reports) to fix the given bugs,

231231231231231231231231

TABLE I: Data sets for fixed bug reports in three open source projects
Project # bug reports #sentences #avg. sentences per report Period
Eclipse 41,223 203,679 4.9 10/2001-12/2015
Mozilla 17,927 80,061 4.5 08/1999-01/2016
GCC 13,980 85,865 6.1 03/1999-12/2015

���� ������� ������� ������� ������� �	
��
���

�
�

���

�
�

���

�
�

���

�
�

��

�����

��

��
�
��
�"
"
�
�
��
"�
��
�
��

��

��!"���
���
��+"!!�

�����

�����

�����

�����

�����

�����

�����

�
���

�����

�����

����

�����

���������������

�����
����
�����

Fig. 3: The average fixing time for bug reports with different length

automatically enriching bug reports can facilitate bug fixers.
In Fig. 3, we find an interesting phenomenon that the fixing
time increases when the bug reports include over 500 words.
This finding explains that too much information may increase
the developers’ workload.

Fig. 3 raises another question for a short bug report: “Why
is it possible to prolong fixing time?” According to the
investigation of bug reports’ quality [14], [15], the lack of
resources can delay bug fixing. This result provides a clue
to answer our question. Thus, we analyze the ingredients of
bug reports. For the example shown in Fig. 1, bug report
#41321 contains 31 words, which is a relatively shorter bug
report compared with the longer bug reports having more than
200 words1. We note that this bug report only contains the
textual content written in natural language. Bettenburg et al.
[15] summarize that a good bug report should include stack
trace(s), code example(s), and patch(es) in the
description part, which can speed up the bug-fixing process.
Obviously, the bug report #41321 does not contain these
ingredients. It may be a major reason to cause a long fixing
time (387 days) for this reported bug.

To further illustrate the reason, we use the methods in [15]
to recognize the ingredients of all bug reports in our data
sets and calculate the statistics. For stack trace(s), we
recognize them by adopting regular expressions which contain
start lines and trace lines. For code example(s), we can
recognize declarations, conditional statements, and loops. For
patch(es), we also adopt regular expressions to identify
which files to patch and which are the changes to make. Fig. 4
shows the ratio of bug reports that include the different ingredi-
ents (i.e., stack traces, patch, and code example)
in Eclipse. Generally, the longer bug reports include higher
proportion of the above-mentioned ingredients than the shorter
bug reports. For the bug reports that include more than

1We ask the top-10 active bug reporters who reported the largest number
of bug reports from Eclipse, Mozilla, and GCC, respectively by using public
mailing lists. 86.7% of the respondents response the mails and 76.7% of them
think the bug reports that include more than 200 words should be treated as
the longer reports.

���� ������� ������� ������� ������� �	
��
�

��

�

��

�

��

�

��

�

�

����

�
�
��
�
��
�
��
��
�
�
�
�
��

�
�
��
���
���
���

,
��
�
��
�
��
�
��
��
�
�
��
��
�
�
�
��
�
��
��
�
� ��� !��� ��

"�� �
#�����-�$�%�

�&�'
(��

�(�'����

�&)'����

��&'�
&

�'�
& �&'
���

��'���

(&'��� ��'��(

�)'
��(

�'��(

�)'
�����&�'

(��
���)'
����)

&(�'
����)

�('
�
&

�(&&'(��

�
��'
����)

Fig. 4: The ratio of bug reports including different ingredients in Eclipse

TABLE II: The proportion of developers who think that lack of the
ingredients can delay the time of fixer assignment

Task
ingredients

Stack trace Code example Patch
Fixer assignment 70.9% 82.9% 67.1%

500 words, the proportions of stack traces and patch
descend slightly. We find the similar trend in Mozilla and GCC
as well, which suggests the conclusion: compared with the
longer bug reports, most of the shorter bug reports (e.g., the
bug reports that include less than 100 words) do not contain
enough important ingredients, and thus prolong the fixing time
of the reported bugs. Otherwise, long bug reports containing
enough ingredients decrease the fixing time. Therefore, it is
possible to shorten the delay by enriching bug reports.

Fixer assignment, which identifies a suitable person to
fix the given bug, is a main task of bug triagers, who are
responsible for managing bug reports [3]. Its delay will affect
the process of bug fixing. We ask the top-10 active bug fixers
who were assigned for fixing the largest number of bugs in
Eclipse, Mozilla, and GCC, respectively via public mailing
lists about the relationship between bug assignment and fixing
time. 86.7% of respondents give us the responses and they all
think that fixer assignment affects the time of bug fixing.

In order to demonstrate whether the bug reports that
lack the ingredients delay fixer assignment, we conduc-
t a questionnaire survey (https://www.surveymonkey.com/r/
2HSDZJQ) and send it to the developers working on Eclipse,
Mozilla, and GCC via mailing lists. We received 158 responses
from triagers or developers with experience in fixer assignmen-
t. Table II summarizes the statistical results by analyzing these
responses. Note that each developer can choose one or more
than one ingredient.

The results show the proportion of developers who think
that lack of the mentioned ingredient(s) can delay the time of
fixer assignment. For example, 82.9% of developers think that
the lack of code example is harmful to it. Thus, our new
approach for automatically enriching bug reports can facilitate
automated fixer recommendation.

232232232232232232232232

Enriching

Topic Model

Ranked list
of sentences

top@1

top@k

Similarity
measure

They
There is

Sentence
set

Historical
Bug reports

New
Bug report

Text
parsing

Pre-processing
They
are

bugs

Modified REPtopic

feature 1

feature 6

Fig. 5: The workflow of bug report enrichment

III. METHODOLOGY

This section details our new approach for bug report en-
richment and how to use the enriched reports to facilitate
automated fixer recommendation. Fig. 5 shows the workflow
of our approach, which consists of the following steps: 1)
parsing the descriptions of historical bug reports to obtain a
sequence of sentences; 2) pre-processing all textual contents
(summary and description) of a new bug report to be enriched
and the sequence of sentences extracted from historical bug
reports in our data sets described in Table I; 3) performing
topic modeling to identify each sentence’s topic; 4) computing
the similarity between a new bug report and each candidate
sentence from historical bug reports, and then ranking these
sentences to find Top@K nearest neighbors (i.e., additional
sentences) for enriching the bug report. After that, we utilize
the enriched bug reports to conduct automated fixer recom-
mendation.

