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Abstract

In this paper, we consider the optimal node assignment problem in wavelength division multiplexing lightwave
networks, which is to optimally assign network nodes to the locations in a regular virtual topology through wavelength
assignments. Unlike previous work, which concentrated on a single virtual topology, we consider this problem as a class
of problems by formulating it as a quadratic assignment problem. As a result, our objective is of a wider scope: identify
the factors responsible for effective (or ineffective) node assignments. Optimal node assignments are considered effective
if they could significantly improve the performance given by a random node assignment. The performance metric
considered here is the average weighted hop distance. Based on a set of carefully designed experiments and analyses, we
have concluded that variability in virtual topologies’ hop-distance distributions, variability in network traffic distri-
butions, and pattern matching between distance and traffic matrices are major factors in determining the effectiveness of
optimal node assignments. In particular, optimal node assignments are most effective for linear virtual topologies and
clustered traffic patterns. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Optical networks; Wavelength division multiplexing; Optimal node assignment; Quadratic assignment problem; Combi-
natorial optimization; Simulated annealing

1. Introduction

In this paper, we consider wavelength division
multiplexing (WDM) lightwave networks in which
network nodes are equipped with tunable trans-
mitters and receivers (transceivers). An attractive
usage of the wavelength tuning capability is to
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overlay virtual topologies on multihop WDM
networks [1]. The physical network at the optical
layer for realizing multihop networks can be a
WDM ring (or other physical topologies) based on
all-optical add/drop multiplexers, or a broadcast-
and-select WDM network based on a passive star
coupler. In the case of WDM rings, an add/drop
multiplexer S can establish a lightpath (or a logical
link) to another add/drop multiplexer D by per-
forming the following steps. First, S sets its
transmitter to a certain wavelength 4. All the in-
termediate add/drop multiplexers between S and D
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on the physical network, if any, are set to let the A
signal pass through them. Finally, the receiver at D
drops the A signal to the attached network node
(see Ref. [2] for more details). In the case of
broadcast-and-select WDM networks, two nodes
form a lightpath between them simply by tuning
their transceivers to the same wavelength.

For both cases, virtual topologies can therefore
be embedded on the physical WDM networks by
properly assigning wavelengths to the network
nodes’ transceivers. Virtual topologies are also
referred to as logical topologies in previous work.
Each link (or hop) on the virtual topology repre-
sents a lightpath between a pair of nodes, and it is
uni-directional. Virtual topologies could be irreg-
ular or regular. A virtual topology is regular if all
the nodes in the topology have the same nodal
degree. Notable examples of regular virtual to-
pologies are linear bus [3], ring [4], Shufflenet [5,6],
deBruijn [7], Manhattan street network (MSN) [8],
and GEMNET [9]. In Fig. 1, we show (a) a
wavelength assignment in a broadcast-and-select
WDM network, and (b) the corresponding virtual
topology.

Moreover, a virtual topology may be re-
configured to adapt to changes in the network
environment, such as traffic distribution. The

reconfiguration can be accomplished by retuning
the transceivers at the network nodes. One class of
problems concerned is to find an optimal virtual
topology based on performance metrics, such as
maximizing link flow and minimizing packet delay
[1]. These problems do not require the post-
reconfiguration virtual topology to be the same as
the pre-configuration virtual topology. Therefore,
these problems are referred to as arbitrary regular
topology optimization problems [10]. Furthermore,
the reconfigurations may be performed at regular
intervals [11] or on demand basis [12]. The former
usually makes small changes to the virtual topol-
ogy at each step, whereas the latter usually makes
significant changes to the virtual topology. These
problems cannot be solved in polynomial time and
heuristic algorithms were proposed.

In this paper, we consider another class of re-
configuration problems—optimal node assignment
problem (ONAP), or fixed regular topology opti-
mization problem. Unlike the other reconfigura-
tion problem, ONAP requires a fixed virtual
regular topology to be maintained after reconfig-
urations. In other words, the post-reconfiguration
virtual topology must be the same as the pre-
configuration virtual topology. Thus, for a given
fixed virtual regular topology, ONAP is to seek the
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Fig. 1. Physical and virtual topologies of a broadcast-and-select WDM lightwave network.
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best node assignment for the given topology based
on performance metrics, such as maximum
throughput or minimum delay.

