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ABSTRACT
In this paper we consider a general class of single-server mul-
tiqueue systems in which the stability of any single queue
can be essentially determined by the queue’s arrival rate and
service rate. We refer such class of systems to as Rate Sta-
bility (RS) multiqueue systems. The RS-multiqueue system
is general enough to admit different stability definitions and
different models. We will present two sets of new results
for the RS-multiqueue systems. These results extend many
previous results on the stability analysis of multiqueue sys-
tems.

In the first part, we report that the RS-multiqueue sys-
tems can be classified into three classes. In each class, any
pair of queues exhibits different interaction properties in
three aspects: the number of intersection points of their
stability boundaries, their possible relative stability relation,
and whether a queue can have guaranteed service once be-
coming unstable.

In the second part, we present a relative stability anal-
ysis of two RS-multiqueue models: a polling model and a
random access model. Moreover, the analysis facilities the
absolute stability analysis of the models.

Keywords
rate-stability multiqueue systems, degree of stability, rel-
ative stability, absolute stability, polling models, ALOHA
system

1. INTRODUCTION
Contention for a single resource occurs in many computer

and communication systems. It is common to use a single-
server, multiqueue system to model these systems. The
main focus of this paper is the stability of a multiqueue
system. There are two main stability issues to consider in a
multiqueue system: queue stability and system stability. The
former concerns stability of individual queues and the lat-
ter the stability of all queues. We refer these two problems
collectively to as absolute stability problems, because their
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goals is to find the ultimate stability conditions. In this pa-
per, we take a different approach to the stability problems.
Instead of obtaining the stability conditions directly, we first
of all consider the relative stability properties which address
the interaction among the queues based on their levels of
stability. Unlike the complex analysis involved in a typical
absolute stability analysis, a relative stability analysis pro-
vides us with a simple characterization for one queue to be
more stable than the other or for two queues to be as stable
as each other. Such characterization, to our surprise, applies
to a large number of systems and even for different stability
definitions. The relative stability results will also help yield
the queue stability conditions without requiring dominant
systems and monotonicity properties. The system stability
conditions can also be immediately derived from the queue
stability conditions.

The concept of relative stability is more common in con-
trol theory [1, 2, 3]. Associated with the concept of relative
stability, the degree of stability of a control system can de-
termine how large a perturbation is required to produce an
unstable system. In the area of stability analysis of multi-
queue systems, most of the attention has mainly been given
to the absolute stability analysis [4, 5, 6, 7, 8, 9, 10, 11, 12].
Moreover, recently a few results of stability rank [13] or sta-
bility ordering [14, 15] have been reported. However, to the
best of our knowledge, no general analysis on the relative
stability issues has been reported. It is therefore our inten-
tion to provide a general framework to analyze the relative
stability issues in this paper, and we use polling systems and
buffered ALOHA systems to illustrate our approach.

This paper is organized as follows. In section 2 we de-
scribe the RS-multiqueue systems. Then we introduce the
concepts of degree of stability and relative stability in section
3. By considering how many ways any two queues can be as
stable as each other, in section 4 we introduce three classes
of RS-multiqueue systems. We then provide the relative
stability conditions of the queues for one class in section 5.
Specifically, we derive conditions under which a queue is less
stable than, or as stable as another queue. In section 6, we
study the relative stability of two common computer com-
munication network models, namely, a polling system with
a limited service policy and the slotted buffered ALOHA
system. The results are applied to obtain absolute stability
conditions for the polling system in section 7. We finally
conclude the paper in section 8.

2. RATE-STABILITY MULTIQUEUE SYS-
TEMS



We consider in this paper a general class of multiqueue
systems. Consider a multiqueue system consisting of a single
server with a constant service rate and a set of queues. Gen-
erally, each queue has unlimited buffers. The arrival and ser-
vice processes at the queues are assumed stationary and er-
godic and are mutually independent. Moreover, the service
policy at each queue is work-conserving and it does not need
to be the same for all queues, e.g. a mixture of service poli-
cies. However, a nonzero overhead may be incurred when
the server switches from one queue to another, thus making
the multiqueue system generally nonwork-conserving.

Generally speaking, a queue is stable if the queue length
is finite in some probabilistic sense, e.g., the queue length is
bounded with probability one, the first moment exists and is
finite, the distribution of the queue length process converge
to a limiting distribution function, etc. In particular, we find
that in the following two stability definitions, the stability
conditions of a queue have something in common. In the first
definition [16], a queue is said stable if the queue length pro-
cess (equivalently, the waiting time process) tends to some
honest distribution at all its points of continuity. The sta-
bility condition of a queue under such a definition is that if
the average arrival rate is less than the average service rate,
given that the system satisfies some stationary and ergodic
assumptions. The second definition is for a queueing system
with deterministic traffic model [17]. It says that a queue
is stable if the queue length (or the delay of any packet) is
always bounded. The stability condition of a queue under
such a definition is again that if the average arrival rate is
less than the service rate, given that the arrival process is an
envelope process with an average rate and the service rate
of the server is constant [18].