A. Text parsing for historical bug reports
To select a subset of existing sentences to enrich a bug

report, we convert the descriptions of the historical bug reports
into a sequence of sentences by using a widely used platform
called Natural Language Toolkit (NLTK) [16]. According to
the result of text parsing, we first filter out the interrogative
words such as “what”, “how”, etc. and greeting words, for
example “thank you”, “congratulations”, and then label each
sentence via a unique id and record its source (i.e., the bug
report which includes the sentence) id. Finally, we output
these sentences into the sentence set.

B. Pre-processing
Pre-processing is a necessary step to identify the topics

of sentences via topic modeling and compute the similarity
between a query (i.e., a new bug report which will be enriched)
and the candidate sentences. It is performed by utilizing the
Nature Language Processing (NLP) techniques that include
lexical processing, stemming, and stop word removal. The
purpose of lexical processing is to chop a given bug report up
into the words called tokens. Specifically, the variables defined
in a program are also split into a concatenation of words.
For example, fillColor is divided into two words: fill
and Color. In addition, some tokens appearing in source
code, such as keywords (e.g., int, class, public, etc.),
separators, and operators are removed. Stemming is used to
reduce the derived words to their stem, base or root forms. For
example, the words such as “carrying”, “carried”, and “carries”

are changed to “carry”. Stop word removal is introduced to
eliminate meaningless words (e.g., “to”, “as”, “are”, etc.) for
guaranteeing the effectiveness of similarity measure.

We adopt NLTK to pre-process the new bug reports and the
sentences extracted from the historical bug reports.

C. Building a topic model via LDA

After parsing and pre-processing the descriptions of the
historical bug reports, we utilize the topic modeling approach
to find each sentence’s topic. More precisely, we use the
implementation of Latent Dirichlet Allocation (LDA) algorith-
m [17] in Stanford Topic Modeling Toolbox (TMT) [18] to
process each sentence. The topics produced by TMT are used
to measure the similarity between the new bug report and the
candidate sentences.

In TMT, four parameters (N , R, α, β) need to be set.
N and R denote the number of topics and the number of
iterations, respectively. α and β are two hyper parameters,
where α represents the association between the documents
(i.e., new bug reports and candidate sentences in our work) and
the topic(s), and β indicates the association between a topic
and related terms. For the parameter adjustment, we discuss
the details in Section III-E.

For each sentence, TMT outputs its topic distribution and
the corresponding probability value for each topic. We decide
the topic of each sentence when its probability value reaches
the highest.

D. Bug report enrichment via sentence ranking

To enrich a bug report, we retrieve the Top@K sentences
that are strongly related to it from historical bug reports.
In order to complete the retrieval task, we propose a new

textual similarity metric REP#
topic, which is motivated by

two metrics including REPtopic in [9] and REP in [19],
to quantify the similarities between the bug report and the
candidate sentences extracted from historical bug reports.
Since both REP and REPtopic are used to compute the
similarity between bug reports, they are not suitable for bug
report enrichment, because an enriched bug report is generated
by a list of ranked sentences rather than a similar bug report.

REP#
topic is based on REPtopic that combines five features,

including the component, the product, the topic, the
textual similarities based on textual contents represented by
bags of unigrams and bigrams. More precisely, we mod-
ify three features (feature1, feature2, and feature5) in
REPtopic, and add a new feature (feature6) to implement bug

report enrichment. All features in REP#
topic are described in

Table III. Here, q (i.e., query) is the bug report to be enriched;
q.ntopic shows the number of sentences in q which share the
same topic with the candidate sentence s while q.N represents
the total number of sentences in q. In addition, textual contents
stand for the contents of bug reports’ summary and description
or the candidate sentences after pre-processing.

For REP#
topic based on REPtopic, we detail what features

are modified (or added) and why make the changes as follows:

(1) Change → feature1 and feature2:

233233233233233233233233

TABLE III: Features in REP#
topic

Feature Content Description Range
feature1 Textual similarity Similarity between textual contents represented by bags of unigrams (i.e., words). [0,∞)
feature2 Textual similarity Similarity between textual contents represented by bags of bigram (i.e., two words that appear consecutively). [0,∞)
feature3 Product Product that is affected by the bug. 0 OR 1
feature4 Component Component that is affected by the bug. 0 OR 1
feature5 Topic Topics of textual contents via topic modelling. 0 OR q.ntopic/q.N
feature6 Ingredient A stack, a code example, or a patch existed in textual contents. 0 OR 1

Content: We adopt BM25 defined in formula (2) to compute
the textual similarities between q and s instead of BM25F
which is a variant of BM25.

Motivation: The candidate sentences are unstructured doc-
uments, thus BM25 is more suitable than BM25F which
performs better for processing structured documents.

(2) Change → feature5
Content: We use

q.ntopic

q.N instead of 1 when the topic of s
is the same as one of the topics of q.

Motivation: The given bug report q may belong to multiple
topics due to the multiple sentences included in it, thus
we consider the ratio of the sentences which belong to the
same topic with s to the overall sentences in q to represent
feature5.

(3) Add → feature6
Content: We add a new feature, i.e., feature6. When the

candidate sentence s is stack traces, code example,
or patch, the value is 1; otherwise, the value is 0.

Motivation: According to the investigation results, the bug
reports which lack the ingredients delay the fixing time.
Thus, we introduce this feature for giving more weight to the
candidate sentences that belong to one of three ingredients.

The performance comparison results shown in Section VI-D
demonstrate that these changes are effective for bug report
enrichment.

We present how to get the values of these features via
Equation (1).

feature1(q, s) = BM25(q, s) //of unigrams

feature2(q, s) = BM25(q, s) //of bigrams

feature3(q, s) =

{
1 if q.product=s.product

0 otherwise

feature4(q, s) =

{
1 if q.component=s.component

0 otherwise

feature5(q, s) =

{
q.ntopic

q.N if q.topic=s.topic

0 otherwise

feature6(q, s) =

{
1 if s∈ Sstack trace or Scode or Spatch

0 otherwise

(1)

where Sstack trace, Scode, and Spatch represent the sen-
tences belonging to stack traces, code example, and
patch, respectively. feature1 and feature2 stand for the
textual similarities via BM25 [20], [21] between q and s
which are represented by bags of unigrams and bigrams,
respectively. The textual similarity metric BM25 is presented
as follow:

BM25(q, s) =
∑

t∈q∩s

IDF (t)× TF (t, s)(k1 + 1)

TF (t, s) + k1(1− b+ b× ls
l
)

× (k3 + 1)TF (t, q)

k3 + TF (t, q)
(2)

Here, t is the shared term occurring in both q and s;
IDF (t) is the the inverse document frequency represented
by log(N−nt+0.5

nt+0.5), where N is the total number of candidate
sentences, nt denotes the number of sentences containing the
term t, and 0.5 is added for avoiding the situation nt=0;
TF (t, s) denotes the term frequency of term t in s while
TF (t, q) represents the term frequency of term t in q; ls
denotes the length of sentence s in words; l refers to the
average length over all the sentences in the collection. The
free parameters k1, b, and k3 serve controlling the weight of
term frequency TF (t, s), the normalized document length, and
the weight of term frequency TF (t, q), respectively.