Although the arbitrary regular topology opti-
mization usually results in a higher performance
improvement than that given by the optimal node
assignment, an important advantage of the latter is
the simplicity in packet routing. There are several
packet routing problems associated with the arbi-
trary regular topologies. First, the routing algo-
rithms are usually not scalable in terms of the
number of messages required and the amount of
routing information stored at the nodes. Second,
the routing algorithms usually take certain time to
converge, and this convergence time is incurred
after every reconfiguration. Third, each node
usually needs to perform table lookups to forward
packets, thus incurring additional nodal process-
ing time. The fixed regular topologies, on the other
hand, is free of the aforementioned problems. In
the LAN/MAN environment, the fixed regular
topology is usually a well-understood structure,
such as ring and torus. These topologies possess
very simple routing algorithms. No routing infor-
mation is stored at the nodes, and no message
exchanges are necessary (except for periodic
keepalive tests). Moreover, because the routing
algorithm is associated with the topology itself,
reassigning the nodes to other locations will not
affect the routing algorithm in use (of course, the
nodes’ newly assigned locations need to be up-
dated and made known to all other nodes).

2. Related work

The ONAP has been studied separately for a
linear bus topology [3], a ring topology [4,11], and
Shufflenet [5,6]. By reducing the problem to a
minimum cut linear arrangement problem, it has
been shown that the ONAP for the linear bus is an
NP-complete problem [3]. As for the other two
topologies, the authors only conjectured that these
problems are also NP-complete but no formal
proof was given [4-6]. Besides, it has been reported
that the performance improvement obtained from
reconfigurations decreases with the network size,
but no explanations were given [3,6].

Unlike the previous studies of the ONAP for a
particular virtual topology, we consider ONAP for
any fixed regular virtual topologies as a class of
problems. This is possible because we formulate
the ONAP as a quadratic assignment problem
(QAP) [13]. This formulation immediately shows
that the ONAP is generally an NP-complete
problem, because the QAP is known to be such,
except for several special cases. As a result, our
study is of a wider scope than the previous studies:
Identify the factors responsible for the effectiveness
(or ineffectiveness) of optimal node assignments
for fixed regular virtual topologies. An optimal
node assignment is considered effective if it can
significantly improve the network performance
when compared with a random node assignment,
which is to assign nodes in a random fashion. This
will help determine whether it is worthwhile to
perform node reassignments at all. The results
presented here are also expected to provide addi-
tional insights into previous results and for other
fixed regular topologies that have not been studied
before.

In particular, we will investigate the impacts
of traffic patterns, virtual topologies, number of
transceivers, and network sizes on the effectiveness
of optimal node assignments. The performance
metric selected here is the average of hop distance
weighted by the proportion of traffic intensity.
When the queuing delay is not significant, this
metric also minimizes the packet delay, because
propagation delay and node processing time are
the dominating delay components [14]. Other
possible objectives are to include the queuing delay
component and maximizing the offered load, but
we do not consider them in this paper [15,16].
We have chosen simulated annealing, which is
known to produce better solutions than many
other heuristics, to obtain suboptimal node as-
signments.

The rest of this paper is organized as follows: In
Section 3, we first introduce the QAP formulation
for the ONAP. In Section 4, we introduce a sim-
ulated annealing algorithm to solve the ONAP. In
Section 5, we present numerical results and ana-
lyses from which we unearth the factors responsi-
ble for effective node assignments. Finally we
conclude this paper in Section 6.
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3. A quadratic assignment problem formulation

We consider a network of N nodes, each of
which is equipped with P transceivers (P trans-
mitters and P receivers). We configure these nodes
into a fixed regular virtual topology by assigning
proper wavelengths at the optical layer. The
number of wavelengths required to configure a
certain virtual topology depends on the virtual
topology itself and the physical topology at the
optical layer. For example, N x P wavelengths are
needed for configuring any virtual topologies in a
broadcast-and-select WDM network. However,
this number could be much reduced in other
physical topologies, because some wavelengths
may be reused on different physical links. Impacts
of wavelength restrictions on optimal virtual to-
pology reconfigurations were discussed in Ref.
[11]. In this paper, however, we assume that the
number of wavelengths is plentiful (N x P is a
sufficient number), so that we can configure any
fixed virtual topology for the NV nodes.

The objective of our ONAP is to configure the
nodes into a fixed regular virtual topology, such
that the average of hop distance weighted by the
proportion of traffic intensity, or simply average
weighted hop distance, is minimized. The hop
distance refers to the number of links (wave-
lengths) required for a node to reach another node
in the virtual topology. Clearly, the number of
possible node assignments for a given virtual to-
pology increases exponentially with N. In the fol-
lowing we present a mathematical formulation for
the ONAP.