The common aspect of the above two stability conditions
is that they are solely determined by the average arrival rate
and average service rate of the queue, given that the arrival
and the service processes satisfy some “stationary” (time
invariant) and “ergodic” (average rate exists and is finite)
requirements. One further observation is that in a single
server queue with constant capacity, the average service rate
is the service rate achieved by the server for a given arrival
rate. It is not necessarily always equals to the capacity of
the server. Intuitively, how fast the server can serve depends
on how fast the customers arrive, and the server does not
always serve at full speed. We term the service rate that
can be achieved when the server works at its full capacity
the maximum achievable service rate (MASR). In general,
the average service rate is not larger than the MASR. The
above discussion motivates us to define stability of a queue
as the following.

Definition 1. (Rate Stability) Consider a single server
queue for which the arrival process and the service process
are stationary and ergodic. The queue is said to be stable if
its average arrival rate is less than its maximum achievable
service rate. The queue itself is called an RS-queue.

If all the queues in a multiqueue system are RS-queues,
then the system is called a RS-multiqueue system. If all
the queues in the system are stable, then the system is said
stable. From the above, we can see that the RS-multiqueue
system can implicitly cover different systems and different
kinds of stability definition. Noteworthy to mention that in
a sample path approach toward stability analysis [19], the
stability definition of a queue adopts a similar form, i.e., a

queue is called rate stable if the average arrival rate and
departure rate of the queue exist and are finite and equal.

We consider that the equilibrium state of a single queue is
reflected by its service rate. The state of an RS-multiqueue
system is then reflected by the service rate at each queue,
i.e., the service rate vector. The service rate of the system is
the sum of all the individual queues’ service rates. When all
the queues reach their MASRs, in general, the sum equals to
the capacity of the server. For an always work-conserving
server, this happens when the system traffic is on or be-
yond the system stability boundary. On the other hand, if
a server is in general nonwork-conserving, the sum may be
smaller than the server’s capacity. Furthermore, the sum
remains unchanged only when all queues are in their insta-
bility region. Once the system enters and remains in the
instability region of all queues, it is easy to observe that the
state of the system will not change. This implies that the
states of the system in the instability region of all queues is
determined by the entry point of that region. Another obser-
vation is that when there is only one queue in the system,
then the queue has only one instability state. In general,
when there are more than two queues in an RS-multiqueue
system, it is possible for a queue to have different instability
states. However, once a queue becomes unstable, it remains
in a unstable state if other queue’s arrival rate varies non-
decreasingly.

3. DEGREE OF STABILITY
In an RS-multiqueue system, one general question to ask

is how stable a queue is. In the following, we use a measure
based on the arrival rate of an RS-queue to define the degree
of stability for the queue that gives a normalized distance
from the arrival rate to its stability boundary or a normal-
ized distance between the service rate and the MASR. Thus,
the smaller the normalized distance is, the less stable a queue
is.

Definition 2. (Degree of stability) In an RS-queue q,
the degree of stability of the queue is defined as

D(q) ≡ 1− λ

C
= 1− ρ̂, (1)

where λ
C

= ρ̂ and C is the queue’s MASR.

Note that −∞ < D(q) ≤ 1. Since C is the MASR, D(q) >
0 implies that the queue is stable and D(q) < 0 implies
that the queue is unstable. Moreover, we do not further
differentiate the cases of D(q) < 0 and D(q) = −∞, which
correspond to the cases of C <λ and C =0, respectively.

Once the degree of stability of a queue is defined, it is
straightforward to use it as a measure for comparing the
stability of any two queues. To do so, we define the rela-
tive stability for any two queues based on D(q) in an RS-
multiqueue system as follows.

Definition 3. (Relative stability of two queues) Con-
sider qi and qj in an RS-multiqueue system at some equilib-
rium state.

1. qi is said less stable than qj, denoted by qi ≺ qj, iff
D(qi)<D(qj), or equivalently qi≺qj ⇔ ρ̂i >ρ̂j.

2. qj is said more stable than qi, denoted by qj � qj, iff
D(qi)>D(qj), or equivalently qi�qj ⇔ ρ̂i <ρ̂j.



3. qi is said as stable as qj, denoted by qi�qj, iff D(qi)=
D(qj), or equivalently qi�qj ⇔ ρ̂i = ρ̂j.

For convenience, we also say that qj is at least as stable
as qi if either qi� qj or qi≺ qj , and we denote this relation
by qi�qj .