According to above-mentioned features, we can get

REP#
topic as follows:

REP#
topic(q, s) =

6∑
i=1

ωi × featurei (3)

We note that REP#
topic is a linear combination of six

features, where ωi is the weight for the ith feature featurei
defined by formula (1). We describe how to adjust all param-

eters of REP#
topic in Section III-E.

By using REP#
topic, we get a ranked list of candidate

sentences. Then, we supplement Top@K sentences to the given
bug report so that an enriched version is generated.

E. Parameter adjustment
As mentioned in Section III-D, we should adjust the param-

eters in REP#
topic. We present how to adjust these parameters

in the following paragraphs.
For the feature topic which is produced by topic modelling,

we adjust the parameters used in TMT, which is a topic mod-
eling tool introduced in Section III-C. We set the parameters,
including R, α, and β, to their default values (i.e., 100, 0.01,
0.01) respectively, and adjust the number of topics N from 10
to 100, with a step-size of 10.

The similar measure REP#
topic defined in formula (3) has

12 free parameters in total. For feature1 and feature2,
we compute textual similarities of q and s by using BM25.
Computing each of two features needs 3 free parameters (i.e.,
k1, b, and k3). In addition, in formula (3), there are 6 weight

factors for the corresponding 6 features. Thus, REP#
topic

requires (2× 3 + 6) = 12 parameters to be set.
Table IV shows the parameters and their inital values of

REP#
topic in columns 1 and 2, respectively. We follow the

234234234234234234234234

TABLE IV: Parameters in REP#
topic

Parameter Init.
Selected parameter values per project
Eclipse Mozilla GCC

N : the number of topics 10 20 20 20
ω1: weight of feature1 0.9 0.021 0.007 0.200
ω2: weight of feature2 0.2 0.430 0.002 0.150
ω3: weight of feature3 2 2.200 3.810 0.250
ω4: weight of feature4 0 1.540 2.540 0.170
ω5: weight of feature5 0 0.660 0.003 0.150
ω6: weight of feature6 0 1.320 0.830 0.220

bunigram: b in feature1 1 0.840 0.800 1.880

kunigram
1 : k1 in feature1 2 2.000 2.000 2.000

kunigram
3 : k3 in feature1 0 0.090 0.122 0.030

bbigram: b in feature2 1 1.110 0.800 2.390

kbigram
1 : k1 in feature2 2 2.000 2.000 2.000

kbigram
3 : k3 in feature2 0 0.380 0.437 0.110

same parameter tuning method (i.e., gradient descent algo-
rithm) used in the previous studies [19], [22] to verify the

parameter values in REP#
topic. Specifically, when the number

of topics is initialized (e.g., N=10), we start to adjust all 12

parameters in REP#
topic using gradient descent algorithm.

Given each of these parameters x, we initialize it with a de-
fault value. For feature1−4, we follow the same initial values
recommended by Sun et al. [19]; for feature5−6, we set their
weight vectors ω5 and ω6 to 0 as their initial values. Then, we
run the iterative adjustment of the value of x so that the value
of the RankNet Cost function (RNC) [23], [24] reaches the
minimum. RNC is defined by RNC(I) = log(1+eY) where
I denotes a training instance (q, srel, sirr), and Y is presented
as Y = sim(sirr, q)−sim(srel, q). Here, sirr is an irrelevant
sentence with a query q (i.e., a new bug report) while srel
means a relevant sentence with q. Tian et al. [22] treated the
duplicate bug reports and the non-duplicate bug reports as the
relevant documents and irrelevant documents, respectively. We
also adopt the similar way to compute RNC. In detail, the
irrelevant sentences are extracted from the non-duplicate bug
reports while the relevant sentences come from the duplicate
bug reports.

At the process of the iterative adjustment, we first fix the
values of b, k1 and k3 in feature1−2 to their initial values,
and then tune the unfixed parameters ω1 to ω6 to find their
best values. Next, we fix the best values of ω1 to ω6, and
then tune the unfixed parameters b, k1 and k3 to find the most
appropriate values. For the details of the iterative adjustment
using gradient descent, please refer to the previous study [19].

We list the parameter values selected for performing REP#
topic

in the columns 3-5 of Table IV.

IV. RESEARCH QUESTIONS FOR EVALUATION

We evaluate the enriched bug reports from two aspects.
First, we evaluate their usefulness for manual fixer assignment
(i.e., RQ1). Second, we assess their effectiveness and features’
influence on automated fixer recommendation (i.e., RQ2-
RQ3). Moreover, we compare the performance of REP#

topic

and REPtopic when they are used in the fixer recommendation
approaches (i.e., RQ4). We answer RQ1 in Section V and
RQ2-4 in Section VI, respectively.

• RQ1-Human evaluation: Can the enriched bug reports
provide further help to fixer assignment?
Details: To evaluate whether the enriched bug reports can
provide further help to triagers when they assign bugs to

fixers, we invite the real bug triagers for Eclipse, Mozilla,
and GCC to evaluate whether the additional sentences are
related to the corresponding original bug reports and can
improve the efficiency of fixer assignment.

• RQ2-Effectiveness evaluation: Can the enriched bug
reports improve the performance of the automated fixer
recommendation in bug repositories?
Details: To evaluate whether the enriched bug reports can
improve the performance of automated fixer recommen-
dation, we perform three approaches of automated fixer
recommendation based on the original bug reports and
the enriched version. By comparing the results, we verify
whether our enrichment method can facilitate automated
fixer recommendation.

