
ATVHUNTER: Reliable Version Detection of
Third-Party Libraries for Vulnerability Identification

in Android Applications
Xian Zhan∗, Lingling Fan†, Sen Chen‡, Feng Wu§, Tianming Liu¶, Xiapu Luo∗, Yang Liu§

∗Department of Computing, The Hong Kong Polytechnic University, Hong Kong, China
†College of Cyber Science, Nankai Univerisity, China

‡College of Intelligence and Computing, Tianjin University, China
§School of Computer Science and Engineering, Nanyang Technological University, Singapore

¶Faculty of Information Technology, Monash University, Australia

Abstract—Third-party libraries (TPLs) as essential parts in
the mobile ecosystem have become one of the most significant
contributors to the huge success of Android, which facilitate
the fast development of Android applications. Detecting TPLs
in Android apps is also important for downstream tasks, such
as malware and repackaged apps identification. To identify in-
app TPLs, we need to solve several challenges, such as TPL
dependency, code obfuscation, precise version representation.
Unfortunately, existing TPL detection tools have been proved
that they have not solved these challenges very well, let alone
specify the exact TPL versions.

To this end, we propose a system, named ATVHUNTER, which
can pinpoint the precise vulnerable in-app TPL versions and
provide detailed information about the vulnerabilities and TPLs.
We propose a two-phase detection approach to identify specific
TPL versions. Specifically, we extract the Control Flow Graphs as
the coarse-grained feature to match potential TPLs in the pre-
defined TPL database, and then extract opcode in each basic
block of CFG as the fine-grained feature to identify the exact
TPL versions. We build a comprehensive TPL database (189,545
unique TPLs with 3,006,676 versions) as the reference database.
Meanwhile, to identify the vulnerable in-app TPL versions, we
also construct a comprehensive and known vulnerable TPL
database containing 1,180 CVEs and 224 security bugs. Exper-
imental results show ATVHUNTER outperforms state-of-the-art
TPL detection tools, achieving 90.55% precision and 88.79%
recall with high efficiency, and is also resilient to widely-used
obfuscation techniques and scalable for large-scale TPL detection.
Furthermore, to investigate the ecosystem of the vulnerable TPLs
used by apps, we exploit ATVHUNTER to conduct a large-
scale analysis on 104,446 apps and find that 9,050 apps include
vulnerable TPL versions with 53,337 vulnerabilities and 7,480
security bugs, most of which are with high risks and are not
recognized by app developers.

I. INTRODUCTION

Nowadays, over 3 million Android applications (apps) are
available in the official Google Play Store [1]. One reason
contributing to the huge success of Android could be the
massive presence of third-party libraries (TPLs) that provide
reusable functionalities that can be leveraged by developers
to facilitate the development of Android apps (to avoid rein-
venting the wheels). However, extensive TPL usage attracts
attackers to exploit the vulnerabilities or inject backdoors in

the popular TPLs, which poses severe security threats to app
users [2–4]. Previous research [5, 6] pointed out that many
apps contain vulnerable TPLs, and some of them have been
reported with severe vulnerabilities (e.g., Facebook SDK) that
can be exploited by adversaries [7, 8]. Attackers can exploit
the vulnerabilities in some Ad libraries (e.g., Airpush [9],
MoPub [10]) to get privacy-sensitive information from the in-
fected devices [11]. Even worse, various TPLs are scattered in
different apps but the information of TPL components in apps
is not transparent. Many developers may not know how many
and which TPLs are used in their apps, due to many direct
and transitive dependencies. Additionally, about 78% of the
vulnerabilities are detected in indirect dependencies, making
the potential risks hard to spot [12]. Thus, vulnerable TPL
identification has become an urgent and high-demand task and
TPL version detection has become a standard industry product
named as Software Composition Analysis (SCA) [12, 13].

Existing TPL detection techniques use either clustering-
based methods (e.g., LibRadar [14], LibD [15, 16]) or sim-
ilarity comparison methods (e.g., LibID [17], LibScout [5]) to
identify TPLs used by the apps. However, according to our
analysis and previous study [18], we conclude the following
deficiencies in existing approaches: 1) Low recall. Clustering-
based methods only can identity commonly-used TPLs and
may miss some niche and new TPLs, whose recall depends on
the number of input apps and the reuse rate of TPLs. Besides,
the code similarity of different versions and TPL could be vari-
ous, which makes it difficult to choose appropriate parameters
of the clustering algorithm to perfectly distinguish different
TPLs or even versions. Verifying the clustering results is
also labor-intensive and error-prone. Similarity comparison
methods construct a predefined TPL database as the reference
database. However, current published size of TPL database
is far smaller than the number of TPLs in the actual market
thus cannot be used to identify a complete set of in-app TPLs.
Apart from that, existing techniques more or less depend on
the package structure, especially using package structure to
construct the in-app library candidates. Whereas, the package
structure/name of the same TPL in different versions could

ar
X

iv
:2

10
2.

08
17

2v
1

 [
cs

.S
E

]
 1

6
Fe

b
20

21

be mutant or easily obfuscated. Therefore, using packages as
a supplementary feature to generate TPL signatures is also
unreliable [18]. 2) Inability of precise version identification.
To find the vulnerabilities of the in-app TPLs, we need to
precisely pinpoint the exact TPL versions because not all
TPL versions are vulnerable. Even though there are many
TPL detection tools, none of them can meet our requirements.
AdDetect [19] just can distinguish the ad and non-ad libraries.
ORLIS [20] just provides the matching class. Clustering-
based tools (e.g., LibRadar [14], LibD [15, 16]) do not claim
they can pinpoint the exact TPL versions. Besides, current
tools [5, 7, 17, 21] usually reported many false positives at
version-level identification [18]. Thus, existing tools are not
suitable for vulnerable TPL detection.

Apart from the aforementioned weaknesses of existing
tools, we still face some challenges in this research direction:
1) Lack of vulnerable TPL version dataset. To enable
vulnerable TPL version (TPL-V) identification, we need a
comprehensive set of known vulnerable TPL-Vs. Ideally, for
each vulnerable TPL, it includes TPL names, versions, types,
vulnerability severity, etc. However, to the best of our knowl-
edge, no such dataset is publicly available. 2) Precise version
representation. We need to distinguish TPLs at version level,
however, it is challenging to extract appropriate code features
to represent different versions of the same TPL, especially
when the code difference of different versions is tiny. 3)
Interference from code obfuscation. Many code obfuscation
tools (e.g., DashO [22], Proguard [23], and Allatori [24]) can
be used to obfuscate apps and TPLs. For example, dead code
removal can delete the code without invocation by host apps.
These techniques can change the code similarity between in-
app TPLs and the original TPLs. Undoubtedly, obfuscation
techniques increase the difficulty of TPL identification.

To fill aforementioned research gap, we propose a sys-
tem, named ATVHUNTER (Android in-app Third-party library
Vulnerability Hunter), which is an obfuscation-resilient TPL-
V detection tool and can report detailed information about
vulnerabilities of in-app TPLs. ATVHUNTER first uses class
dependency relations to split the independent candidate TPL
modules from the host app and adopts a two-phase strategy to
identify in-app TPLs. It extracts CFGs as the coarse-grained
features to locate the potential TPLs in the feature database to
achieve high efficiency. It then extracts the opcode sequence in
each basic block of CFG as the fine-grained feature to identify
the precise version by employing the similarity comparison
method. To ensure the recall, we constructed our TPL feature
database by collecting comprehensive and large-scale Java
libraries from the maven repository [25]. We use the fuzzy
hash method to generate the signature, which can alleviate
the effects from code obfuscation. Compared with previous
methods, ATVHUNTER does not depend on the package
structure. The main contributions of this work are as follows:
• An effective TPL version detection tool. We propose

ATVHUNTER, an obfuscation-resilient TPL-V detection
tool with high accuracy that can find vulnerable in-app
TPL-Vs and provide detailed vulnerabilities and compo-

nents reports. With the help of our industry collaborator,
ATVHUNTER was integrated as a branch of an online
service1 to help users identify vulnerable Android TPLs.

• Comprehensive datasets. We have constructed a com-
prehensive and large-scale TPL feature database at
present, which includes 189,545 TPLs with corresponding
3,006,676 versions to identify in-app TPLs. We are the first
to construct a comprehensive vulnerable TPL-V database
for Android apps, including 1,180 CVEs from 957 TPLs
with 38,243 vulnerable versions and 224 security bugs
from 152 open-source TPLs with 4,533 affected versions.

• Thorough comparisons. We conduct systematic and thor-
ough comparisons between ATVHUNTER and the state-
of-the-art tools from different perspectives. The evaluation
result demonstrates ATVHUNTER is resilient to widely-
used obfuscation techniques and outperforms the state-of-
the-art TPL-V detection tools, achieving high precision
(90.55%) and recall (88.79%) at version-level identifica-
tion. We published the related dataset on our website [26].