In the following, we study the preliminary condition under
which the “as stable as” relation given in Definition 3 holds.
To this end, let Λ=(λ1, λ2, ..., λn) be a traffic point, where
λi is qi’s arrival rate. The set of all traffic points forms an
Euclidean space, referred to as the traffic space and denoted
by Rn. Let O = (0, 0, ..., 0) be the origin of Rn. For any
given traffic point Λ∈Rn, consider a linear increasing path
which starts from O and passes through Λ. We represent the
increasing path in its parameterized form, i.e., each point on
the path can be represented by Λ = a ·K, where K is the
direction vector of the line, i.e., K = (k1, k2, ..., kn). And
ki∈R+ is the direction component of qi, and a is a nonneg-
ative real number such that λi =a · ki,∀i (when some of the
ki are 0, the corresponding queues can be excluded from the
model). Hereafter, for a given K, we denote the correspond-
ing increasing path as LK and a traffic point on the path as
ΛK . Note that each queue should have a unique boundary
point on any increasing path, accordingly, the service rate
of the queue at that point should be its MASR. We denote
qi’s MASR on LK by CK

i .
Next we can determine the properties of LK for which the

three relations of relative stability will hold. First, Defini-
tion 3 states that if qi� qj on LK , then we have ρ̂i≥ ρ̂j on
the path. That is, the following holds at every traffic point
on LK .

λi

CK
i

≥ λj

CK
j

⇒ a · ki

CK
i

≥ a · kj

CK
j

⇒ ki

CK
i

≥ kj

CK
j

.

As a result, we have the following lemma.

Lemma 1. In an RS-multiqueue system, if the traffic in-
creases according to some direction vector K, qj is at least
as stable as qi on the path LK if and only if the direction

components of the two queues satisfy ki

CK
i
≥ kj

CK
j

on LK . That

is, qi�qj ⇔ ki

CK
i
≥ kj

CK
j

.

4. THREE CLASSES OF RS-MULTIQUEUE
SYSTEMS

Geometrically, the existence of an increasing path LK on
which qi� qj implies that a traffic point on LK will be the
stability boundaries for both queues. That is, the queue sta-
bility boundaries of qi and qj intersect each other on that
particular traffic point. Two logical questions therefore fol-
low: (1) does this LK exist? (2) if it exists, is it unique in
some sense? The answers to the two questions in fact en-
able us to categorize the RS-multiqueue systems into three
different classes.

In the first class, the path for which qi� qj does not ex-
ist, i.e., qi � qj always hold for any λi > 0 and λj > 0.
Consider a 2-queue system in which a server serves at most
M requests from qi and qj in each cycle. Furthermore, qi

has a higher priority than qj , and the server can serve all
the M requests from qi alone if it has generated enough re-
quests. Thus, under this service policy, qj can be starved by
qi on any linear increasing path LK . In other words, qj ’s
stability region is a proper subset of qi’s and there are no

intersection points for any two queues’ stability boundaries.
Consequently, once become unstable, qj will receive no ser-
vice from the server and the two-queue system is degener-
ated into a single-queue system. It also implies that both qi

and qj will have unique instability states. Another interest-
ing point is that the above arguments are true regardless of
which increasing path is. Specifically, consider an instabil-
ity traffic point of both queues. Start from the origin and
consider any increasing path (not necessarily to be linear)
that reaches the instability traffic point, we can observe that
(1) qj will always be less stable than qi or, equivalently, no
intersection point of two queues’ stability boundaries, (2) qj

will receive no service from the server once it becomes un-
stable, and (3) both queues have unique instability state at
that particular point. We term the property that the insta-
bility state of the system at a particular instability traffic
point of all queues remains the same regardless of which
path is adopted to reach the traffic point from the origin
as Path Independence of Instability Point, or simply path
independence. This relationship can obviously be extended
to more than 2 queues. We therefore refer this class to as
RS0-multiqueue systems (the “0” refers to the nonexistence
of as-stable-as paths) and summarize its properties in the
following theorem.

Theorem 1. An RS0-multiqueue system exhibits the fol-
lowing properties,

1. one queue is always less stable than another;

2. a less stable queue receives no service from the server
once it becomes unstable;

3. the system has an unique instability state of all queues;

4. an instability traffic point of the system is path inde-
pendent.