• RQ3-Feature influence: Which feature(s) in REP#
topic

has(have) the greatest impact on bug report enrichment
for improving the automated fixer recommendation?
Details: There are six features in REP#

topic, thus it would
be interesting to know which feature(s) has(have) the
greatest impact on bug report enrichment. We perform

REP#
topic to implement bug report enrichment by re-

moving each feature one by one, respectively, then we
compare the performance and verify which feature(s)
has(have) the greatest impact.

• RQ4-Performance comparison: Does REP#
topic outper-

form REPtopic in terms of enriching bug reports for
improving the automated fixer recommendation?
Details: Since REP#

topic is based on REPtopic, we com-
pare their effectiveness on bug report enrichment by using
them in bug report enrichment. Then, we compare the
performance of automated fixer recommendation using

different metrics (i.e., REP#
topic or REPtopic).

V. ENRICHED BUG REPORT FOR FIXER ASSIGNMENT

This section details the evaluation of enriched bug report’s
usefulness for manual fixer assignment.

A. Experiment setup

We collected the bug reports from the bug repositories of
Eclipse, Mozilla, and GCC, and the details of our data sets are
shown in Table I. On average, each bug report includes 4.9,
4.5, and 6.1 sentences for three projects, respectively. For each
bug report, we extracted the sentences from the descriptions of
the historical bug reports to generate its enriched version. To
analyze and evaluate the enriched bug reports, we employ a
folding-based training and validation approach [15] to conduct
the experiment for each project because Bettenburg et al. in-
dicate that this method can achieve higher prediction accuracy
when it is used to training data. In detail, we divide all bug
reports into 11 equally-sized folds in chronological order. We
execute 10 rounds evaluation with these 11 folds. In the ith

round, the first i folds are formed as a training set (historical
bug reports) and the (i+1)th fold is used as a test set. When
all 10 rounds are finished, we can get the enriched versions
of all bug reports in the test sets.

235235235235235235235235

<bug_id>41321<bug_id>
TOP-1:
Ada runtime missing floating point and error handler initialization on OpenBSD
TOP-2:
"Ada runtime (gcc trunk, r131220) is missing floating point and error handler initialization on
OpenBSD."
TOP-3:
../../gcc/gcc/ada/init.c: In function '__gnat_error_handler':
../../gcc/gcc/ada/init.c:444:56: error: unused parameter 'ucontext'
make[3]: *** [ada/init.o] Error 1
TOP-4:
However, gcc occasionally
evaluates hexadecimal (and possibly decimal) floating-point constants
incorrectly starting with version 3.4:
 das@VARK: cat bar.c
 #include stdio.h
 int main(int argc, char *argv[]) {
 volatile long double d = 0x3.243f6a8885a31p0L;
 printf("%La\n", d);
 d = 2.0 * d / 2.0;
 printf("%La\n", d);
 return (0);
 }
TOP-5:
soft float patch
--- gcc-3.3-branch/gcc/config/arm/elf.h 2004-03-30 12:43:45.000000000 -0800
+++ gcc-3.3.3-fg/gcc/config/arm/elf.h 2004-04-07 21:42:05.000000000 -0700

TOP-30:
[Ada] Compiler assertion in iterator

Fig. 6: An enhanced version of bug report 41321

B. A case study of enriched bug report

We show an enriched version of bug report #41321 in
Fig. 6. Note that we only indicate the additional sentences, and
the original summary and description of bug report #41321
are shown in Fig. 1.

Note that in this case, the 1st and the 2nd sentences
further explain the initialization error of Ada runtime; the 3rd
sentence indicates where the bug is; the 4th sentence provides
a code example (Note that we treat a whole piece of code
as one sentence); and the 5th sentence denotes a patch.
Obviously, these sentences are related to the original bug
report which does not contain the additional sentences. For the
30th sentence, note that there is no evidence to demonstrate
whether this sentence is related to the original bug report.
Therefore, by adopting our approach, the important details and
related ingredients in higher ranked sentences are added into
original bug reports like #41321 so that they are enriched.

C. Answer to RQ1: Human evaluation

To evaluate whether the enriched bug reports can help
developers improve the efficiency of fixer assignment, we
randomly selected 300 pairs of bug reports from Eclipse,
Mozilla, and GCC (100 pairs per project) as the evaluation
objects. Each pair includes a bug report and its enriched
version with the Top@30 additional sentences. Then we sent
each pair of bug reports to the corresponding real triager by the
email (i.e., totally 300 emails) to conduct human evaluation.
Bug triagers are responsible for fixer assignment, thus only
they can verify whether the enriched bug reports can facilitate
this task. In detail, we first investigate the change history to
verify who is responsible for assigning the fixer, and then
invite the triager to participate in our survey. We ask each

TABLE V: Human evaluation for enriched bug reports

Question
The average score (standard deviation) for Top@30 additional sentences
T1-5 T6-10 T11-15 T16-20 T21-25 T26-30

Q1 3.99(1.11) 3.88(1.14) 3.65(1.08) 3.06(1.21) 2.66(1.11) 2.46(0.92)
Q2 4.27(0.78) 4.00(1.10) 3.78(1.19) 3.10(1.32) 2.82(1.07) 2.52(0.90)

triager to answer the two questions (i.e., Q1 and Q2) for the
Top@30 additional sentences of each bug report assigned by
her/him. To save respondents’ time, we divide the additional
sentences into 6 groups, and each group contains 5 sentences
shown in the second row of Table V. Thus, respondents need
only check each group to answer the following questions.

• Q1: Are the additional sentences related to the original
bug report?

• Q2: Can the additional sentences help you improve the
efficiency of fixer assignment?

In order to facilitate the analysis for the investigation results,
we request the triagers to choose the score s from 1 to 5 as
the answer for each question. The closer s is to 1, the more
likely the answer tends to be negative. Conversely, the closer
s is to 5, the more likely the answer tends to be positive. As a
result, we received 216 responses (i.e., 72% of response rate)
from 48 triagers2 in the three projects. We list the statistical
results in Table V.

In this table, we show the average scores provided by the
respondents and the corresponding standard deviation. Note
that for both of the two questions, the average scores for the
Top@1-5 additional sentences are the highest while they are
lowest for the Top@26-30 additional sentences. In addition,
the data is not much more spread out because all standard
deviations are not high. By analyzing the results, we know
that the triagers think the additional sentences ranked ahead
are related to the original bug report and may be useful for
fixer assignment. We perform the experiments (See Section VI)
to further demonstrate whether the enriched bug reports have
the actual usefulness in practise.