We first start with a traffic matrix to describe
the traffic demands generated by the N network
nodes. The traffic matrix is assumed to be known
beforehand. We denote the traffic matrix by I' =
(7], & j=1,...,N, where y,; is the rate of traffic
generated from node i and destined for node j,
possibly measured in terms of bits/s. We further
assume that 7, = 0, and y is the sum of all ;. In
Section 5, we will use four different traffic patterns
to study the effectiveness of optimal node assign-
ments.

Since the objective function involves hop dis-
tance, we need to make assumptions about the
routing algorithm employed by a virtual topology.

The only assumption made for the routing algo-
rithm is that it always gives the same hop distance
from locations k to / in a virtual topology of N
locations. The hop distance between the two nodes
is denoted by Iy, k, h = 1,...,N. 4 distance matrix
consists of the hop distances for all possible pairs
of source and destination. We call this property
hop-distance invariant. For example, we show in
Fig. 2 an 2 x 4 MSN virtual topology, an (2,2)
Shufflenet virtual topology, and their distance
matrices. It is important to note that this as-
sumption on the routing algorithm is realistic.
Routing algorithms used for many regular topo-
logies, including those considered in this paper,
satisfy the hop-distance invariant property. More-
over, this assumption does not limit the routing
algorithm to shortest-path ones. It also does not
require the routing paths to be identical; that is,
multiple equal-cost paths are allowed.

We also define binary-valued decision variables,
X, I, k=1,...,N. x3 = 1 if node i is assigned to
location k in the resulting virtual topology; other-
wise, x; = 0. The final node assignment is there-
fore given by an assignment matrix X = [x;]. As a
result, there is a lightpath between nodes i and j if
xi =1, x; =1, and [, = 1. Otherwise, there will
be multiple lightpaths between the two nodes. Fi-
nally, two constraints are clearly needed to ensure
that each network node is assigned to only one
location in the virtual topology, and each location
in the virtual topology can be assigned with only
one network node.

As a result, we present the mathematical for-
mulation for the ONAP in Egs. (1)-(4).

1 N N N N

min — Z Z Z Zv,«jlkhxikxjh, (1)
V= =1 h=1 k=1
N

sty xp=1 fork=1,2,...,N, (2)
i=1
N
d xu=1 fori=12,...,N, (3)
k=1
xx €{0,1} forik=1,2,...,N, (4)

where £l = (1/7) 3200, 200 300y o0y viluxin
is the average weighted hop distance.
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(a) An2x4 MSN
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(d) Distance Matrix of the (2,2) Shufflenet

Fig. 2. An 2 x 4 MSN virtual topology, an (2,2) Shufflenet virtual topology, and their distance matrices.

The ONAP formulation is incidentally a QAP
that seeks an assignment of N entities to N mu-
tually exclusive locations in order to minimize a
total quadratic interaction cost [13]. The QAP has
found applications in varieties of problems, such
as facility location problem, machine scheduling
problem, keyboard design, and VLSI design
problems [17]. As a result, many results and heu-
ristic algorithms previously obtained for the QAP
apply also to the ONAP, as we will see next.

4. A simulated annealing algorithm

The QAP is a combinatorial optimization
problem, and the number of possible combinations
grows exponentially with the problem size. It has
been formally proved that the QAP is generally
a strongly NP-hard problem [18]. However, poly-
nomial solutions exist when the matrices have
specific combinatorial properties, e.g., they belong
to the Monge and anti-Monge matrices, Toeplitz
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and circulant matrices, sum and product matrices,
and graded matrices [19]. Since the traffic matrix
can take on any values, the ONAP is generally an
NP-hard problem, regardless of the topologies.
Thus the QAP formulation supports the conjec-
tures for the ring and Shufflenet topologies given
in Refs. [4,5].

Many heuristic algorithms have been proposed
to solve QAP, and a comprehensive discussion of
these methods is given in Ref. [19]. In particular,
limited enumeration method, simulation method,
and genetic algorithm may give better solutions,
but their computational complexities are also
much higher. Since our primary concern is to find
a best node assignment, in this paper we employ a
simulated annealing algorithm to generate
(sub)optimal node assignments for fixed regular
topologies. The algorithm is outlined in Fig. 3. We
let n(i) be node i’s location in the virtual topology
fori=1,2,...,N, and 4,; be the reduction in El if
the locations of two network nodes i and j are
swapped (n(i) and n(j) are swapped). Therefore,
4;; > 0 if there is a cost improvement after a node
swapping, and 4,; <0, otherwise.