• Large-scale analysis. We leverage ATVHUNTER to con-
duct a large-scale study on 73,110 apps using TPLs and
find 9,050 apps contain 10,616 vulnerable TPLs. These
vulnerable TPLs include 53,337 known vulnerabilities and
7,480 security bugs. Most of them use TPLs containing
severe vulnerabilities.

II. RELATED WORK

Library Detection. AdDetect [19] and PEDAL [27] use
features such as permissions and APIs to train a classifier to
distinguish ad libraries and non-ad libraries. Whereas, these
studies fail to identify other types of libraries, such as develop-
ment aids, UI plugins. Currently, there are three TPL detection
tools based on the clustering algorithms., i.e., LibRadar, LibD,
and LibExtractor. LibRadar [14] extracts the Android API
calls, the total number of API calls and total kinds of API
calls as the code features and it chooses the multi-level
clustering method to identify potential TPLs. LibD [15, 16]
extracts the opcode in each CFG block as the code feature.
LibExtractor [28] exploits the clustering-based method to
find potential malicious libraries. In general, clustering-based
approaches have three common weaknesses: 1) they require
a considerable number of apps as input to generate enough
TPL signatures. It is also difficult to find emerging or niche
TPLs. It also can import some impurities. For instance, if
an app is repackaged many times, clustering methods may
consider the repackaged host app as a TPL. 2) clustering-based
methods may find incomplete TPLs. Some TPLs also depend
on other TPLs, but clustering method could separate them into
several parts. 3) The above clustering-based approaches more
or less rely on package names and package structures, which
can be easily obfuscated by existing obfuscators [22–24].
LibD claims it is resilient to package name obfuscation and
package structure mutation, but package flattening technique
can remove the whole package structure and change the

1www.scantist.io

internal package structure. LibSift [29] constructs the package
dependency graph (PDG) to split independent TPL candidates.
LibSift does not identify specific libraries, only decouples
TPLs into different parts from the host app. Han et al. [30]
aim to measure the behavior differences by comparing benign
TPLs and malicious TPLs. It extracts the opcode and Android
type tags as features and hashes all feature in each method, and
then compare it with the ground-truth libraries to identify the
libraries. LibScout [5] is a similarity-based library detection
tool, which uses the Merkle Tree [31] to generate each library
instance signature. LibScout chooses the fuzzy method as
code feature which changes the non-system identifiers (in the
method signature) by using placeholder “X”. ORLIS [20] uses
the same code feature of LibScout [5] but different feature
generation approach. LibScout and ORLIS can be resilient to
identifier renaming. Whereas, the code feature of LibScout is
too coarse, which affects the detection performance. Besides,
ORLIS can only provide the matched class to users, which is
not user-friendly. Thus, they are not good choices for off-the-
shelf TPL detection. LibPecker [7] is also a matching-based
library identification tool, which exploits the class dependency
as the code features and hashes it as the fingerprint to find
TPLs. LibPecker then uses the Fuzzy Class matching method
to compare it with the libraries in the database. However, the
comparison process is time-consuming. Moreover, LibPecker
also assumes the package hierarchy is not change when the
TPL is imported into an app, which will affect the recall.
LibID [17] is also a TPL version detection tool, but it chooses
dex2jar [32] as the decompile tool. The reverse-engineering
capability of dex2jar directly limits the detection ability of
LibID. More details are clarified in § IV.
Vulnerable TPL/App Identification. Yasumatsu et al. [6]
attempt to understand how app developers response to the
update of TPLs. They studied vulnerable versions of seven
TPLs and corresponding apps. By comparing the evolution
time between different TPL-Vs and apps versions, they mea-
sured the reaction of app developers to these vulnerable TPL
versions. The number of vulnerable TPL is too small in their
dataset, which cannot show the full picture of the infected apps
and vulnerable TPLs. OSSPolice [21] is an automated tool
for identifying free software license violations and vulnerable
versions of open-source third-party libraries, including both
native libraries and Java libraries. It extracts the fuzzy method
signature as the library feature and function centroid [33] as
the version feature to identify TPL-Vs. However, generating
centroid is substantial in terms of resource consumption.

III. ARCHITECTURE

We design a system, ATVHUNTER, which takes an Android
app as input, and automatically identify the used vulnerable
TPL-Vs (if any) according to the constructed database. Fig. 1
shows the system design which is divided into two parts: (1)
TPL-V detection, which identifies the specific versions of TPLs
used by apps; and (2) vulnerable TPL-V identification, which
can identify the vulnerable in-app TPL-Vs based on our col-
lected known vulnerabilities from NVD [34] and Github [35].

Based on the database, we also conduct a large-scale study to
assess the ecosystem of Android apps in terms of the usage
of vulnerable TPLs. Details are introduced as follows.

A. TPL Detection

The TPL detection part of ATVHUNTER includes four key
phases: (1) Preprocessing, (2) Module decoupling, (3) Feature
generation, and (4) TPL identification.

1) Preprocessing: ATVHUNTER primarily conducts two
tasks in this phase. The first task is to decompile the input
app and transform the bytecode into appropriate intermediate
representations (IRs). The second task is to find the primary
module in the app and delete it to eliminate the interference
from the host app. If an app includes TPLs, we call the
code of the host app as the “primary” module and the in-
app TPLs constitute the “non-primary” module. ATVHUNTER
first parses the AndroidManifest.xml file and gets the host app
packages. Sometimes, the code of the host app may belong
to several different namespace, therefore, we need to extract
the app packages, application namespace and the package
namespace including the Main Activity (i.e., the launcher
Activity) and delete these files under the host namespace.
However, this approach also has following side effects: 1) part
of host code suffers from the package flattening or renaming
obfuscation and cannot be delete. 2) part of host code cannot
be delete due to special package name. 3) the host app and
TPLs have the same package namespace, the method may
delete these TPLs, leading to false negatives. As for the case 1)
& 2), if the host code and TPLs have no dependencies, it will
not affect the accuracy of TPL identification. If the undeleted
host parts include the TPLs, we can eliminate the interference
in the comparison stage.

2) Module Decoupling: The purpose of module decoupling
is to split up the non-primary module of an app into different
independent library candidates. Previous research adopts dif-
ferent features for module decoupling such as package struc-
ture, homogeny graph [15], and package dependency graph
(PDG), however, they more or less depend on the package
structure of apps. Using the package name or the independent
package structure to split the in-app TPLs is error-prone, which
has two obvious disadvantages: 1) low resiliency to package
flattening [36]; 2) inaccurate TPL instance construction. There
are many different TPLs sharing the same root package.
For instance, “com.android.support.appcompat-v7” [37] and
“com.android.support.design” [38] are two different TPLs but
the share the same root package com/android/support. Besides,
one TPL may has multiple parallel package structures, as can
be seen an example in Fig. 2, this TPL[39] depends on other
TPLs to build itself and developer deploy the “Fat” jar mode to
package this project. The host TPL with all invoked TPLs con-
stitutes a complete TPL. TPL dependencies are very common,
about 47.3% of Android TPLs in maven repository depend
on others based on our rough statistics. To overcome it, we
adopt the Class Dependency Graph (CDG) as the features to
split up the TPL candidates because CDG does not depend on
the package structure, it is resilient to package flattening. The

Decompiling

Primary module
elimination

� Preprocessing �Module Decoupling � FeatureGeneration � Library Identification

Vulnerability Collection

Security Bug Collection
Vulnerability
Database

� Vulnerable	TPL
Version	identification

Offline DB Construction

TPLs with
specific versions

Coarse-grained feature
generation (CFG)

Fine-grained feature
generation (opcode of CFG)

Potential TPL
search

TPL version
identification

Candidate TPL
decoupling

(Class Dependency)

� FeatureGeneration TPL Feature
Database

Vulnerable
TPL Database

Mapping
Vulnerable TPL versions
ü TPL info: name, version, etc.
ü Vul info: type, CVSS, etc.

Fig. 1: Workflow of ATVHUNTER

Fig. 2: An example of a TPL’s package structure

class dependency relationship includes: 1) class inheritance,
we do not consider the interface relationship because it can
be deleted in obfuscation, 2) method call relationship, and
3) field reference relationship. We use CDGs to find all the
related class files, and each CDG will be considered as a
TPL candidate in general situation. Using CDGs can avoid
the aforementioned situations and package mutation and also
be resilient to package flattening.

In ATVHUNTER, we use similarity-based method to iden-
tify TPL-Vs, we generate the TPL feature database by using
the complete TPL files that we downloaded from the maven
repository. Therefore, we need to pay attention the packaging
techniques of Java projects. To facilitate maintenance, most
developers usually adopt the “skinny” mode to package a
TPL, which means the released version only contains the
code by TPL developers without any dependency TPLs. The
dependency TPLs will be loaded during compilation. To solve
this situation, we crawl the meta-data of each TPL and record
their dependency TPLs and packaging technique [40] by
reading the “pom.xml” file. If the “pom.xml” claims “jar-
with-dependencies”, it means it includes all dependency TPLs,
otherwise, it just includes the host TPL code. If we find a jar
which is a skinny one, we also need to split their dependency
TPLs by using their package namespace so that we can match
the correct version in TPL database.