According to the results of human evaluation, we obtain the
following answer to RQ1:

Answer to RQ1: The additional sentences ranked ahead
in the enriched bug reports are related to the original
bug reports. They may provide more help for fixer
assignment.

VI. ENRICHED BUG REPORT FOR FIXER

RECOMMENDATION

Automated fixer recommendation is one of triagers’ major
tasks, which influences the fixing time according to our
investigation result described in Section II. This section details
the evaluation of whether the enriched bug report can facilitate
automated fixer recommendation.

A. Experiment setup

To evaluate the effectiveness of enrichment on automat-
ed fixer recommendation, we also employ the folding-based
training and validation approach [15] to conduct the following
experiments for bug reports collected from the same data sets

2Note that some triagers are responsible for processing more than one bug
reports.

236236236236236236236236

with RQ1 and their enriched versions. We perform this task
on each round and calculate the average results of all the
10 rounds. Therefore, for all the experiments presented in
this section, all the results are average output. We will not
emphasize it in the following subsections.

We adopt Precision (TP
TP+FP), Recall (TP

TP+FN), and F-

measure (2 × Precision×Recall
Precision+Recall) [25] for performance evalu-

ation, where TP (i.e., True Positive instances) denotes the
number of instances (i.e., bug fixers) predicted correctly; FP
(i.e., False Positive instances) is the number of instances pre-
dicted incorrectly; FN (i.e., False Negative instances) stands
for the number of actual instances which are not predicted by
the approach.

B. Answer to RQ2: Effectiveness evaluation for automated
fixer recommendation

The purpose of fixer recommendation is to assign an appro-
priate developer to fix the given bug. To reduce the triagers’
workload, automated approaches have been proposed.

In this paper, we utilize the enriched bug reports to re-
implement three automated fixer recommendation approaches
in our data sets. DREX3 [3] adopted social network metrics
(e.g., out-degree) to rank the candidate developers. DRETOM
[4] utilized topic model to recommend potentioal developers.
DevRec [5] combined social network and topic model to
perform automated fixer recommendation. These approaches
used the different factors related to bug reports to recommend
appropriate bug fixers, thus we select them to verify whether
the enriched bug reports are effective for multiple factors
adopted by automated algorithms on fixer recommendation.

The evaluation results when we recommend top-10 fixers
are shown in Table VI. Due to limited space, we present Pre-
cision@10 scores and Recall@10 scores at https://github.com/
BREnrich/Enriching-Bug-Report, and only show F-measures
in Table VI. Note that the values in parentheses indicate the
differences of F-measures between enriched bug reports and
their original versions. Note that the enriched bug report-
s can further improve the performance of automated fixer
recommendation approaches. For example, in Eclipse, using
the enriched versions of the bug reports via adding Top@20
sentences improves 13.37% of F-measure scores when adopt-
ing DRETOM. Overall, the greatest improvements for three
projects come to 10%, 13.37%, and 8% when using DREX,
DRETOM, and DevRec, respectively. It is worth noting that
the performance improvement decreases when the number of
added sentences exceeds a threshold. For instance, in GCC,
when performing DREX, if adding 10 sentences (more than 5
sentences), the improvement of F-measure decreases to 3.49%.
Thus, supplementing unconcerned sentences may degrade the
performance of fixer recommendation.

To further demonstrate whether enriching bug reports can
significantly improve the performance of automated fixer rec-
ommendation approaches, we perform a t-test [26] in the R en-
vironment [27] due to the normal distribution of the data, i.e.,

3We only adopt Out-degree to implement DREX because it performed the
best among all social network metrics.

TABLE VI: Performance comparison on automated fixer recommendation
approaches when supplementing different ratio of sentences

Project Top@K
F-measure for different approaches (%)
DREX DRETOM DevRec

Eclipse

Original 20.75 21.19 28.86
Top@1 24.42(3.67) 26.84(5.65) 29.52(0.66)
Top@5 25.57(4.82) 30.92(9.73) 29.93(1.07)

Top@10 26.21(5.46) 33.42(12.23) 32.46(3.60)
Top@15 26.49(5.74) 33.79(12.60) 34.25(5.39)
Top@20 26.68(5.93) 34.56(13.37) 35.68(6.82)
Top@25 26.72(5.97) 32.56(11.37) 36.61(7.75)
Top@30 23.64(2.89) 30.00(8.81) 34.61(5.75)

Mozilla

Original 22.59 22.53 33.18
Top@1 26.84(4.25) 24.43(1.90) 34.00(0.82)
Top@5 31.65(9.06) 29.07(6.54) 36.95(3.77)

Top@10 32.35(9.76) 30.45(7.92) 38.39(5.21)
Top@15 32.59(10.00) 31.76(9.23) 39.07(5.89)
Top@20 32.57(9.98) 31.12(8.59) 39.15(5.97)
Top@25 32.55(9.96) 30.66(8.13) 39.53(5.35)
Top@30 32.38(9.79) 29.79(7.26) 39.31(6.13)

GCC

Original 21.53 32.02 28.31
Top@1 24.63(3.10) 36.60(4.58) 30.67(2.36)
Top@5 27.44(5.91) 39.62(7.60) 36.31(8.00)

Top@10 25.02(3.49) 37.51(5.49) 35.03(6.72)
Top@15 24.97(3.44) 37.05(5.03) 34.75(6.44)
Top@20 24.61(3.08) 36.68(4.66) 34.23(5.92)
Top@25 24.50(2.97) 36.42(4.40) 34.06(5.75)
Top@30 24.12(2.59) 36.28(4.26) 33.93(5.62)

the normality values calculated by Shapiro-Wilk normality test
[28] are more than 0.05. In detail, we define the null hypoth-
esis: Enriching bug reports shows no noteworthy difference
against original bug reports by utilizing the approaches for
recommending bug fixers. Then, we introduce the F-measure
values of three projects for each approach shown in Table VI
as the input data when performing t-test. The result is also
stored at https://github.com/BREnrich/Enriching-Bug-Report.
For DREX, the p-values are lower than 0.05 when adding
the Top@1-Top@5 sentences. For DRETOM, when supple-
menting the Top@5 and Top@10 sentences, the p-values are
0.01361 and 0.04927, respectively, which are lower than 0.05.
For DevRec, the p-values are lower than 0.05 when adding
the Top@10-25 sentences. In these situations, we reject the
above null hypothesis. Thus, enriching bug reports can provide
the significant improvement for the performance of automated
fixer recommendation approaches when we supplement the ap-
propriate number of sentences. If developers use our approach
to execute automated software maintenance tasks, we suggest
that they can decide the number of additional sentences when
the enriched bug reports can reach the highest efficiency.