The simulated annealing algorithm overcomes
the local optimality problem occurred in many
heuristic algorithms. The main idea is to allow
node swappings even when the cost of swapping is
not improved. The probability of allowing node
swappings under this situation is governed by a
“temperature.” Various simulated annecaling al-

gorithms reported in the literature differ in their
choices of the initial temperatures, cooling rates,
and stopping conditions. Here we adopt several
guidelines established in the earlier studies to de-
termine them. We set MaxAttempt to 10 X N,
MaxMove to N [20], and the cooling rate « to 0.95
[21]. Our initial temperature T is computed based
on the following formula suggested in Ref. [21]:
T =—A,/In y, where y is the desired probability
that a node swapping will be accepted for an initial
solution, and 4, is the average change of 4;; for
those node swappings with 4;; > 0 for the initial
solution. We compute A, by randomly picking a
number of neighbors of the initial solution, and
computing the average cost change. Moreover, we
set the value of y to 0.6.

Complexity analysis of simulated annealing al-
gorithms remains an open problem, and we are not
aware of such studies, except for one that solved a
maximum matching problem [22]. Moreover, pre-
vious studies showed that the simulated annealing
procedure is sensitive to the annealing schedule
and other control parameters [23].

5. Effectiveness of optimal node assignments

5.1. Numerical experiments

In this section we analyze how virtual topolo-
gies, traffic patterns, number of transceivers, and

1. Generate a random node assignment.
2. Initialize the temperature T'.

with probability e
T=Txa

3. While (no-of .attempts < MazAttempt) do
While (no-of._-moves < MazxMove) do
Randomly select two neighboring nodes ¢ and j
Compute A;; if n(i) and n(j) were swapped.
If A;; > 0, swap their locations; no_of _attempts = 0;
increment no_of _moves
If A;; <0, swap their locations and increment no.of moves

=4:;/T, increment no_of .attempts

Fig. 3. A simulated annealing algorithm for the ONAP.
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network size affect the performance gain obtained
through assigning the nodes optimally. For the
virtual topologies, we have selected MSN, Shuf-
flenet, bi-directional ring, and bi-directional MSN
(Torus) for the following reasons. First, all of them
possess constant nodal degrees (constant number
of transceivers), regardless of the network size, and
the nodal degrees are either two (ring, MSN, and
Shufflenet) or four (Torus). Second, all of them are
basic topological structures upon which more
complicated structures can be built. Third, they
represent three common classes of topologies:
linear (ring), mesh (MSN and Torus), and per-
mutation (Shufflenet). Therefore, we believe that
the conclusions derived from these four topologies
will be useful for studying other topologies that are
not considered in this paper.

We employ random, ring, clustered, and cen-
tralized traffic patterns for the investigation (see
Fig. 4 for examples). Each y,;, i # j, for the ran-
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dom traffic pattern is independently generated
according to a uniform distribution between 1 and
20. Each entry for the other three traffic patterns,
on the other hand, takes on either a high or low
traffic intensity. A high-intensity (low-intensity)
entry is independently generated from a uniform
distribution between 12 (1 for low-intensity) and
20 (7 for low-intensity). For the ring traffic pat-
terns, Yy imoans ¢ = l,..., N, is a high-intensity
entry, and others, low-intensity entries. For the
clustered traffic patterns, we generate two clusters
of traffic: the intra-cluster and inter-cluster, and the
former assumes a high intensity and the latter, a
low intensity. For the centralized traffic patterns,
the traffic to and from a server node is of high in-
tensity, and the rest, low intensity. We choose
node 5 to be the server node in Fig. 4.