3) Feature Generation: After splitting the candidate li-
braries, we then aim to extract features and generate the
fingerprint (a.k.a., signature) to represent each TPL file. To
ensure scalability and accuracy, we choose two granularity
features. The coarse-grained feature is used to help us quickly
locate the potential TPLs in the database. The fine-grained
feature is used to help us identify the TPL-V precisely. (1) For
coarse-grained features, we choose to extract the Control Flow

Graph (CFG) to represent the TPL since CFG is relatively
stable [41]. CFG also keeps the semantic information that
ensures the accuracy to some extent [42]. (2) For fine-grained
features, we extract the opcode in each basic block of CFG as
the feature for exact version identification.

Coarse-grained Feature Extraction. We first extract the CFG
for each method in the candidate TPLs, and traverse the
CFG to assign each node a unique serial number (starting
from 0) according to the execution order. For a branch node
with sequence number n, its child with more outgoing edges
will be given sequence number n + 1 and the other child
is given n + 2. If two child nodes have the same outgoing
edges, we will give n + 1 to the child node with more
statements in the basic block. We then convert the CFGs into
signatures based on the assigned serial numbers of each node
to represent each unique TPL, in the form of [node count,

edge adjacency list], where the adjacency list is repre-
sented as: [parent1 -> (child1,child2,...), parent2
-> ...]. We then hash the adjacency list of CFG as a
method signature. To improve the search efficiency, we sort
these hash values in ascending order and then hash the
concatenate values as one of the coarse-grained TPL features
(T1). Meanwhile, we also keep the series of CFG signatures
in our database to represented each TPL in feature database.

Fine-grained Feature Extraction. Based on our analysis, we
find the code similarity of different versions for the same TPL
could be diverse, which can range from about 0% to nearly
100%. The coarse-grained features (i.e., CFG) are likely to
generate the same signature of different versions that have mi-
nor changes such as insert/delete/modify a statement in a basic
block. Therefore, we propose finer-grained features, i.e., op-
code in each basic block of CFG, to represent each version file.
However, extracting more fine-grained features will increase
more computational complexity and cost of the computing re-
sources. To ensure the scalability of ATVHUNTER, a common
way to achieve that is through hashing [43]. However, hash-
based method has an obvious drawback to determine whether
two objects (e.g., TPLs, methods) are similar because a minor
modification can lead to a dramatic change of the hash value.
Thus, we adopt the fuzzy hashing technique [44] instead of the
traditional hash algorithm to generate the code signature for

Fig. 3: Fuzzy hashing for method feature generation as the
version feature

each method. Fig. 3 shows the feature generation process for
TPL-Vs. Specifically, we first extract all the opcode sequences
inside each basic block and concatenate them together. We
do not consider the operands (e.g., identifier names or hard-
coded URLs) that are not robust for some simple obfuscation
techniques such as renaming obfuscation and string encryption
techniques [43, 45]. We then concatenate all opcode sequences
of each basic block according to the adjacency list of CFG.
In this step, our method is somewhat similar to LibD [15]
with respect to the code feature. We also adopt the opcode in
each basic block of CFG as the code feature. However, we
also have many differences. LibD uses a package-level hash
value as the final signature and uses the clustering algorithm to
detect TPLs. While in ATVHUNTER, to defend against code
obfuscation or TPL customization [7], we use the fuzzy hash
on each method-level feature and similarity comparison to find
similar methods. We first use a slide window (a.k.a., rolling
hash [44]) to cut the opcode sequence into small pieces. Each
piece has an independent contribution to the final fingerprint.
If one part of the feature changes due to code obfuscation,
it would not cause a big difference to the final fingerprint.
We then hash each piece and combine them as the final fine-
grained fingerprint of each method. The fingerprints of all
methods in a version to represent a TPL-V.
TPL Database Construction. We crawled all Java TPLs
from Maven Repository [25] (189,545 unique TPLs with their
3,006,676 versions) to build our TPL database. We use the
above mentioned method to obtain the signature for each TPL.
For each version of TPLs, we store both coarse-grained and
fine-grained features in a MongoDB [46] database. The size of
the entire database is 300 GB. We spent more than one month
to collect all the TPLs and another two months to generate
the TPL feature database.

4) Library Identification: This step aims to identify the
used TPL-Vs in a given app. To achieve it efficiently, we
propose a two-stage identification method: 1) potential TPL
identification; 2) version identification.
1) Potential TPL Identification. Since there are over 3
million TPL files to be compared in our database for each
candidate library, to speed up the entire detection process,

we search the database in the following order: a) Search
by package names. For each library candidate, we first use
its package namespace (if not obfuscated) to narrow down
the search space in our database. Note that we cannot di-
rectly use the package name to determine a TPL, because
the same package namespace could include different third-
party libraries. For example, the Android support group [47]
includes 99 different TPLs. These TPLs have the same group
ID “com.android.support” and the same package name prefix
“android/support/”. If the package name has been obfuscated
or a candidate TPL module is without a package name, we
move to the next filtering strategy. Note that, even though it is
a non-trivial problem to decide the obfuscated package name,
in our work, the package name is only used as supplementary
information to speed up the search process. No matter whether
a candidate TPL can find a match in the TPL database by
using the package names, we still continue to search the TPL
database via other features. Thus, we only applied a simple
rule to identify the obfuscated apps: if a package name is a
hash value or a single letter, we consider it obfuscated. b)
Search by the number of classes. We assume two TPLs are
unlikely to be the same one if the number of classes within
two TPLs has a big difference [48]. If the number of the classes
in a TPL only accounts for less than 40% of that in another
TPL in the database, we will not further compare them, which
can help us speed up the identification process. c) Search
by coarse-grained features. To speed up, we first search the
coarse-grained feature T1 in the TPL database; if we find the
same one, ATVHunter will report this TPL and stop the search
process. Otherwise, ATVHUNTER will compare the candidate
TPL with TPLs in the database, if all the coarse features are
the same, we consider find the TPL and the search process will
stop. If over 70% of the coarse-grained features are the same
(followed by previous research [33, 43, 48, 49]), we consider
it as a potential TPL. When we find the potential TPL, we
will identify the exact version.
2) Version Identification. To identify the specific versions
of the used TPLs, we utilize the fine-grained features and
calculate the similarity ratio of two TPLs as the evaluation
metric. To ensure the efficiency, we do not compare these
matched methods in previous stage. ATVHUNTER can record
the same method pair in the previous stage, therefore, we only
need to compare less than 30% of the methods in this phase.
Since some code obfuscation techniques (e.g., junk code inser-
tion) would change the fingerprints of methods, causing two
methods that were initially the same to be different. Therefore,
we need to compare the method similarity and consider two
methods matched only when their method similarity exceeds a
threshold. Based on the number of matched methods, we then
compute the TPL similarity. When the number of matched
methods exceeds the threshold, we consider we find the correct
TPL with its version.
• Method Similarity Comparison. We employ edit dis-
tance [43, 50] to measure the similarity between two method
fingerprints. The edit distance of two fingerprints is defined
as the number of minimum edit operations (i.e., insertion,

deletion, and substitution) that is required to modify one
fingerprint to the other. Based on the edit distance of two
signatures, we compute the Method Similarity Score (MSS)
between two methods (i.e., ma and mb) by using the formula:

MSS(ma,mb) = 1− d[ma,mb]

max(m,n)
(1)

where m and n represent the signature length of two methods
and d[ma,mb] is the edit distance of two method signatures.
If MSS exceeds a certain threshold θ, we consider the two
methods are matched. Based on our experimental result in
§ IV-A, we choose θ = 0.85 as the threshold.
• TPL Similarity Comparison. Based on the number of
matched methods, the similarity of two TPLs (t1 and t2) are
defined as follows:

TSS(t1, t2) =
M|t1

⋂
t2|

M|t2|
(2)

where t1 is a TPL candidate from the test app, t2 is a TPL from
the database for comparison. M|t2| is the number of methods
in t2. M|t1

⋂
t2| is the number of matched methods of t1 and t2

which should meet two conditions: (a) ∀mi,mj , where mi is
a method of t1, mj is a method of t2, MSS(mi,mj) ≥ θ; (b)
∃mj , that MSS(mi,mj) = 1, that is, we only compare two
TPLs that have at least one exactly matched method in order
to speed up the identification process. For a TPL candidate t1,
we consider we find a potentially matched TPL-V (t2) in the
database when TSS(t1, t2) ≥ δ, δ is the similarity threshold,
and select the TPL-V with the largest similarity score as the
final result of t1, providing the identified TPLs with group id,
artifact id and version number. We set the threshold δ = 0.95
based on our experimental result in § IV-A.

B. Vulnerable TPL-V Identification

We first build a vulnerable TPL-V database, based on which
we identify the vulnerable TPL-Vs used by the apps.