Proof. Consider any two queues in the system. Then
the definition of RS0 class is the geometrical meaning of (1),
i.e., no intersection point of the two queues’ stability bound-
aries, and therefore the only conclusion can be drawn is that
one queue is always less stable than the other. Otherwise, it
implies that there is at least one linear increasing path can
cause the two queues to be as stable as each other. If (2) is
false, it implies there is a “hole” at the less stable queue’s
stability boundary. More precisely, assume that the less sta-
ble queue receives a guaranteed nonzero service rate γ > 0
when it becomes unstable. Based on the RS-multiqueue
system assumptions, as long as the arrival rate of the queue
is less than γ, the queue should be stable. Then it is easy
to find an increasing path from the origin such that the less
stable queue’s traffic component is always less than γ but
the more stable queue’s traffic component grows indefinitely.
Such an increasing path will cause the more stable queue to
become unstable first, thus contradicting the assumption.
Therefore, (2) is also true. Item (3) is also true because once
entering into the instability region of all queues, all the less
stable queues become unstable already and the system sim-
ply degenerates to a single-queue system. The most stable
queue receives all the service. For that queue, it obviously
has only one single instability state. Item (4) is a direct
result from (3) simply by noting that the unique instability
state of all queues applies to the whole instability region of
all queues. Any path from the origin to the instability re-
gion of all queues will result the unique instability state of



the system and therefore any instability traffic point of the
system is path independent. 2

In describing the second class, suppose that there are n
queues in the system. In this case, the as-stable-as paths
exist, and they are unique in the sense that all such paths
form a (n−1)-dimensional hyperplane. Equivalently, the in-
tersections of the two queues’ stability boundaries will be
a (n−1)-dimensional hyperplane. All three systems to be
considered in section VI are examples of this class. In Fig-
ures 1(a)-(b), we show the stability regions of the individual
queues (the shaded regions) in a 2-queue system. Note that
the whole traffic space is partitioned into two regions by
a single as-stable-as path (1-dimensional hyperplane). The
partitions correspond to qi � qj and qi ≺ qj . Moreover, each
queue is guaranteed with a minimum service rate, denoted by
λg,i and λg,j . We refer this class to as RS1-multiqueue sys-
tem (the “1” refers to the uniqueness in the sense described
above). The following theorem summarizes the properties
of an RS1-multiqueue system.

Figure 1: Queue stability regions for an RS1-
multiqueue system of 2 queues.

Theorem 2. An RS1-multiqueue system of n queues ex-
hibits the following properties,

1. for any two queues, there exists linear increasing paths
such that the two queues exhibit all three relative sta-
bility relations, i.e., “less stable than”, “as stable as”,
and “more stable than”;

2. any single queue receives nonzero guaranteed service
from the server even when it becomes unstable;

3. the system has an unique instability state of all queues;

4. an instability traffic point of the system is path inde-
pendent.

Proof. Note that the definition of the RS1-multiqueue
system already guarantees that there exists increasing paths
that can cause two queues as stable as each other. To prove
the first item is then equivalent to prove that besides the
“as stable as” case, it is impossible to have only “less stable
than” (or “more stable than”) between the two queues.

Without loss of generality, consider two queues qi and
qj in the RS1 system with qi � qj and qi ≺ qj only. For
the purpose of illustration, we project the queue stability
boundaries of the two queues into a two-dimensional space,
as shown in Figures 2. With the definition of RS1 system
and the assumption that qi � qj and qi ≺ qj only, the two
queues’ stability boundaries can only intersect in a way as
shown is Figure 2(a). However, it turns out that the situ-
ation illustrated in Figure 2(a) is impossible. Consider any
two linear increasing paths on which qi become unstable
first, e.g., L1 and L2 in Figure 2(a). After L1 and L2 go be-
yond qi’s stability boundary and intersect with qj ’s stability
boundary at p1 and p2, qj ’s stability should not be affected
by qi. In other words, once beyond qi’s stability boundary,
qj ’s stability is independent of qi on L1 and L2. Therefore,
the instability of qj on both L1 and L2 should be caused by
the same value of λ2, i.e., the λ2 components of p1 and p2

are the same. It implies that the stability boundary of qj

should be a horizontal line parallel to the λi axis, as shown
in 2(b). Now consider any traffic point pa in the area A
shown in Figure 2(b), which corresponds to the instability
area of qi and stability area of qj . Now increase the traffic
point and by increasing λi only and keeping λj unchanged
till reaching pb, we can enter the stability region of qi B
again, and this is obviously not true. Therefore, in an RS1

system, the first item is true.

Figure 2: Proof of RS1 (1).

The falseness of (2) implies that there exists at least one
linear increasing path L1 on which a queue, say qi, receives
no service from the server when it is unstable. The conse-
quence is that on this path, all other queues, stable or not,
receive the entire server’s capacity, i.e., all other queues have
higher priority than qi. However, based on (1) we know that
any two queues relate to each other according to one of the
three relative stability relations on some increasing path.
Then it is possible to find at least one linear increasing path
L2 on which qi is the most stable queue. When qi become
unstable on L2, it still receives some service. The existence
of both L1 and L2 implies that the server’s service policy for
qi is path dependent, which is generally not true. Therefore,
item (2) is true.