By analyzing the evaluation results of automated fixer rec-
ommendation using the enriched bug reports, we can answer
RQ2 as follow:

Answer to RQ2: The proposed enrichment approach
for bug reports can be used to improve the performance
of automated fixer recommendation in bug repositories.
However, adding the low-ranked sentences may influ-
ence the performance.

C. Answer to RQ3: Feature influence for performance

REP#
topic defined in formula (3) involves six features. In or-

der to verify the influence of each feature for the performance
of automated fixer recommendation approaches, we conduct
the experiment to compare the F-measure values by using the
enriched bug reports when we remove each feature one by one.
If the value is the minimum, the corresponding feature has the

237237237237237237237237

greatest impact. Table VII shows the comparison results. The
data on the first row show the F-measure values using original
bug reports, the data on the second row show the F-measure

values using enriched bug reports via REP#
topic, and the data

on the third to the eighth rows show the F-measure values

when we set the weight of each feature to 0 in REP#
topic

to enrich bug reports, respectively. Specifically, we show the
best values in the second row, and we keep the same parameter
values (except the weight of the removed feature is set to 0)

in REP#
topic to get the data on the third to the eighth rows.

In Table VII, when we remove feature3 (i.e., Product)
in REP#

topic to perform automated fixer recommendation ap-
proaches on Eclipse, the F-measure scores decrease to 22.33%,
28.95%, and 33.12% for DREX, DRETOM, and DevRec,
respectively. In this case, we note that using enriched bug
reports still improves the performance of three approaches
using original bug reports, but the decrease is the highest. This
finding shows that feature3 has the greatest impact among all
features. By the same token, we find that which features have
the greatest impact to enrich bug reports for implementing the
automated fixer recommendation approaches on Mozilla and
GCC. Thus, we can answer RQ3 as follow:

Answer to RQ3: In Eclipse, feature3 in REP#
topic

has the greatest impact to enrich bug reports for im-
plementing the three automated fixer recommendation
approaches such as DREX, DRETOM, and DevRec.
In Mozilla, feature3, feature4 (i.e., Component),
and feature1 (i.e., Textual similarity) have the
greatest impact when we implement DREX, DRETOM,
and DevRec, respectively. In GCC, feature1 has the
greatest impact to perform DRETOM and DevRec, and
feature3 has the greatest impact to implement DREX.

By analyzing the feature influence, we find an interesting
phenomenon. As a popular information retrieval model, topic
modelling is used to produce the topics as feature5 (i.e.,
Topic) in REP#

topic for improving the performance of bug
report enrichment. However, it does not show the most sig-
nificant influence. Therefore, the performance improvement
caused by our approach is not only due to topic modelling,

but also because of the features’ combination in REP#
topic.

We note that feature influence is affected by different data
sets and different approaches. We think the major reason is due
to the different data distributions in data sets and the different
weight of factors in approaches. It would be an interesting
topic in the future work.

D. Answer to RQ4: Performance comparison between
REP#

topic and REPtopic

Since REP#
topic is based on REPtopic (Section III-D) [9],

we compare the performance of automated fixer recommenda-
tion approaches using different similarity metrics. Specifically,

we use the same parameter values as REPtopic in REP#
topic

and only consider the description as the sole field in BM25
used in feature1 and feature2. In the last row of Table VII,
we show the comparison result. We note that the performance

of using REP#
topic is better than that of using REPtopic. For

instance, when we use REPtopic to generate enriched bug

reports in Mozilla, the F-measure values reach up to 29.74%
for DREX, 29.49% for DRETOM, and 34.62% for DevRec,
which are lower than the performance using REP#

topic. Thus,
we can answer RQ4 as follow:

Answer to RQ4: The performance of automated fixer

recommendation approaches using REP#
topic to enrich

bug reports is better than using REPtopic.

VII. THREATS TO VALIDITY

A. Generality

In this paper, we only collect the bug reports from three
open source projects to perform the experiments. We are
not sure that the enriched bug reports can also improve the
performance of automated fixer recommendation in commer-
cial projects, because the scale, the size, and the textual
contents of bug reports in commercial projects are different
from open source projects. However, if the bug repositories of
the commercial projects meet some conditions (e.g., a large
number of historical bug reports) of large-scale open source
projects, our approach can also be applied to them.

In addition, we only select three approaches (i.e., DREX,
DRETOM, and DevRec) of fixer recommendation to verify the
effectiveness of bug report enrichment. These approaches uti-
lize the different recommendation models, therefore we adopt
them to verify whether the enrichment approach is effective
for a variety of approaches on fixer recommendation. However,
we also should implement more fixer recommendation models
and more automated software maintenance tasks such as bug
localization. We plan to achieve the further verification in the
extended work.

B. Parameter adjustment

Our approach needs tuning 12 parameters to achieve the
best performance. We have adopted the parameter adjustment
methods proposed in Sun et al. [19] and Tian et al. [22] for

REP#
topic and the algorithms used for verifying the best values

used to perform bug report enrichment. In future work, we will
develop an effective tuning method.

C. Readability of enriched bug reports

In human evaluation, we only focus on whether the addi-
tional sentences are related to original bug reports and whether
they can provide further help when using them to assign
bug fixers. Obviously, the high-level readability is also an
important factor because a good logical bug report can instruct
inexperienced developers to understand how the bug happens.
In future work, we will develop a sorting algorithm to arrange
the order for each candidate sentence so that we can get
enriched bug reports with high readability.