1) Database Construction: The vulnerable TPL-V database
construction process includes collection of know vulnerabil-
ities in Android TPLs and security bugs from open-source
software.
Known TPL Vulnerability Collection. To collect the vul-
nerable TPL versions, we convert the names of all TPL files
(3,006,676 in total) in our feature database into Common
Platform Enumeration (CPE) format [51] and exploit cve-
search [52], a professional CVE search tool, to query the
vulnerable TPLs from the public CVE (Common Vulnera-
bilities and Exposures) database by mapping the transformed
TPL names. In this way, we can get the known vulnerabilities
of TPL-Vs and their detailed information, including the CVE
id, vulnerability type, description, severity score from Com-
mon Vulnerability Scoring System (CVSS) [53], vulnerable
versions, etc. We use CVSS v3.0 to indicate the severity of the
collected vulnerabilities in this paper. Finally, we collected
1,180 CVEs from 957 unique TPLs with 38,243 affected
versions.
Security Bug Collection. Since ATVHUNTER is able to
identify the specific versions of TPLs used by apps, therefore,

besides the known vulnerabilities, we also obtain 224 security
bugs from Github [35] and Bitbucket [54] owing to the col-
laboration with our anonymous industrial collaborators.These
bugs come from 152 open-source TPLs with their correspond-
ing 4,533 versions. All of these security bugs have been cross-
validated by the security experts in industry.

2) Vulnerable TPL-V Identification: When ATVHUNTER
identifies the used TPL-Vs in the app, it will search the vulner-
able TPL database to check whether these identified TPL-Vs
are vulnerable or not. If ATVHUNTER finds the vulnerable
TPL-Vs, it will generate a detailed vulnerability report to
users. We believe ATVHUNTER can serve as an extension
of ASI Program [11] for Google. The previous research [6]
reported that vulnerabilities listed on ASI program can draw
more attention to developers. However, the vulnerabilities
are reported by ASI program is limited. Our comprehensive
dataset can be a supplement to ASI program.

C. Implementation

ATVHUNTER is implemented in 2k+ lines of python
code. We employ APKTOOL [55], a reverse engineering tool
commonly-used by much previous work [56–59] to decompile
the Android apps and exploit Androguard [60] to obtain the
class dependency relations in order to get the independent
TPL candidates. We then employ SOOT [61] to generate CFG
and also build on SOOT to get the opcode sequence in each
basic block of a CFG. We use the ssdeep [62] to conduct
fuzzy hash algorithm to generate the code feature and employ
the edit distance [50] algorithm to find the in-app TPLs. Our
approach can pinpoint the specific TPL versions. We maintain
a library database containing more than 3 million TPL files
and construct a vulnerable TPL database that includes 224
security bugs from open-source Java software on Github, and
1,180 CVEs from 910 Android TPLs in public CVE databases.

IV. EVALUATION

In this section, we first construct our ground truth and
choose appropriate thresholds for MSS and TSS in § IV-A.
Based on the thresholds, we further evaluate ATVHUNTER
from effectiveness (RQ1), scalability (RQ2), and the capa-
bility of code obfuscation-resilience (RQ3). All the experi-
ments were conducted on a commercial cloud service running
Ubuntu 16.04 LTS with 8-core Intel(R) Xeon(R) Gold 6151
processor, CPU @ 3.00GHz and 128G memory.

A. Preparation

• Ground-truth Dataset Construction. We build this dataset
for three primary purposes: 1) verify the effectiveness of
ATVHUNTER; 2) compare the performance with the state-
of-the-art tools; 3) release the datasets to the community to
promote follow-up research. Since it is difficult to know the
specific TPL-Vs from commercial apps, we choose the open-
source apps to compare ATVHUNTER with existing tools.

We first collect the latest versions of 500 open-source apps
from F-Droid [63] that is the largest repository maintaining
open-source Android apps. We choose open-source apps as

(a) Method-level (b) TPL-level

Fig. 4: Similarity threshold selection

subjects since we can get the specific TPL information (in-
cluding the version) in the configuration files and source code
of apps, such a mapping relation between apps and TPLs is
used as the ground-truth for performance evaluation. These
apps are from 17 different categories with various sizes. For
each app, we manually analyze it and get the in-app TPLs
with their specific versions. According to our analysis, these
apps contain the number of TPLs ranging from 2 to 37 and
these TPLs also have different functions with diverse sizes.
We then download these TPLs with their versions from the
Maven repository [25]. To ensure the evaluation results more
reliable, we collect the complete versions of each TPL. We
filter 144 apps out due to the incomplete versions of TPLs
maintained in the Maven repository. Note that, based on our
analysis, we find the previous published datasets have some
biases. TPLs from LibScout and LibID are most independent
ones, thus, we add some TPLs that depend on other TPLs in
our dataset, such as “Retrofit” depends on “Guava”, to reveal
the lib identification capability of different tools. Finally, we
choose 356 apps and 189 unique TPLs with the complete 6,819
version files in these apps as the ground truth.

• Threshold Selection. To avoid bias, we randomly select
three groups (3 × 200) of apps except the aforementioned
dataset to decide appropriate thresholds for method similarity
score θ, and TPL similarity score δ. We use method-level false
positive rate (FPR) and false negative rate (FNR); and TPL-
level FPR and FNR as the metrics to decide the similarity
thresholds by varying θ and δ from different thresholds. We
employ the three groups of apps to implement the same
experiment three times and then decide the optimal thresholds.

Fig. (4a) shows the method-level FPR and FNR at different
similarity thresholds. We can find when the threshold θ is
around 0.85, both the FPR and FNR are relatively low.
Therefore, we choose θ = 0.85 as the MSS threshold where
the FPR is less than 1% and FNR is less than 0.5%, which
can achieve a good trade-off. Fig. (4b) shows the TPL-level
FPR and FNR at different thresholds. According to the result,
we find that when the threshold is gradually close to 0.8,
many false positives appear due to the same TPL with different
minor-changed versions. When the threshold is close to 1, the
number of false negatives increases. From Fig. 4, we can find
FPR and FNR achieve a good trade-off when the threshold is
around 0.95, we thus choose 0.95 as the threshold δ of TSS. In
summary, we employ θ = 0.85 and δ = 0.95 for the following
experiments.

B. RQ1: Effectiveness Evaluation

Experimental Setup. For the effectiveness evaluation, we
compare ATVHUNTER with the state-of-the-art publicly-
available TPL detection tools (i.e., LibID, LibScout, OSSPo-
LICE, and LibPecker) that can specify the used TPL versions
by using our ground truth dataset (§ IV-A). We employ three
evaluation metrics, i.e., precision (TP

TP+FP), recall (TP
TP+FN)

and F1 Score (2∗Precision∗Recall
Precision+Recall), to evaluate the detection

accuracy at both TPL-level and version-level. TPL-level iden-
tification indicates the ability to identify the in-app TPLs
correctly (without specifying the versions), and version-level
identification indicates the ability to find both the correct TPLs
and the correct versions. For example, if a tool reports that it
finds “okio-2.0.0, okio-2.3.0” in an app but the ground truth
is “okio-2.4.3”, in this situation, for TPL-level, we consider
the tool find the correct TPL; for version-level, we consider
there are two false positives and one false negative.
Result. Table I shows the comparison results of ATVHUNTER
and other state-of-the-art tools. Considering the overall per-
formance, we can see ATVHUNTER outperforms other tools
regarding all the metrics; the F1 score of ATVHUNTER at
library-level and version-level reached 93.43% and 88.82%,
respectively. For library-level identification, we can find that
all of them can achieve high precision at TPL-level identifi-
cation but the performance of recall of current state-of-the-
art tools is mediocre. In contrast, the recall of ATVHUNTER
is 88.79%, which is far better than others. For version-level
identification, we can find the precision (90.55%) and recall
(87.16%) of ATVHUNTER is much higher than that of other
tools. Compared with the library-level precision, we can see
the precision of each tool at version-level decreases a lot,
which means most of them can identify the TPL but they
cannot pinpoint the exact versions. We elaborate on the reasons
for false positives and false negatives of ATVHUNTER and
other state-of-the-art tools as follows.
FP Analysis. The reasons for the false positives of
ATVHUNTER can be concluded in three points: (1) reuse of
open-source components. We find some TPLs are re-developed
based on other TPLs, with only small code changes, if their
similarity is larger than the defined threshold, ATVHUNTER
will report the reused ones at the same time, which are false
positives. (2) Artifact id or group id changes. We identify a
TPL by using its group id, artifact id and version number.
However, we find that some old version TPLs has migrated to
the new ones, with their group id or artifact id changed, but
their code has little difference. Take the TPL file “EventBus”
as an example, “org.greenrobot:eventbus” [64] is the upgraded
version of “de.greenrobot:eventbus” [65]. The code of these
two TPLs have high similarity but with different group ids.
ATVHUNTER matches both of them and considers they are
different TPLs. (3) Different versions with high similarity. The
other reason for the false positives of ATVHUNTER is that
some versions of the same TPL have little or no difference in
their code. For example, “ACRA_4.8.3” only modifies a few
statements in a method of “ACRA_4.8.2”, and ATVHUNTER

TABLE I: Library and Version Detection Comparison

Tools Library-level Version-level
Precision Recall F1 Precision Recall F1

ATVHunter 98.58% 88.79% 93.43% 90.55% 87.16% 88.82%
LibID 98.12% 68.45% 80.64% 68.70% 66.42% 67.54%
LibScout 97.10% 46.65% 63.02% 44.82% 43.50% 44.15%
OSSPoLICE 97.91% 43.39% 60.13% 88.83% 42.25% 57.26%
LibPecker 93.16% 57.82% 71.35% 60.35% 57.67% 58.98%

would report the two versions of the TPL at the same time,
one of them is regarded as false positives. In our database, we
even find some versions of the same TPL have the same Java
code but different resource files, configuration files or native
code (C/C++), but this situation does not affect the vulnerable
TPL identification process.