To prove (3), we first show that the instability region of
all queues of an RS1 system is an open n-dimensional rect-
angle in the traffic space. Based on the definition of RS1,



there exists one and only one linear increasing path La on
which all queues are as stable as one another. In other
words, on La, there exists a traffic point which is the stabil-
ity boundary of all queues. Assume that traffic point p1 has
the coordinate (α, β, ..., γ). Now consider all linear increas-
ing paths on which q1 is the most stable queue. Based on
the arguments in the proof of item (1), on all these paths
the stability boundaries of q1 should be independent of all
other queues, and therefore these stability boundaries form
a n-dimensional hyperplane ∆ with λ1 = x, where x is a
constant. By noting that point p1 is also on the hyperplane,
we have the ∆ : λ1 = α. The same argument is true for
all other queues. Therefore, for each qi, its queue stability
boundary in the region, where the queue itself is the most
stable queue, is a n-dimensional hyperplane with λi = y,
where y is a constant, and the value of y can be deter-
mined by the point p1. Consequently, the instability region
of all queues U is an open n-dimensional rectangle such that
U = {(λ1, λ2, ..., λn) ∈ Zn : α < λ1, β < λ2, ..., γ < λn}. In
Figure 3(a) we show the instability region U for a three-
queue RS1 system. The increasing path La is the one on
which qi, qj , and qk are as stable as one another, and on
La, the stability boundary of all queues is the traffic point
(α, β, γ).

Now consider that the system has entered the region U
through two different entry points, e.g., p1 : (α, β, ..., γ), and
p2 : (λ1, β, ..., γ), where α ≤ λ1. Based on the argument
that a queue’s service rate equals to its arrival rate at its
queue stability boundary, and the server’s capacity is fixed
and should be equal to the sum of the service rates of all
queues when all queues become unstable, we can conclude
that the service rate of q1 is the same at both p1 and p2.
Therefore, the system has the same states at p1 and p2, and
has the same states when it enters the instability region of all
queues through p1 and p2. P2 is a line, i.e., the intersection
points of hyperplanes λ2 = β, ..., λn = γ in region U . The
same argument applies to all the entry points of the form
(α, λ2, ..., γ), ..., and (α, β, ..., λn). Now consider an entry
point with the form of p3 : (λ1, λ2, δ, ..., γ), where α ≤ λ1

and β ≤ λ2. We can repeat the arguments recursively to
show that any entry points with the form p3 : (λ1, λ2, δ, ..., γ)
has the same states as entry points p2 : (λ1, β, δ, ..., γ) (or
(α, λ2, δ, ..., γ)), and therefore has the same states as p1 :
(α, β, ..., γ). Repeat the arguments again and at last, we
can show that any entry point to the region U with the form
(λ1, λ2, ..., λn) ∈ Zn : α ≤ λ1, β ≤ λ2, ..., γ ≤ λn will have
the same states as P1 : (α, β, ..., γ). Therefore, the system in
the region U has unique state. In Figure 3(b) we show the
three kinds of entry points for a three-queue RS1 system.
The system states are the same at p1 and p2s, as well as at
p2s and p3s. It implies that the system has unique state at
all entry points to the region U . Therefore, in region U , the
system has unique state.

Item (4) is a direct result of item (3). In fact, any traffic
point in the instability region causes the system at the same
unique state. Then obviously any traffic point in the insta-
bility region is path independent. 2

The third class turns out to be the most complex. Same as
the RS1-multiqueue systems, as-stable-as paths exist for this
class. However, this class loses the uniqueness. More pre-
cisely, the as-stable-as paths are everywhere in the sense that
they are on an infinite number of hyperplanes. In the fol-
lowing theorem, we prove that for any two queues, if the in-

Figure 3: Proof of RS1 (3).

tersection points of their stability boundaries are more than
one, then the total number of the intersection points must
be uncountably infinite. We therefore refer this class to as
RS∞-multiqueue systems.

Theorem 3. In an RS∞-multiqueue system the intersec-
tion points of any two queues’ stability boundaries are un-
countably infinite.