We use Elps and Elza to denote the Els for
node assignments obtained from the simulated
annealing algorithm and for random node

To node
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
From 1|0 |13{17|12{13|4 |14/19] 1|0 |14/7 |1 |3 |1 |3 |3
n0dez130 20(7 |16{12|1 |14 2|6 |0 [14/2 |2 |2 |1 |3
3/11]15/0 |3 |15/ 10{1 |3 3/1 16 |0 |14/4 |4 |4 |5
4116/ 3 |14/0 |6 |6 |4 |4 412 12 |4 |0 [12|8 |4 |7
5/2 |14(11|2 |0 | 18] 11|10 5|1 |5 |2 |1 |0 |16]|2 |4
6/2 12 |(1|8|3|0(16/10] 6|1 |5 |4 |7 |1 |0 [12|7
7/1115/6 |9 |4 |14/0 |18 7|4 |2 |5 |3 |3 |6 |0 |14
8|13/16/10{4 |9 |15/ 19| 0 8/15/4 |5 |7 |5 |5 |1 |0
(a) Random Traffic Pattern (b) Ring Traffic Pattern
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
110 |13[17|12{4 |7 |1 |3 110 |7 |1 |3 |15/1 |3 |3
2|/15/0 (14| 15/6 |6 |4 |4 2/6 |0 |6 |1 |14/2 |2 |2
3/14{15/0 |15/1 |6 |4 |4 3/1 /5|0 |1|15/4 | 5|4
4115/ 19/18/0 |2 |4 |5 |5 4/3 (2|7 |0|13|/2 |8 |3
5/5 14 (7|1 |0 |12{20/13] 5|12{15/15/15/0 | 15| 12|20
6/2 |1 (6|2 |14/0 [20/16] 6|4 |1 |6 |6 [14|0 7
7/5 14 (4|1 12]/12{0 |13] 7|2 |7 |1 |1 |12]|7
8|5 |7 |7 |6 |14/15 15/0 8|5 |7 |3 |3 |14]|5

(c) Clustered Traffic Pattern

(d) Centralized Traffic Pattern

Fig. 4. Four types of traffic patterns (entries with values above 11 are highlighted).



68 F. Siu, R K.C. Chang | Computer Networks 38 (2002) 61-74

10.0 _ ]
Z—=a Ring
. 6—=o0 Torus
& o—o MSN
€ +—+ ShuffleNet
o 8.0 4
€
[
>
<4
(=%
E
o 6.0F i
o
c
I
£
5
o 40 E

1624 36 48 64 80 100 120 160
Network Size(Number of Nodes)

Fig. 5. PI for random traffic patterns.

assignments, respectively. The performance im-
provement (PI) obtained from the simulated an-
nealing algorithm is computed according to

Elga — Eloa
pl — —RA T Floa
Elga

Figs. 5-8 show the numerical results for the
four traffic patterns, and Figs. 9-12 for the four
topologies. We have generated 50 samples for each
type of traffic matrix, and used the same seed to
generate the same set of random node assignments
for each topology. The network size ranges from
16 to 160 nodes. The amount of data collected for

x 100%. (5)
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Fig. 6. PI for ring traffic patterns.
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Fig. 8. PI for centralized traffic patterns.

an (p, k) Shufflenet is fewer than others due to the
restriction on the number of nodes. In our simu-
lation experiments we fix p to 2 and the network
size grows rapidly from 24 (k = 2) to 160 (k = 5).

When comparing the Pls, it is important to
point out that a higher PI does not imply that the
corresponding case outperforms others in terms of
the average weighted hop distance. It only says
that optimal node assignments may significantly
improve the performance of the case concerned. In
other words, it is not worthwhile to perform op-
timal node assignments for the cases with low PIs.
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Fig. 10. PI for Torus topology.

In the following we first list out several points
observed from the numerical results, and then we
interpret them in the next section. Points 1-3 can
be observed from Figs. 5-8, and the rest from Figs.
9-12.

1. (Topology) Ring topology consistently gives
the highest PI among the four topologies for
each traffic pattern. In particular, Fig. 7 shows
that as much as 20% PI can be obtained.

2. (Topology) When the network size is small
(<64 nodes), Shufflenet and MSN yield similar

Performance Improvement (%)

Performance Improvement (%)

14.0

12.0 4

10.0 [ B
53— Clustered
6—o Ring

8.0 - o—= Random 1
+—+ Centralized

6.0 ]

40 - B

20 L L L L L L L L L

1624 36 48 64 80 100 120 160
Network Size(Number of Nodes)
Fig. 11. PI for MSN topology.
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20 L \ \ \ \ \
1624 36 48 64 80 100 120 160
Network Size(Number of Nodes)

Fig. 12. PI for Shufflenet topology.

PIs. But when the network size increases, MSN
consistently gives a higher PI than Shufflenet.