As for the false positives of other tools, the code feature
of LibScout (i.e., fuzzy method signature) is too coarse,
which would make it generate the same signature for different
versions if the two versions have minor differences. As the
aforementioned example “ACRA”, all existing tools cannot
distinguish the two versions because it generates the same
signature for them. Besides, if the methods are very simple, the
signatures generated by LibScout and OSSPoLICE would also
be the same, which can also lead to false positives. LibPecker
depends on the package structure as a supplementary feature
to identify different TPLs, they may report a TPL depend on
others TPLs several times. For instance, if an app use the
Library C that is built on library A and B, if library A and
B are also in TPL feature database, LibPecker could report
library C as library A and B, leading to false positives.
FN Analysis. ATVHUNTER aims to find TPL versions with
high precision, thus, we sacrificed part of the recall when we
select the similarity threshold. The reasons for false negatives
of ATVHUNTER are as follows: (1) When compiling an app,
developers may take some optimizations to reduce the size
of their app. The strategy is that the compiler automatically
removes some functions of TPLs that are not called by
host apps, which causes the in-app TPLs to be different
from the original TPLs, leading to false negatives. (2) Some
TPLs are integrated into the same package namespace of the
host app, which may be deleted at the pre-processing stage,
leading to false negatives. For example, some companies and
organizations develop their own Ad SDK, whose package
name is the same as that of the host app. However, the code
under the package structure of the host app is deleted at
the pre-processing stage, i.e., the ad library is also deleted
without further consideration, causing the false negatives.
(3) Another reason is that some apps use rarely-used open-
source TPLs hosted on open-source platforms (e.g., Github
or Bitbucket) which are not in our TPL database (with over
3 million TPLs), leading to false negatives. For example,
the TPLs “com.github.DASAR.ShiftColorPicker”, “android-
retention-magic-1.2.2”, and “android-json-rpc-0.3.4” are de-
veloped and hosted on Github, and not in our dataset, there-
fore, ATVHUNTER cannot find this TPL. Since other tools
also use the similarity comparison method to find in-app TPLs,
this situation also may affect their recall.

As for the false negatives of other TPL detection tools, they

more or less use the package structure to generate the TPL
features. However, the package structure is not stable, which
can be easily changed by the package flattening obfuscation.
We find the packages structures of many real-world in-app
TPLs are more or less obfuscated, and some TPLs are even
without any package structure; current tools cannot handle
such cases, leading to false negatives. Besides, it is difficult to
use the package structure and package name to ensure the TPL
candidates, lingas demonstrated in §III-A4. Many different
TPLs may have the same package name, and one independent
package tree could include several TPLs; therefore, existing
tools may generate incorrect code features for these TPLs,
which also can lead to false negatives. LibID uses Dex2jar [32]
to decompile apps, it does not always work in all apps,
which discounts the recall of LibID. Besides, LibScout and
OSSPoLICE are sensitive to CFG structure modification.

Compared with them, our CFG adjacency list is less sen-
sitive to the CFG structure modification. We consider both
the syntax and semantic information, and our method adopts
the fuzzy hash to generate the TPL fingerprints. Thus, code
statements modification can only affect part of the fingerprints,
which is more robust to different code obfuscations. Based on
the above analysis, we can find that the strategy of feature
selection, extraction, and generation are essential, which can
directly affect the performance of the system.

Conclusion: ATVHUNTER outperforms state-of-the-art
TPL detection tools, achieving 98.58% precision, 88.79%
recall at library level, and 90.55% precision, 87.16% recall
at version level.

C. RQ2: Efficiency Evaluation

In this section, we investigate the detection time of
ATVHUNTER and compare it with state-of-the-art tools to
verify its efficiency. We compare the detection time of
ATVHUNTER with existing tools by employing the dataset
collected in § IV-A. All tools construct their own TPL
databases using the same dataset (6,819 TPL versions). All
compared tools choose similarity comparison method to find
in-app TPLs, thus, the detection time mainly depends on the
number of in-app TPLs and the number of TPL features in the
database. The detection time is the period cost for finding all
TPL-Vs in a test app. Note that the detection time does not
include the database construction time.
Result: Table II shows the comparison result of detection
time. We present four metrics (i.e., Q1, mean, median, Q3)
to evaluate the efficiency of each tool. We can see that the
efficiency of ATVHUNTER also outperforms the state-of-the-
art tools (66.24s per app on average). The second one is
LibScout, and the average detection time is about 83s. LibID
and LibPecker are relatively time-consuming; the average
detection time could reach about 16.56h and 4.5h per app.

ATVHUNTER is more efficient than others because our
method only needs to directly search to find the matching
pairs in most situations, which can dramatically decrease
the detection time. ATVHUNTER employs a two-stage iden-
tification method (i.e., filter the potential TPLs first and

TABLE II: Comparison Results of Detection Time (per app).

Tool ATVHunter LibID LibScout OSSPoLICE LibPecker

Q1 15.92s 51.43s 30s 33.48s 12168s
Mean 66.24s 59616s 83s 2052.34s 16396s
Median 47.78s 9286s 64s 80.42s 16632s
Q3 90.30s 38300s 100s 226.60s 23292s

identify the exact TPL with its specific version) to find the
matched libraries from the database, which does not need to
directly compare with the whole database using fine-grained
features and largely reduces the comparison time and the
whole detection time. In contrast, in the similarity feature
comparison stage, LibScout needs to use the class dependency
to filter some impossible pairs out, and this step is also time-
consuming. Besides, LibScout regards the code of the host
app as one of the candidate TPLs, which also costs extra
time. OSSPoLICS exploits the fuzzy method signature (the
same feature of LibScout) [5] as the TPL code feature and
function centroid [42] as the version code feature. The feature
granularity of OSSPoLICE is much finer than that of LibScout,
thus, the computational complexity of OSSPoLICE is also
greater than that of LibScout. Besides, calculating centroid is
heavy in terms of runtime overhead and computing resources
consumption, especially for the third element (loop depth) in
the centroid. The time complexity is O((n+e)(c+1)) and the
space complexity is O(n+e) to find all the loops, where there
are n nodes, e edges and c elementary circles in the graph.
For LibPecker, if it tries to find a similar class, it needs to
compare three times while our method only needs to compare
once. Besides, LibPecker also needs to compare the package
hierarchy structure and then calculates the similarity score,
which also adds extra time. LibID chooses finer granularity
features to identify TPLs, the class dependency analysis, CFG
construction and class matching are also time-consuming.

Conclusion: Compared with other tools, ATVHUNTER can
identify exact TPL-Vs with high efficiency and it takes less
time for TPL detection on the ground-truth TPL database.

D. RQ3: Obfuscation-resilient Capability

The obfuscation-resilient capability is an important index to
measure the performance of a TPL detection tool since obfus-
cation techniques can discount the detection performance.
Experimental Setup. To evaluate the obfuscation-resilient
capability of ATVHUNTER regarding different obfuscation
techniques, we select 100 apps from the public dataset [66]
including multiple categories, and use a popular obfuscation
tool, Dasho [22], to obfuscate these apks with four widely-used
obfuscation techniques (i.e., renaming obfuscation, control
flow randomization, package flattening and dead code re-
moval). Obfuscation is a time-consuming task and requires the
obfuscation tool to analyze the code logic in order to conduct
the obfuscation. It took us about half a month to obfuscate all
of apps. Finally, we get one group (100 apps) of the original
apps and four groups (100× 4) of the obfuscated apps. Based
on these groups of apps, we compare ATVHUNTER with other
tools in terms of the detection rate (|TP |

|GT |) at version-level.