VIII. RELATED WORK

A. Automated summarization for bug reports

As an early-stage work, Rastkar et al. [29] found that exist-
ing conversation-based generators can produce more accurate
summaries of given bug reports than random generators. By
comparing with EC (Email classifier), EMC (Email-Meeting

238238238238238238238238

TABLE VII: Performance (F-measure %) comparison using Original Bug Reports (OBR) and Enriched Bug Reports (EBR) with different variants of

REP#
topic

Variants
F-measure (%) of automated fixer recommendation approaches with the different variants of REP#

topic

Eclipse Mozilla GCC
DREX DRETOM DevRec DREX DRETOM DevRec DREX DRETOM DevRec

OBR 20.75 21.19 28.86 22.59 22.53 33.18 21.53 32.02 28.31

EBR+REP#
topic 26.72 34.56 36.31 32.59 31.76 39.53 27.44 39.62 36.31

EBR+REP#
topic(ω1 = 0) 26.09 31.44 33.47 30.00 28.62 34.19 25.24 30.94 32.29

EBR+REP#
topic(ω2 = 0) 25.55 31.56 33.52 30.89 30.02 35.54 25.52 34.62 32.42

EBR+REP#
topic(ω3 = 0) 22.33 28.95 33.12 28.00 28.58 39.22 21.82 32.25 32.49

EBR+REP#
topic(ω4 = 0) 24.74 30.99 33.45 30.41 28.46 38.15 25.82 36.13 34.22

EBR+REP#
topic(ω5 = 0) 26.12 32.85 35.40 30.79 31.53 39.46 25.61 37.19 34.34

EBR+REP#
topic(ω6 = 0) 26.03 31.79 33.39 30.51 30.92 36.10 25.92 36.99 32.82

EBR+REPtopic 26.48 29.02 33.96 29.74 29.49 34.62 23.03 37.07 32.65

classifier) and BRC (Bug Report classifier), they found that
BRC performed the best among them. Different from super-
vised learning approaches [29] , Mani et al. [30] utilized
four unsupervised approaches such as Centroid, Maximum
Marginal Relevance, Grasshopper and Diverse Rank to sum-
marize the given bug reports. Rastkar et al. [31] extended their
previous work in. Except for demonstrating BRC performed
better than EC and EMC, they utilized these generated sum-
maries to execute the duplicate bug reports detection task.

The goal of our study is different from automated summa-
rization for bug report. Even if we use sentence extraction
to perform this work, the sentences ranking algorithm based

on REP#
topic is different from previous supervised learning

approaches (e.g., BRC) and unsupervised learning methods
(e.g., Diverse Rank). We do not need to annotate the sentences
in historical bug reports, and it is not necessary to adopt a noise
reducer. The proposed approach is expected to reduce the cost
of the manual annotation and help developers to execute the
automated software maintenance tasks effectively.

B. Automated fixer recommendation

Čubranić and Murphy used Naı̈ve Bayes to train a classifier
to recommend appropriate bug fixer [1]. Anvik et al. [2]
used SVM to provide the best appropriate developers to a
human triager for executing a bug fixing task. Wu et al.
[3] proposed a developer recommendation approach called
Developer Recommendation with K-Nearest-Neighbor Search
and Expertise Ranking (DREX). Xie et al. [4] proposed
DRETOM to model the topics for grouping the bug reports
which share the same topic(s) and analyzed the developers’
interests and experiences on the bug reports belonging to the
corresponding topic(s) in the past fixing records so that it
can work well for recommending the appropriate fixers. Xia
et al. [5] proposed DevRec algorithm which performed bug
report-based and developer-based analysis to recommend the
bug fixers. In this paper, we utilized enriched bug reports to
execute DREX, DRETOM, and DevRec, and demonstrate the
enrichment can improve their performance.

Expect bug reports, a number of studies [6]–[8], [10] used
other information sources (e.g., commits and source code
comments) or specialized models to recommend appropriate
developers. In this work, we only consider bug reports as our
research object.

Although REP#
topic is based on REPtopic (Section III-D)

[9], there are obvious differences between this work and the

study in [9]. First, the purpose is to rank candidate sentences to
enrich bug reports by using the modified REPtopic rather than
automated fixer recommendation; second, due the different
purpose, we modify the features (feature1,feature2, and
feature5) and add the new feature feature6 in REPtopic

to generate REP#
topic.

C. Bug report management
Except for automated bug report summarization and fixer

recommendation, some researchers devote continuously to
bug report management. Existing works [14], [15] aimed to
improve the quality of bug reports; some studies [19], [32]–
[34] focused on detecting duplicate bug reports, and the study
[35] is proposed to find high-impact bug reports; a number
of studies [22], [36]–[39] have been proposed to reassign the
fields (e.g., severity, reopen) of bug reports; and a number of
other studies [20], [40], [41] locate source code relevant to a
bug report.

IX. CONCLUSION AND FUTURE WORK

In this paper, we investigate the necessity of bug report
enrichment by analyzing the reason why short bug reports can
delay the fixing time. Then, we proposed a novel approach
to enrich bug reports for providing developers more rich
information, especially for the important ingredients. The
result of human evaluation indicates that the enriched bug
reports can improve the efficiency of fixer assignment. The
evaluation results of using the enriched bug reports in auto-
mated fixer recommendation show that they can provide more
information and therefore improve the accuracy of automated
fixer recommendation.

In future work, we will consider other factors such as com-
ments, history log, and commit message to further enrich bug
reports. Moreover, we plan to enrich other software artifacts
(e.g., emails and source code files) so that these artifacts can
help developers perform more software maintenance tasks.

ACKNOWLEDGMENT

This work was supported in part by the National Natural
Science Foundation of China under Grant 61602258 and
Grant 61202396, in part by Hong Kong GRF (No. PolyU
5389/13E, 152279/16E), in part by the HKPolyU Research
Grants (No. G-UA3X, G-YBJX), in part by the Shenzhen
City Science and Technology R&D Fund under Grant J-
CYJ20150630115257892, and in part by the China Postdoc-
toral Science Foundation under Grant 2015M582663.

239239239239239239239239

REFERENCES

[1] D. Čubranić and G. C. Murphy, “Automatic bug triage using text
categorization,” in SEKE’04, 2004, pp. 92–97.

[2] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?” in
ICSE’06, 2006, pp. 361–370.

[3] W. Wu, W. Zhang, Y. Yang, and Q. Wang, “Drex: Developer recommen-
dation with k-nearest-neighbor search and expertise ranking,” in APSEC
’11, 2011, pp. 389–396.

[4] X. Xie, W. Zhang, Y. Yang, and Q. Wang, “Dretom: Developer recom-
mendation based on topic models for bug resolution,” in PROMISE ’12,
2012, pp. 19–28.

[5] X. Xia, D. Lo, X. Wang, and B. Zhou, “Dual analysis for recommending
developers to resolve bugs,” Journal of Software: Evolution and Process,
vol. 27, no. 3, pp. 195–220, 2015.