. (Number of transceivers) Torus generally per-

forms better than MSN (except for N = 16),
but the difference is only within a few percents.
(Traffic pattern) The PI attained for the clus-
tered traffic pattern is generally higher than that
for other three traffic patterns for all four topol-
ogies (except for N = 16 for MSN and Shuffle-
net topologies), and it is followed by ring,
random, and centralized traffic patterns.
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5. (Network size) The PIs for all traffic patterns,
except for clustered traffic patterns, decrease
with network size. They even converge to the
same value of PI when N is sufficiently large.
On the other hand, the PIs for the clustered
traffic do not decline when the network grows
in size, except when used with Shufflenet.

In relating to the previous studies on ONAP,
the study on Shufflenet in Ref. [5] is closest to ours
in terms of using the same objective function and
similar traffic patterns. In particular, their traffic
model was also based on a server node: The traffic
from a nonserver node to any other node is a
random number uniformly distributed between 0
and 1, but the traffic from a server node to other
node is a random number uniformly distributed
between 1 and a skew factor 8. f was set to 10, 50,
and 100 in their experiments. Their results for
p =10 and N > 16, which is closest to our exper-
imental settings for the centralized traffic patterns,
are comparable to ours: the PI is within 12% and it
decreases with the network size. Furthermore, they
showed that the PI increased with /5, and the PI
could reach 35% when f = 100.

In Ref. [4], the ONAP was studied for both uni-
directional and bi-directional rings. The objective
function considered there was throughput maxi-
mization. However, it is interesting to note that
their findings agree with ours in that optimal node
assignments were found to be most effective for
clustered traffic patterns.

5.2. Discussion

In the following discussion, we are going to
explain the aforementioned observations and give

insight into the effectiveness of optimal node as-
signments under different scenarios. It is helpful to
first understand how network performance can be
improved through node reassignments. The gen-
eral idea is to exploit the variance in the traffic
intensity distribution and the variance in the hop-
distance distribution. In general, El can be further
reduced by assigning a relatively small hop dis-
tance (in the distance matrix) to a relatively high
traffic intensity entry (in the traffic matrix). Since
each location must be assigned to a node, the
opposite is also true: Assigning a relatively large
hop distance to a relatively low traffic intensity
entry. This idea has been embedded into many
heuristic algorithms, but the exact approach of
implementing this idea varies. As a result, we ex-
pect that the explanation for the numerical results
given in the following is independent of the choice
of heuristic algorithm, provided that the algorithm
gives a reasonably good solution to the ONAP.

5.2.1. Hop-distance distributions

For topologies with the same nodal degree, ring
gives the best PI, then followed by MSN and
Shufflenet. Given the same traffic matrix, one
major factor in determining the PI is the variance
of the topologies’ hop-distance distributions—a
high variance generally gives a high PI. In Table 1,
we show Els for 24-node, 64-node, and 160-node
topologies, assuming that y;; is the same Vi, j and
i # j. We also compute the standard deviation and
a normalized (by the average hop distance) stan-
dard deviation (NSD) of the hop-distance distri-
bution. For all cases, ring again gives the largest
NSD and then followed by MSN and Shufflenet.
This ordering is identical to the decreasing order-
ing for the PIs obtained in Figs. 5-8.

Table 1

Normalized standard deviations of hop-distance distributions
Topology 24 nodes 64 nodes 160 nodes

El SD NSD El SD NSD El SD NSD

Ring 6.00 3.49 0.58 16.00 9.25 0.58 40.00 23.10 0.58
Torus 2.50 1.19 0.48 4.00 1.73 0.43 6.50 2.78 0.43
MSN 3.17 1.34 0.42 4.94 1.97 0.40 7.38 2.83 0.38
Shufflenet 3.13 1.33 0.42 4.56 1.64 0.36 6.03 1.91 0.32

SD: standard deviation, NSD = SD/EIL.
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As mentioned earlier, the general strategy is to
exploit the variance in the hop-distance distribu-
tion. This exploitation becomes more effective
when there is a high variance in the hop-distance
distribution, because it is more likely to allocate
smaller hop distances to the high-intensity entries
by assigning the corresponding nodes closer to
each other in terms of the hop distance. This ex-
plains the highest PI enjoyed by ring (observation
1). The observation 2 can be explained similarly
based on the variance of hop-distance distribution.
For 64 and 160 nodes, MSN gives a higher PI than
Shufflenet because of a higher NSD for MSN. But
for a smaller network size, e.g., 24 nodes, their
NSDs are identical, therefore giving similar Pls.