TABLE III: Comparison on Code Obfuscation Techniques

Tool No
Obfuscation

Obfuscation
Renaming CFR PKG FLT Code RMV

ATVHunter 99.26% 99.26% 90.13% 99.26% 75.57%
LibID 12.93% 12.93% 0.03% 1.58% 2.49%

LibScout 88.75% 88.75% 18.24% 17.69% 17.69%
OSSPoLICE 85.62% 85.62% 23.04% 39.52% 48.86%

LibPecker 98.79% 98.79% 86.63% 73.56% 79.28%

Renaming: renaming obfuscation; CFR: Control Flow
Randomization; PKG FLT: Package Flattening; Code RMV: Dead

Code Removal

Result: The detection results are presented in Table III,
the second column is the detection rate of each tool on
apps without obfuscation. We can see ATVHunter achieves
the highest detection rate (99.26%), followed by LibPecker
(98.79%). Besides, it can be found that the detection rate of
LibID is only 12.93%, which has a big gap with the result
in RQ1. We found the main cause of this gap is due to the
inability of decompilation component dex2jar used by LibID.
Many apps in this dataset cannot be decompiled successfully
by dex2jar because of TPL compatibility issues, type errors
and anti-decompilation settings, hence LibID cannot generate
the in-app TPL signature, leading to the low detection rate.

As for the capability of tools on obfuscated apps, we can
see that all tools are resilient to renaming obfuscation since
the detection rate of all tools on renaming apps is the same
as the apps without obfuscation. Our ATVHUNTER is less
affected by all of these code obfuscation techniques. Code
removal has the greatest impact on ATVHUNTER, detection
rate dropped by about 24%. The detection rate on apps with
other obfuscation techniques remains over 90%, demonstrating
the capability of ATVHUNTER towards commonly-used code
obfuscation techniques. Moreover, we can find the recall of
apps are obfuscated by package flattening is the same with
the apps without obfuscation, it shows that our method is
completely resilient to package flattening. In contrast, apart
from the renaming obfuscation, the detection rate of other
tools has been affected by obfuscations to varying degrees.
Especially for LibScout, the performance has dropped by
more than 70%. LibScout can only correctly identify 17.69%
of in-app TPLs that are obfuscated by package flattening
or dead code removal, and 18.24% of in-app TPLs with
control flow randomization. Except ATVHUNTER, LibPecker
achieves better performance.

As for the control flow randomization (CFR), LibScout and
OSSPoLICE use the fuzzy method signature as code features
that keep the syntax information but do not remain semantic
information; thus, it is difficult to defend against CFR. Besides,
OSSPoLICE employs CFG centroid [42] as the version-level
code feature. The CFG centroid is a three-dimensional vector,
and each dimension indicates the in-degree, out-degree and
loop count, respectively. The CFG centroid is sensitive to CFG
structure modification; hence the detection rate of OSSPoLICE
has dropped a lot regarding apps with CFR. LibPecker and
LibID show a good resiliency to CFR because both of them
select the class dependencies as the code features that would

not be changed easily by CFR. ATVHUNTER extracts CFG
as our coarse-grained feature and opcode in the basic block
of CFG as the fine-grained feature. We keep the semantic
information and remove the operands so our method is resilient
to identifier renaming. We split the opcode sequence into
small pieces and exploit fuzzy hash generate the code feature,
although the dead code removal obfuscation and control flow
obfuscation techniques can affect a part of code features,
our strategy effectively reduces the interference, making the
detection rate decline slightly.

Regarding the package flattening technique, existing tools
more or less depend on package structure to generate TPL sig-
natures, without a doubt, which will affect their performance.
More specifically, LibScout depends on package structure/-
name to split TPLs. Firstly, many TPLs belong to the same
group that may have the same package name. It is difficult to
split these TPLs correctly if they belong to the same group.
Secondly, the package flattening technique can easily change
the package hierarchy structure or even remove the whole
package tree, resulting in that LibScout will generate incorrect
TPL signatures or cannot generate signatures for TPLs without
package structures. OSSPoLICE is built on LibScout hence
OSSPoLICE inherits the limitations of LibScout. LibPecker
assumes the package structure is preserved during obfuscation
but it does not always hold true for real-world apps. This
strong assumption directly restricts it to achieve better perfor-
mance. In contrast,ATVHUNTER uses the class dependency
relation to split different TPL candidates (on the basis of
high cohesion and low coupling among different TPLs), which
completely does not depend on the package structure, thus,
ATVHUNTER is resilient to package flattening/renaming.

As for dead code removal, this obfuscation technique will
delete some code that is not invoked by host apps, leading the
code features of in-app TPLs are different from the original
TPLs. This obfuscation can affect all TPL detection tools.
LibPecker chooses class dependency as the code feature that
keeps the method call relationship while we adopt CFG as
code feature that do not include the method dependency. Our
method may include methods and classes without invocations.
The signature of LibPecker stores more semantic information
than that of us so that LibPecker achieves better performance
in dead code removal.

Conclusion: ATVHUNTER offers better resiliency to code
obfuscation than existing tools, especially for identifier re-
naming, package flattening, and control flow randomization.

V. LARGE-SCALE ANALYSIS

By leveraging ATVHUNTER, we further conducted a large
scale study on Google Play apps to reveal the threats of
vulnerable TPL-Vs in the real world.
Dataset Collection. We collected commercial Android apps
from Google Play based on the number of installations. For
each installation range, we crawled the latest versions of apps
from Aug. 2019 to Feb. 2020 for this large-scale experiment.
We only consider popular apps whose installation ranges from
10,000 to 5 billion, because the vulnerabilities in apps with

large installations can affect more devices and users. Note that
the number of apps in each installation range is unequal; in
general, the number of apps with higher installations usually is
relatively smaller. We finally collected 104,446 apps across 33
different categories as the study subjects. From our preliminary
study on these apps, we found 72% of them (73,110/104,446)
use TPLs to facilitate their development. We thus focus on the
73,110 apps to conduct the following analysis.

A. Vulnerable TPL Landscape
Before conducting the impact analysis of vulnerable TPLs,

we first present some essential information about these vulner-
able TPL-Vs to let readers have a clear understanding about
the threats in TPLs. We use CVSS v3.0 security metrics [53]
to indicate the severity (i.e., low, medium, high, and criti-
cal) of vulnerabilities. The score greater than 7.0 means the
vulnerability with high and critical severity, which accounts
for 21.35% of all the vulnerabilities in our dataset. These
severe vulnerabilities usually involve remote code execution,
sensitive data leakage, Server-side request forgery (SSRF)
attack, etc. Even worse, we find 74.95% of these vulnerable
TPLs are widely-used by other TPLs. For example, the li-
brary “org.scala-lang:scala-library” with a severe security risk
(CV SS = 9.8) that allows local users to write arbitrary class
files, has been used 24,112 times by other TPLs, and most
of vulnerable versions of this TPL have been used more
than 2,000 times. Without a doubt, such cases expand the
spread of vulnerabilities and add more security risks to app
users. These severe vulnerabilities usually involve remote code
execution, sensitive data leakage [67, 68], malicious code or
SQL injection, bypass certificates/authentication, etc. These
behaviors definitely bring unpredictable risks to users’ privacy
and property security. We found that most of these vulnerable
TPLs belong to utility, accounting for 98.7%.

B. Impact Analysis of Vulnerable TPLs
In our dataset, we find that about 12.37% (9,050/73,110)

of apps include TPL-Vs, involving 53,337 known vulnera-
bilities and 7,480 security bugs from open-source TPLs. The
known vulnerabilities are from 166 different vulnerable TPLs
with corresponding 10,362 versions and the security bugs
are from 27 vulnerable TPLs with 284 different versions.
These vulnerable apps use a total of 58,330 TPLs and ap-
proximately 18.2% of them are vulnerable ones. Among the
9,050 vulnerable apps, 329 apps (37.5%) with TPLs contain
both vulnerabilities and security bugs. There are 778 apps
containing the TPLs with security bugs and each app contains
about 2.45 security bugs in their TPLs. Furthermore, we
also find many education and financial apps use the popular
UI library “PrimeFaces” [69] that include sever vulnerability
(CVE-2017-1000486). Primefaces 5.x is vulnerable to a weak
encryption flaw resulting in remote code execution. For more
analysis result, you can refer to our website [26].

C. Lessons Learned
Based on our analysis, we found many apps include vul-

nerable TPLs leading to privacy leakage and financial loss.