Proof. If the number of intersection points of any two
queues’ stability boundaries is more than one, we just need
to prove the number cannot be countable. To do so, we
consider a counterexample of an RS system with only two
queues qi and qj . If the number of the intersection points
of the two queues is more than one and are countable, then
in general we have two cases of their stability boundaries as
shown in Figure 4(a) and (b). In Figure 4(a), qi’s stability
boundary is always within qj ’s stability in a certain region,
while in Figure 4(b) the queues’ stability boundaries cross
over each other in a certain region. Now consider in Case
1, two increasing paths La and Lb go beyond qi’s stabil-
ity boundary and intersect with qj ’s stability boundary at
points pa and pb. Using the argument that after qi become
unstable, qj ’s stability should be independent of qi; there-
fore, the λj components at pa and pb should be the same,
which implies that qj ’s stability boundary should be paral-
lel to λi’s axis, as shown in Figure 4(c). However, it is easy
to find that Figure 4(c) is impossible because an increas-
ing path from p1 to p2 in Figure 4(c) will cause qi’s state
changed from an unstable state to a stable state. Similarly,
if the two queues’ stability boundaries cross over each other,
then they should be like the one shown in Figure 4(d), which
is again impossible because an increasing path from p1 to p2

can also cause qi’s state to change from an unstable state to
a stable state. 2

Based on discussion above, we can first determine for a
given RS system its class based on the definition of the dif-
ferent classes. The second method is to see whether the
system will have a unique state or not in the instability re-
gion of all queues. Both RS0 and RS1 classes have unique
system state while RS∞ does not have. Then we can check
whether each queue in the system has guaranteed service or
not in order to distinguish the class between RS0 and RS1.
In an RS∞ system, there will be an infinite number of entry
points to the instability region of all queues. On these entry
points the system states may be different; therefore the sys-
tem will have different states in the instability region of all
queues. For example, consider a 2-queue system in which a
cyclic server always serves at most Mi requests from qi and
at most Mj requests from qj in every cycle. Besides, the
server can also serve additional Ma requests in every cycle



Figure 4: Proof of RS∞.

which can be freely grabbed by either queue. The stability
regions for the individual queues for this type of service pol-
icy are shown in Figures 1(c)-(d). Compared with Figures
1(a)-(b), each queue is similarly guaranteed with a certain
service rate. However, unlike the previous case, there are
infinite number of as-stable-as paths. That is, while the
RS1-multiqueue system has a as-stable-as path, the RS∞-
multiqueue system has a as-stable-as region. Furthermore,
the traffic space for this space still has the qi � qj region
and the qi ≺ qj region. Another interesting point of the
RS∞ class is that a queue may or may not have guaran-
teed service once becoming unstable. In the above example,
both queues have guaranteed service. On the other hand,
consider a polling system with an unlimited service policy.
This system belongs to RS∞ class because the service pro-
vided to each queue is not limited, which implies that there
is no guaranteed service rate. Consequently, a queue may
or may not receive service when it becomes unstable, i.e.,
different states in the instability region. In other words,
λg,i = λg,j = 0 in Figures 1(c)-(d). As a result, it is easy
to see that the two stability regions are the same, and the
qi � qj region and the qi ≺ qj region do not exist.

In Figure 5, we also show the system stability region for
both RS1-multiqueue system and RS∞-multiqueue system
within which both queues are stable. In (a), the stability
region is concave which is typical for polling systems with
limited service policies. However, some other systems, such
as buffered ALOHA, would have a convex stability region.
In the remaining of this paper, we restrict ourselves to the
RS1-multiqueue systems, and leave the other two classes to
the forthcoming papers.

5. RELATIVE STABILITY FOR THE RS1-
MULTIQUEUE SYSTEMS

Figure 5: System stability regions for an RS∞-
multiqueue system of 2 queues.

From the discussions above, we can derive more general
results for the RS1-multiqueue systems, to be presented in
the next two theorems.

Theorem 4. In an RS1-multiqueue system, qi and qj are
as stable as each other if and only if their direction compo-
nents satisfy ki

kj
=ci,j. That is, qi�qj ⇔ ki

kj
=ci,j, where ci,j

is a constant which is determined by the system parameters.

Proof. For an RS1-multiqueue system with n queues, if
qi � qj on any two paths LK1 and LK2, then LK1 and LK2

belong to a unique (n−1)-dimensional hyperplane. For the
traffic space and linear increasing paths under consideration,
the analytical form of such a hyperplane satisfies ki/kj =
constant. By denoting the constant as ci,j , we complete the
proof. 2

Theorem 5. In an RS1-multiqueue system, qi≺(�)qj ⇔
ki
kj

> (<) ci,j.

Proof. As the two cases are symmetric, we prove only
the case of qi≺qj . Consider a partition of the traffic space,
in which the paths satisfy ki

kj
> ci,j . First, note that we

can always find a path in this partition that gives qi ≺ qj

by setting kj to a sufficiently small value. Second, we claim
that either qi ≺ qj or qj ≺ qi holds for all the paths in this
partition. If this is not the case, the two queues’ stabil-
ity boundaries should have at least one intersection. Then
it implies that there is an increasing path in the partition
on which the two queues are as stable as each other, but
we know from Theorem 4 that this conclusion is not true.
As a result, qi ≺ qj holds for all paths in this partition.