5.2.2. Number of transceivers

From observation 3, Torus gives a better PI
than MSN; however, the difference is not signifi-
cant. The two share the same topological structure
but with different nodal degrees. It turns out that
the number of transceivers also affects the vari-
ances of hop-distance distributions of MSN and
Torus. As shown in Table 1, Torus has a higher
NSD than MSN although Torus has a lower av-
erage hop distance. But the difference is not as
significant as that between Torus and ring. As a
result, the impact of the number of transceivers on
the effectiveness of optimal node assignment is not
significant in this case.

5.2.3. Traffic intensity distributions

We have observed that the PI for the clustered
traffic pattern is the highest when compared with
the other three. For a given fixed regular topology,
the PIs due to the traffic patterns are partially
determined by the variance of the traffic intensity
distribution—a high variance generally gives a
high PI. In Tables 2 and 3, we compute the stan-
dard deviations for the four traffic patterns for a
80-node MSN and a 160-node MSN, respectively.
We also tabulate the Els for a random node as-
signment and a (sub)optimal node assignment
obtained from the simulated annealing algorithm,
and the resulted PIs. Both tables show that the
clustered traffic gives the highest variance and also
the highest PI (observation 4).

Table 2

Performance improvement for a 80-node MSN
Traffic pattern SD Elga Eloa PI (%)
Clustered 6.21 5.41 5.01 7.43
Ring 2.39 5.41 5.17 4.39
Random 5.77 5.43 5.20 4.38
Centralized 2.92 5.41 5.22 3.57

SD: standard deviation of a traffic distribution.

Table 3

Performance improvement for a 160-node MSN
Traffic pattern SD Elga Eloa PI (%)
Clustered 23.33 5.41 4.89 9.53
Ring 8.57 5.43 5.14 5.43
Random 20.23 5.44 5.19 4.55
Centralized 10.15 5.41 5.21 3.87

SD: standard deviation of a traffic distribution.

The explanation for observation 4 is similar to
that for the hop-distance distributions. As an ex-
treme case, any node reassignment will not reduce
the average weighted hop distance for uniform
traffic distributions, where all the traffic matrix
entries are identical. Having said that, we do not
observe high PIs for the random traffic pattern in
Tables 2 and 3 even though its standard deviation is
comparable to that of clustered traffic. As we shall
see in the next item, in addition to factors (A) and
(C), we need to consider the combined effect of to-
pologies and traffic patterns, to be explained next.

5.2.4. Pattern matching between traffic and distance
matrices

Pattern matching between the distance and
traffic matrices is another important factor in de-
termining the effectiveness of optimal node as-
signments. In particular, we can base on this factor
to further explain the ordering of the PIs for the
four traffic patterns stated in observation 4.

We first consider the clustered traffic pattern.
The PI for the clustered traffic pattern depends on
how effective the topologies can be partitioned into
two clusters, such that it only takes the nodes
within a cluster a relatively short distance to reach
each other. To quantify this factor for a fixed
regular topology partitioned into two clusters, we
have derived the intra-cluster average hop distance
and inter-cluster average hop distance, labeled as
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Eljpra and Elyy;, respectively. Both the source and
destination nodes are assumed to be in the same
cluster when computing El;,,, and any node (ex-
cept the source) in the cluster is equally likely to be
the destination for the source. We also make the
similar assumptions for computing Eli,... We use
Elinter/Elingra to measure how effective a topology is
able to discriminate inter- and intra-cluster traffic.
A high value would indicate that the topology is
matched very well with a clustered traffic, and an
optimal node assignment is expected to signifi-
cantly improve the average weighted hop distance.
We present the results for ring, Torus, and Shuf-
flenet as follows:

e For a bi-directional ring of N nodes partitioned
into two clusters of connected nodes, and the
numbers of nodes in the clusters differ by at
most one, El,, and Ely,,, are given by

3/+1 [31+1

Elintra = 3 or T ) (6)

1|N
Elier = = |
mter 2\‘2J

3]+ DRE + (5] = 215D 5] + 2)]

N

23]
for N > 3, (7)

when N is a multiple of 4, limy_ ., Eljpe/
Elinira = 9/4

e For a torus with N, nodes on the horizontal di-
mension and N, nodes on the vertical dimension
partitioned into two clusters, the partition is
performed vertically so that each cluster has
N, x N¢ number of nodes, where N¢=N,/2
when N is even, and N = |N,/2] or [N,/2]
when N is odd. Ely,,, and El,, are given by

Ny NE | NN - T
Elintra—W{ TJ +f )