[6] M. Linares-Vásquez, K. Hossen, H. Dang, H. Kagdi, M. Gethers, and
D. Poshyvanyk, “Triaging incoming change requests: Bug or commit
history, or code authorship?” in ICSM’12, 2012, pp. 451–460.

[7] K. Huzefa, G. Malcom, P. Denys, and H. Maen, “Assigning change
requests to software developers,” Journal of Software Evolution &
Process, vol. 24, no. 1, pp. 3–33, 2012.

[8] R. Shokripour, J. Anvik, Z. M. Kasirun, and S. Zamani, “Why so
complicated? simple term filtering and weighting for location-based bug
report assignment recommendation,” in MSR’13, 2013, pp. 2–11.

[9] T. Zhang, J. Chen, G. Yang, B. Lee, and X. Luo, “Towards more accurate
severity prediction and fixer recommendation of software bugs,” Journal
of Systems and Software, vol. 117, pp. 166–184, 2016.

[10] X. Xia, D. Lo, Y. Ding, J. M. Al-Kofahi, T. N. Nguyen, and X. Wang,
“Improving automated bug triaging with specialized topic model,” IEEE
Transactions on Software Engineering, vol. 43, no. 3, pp. 272–297, 2017.

[11] “Eclipse bug tracking system,” https://bugs.eclipse.org/bugs.
[12] “Mozilla bug tracking system,” https://bugzilla.mozilla.org.
[13] “Gcc bug tracking system,” https://gcc.gnu.org/bugzilla.
[14] P. Hooimeijer and W. Weimer, “Modeling bug report quality,” in ASE

’07, 2007, pp. 34–43.
[15] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and T. Z-

immermann, “What makes a good bug report?” in FSE ’08, 2008, pp.
308–318.

[16] “Natural language toolkit,” https://www.nltk.org.
[17] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”

Journal of Machine Learning Research, vol. 3, pp. 993–1022, 2003.
[18] “Stanford topic modeling toolbox,” http://nlp.stanford.edu/software/tmt/

tmt-0.4.
[19] C. Sun, D. Lo, S.-C. Khoo, and J. Jiang, “Towards more accurate

retrieval of duplicate bug reports,” in ASE ’11, 2011, pp. 253–262.
[20] R. Saha, M. Lease, S. Khurshid, and D. Perry, “Improving bug localiza-

tion using structured information retrieval,” in ASE’13, 2013, pp. 345–
355.

[21] C.-Z. Yang, H.-H. Du, S.-S. Wu, and X. Chen, “Duplication detection
for software bug reports based on bm25 term weighting,” in TAAI’12,
2012, pp. 33–38.

[22] Y. Tian, D. Lo, and C. Sun, “Information retrieval based nearest neighbor
classification for fine-grained bug severity prediction,” in WCRE ’12,
2012, pp. 215–224.

[23] M. Taylor, H. Zaragoza, N. Craswell, S. Robertson, and C. Burges,
“Optimisation methods for ranking functions with multiple parameters,”
in CIKM ’06, 2006, pp. 585–593.

[24] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton,
and G. Hullender, “Learning to rank using gradient descent,” in ICML
’05, 2005, pp. 89–96.

[25] C. Goutte and E. Gaussier, “A probabilistic interpretation of precision,
recall and f-score, with implication for evaluation,” in ECIR ’05, 2005,
pp. 345–359.

[26] C. A. Boneau, “The effects of violations of assumptions underlying the
t test.” Psychological bulletin, vol. 57, no. 1, pp. 49–64, 1960.

[27] R. C. Team, “R: A language and environment for statistical computing.
r foundation for statistical computing, vienna, austria,” 2014.

[28] L. M. Surhone, M. T. Timpledon, S. F. Marseken, S. (statistics), and
M. Wilk, ShapiroWilk Test. Betascript Publishing, 2010.

[29] S. Rastkar, G. C. Murphy, and G. Murray, “Summarizing software
artifacts: A case study of bug reports,” in ICSE’10, 2010, pp. 505–514.

[30] S. Mani, R. Catherine, V. S. Sinha, and A. Dubey, “Ausum: Approach
for unsupervised bug report summarization,” in FSE’12, 2012, pp. 1–11.

[31] S. Rastkar, G. C. Murphy, and G. Murray, “Automatic summarization
of bug reports,” IEEE Transactions on Software Engineering, vol. 40,
no. 4, pp. 366–380, 2014.

[32] P. Runeson, M. Alexandersson, and O. Nyholm, “Detection of duplicate
defect reports using natural language processing,” in ICSE’07, 2007, pp.
499–510.

[33] C. Sun, D. Lo, X. Wang, J. Jiang, and S.-C. Khoo, “A discriminative
model approach for accurate duplicate bug report retrieval,” in ICSE’10,
2010, pp. 45–54.

[34] X. Yang, D. Lo, X. Xia, L. Bao, and J. Sun, “Combining word embed-
ding with information retrieval to recommend similar bug reports,” in
ISSRE’16, 2016, pp. 127–137.

[35] X.-L. Yang, D. Lo, X. Xia, Q. Huang, and J.-L. Sun, “High-impact
bug report identification with imbalanced learning strategies,” Journal
of Computer Science and Technology, vol. 32, no. 1, pp. 181–198, 2017.

[36] A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals, “Predicting the
severity of a reported bug,” in MSR ’10, 2010, pp. 1–10.

[37] A. Lamkanfi, S. Demeyer, Q. D. Soetens, and T. Verdonck, “Comparing
mining algorithms for predicting the severity of a reported bug,” in
CSMR ’11, 2011, pp. 249–258.

[38] X. Xia, D. Lo, E. Shihab, and X. Wang, “Automated bug report
field reassignment and refinement prediction,” IEEE Transactions on
Reliability, vol. 65, no. 3, pp. 1094–1113, 2016.

[39] X. Xia, D. Lo, E. Shihab, X. Wang, and B. Zhou, “Automatic, high ac-
curacy prediction of reopened bugs,” Automated Software Engineering,
vol. 22, no. 1, pp. 75–109, 2015.

[40] J. Zhou, H. Zhang, and D. Lo, “Where should the bugs be fixed?
more accurate information retrieval-based bug localization based on bug
reports,” in ICSE’12, 2012, pp. 14–24.

[41] D. Kim, Y. Tao, S. Kim, and A. Zeller, “Where should we fix this bug?
a two-phase recommendation model,” IEEE Transactions on Software
Engineering, vol. 39, no. 11, pp. 1597–1610, 2013.

240240240240240240240240