2

An important consequence of Theorem 4 and Theorem 5
is that the relation of two queues based on their degrees of
stability in an RS1-multiqueue system are not affected by
other queues. The constant ci,j can be easily determined
by finding a simple increasing path LK on which qi � qj .
Therefore, ci,j =CK

i /CK
j , where CK

i and CK
j are the MASRs

of qi and qj on LK , respectively.
Moreover, we can extend the result that all the as-stable-

as paths for 2 queues form a (n− 1)-hyperplane. In general,
all the as-stable-as paths for m ≤ n queues form a (n −
m + 1)-hyperplane. Therefore, there is only a single path
for which all queues are as stable as each other, as stated in
the following corollary.



Corollary 1. In an RS1-multiqueue system, there is only
one increasing path LK for which all queues are as stable as
one another and this LK is given by k1

CK
1

= k1
CK

2
= · · · = kn

CK
n

.

Equipped with the general relative stability results, we
will next apply them to derive the actual criteria for com-
paring queues based on their degrees of stability for three
specific systems. The result is an order of queues, and the
queues at both ends of the stability order are referred to
as least stable queue (LSQ) and most stable queue (MSQ).
Generally, there could be multiple LSQs and multiple MSQs
on a path. For the case in Corollary 1, all queues are MSQs
as well as LSQs.

6. RELATIVE STABILITY ANALYSIS FOR
TWO SYSTEMS

6.1 Polling Systems with Limited Service
Consider a polling system with n RS-queues and a single

server. Besides, each queue has an unlimited buffer. The
arrival rate at qi is λi. The service times are also generally
distributed with the same mean value b. The server polls
the queue in a predefined order. The server employs a gated
M-limit service policy. That is, the server can serve those
requests which it finds at qi upon its arrival, up to Mi of
them. Any requests arriving after the start of the service
can only be served in the server’s next visit. Assume that
there is a random walk time for the server to switch from
qi to qi+1 with si as the mean value. Define EC as the
mean cycle time which is time interval elapsed between two
consecutive server visits to a queue. It is well known that
EC is independent of the choice of the reference queue [7].

Each qi in the system at any state has a guaranteed service
rate of Mi/EC. To obtain the conditions under which qi is
more stable than or as stable as qj , according to Theorem 4
and Theorem 5, we only need to find out the value of ci,j for
qi and qj . Because any LK on which qi�qj will provide us
the same value of ci,j , we consider the path on which qi�qj

and that they are the only MSQs. The result is stated in
the following theorem.

Theorem 6. In a polling system with gated limited ser-
vice policies, qi � qj on an increasing path LK iff ki

kj
≤ Mi

Mj
.

Proof. We consider a LK on which qi � qj and qi �
qk, k 6= i, j. Then the values of CK

i and CK
j are given by

Mi/(
∑

l(Mlb + sl)) and Mj/(
∑

l(Mlb + sl)), respectively. This
is so because when both qi and qj achieve their MASRs
(Mi and Mj per cycle time), all other queues have already
become unstable, according to the given relative stability
among the queues. Together with the assumption that qi�
qj and Theorem 4, LK satisfies ki

Mi
=

kj

Mj
. As a result,

qi � qj ⇔ ki
kj

= Mi
Mj

. Based on Theorem 5, we also have

qi�qj ⇔ ki
ki
≤ Mi

Mj
. 2

6.2 Slotted Buffered ALOHA System
In a slotted buffered ALOHA system, n queues share a

broadcast channel (server). The channel is time slotted,
and a slot duration is equal to a packet transmission time.
Each nonempty queue qi transmits a packet with a nonzero
probability pi in a slot. If two or more queues transmit si-
multaneously, then a collision occurs and the packets must

be retransmitted in the future. If exactly one packet is trans-
mitted in a slot, then a successful transmission takes place.
By using a similar approach as for the polling model, we
obtain the following results.

Theorem 7. In the slotted ALOHA system, qi � qj on

an increasing path LK iff ki(1−pi)
pi

≤ kj(1−pj)

pj
.

Proof. We consider again an increasing path LK on which
qi and qj are as stable as each other, and both are the
only MSQs. Then, the values of CK

i and CK
j are given by

piΠl6=i(1−pl) and pjΠl6=j(1−pl), respectively. They rep-
resent the successful transmission probabilities of qi and
qj , given that all other queues are never empty. Again,
this is so, because other queues are already unstable when
qi and qj have attained their MASRs. Together with the
assumption that qi � qj and Theorem 4, the LK satisfies
ki(1−pi)

pi
=

kj(1−pj)

pj
. Based on Theorem 5, we conclude that

qi�qj ⇔ ki(1−pi)
pi

≤ kj(1−pj)

pj
. 2

7. ABSOLUTE STABILITY ANALYSIS
In this section we apply the relative stability results to the

analysis of absolute stability for the polling system. We start
with the queue stability problem and the results can later
be used to obtain the system stability conditions. In do so,
we consider the stability condition of a target queue qt on a
linear increasing path LK . By applying the Loynes’ theorem
to qt [16], the queue is stable if λt < CK

t and unstable if
λt > CK

t . The remaining task is therefore to obtain CK
t .