However, developers seem unaware of the security risks of
TPLs. We explore the reasons from the following points:
For TPL developers, according to our result in § V-A, the
reuse rate of vulnerable TPLs is pretty high (> 75%). Many
TPL developers also develop their own TPLs based on existing
ones, especially popular ones, but seem seldom to check the
used components for any known vulnerabilities. Even worse,
we find 210,727 TPLs use vulnerable TPL versions, indicating
many TPL developers may be unaware of tracking these
vulnerability fix solutions in these open-source products. Al-
though some TPL developers have patched the vulnerabilities
in later versions, many affected apps still use the old versions
with vulnerabilities, which indirectly expands the threats of
the vulnerabilities in TPLs. The lack of centralized control of
these open-source TPLs also poses attack surfaces for hackers.
For app developers, we reported some TPL versions with
severe vulnerabilities to the corresponding app developers
via emails. We wrote 50 emails to these app developers or
companies and received 5 replies in 2 months. Based on their
feedback, we find 1) most of the developers only care about
the functionalities provided by the TPLs and are unaware of
the security problems in these TPLs. In fact, it is reasonable
since one is unlikely to analyze all the used libraries before
using them, which eliminates the convenience of using these
components or libraries. However, based on our analysis,
some commonly-used TPLs contain severe vulnerabilities, we
suggest that app developers should be aware of vulnerabilities
in TPLs and ATVHUNTER could be helpful for them to
detect vulnerable TPL versions. 2) Some app developers or
companies do not know how to conduct security detection
of these imported TPLs. They also hope “our team can help
them conduct the security assessment of the used TPLs or tell
them the specific analysis processes.” 3) Some app developers
did not know that some vulnerable TPLs have been updated
or patched and they still used these old TPL versions. Even if
they noticed the upgraded versions, some of them are reluctant
to change the old ones due to the extra cost. They said that
“If a TPL adds many new functions, they have to spend much
time understanding these new features and change too much
of their own code. Thus, they prefer to keep old TPL-Vs.”
For app markets, we found that many app markets do not
have such a security assessment mechanism to warn developers
about the potential security risks in their apps. As far as we
know, only Google provides a service named App Security
Improvement (ASI) program that provides tips to help app
developers of Google Play to improve the security of their
apps. Previous research [6] reported that vulnerabilities listed
on ASI program could draw more attention from developers.
However, the vulnerabilities reported by ASI program are lim-
ited due to the lack of a comprehensive vulnerability database
and such a vulnerable TPL detection tool, like ATVHUNTER.

VI. DISCUSSION

Limitations. (1) If the Java code of several versions is
the same, ATVHUNTER would provide several candidates
instead of a specific one, leading to some false positives. (2)

ATVHUNTER may eliminate some TPLs due to mistakenly
regarding them as part of the primary module if such TPLs
are imported into the package structure of the host app,
thus causing some false negatives. (3) We only focus on
the Java libraries and do not consider the native libraries. In
fact, the native library is also an essential part in Android
apps and the vulnerabilities inside would cause more severe
consequences. Detecting vulnerable native libraries is left for
our future work. (4)ATVHUNTER adopts static analysis to
find the TPLs, therefore, we may miss some libraries are
loaded in dynamic methods. Besides, some TPLs have some
dynamic behaviors, such as refection, dynamic class loading.
Our approach may miss some dynamic features and affect
our detection performance. (5) We crawled about 3 million
TPLs from maven to build our feature database. Although this
database is large and comprehensive and it can guarantee the
detection rate of ATVHUNTER, our method still have some
limitations. The third-party libraries are constantly updating,
which means ATVHUNTER cannot find these newly emerging
TPLs. Thus, how to find these newly emerging TPLs and
dynamically maintain our database will be our future work.
Threats to Validity. (1) The first threat comes from the
similarity threshold, it is inevitable to induce some false
negatives and false positives for some apps due to the minor
difference between TPLs. To minimize the threat, we selected
the similarity threshold through a reasonable experimental
design. (2) Another threat comes from the analysis on only free
apps. We believe that it is meaningful to study the vulnerable
TPLs used by both free and paid apps, which is left for future
work.

VII. CONCLUSION

In this paper, we proposed ATVHUNTER, a TPL detection
system which can precisely pinpoint the TPL version and
find the vulnerable TPLs used by the apps. Evaluation results
show that ATVHUNTER can effectively and efficiently find
in-app TPLs and is resilient to the state-of-the-art obfuscation
techniques. Meanwhile, we construct a comprehensive and
large vulnerable TPL version database containing 224 security
bugs and 1,180 CVEs. ATVHUNTER can find the vulnerable
TPLs in apps and reveals the threat of vulnerable TPLs in apps,
which can help improve the quality of apps and has profound
impact on the Android ecosystem.

VIII. ACKNOWLEDGMENT

We thank the anonymous reviewers for their helpful com-
ments. This work is partly supported by the National Re-
search Foundation, Prime Ministers Office, Singapore un-
der its National Cybersecurity R&D Program (Award No.
NRF2018NCR-NCR005-0001), the Singapore National Re-
search Foundation under NCR Award Number NRF2018NCR-
NSOE003-0001, NRF Investigatorship NRFI06-2020-0022,
the Singapore National Research Foundation under NCR
Award Number NRF2018NCR-NSOE004-0001, the Hong
Kong PhD Fellowship Scheme and Hong Kong RGC Projects
(No. 152223/17E,152239/18E, CityU C1008-16G).

REFERENCES

[1] “Statista,” https://www.statista.com/statistics/266210/number-
of-available-applications-in-the-google-play-store/, 2019.

[2] C. Tang, S. Chen, L. Fan, L. Xu, Y. Liu, Z. Tang, and L. Dou,
“A large-scale empirical study on industrial fake apps,” in
Proceedings of the 41st International Conference on Software
Engineering: Software Engineering in Practice. IEEE Press,
2019, pp. 183–192.

[3] S. Chen, M. Xue, L. Fan, S. Hao, L. Xu, H. Zhu, and
B. Li, “Automated poisoning attacks and defenses in malware
detection systems: An adversarial machine learning approach,”
computers & security, vol. 73, pp. 326–344, 2018.

[4] S. Chen, L. Fan, C. Chen, M. Xue, Y. Liu, and L. Xu, “Gui-
squatting attack: Automated generation of android phishing
apps,” IEEE Transactions on Dependable and Secure Comput-
ing, 2019.

[5] M. Backes, S. Bugiel, and E. Derr, “Reliable third-party library
detection in Android and its security applications,” in CCS,
2016.

[6] T. Yasumatsu, T. Watanabe, F. Kanei, E. Shioji, M. Akiyama,
and T. Mori, “Understanding the responsiveness of mobile app
developers to software library updates,” in Proc. CODASPY,
2019.

[7] Y. Zhang, J. Dai, X. Zhang, S. Huang, Z. Yang, M. Yang, and
H. Chen, “Detecting third-party libraries in Android applications
with high precision and recall,” in SANER, 2018.

[8] L. Li, D. Li, T. F. Bissyandé, J. Klein, H. Cai, D. Lo, and
Y. Le Traon, “Automatically locating malicious packages in
piggybacked Android apps,” in The 4th IEEE/ACM Interna-
tional Conference on Mobile Software Engineering and Systems
(MobileSoft 2017), 2017.

[9] “Airpush,” https://support.google.com/faqs/answer/6376737.
[10] “Mopub,” https://support.google.com/faqs/answer/6345928.
[11] (2016) App security improvement program. [Online]. Available:

https://developer.android.com/google/play/asi.html
[12] “Software composition analysis (SCA): what is it and does

your company need it?” https://snyk.io/blog/what-is-software-
composition-analysis-sca-and-does-my-company-need-it/, 2020.

[13] (2020) Software Composition Analysis Explained. [On-
line]. Available: https://resources.whitesourcesoftware.com/
blog-whitesource/sca-software-composition-analysis

[14] Z. Ma, H. Wang, Y. Guo, and X. Chen, “Libradar: Fast and
accurate detection of third-party libraries in Android apps,” in
Proc. ICSE-C, 2016.

[15] M. Li, W. Wang, P. Wang, S. Wang, D. Wu, J. Liu, R. Xue,
and W. Huo, “Libd: Scalable and precise third-party library
detection in Android markets,” in Proc. ICSE, 2017.

[16] M. Li, P. Wang, W. Wang, S. Wang, D. Wu, J. Liu, R. Xue,
W. Huo, and W. Zou, “Large-scale third-party library detection
in Android markets,” IEEE Transactions on Software Engineer-
ing, pp. 1–1, 2018.

[17] J. Zhang, A. R. Beresford, and S. A. Kollmann, “Libid: Reliable
identification of obfuscated third-party Android libraries,” in
Proc. ISSTA, 2019.

[18] X. Zhan, L. Fan, T. Liu, S. Chen, L. Li, H. Wang, Y. Xu, X. Luo,
and Y. Liu, “Automated third-party library detection for android
applications: Are we there yet?” in ASE, 2020.

[19] A. Narayanan, L. Chen, and C. K. Chan, “Addetect: Automated
detection of Android ad libraries using semantic analysis,” in
Proc. ISSNIP, 2014.

[20] Y. Wang, H. Wu, H. Zhang, and A. Rountev, “Orlis:
Obfuscation-resilient library detection for Android,” in Proc.
MOBILESoft, 2018.

[21] R. Duan, A. Bijlani, M. Xu, T. Kim, and W. Lee, “Identifying
open-source license violation and 1-day security risk at large
scale,” in Proc. CCS, 2017.

[22] “DashO,” https://www.preemptive.com/products/dasho/overview.

[23] Proguard. [Online]. Available: https://www.guardsquare.com/
en/products/proguard

[24] “Allatori,” http://www.allatori.com/.
[25] “Maven Repository,” https://mvnrepository.com/.
[26] (2020) Atvhunter. [Online]. Available: https://sites.google.com/

view/atvhunter/
[27] B. Liu, B. Liu, H. Jin, and R. Govindan, “Efficient privilege

de-escalation for ad libraries in mobile apps,” in Proceedings
of the 13th annual international conference on mobile systems,
applications, and services. ACM, 2015, pp. 89–103.