(8)
1N | LN,
Elimer :]7‘/ \‘4J +§ _TJ
N (L% ]+ DRE + 3 203D % +2)]
2]
for N, > 3, (9>

when N, =N, and N, is a multiple of 4,
limy_ Elinter/E]imra = 5/4

e For an (p, k) Shufflenet and p is even, the topol-
ogy is partitioned into two equal halves horizon-
tally. Eliy and El;y., are given by

Elintra =

ko (p— )3k — 1) = 2k(p — 1) = 2k(p — 1)
2(p - D(kp* = 2) ’

(10)
k(. 1y K
ElL... :kp (p—1DBk—1)—2k(p 1). (11)
2(p — Dkpt
Moreover,
llm Elinter — 1

N—oo Elimra

The results above are very revealing and they
explain the ordering of PIs in Fig. 7. The ring to-
pology is outstanding in terms of discriminating
the intra- and inter-cluster traffic and it is followed
by Torus. Although we have not performed the
analysis for MSN, which is much more compli-
cated, it is expected to have a similar value as
Torus. Shufflenet, on the other hand, does not
discriminate the traffic at all in the way we parti-
tion the topology. There could be other less obvi-
ous ways of partitioning the topology in order to
increase the value of Eljye/Elinya, but we do not
expect that the value will be comparable to Torus.

On the other hand, topology partitioning does
not seem to help for the other three traffic patterns.
Nevertheless, the ring traffic pattern matches very
well with all the four topologies in terms of their
ability of embedding a uni-directional ring. The
embeddings in the ring, MSN, and Torus are
straightforward. Embedding of a uni-directional
ring in Shufflenet is also possible. Thus, the inter-
nodal distance for each high-intensity entry is only
one hop. However, these cases comprise only 1/N
of all the traffic entries. As a result, this factor will
benefit the ring traffic pattern, but the degree is
expected to be lower than the case of the clustered
traffic pattern.

The centralized traffic represents a greedy sce-
nario in which every node attempts to make a
shortest trip to a server node. Clearly, none of the
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fixed regular topologies can match well with this
traffic pattern.

The fixed regular topologies are also unable to
match with a random traffic pattern. This is re-
flected in the low PIs as shown in Tables 2 and 3
even though it exhibits the second highest standard
deviation of the traffic intensity distribution.

5.2.5. Network size

It is well known that the difference between a
worst QAP solution and an optimal QAP solution
tends to zero as the problem size tends to infinity
[24]. This asymptotic property was proved under
the following conditions: (1) the entries in the
distance matrix are mutually independent, (2) the
entries in the traffic matrix are mutually indepen-
dent, and (3) the entries in the distance matrix and
that in the traffic matrix are mutually independent.
It has been shown that for problem size of 50
nodes or more, the difference between an optimal
solution and a worst solution is already very small
[25].

However, the entries in the distance matrix for
the ONAP are clearly not independent. Moreover,
the entries in clustered, ring and centralized traffic
matrices are also not independent. Nonetheless, we
still observe a decline in PI as the network size
increases (observation 5). We conjecture that this
is also due to variances in the hop-distance and
traffic distributions. We have observed from Table
1 that the NSDs of the hop-distance distributions
for ring and Torus remain high as the network size
increases, whereas Shufflenet and MSN give the
largest decline in the NSD. Thus, it is expected
that the PIs for Shufflenet and MSN decrease with
the network size. On the other hand, the standard
deviations for the ring and centralized traffic pat-
terns decrease with the network size, thus causing
a decline of PI when the network size grows. These
two factors combined partially explain why the PIs
for the clustered traffic pattern do not decline with
the network size except when used with Shufflenet.

6. Conclusions

Formulating the ONAP as a QAP enables us to
investigate the effectiveness of optimal node as-

signments for any fixed regular virtual topologies.
We have identified three factors that have signifi-
cant impacts on the effectiveness of optimal node
assignments. They are the variances of virtual
topologies’ hop-distance distributions, the vari-
ances of traffic intensity distributions, and pattern
matching between distance and traffic matrices. On
the other hand, the impact from the number of
transceivers is minimal for MSN and Torus.

Although we have not considered topologies
and traffic patterns other than those considered in
this paper, we believe that the findings obtained
from this work have formed an adequate basis to
predict results for other fixed regular topologies
and traffic patterns. For example, we expect that
optimal node assignments will not be effective for
GEMNET, because this topology is essentially
based on Shufflenet. On the other hand, it is im-
portant to perform optimal node assignments for
linear bus topologies.
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