All the queues can be categorized into three groups based
on the outcomes of comparing their degrees of stability with
qt’s on LK . The Mt set consists of the queues that are
more stable than qt. On the other hand, Lt set consists of
the queues that are less stable than qt. Finally, the At set
consists of the queues that are as stable as qt. The Mt and
Lt sets can be empty. With the 3 sets of queues, we can
obtain the mean cycle time when qt attains its MASR as
follows.

EC =
∑

ql∈(Mt∪At)

(ulb + sl) +
∑

ql∈Lt

(Mlb + sl), (2)

where ul ≤ Ml is the average number of requests served at
ql ∈ (Mt∪At). In Eq. (2), the first term corresponds to the
time incurred by a set of stable queues whereas the second
term correspond to the time incurred by a set of unstable
queues. Since the queues in Mt ∪ At are stable, we have
ul = λlEC, ql ∈ Mt ∪ At. By substituting ul into Eq. (2)
we obtain

EC =

∑
ql∈Lt

Mlb + s

1−
∑

ql∈(Mt∪At)
λlb

, (3)

where s =
∑

sl. By applying Loynes’ theorem, qt is stable
on LK λt < Mt

EC
.

Based on the results above for a path, we can now consider
a set of paths that have the same sets of Mt,Lt, and At. If
Γo ≡ (Mt,o,Lt,o, At,o) is a particular set ofMt,Lt, and At,
we denote the set of paths that satisfy Γo by P (Γo). And,
we have the following results.

Lemma 2. The target queue qt is stable on LK ∈ P (Γo),
where Γo ≡ (Mt,o,Lt,o,At,o), if

λt <
Mt

EC
, (4)



where

EC =

∑
ql∈Lt,o

Mlb + s

1−
∑

ql∈(Mt,o∪At,o) λlb
. (5)

Moreover, qt is unstable if λt > Mt
EC

.

Proof. From the above discussion, we know that EC is
well defined. qt’s average service rate is therefore given by
ut
EC

and it reaches the maximum when ut = Mt. By Loynes’
theorem, the queue is stable if Eq. (4) holds. 2

Theorem 8. qt’s stability region in the whole traffic space
is given by ∪all possible ΓoR(Γo), where R(Γo) is qt’s stability
region for the set of paths P (Γo).

The above theorem is a direct consequence of Lemma 2.
An approach to deriving the system stability conditions

from the queue stability conditions is to consider the set of
paths for which qi is the LSQ, denoted by P l

i , and to obtain
the corresponding stability region, denoted by Rl

i. Since the
system stability boundary point on a path is the same as
a LSQ’s boundary point, the system stability region can be
expressed as a union of Rl

i, i = 1, . . . , n. Therefore, we have
the following system stability result.

Theorem 9. The polling system is stable in the region
∪i=1,...,nRl

i, where Rl
i is given by ∪LK∈P l

i
{λi < Mi

EC
}, where

EC = s
1−

∑
i=1,...,n λib

.

Proof. According to Lemma 2, qi is stable on a path in
P l

i if λi < Mi
EC

. Thus, we can obtain Rl
i. Since each queue is a

LSQ in some nonempty partition, the entire system stability
region is a union of Rl

i, i = 1, . . . , n. 2

Instead of performing a set union operation as in the last
method, one can also take an intersection all n queue sta-
bility regions to yield the system stability region, because
only the regions correspond to the LSQs will remain after
the intersection operation.

8. CONCLUSIONS
In this paper we have introduced the concepts of degree of

stability and relative stability for a single-server, multiqueue
system. The degree of stability measures how stable a queue
is. By comparing the queues’ degrees of stability, we can
determine the relative stability relation among the queues.
We have analyzed and derived very general relative stability
conditions for a class of RS-multiqueue systems. In partic-
ular, based on the number of ways that two queues can be
as stable as each other, we classify the RS-multiqueue sys-
tems into three classes and provide properties for each class.
Both the approach and the models are general enough to
cover many different systems. We have illustrated the ap-
proach to a polling system with a limited service policy and
a buffered ALOHA system. Lastly, we have shown how the
relative stability results can facilitate an absolute stability
analysis.
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