[28] Z. Zhang, W. Diao, C. Hu, S. Guo, C. Zuo, and L. Li, “An
empirical study of potentially malicious third-party libraries in
Android apps,” in Proc. WiSec, 2020.

[29] C. Soh, H. B. K. Tan, Y. L. Arnatovich, A. Narayanan, and
L. Wang, “Libsift: Automated detection of third-party libraries
in Android applications,” in APSEC, 2016.

[30] H. Han, R. Li, and J. Tang, “Identify and inspect libraries in
Android applications,” Wireless Personal Communications vol
103, pp491-503, 2018.

[31] Merkle Tree. [Online]. Available: https://en.wikipedia.org/wiki/
Merkle_tree

[32] “dex2jar,” https://github.com/pxb1988/dex2jar.
[33] C. Kai, W. Peng, L. Yeonjoon, W. XiaoFeng, Z. Nan, H. Heqing,

Z. Wei, and L. Peng, “Finding unknown malice in 10 seconds:
Mass vetting for new threats at the google-play scale,” in Proc.
USENIX Security, 2015.

[34] “National vulnerability database,” https://nvd.nist.gov/.
[35] “Github,” https://github.com/.
[36] Package Flattening. [Online]. Available:

https://www.preemptive.com/dasho/pro/userguide/en/
understanding_obfuscation_renaming.html

[37] appcompat-V7. [Online]. Available: https://mvnrepository.com/
artifact/com.android.support/appcompat-v7

[38] support design. [Online]. Available: https://mvnrepository.com/
artifact/com.android.support/design

[39] (2014) Netty4 Sever. [Online]. Available: https://mvnrepository.
com/artifact/com.orange.redis-protocol/netty4-server

[40] (2017) Java Packagaing techniques. [Online]. Available: https:
//dzone.com/articles/the-skinny-on-fat-thin-hollow-and-uber

[41] “Control flow obfuscation for Android applications,” Comput.
Secur., vol. 61, pp. 72–93, Aug. 2016.

[42] K. Chen, P. Liu, and Y. Zhang, “Achieving accuracy and
scalability simultaneously in detecting application clones on
Android markets,” in Proc. ICSE, 2014.

[43] W. Zhou, Y. Zhou, X. Jiang, and P. Ning, “Detecting repackaged
smartphone applications in third-party Android marketplaces,”
in Proc. CODASPY, 2012.

[44] D. Hurlbut., “Fuzzy hashing for digital forensic investigators.
technical report„” Access Data Inc., Tech. Rep., 2011.

[45] “Code Obfuscation,” 2020. [Online]. Available: https://www.
preemptive.com/dasho/pro/userguide/en/index.html

[46] “Mongodb,” https://docs.mongodb.com/, 2018.
[47] (2017-2020) Android support group library. [Online]. Available:

https://mvnrepository.com/artifact/com.android.support
[48] F. Zhang, H. Huang, S. Zhu, D. Wu, and P. Liu, “Viewdroid:

Towards obfuscation-resilient mobile application repackaging
detection,” in Proc. ACM WiSec, 2014.

[49] X. Sun, Y. Zhongyang, Z. Xin, B. Mao, and L. Xie, “Detecting
code reuse in Android applications using component-based
control flow graph,” in IFIP, 2014.

[50] “Edit Distance.” [Online]. Available: https://en.wikipedia.org/
wiki/Edit_distance

[51] “CPE,” https://nvd.nist.gov/Products/CPE.
[52] “cve-search,” https://github.com/cve-search/cve-search.
[53] “Common Vulnerability Scoring System (CVSS).” [Online].

Available: https://nvd.nist.gov/vuln-metrics/cvss
[54] “BitBucket,” https://bitbucket.org/.

https://developer.android.com/google/play/asi.html
https://resources.whitesourcesoftware.com/blog-whitesource/sca-software-composition-analysis
https://resources.whitesourcesoftware.com/blog-whitesource/sca-software-composition-analysis
https://www.guardsquare.com/en/products/proguard
https://www.guardsquare.com/en/products/proguard
https://sites.google.com/view/atvhunter/
https://sites.google.com/view/atvhunter/
https://en.wikipedia.org/wiki/Merkle_tree
https://en.wikipedia.org/wiki/Merkle_tree
https://www.preemptive.com/dasho/pro/userguide/en/understanding_obfuscation_renaming.html
https://www.preemptive.com/dasho/pro/userguide/en/understanding_obfuscation_renaming.html
https://mvnrepository.com/artifact/com.android.support/appcompat-v7
https://mvnrepository.com/artifact/com.android.support/appcompat-v7
https://mvnrepository.com/artifact/com.android.support/design
https://mvnrepository.com/artifact/com.android.support/design
https://mvnrepository.com/artifact/com.orange.redis-protocol/netty4-server
https://mvnrepository.com/artifact/com.orange.redis-protocol/netty4-server
https://dzone.com/articles/the-skinny-on-fat-thin-hollow-and-uber
https://dzone.com/articles/the-skinny-on-fat-thin-hollow-and-uber
https://www.preemptive.com/dasho/pro/userguide/en/index.html
https://www.preemptive.com/dasho/pro/userguide/en/index.html
https://mvnrepository.com/artifact/com.android.support
https://en.wikipedia.org/wiki/Edit_distance
https://en.wikipedia.org/wiki/Edit_distance
https://nvd.nist.gov/vuln-metrics/cvss

[55] (2019) Apktool. [Online]. Available: https://ibotpeaches.github.
io/Apktool/

[56] L. Fan, T. Su, S. Chen, G. Meng, Y. Liu, L. Xu, G. Pu, and
Z. Su, “Large-scale analysis of framework-specific exceptions
in android apps,” in 2018 IEEE/ACM 40th International Con-
ference on Software Engineering (ICSE). IEEE, 2018, pp.
408–419.

[57] T. Su, L. Fan, S. Chen, Y. Liu, L. Xu, G. Pu, and Z. Su, “Why
my app crashes? understanding and benchmarking framework-
specific exceptions of android apps,” 2020.

[58] S. Chen, L. Fan, C. Chen, T. Su, W. Li, Y. Liu, and L. Xu,
“Storydroid: Automated generation of storyboard for Android
apps,” in Proceedings of the 41st International Conference on
Software Engineering. IEEE Press, 2019, pp. 596–607.

[59] L. Fan, T. Su, S. Chen, G. Meng, Y. Liu, L. Xu, and G. Pu,
“Efficiently manifesting asynchronous programming errors in
android apps,” in Proceedings of the 33rd ACM/IEEE Interna-
tional Conference on Automated Software Engineering. ACM,
2018, pp. 486–497.

[60] “Androguard,” https://github.com/androguard/androguard.

[61] “Soot,” https://github.com/Sable/soot, 2019.
[62] “ssdeep,” https://ssdeep-project.github.io/ssdeep/index.html.
[63] “F-Droid,” https://f-droid.org/en/packages/.
[64] (2015) org.greenrobor.eventbus. [Online]. Available: https:

//mvnrepository.com/artifact/org.greenrobot/eventbus
[65] (2020) de.greenrobor.eventbus. [Online]. Available: https:

//mvnrepository.com/artifact/de.greenrobot/eventbus
[66] “Benchmark data,” https://github.com/presto-osu/orlis-

orcis/tree/master/orlis/open_source_benchmarks.
[67] S. Chen, L. Fan, G. Meng, T. Su, M. Xue, Y. Xue, Y. Liu,

and L. Xu, “An empirical assessment of security risks of global
android banking apps,” in Proceedings of the 42nd International
Conference on Software Engineering. IEEE Press, 2020, pp.
596–607.

[68] S. Chen, T. Su, L. Fan, G. Meng, M. Xue, Y. Liu, and L. Xu,
“Are mobile banking apps secure? what can be improved?” in
Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foun-
dations of Software Engineering. ACM, 2018, pp. 797–802.

[69] “Primefaces,” https://www.primefaces.org/.

https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/
https://mvnrepository.com/artifact/org.greenrobot/eventbus
https://mvnrepository.com/artifact/org.greenrobot/eventbus
https://mvnrepository.com/artifact/de.greenrobot/eventbus
https://mvnrepository.com/artifact/de.greenrobot/eventbus

	I Introduction
	II Related Work
	III Architecture
	III-A TPL Detection
	III-A1 Preprocessing
	III-A2 Module Decoupling
	III-A3 Feature Generation
	III-A4 Library Identification

	III-B Vulnerable TPL-V Identification
	III-B1 Database Construction
	III-B2 Vulnerable TPL-V Identification

	III-C Implementation

	IV Evaluation
	IV-A Preparation
	IV-B RQ1: Effectiveness Evaluation
	IV-C RQ2: Efficiency Evaluation
	IV-D RQ3: Obfuscation-resilient Capability

	V Large-Scale Analysis
	V-A Vulnerable TPL Landscape
	V-B Impact Analysis of Vulnerable TPLs
	V-C Lessons Learned

	VI Discussion
	VII Conclusion
	VIII Acknowledgment

