
Strifeshadow Fantasy: A Massive Multi-Player
Online Game

Hang T. Chan
Unrealize Development Team, BMK Networks

Unit 2401A, Part-in Comm. Ctr.
56 Dundas St., Mongkok, Kln., Hong Kong

Email: xunreality@hotmail.com

Rocky K. C. Chang
Department of Computing

The Hong Kong Polytechnic University
Hung Hom, Kowloon, Hong Kong

Email: csrchang@comp.polyu.edu.hk

Abstract— Strifeshadow Fantasy (SSF) is a massive, multi-
player online, role-playing game. Players of this game, acting
as avatars, search for the ancient signs, and their goals are to
defeat the God of Destruction. Players can adventure in the game
alone or co-operate with the others through the chat box. SSF
is available for free and there are currently more than 10,000
registered users. In this article, we highlight the overall software
architecture of SSF, which is based on a simple server-client
model and HTTP. We will also describe in details two problems
encountered in the course of designing SSF and the solutions to
them. The first one is a local state consistency problem which is to
ensure that each client participating in the game will eventually
receive all the state updates once and only once. The second
one is a connection jamming problem that is a result of using
nonpersistent HTTP connections for the communication between
the game server and clients.

I. INTRODUCTION

Massive multi-player online game (MMOG) is a rapidly
growing area in the video game industry. Unlike the earlier
networked games, MMOG aims to support a very large num-
ber of concurrent users, in terms of thousands and even tens
of thousands. Moreover, the MMOGs are usually role-playing
style games in that players could continuously involve in a
story as long as they want, e.g., Ultima Online and EverQuest.
While there are many areas of technical expertise go into the
development of MMOG, we only consider the network-related
issues here, such as bandwidth scalability, state consistency,
fairness, accessibility, player-collaboration, and security.

Since the data exchanged between a game server and the
clients in a typical server-client game architecture grows expo-
nentially with the number of users, the server’s network band-
width is often the bottleneck. Therefore, one important design
issue is the dimensioning of the network bandwidth. On the
other hand, others have proposed peer-to-peer [1] and mirror-
server game architectures to increase the network bandwidth.
With a non-centralized server model, state synchronization,
however, becomes an important issue, and various mechanisms
have been proposed to address it, e.g., [2], [3].

In a centralized server model where all the game data
resides, players request the game states asynchronously. Even
if the server pushes the states at the same time to all players,
the players still receive the states in different times because of
the different latency and packet loss experienced in different

parts of the Internet. Therefore, some players may receive, and
therefore react to, the current state of the game much faster
than the others. We call this problem a global state consistency
problem which obviously has implication on the fairness of
playing the game. Kim et al proposed a global timestamp-
based approach to tackle this problem [4]. Moreover, there
is a variant of the state consistency problem that ensures that
each player eventually receives the same state update once and
only once. It is clear that this local state consistency problem
does not concern the exact times of receiving the game states.

Accessibility concerns whether a player can assess the game
of interest anywhere and anytime he wants, e.g., through the
ubiquitous Web interface. Or the player is required to pre-
install some program in his machine.

Since the main feature of an MMOG is for players to
interact with each other, an MMOG must provide facilities
for players to communicate and collaborate with other players
throughput the game session. Moreover, the communication
should be secure, so that other rival groups of players would
not be able to listen to their private messages. Therefore, data
security is also important in this context and in other forms
of cheating scenarios [5].

In this paper we describe how the design of Strifeshadow
Fantasy (SSF) addresses some of the issues above. SSF is
based on a server-client model, and the game server and clients
communicate using HTTP. Therefore, players can assess the
game anywhere and anytime. Even with a centralized server,
as will show later, there are effective ways to scale to the
number of players. Moreover, we will show how SSF solves
the local state consistency problem.

The rest of the paper is organized as follows. In section II,
we will first highlight SSF’s architecture and the connection
model. In section III, we consider the local state consis-
tency problem and explain why a simple action-flag approach
would not work. Subsequently we introduce a action-log table
approach to solve the problem. In section IV, we consider
a connection jamming problem and examine three possible
solutions. In section V, we highlight other problems that we
have encountered throughout the development of SSF. Finally
we conclude this paper with some future work.

0-7803-8145-9/04/$17.00 ©2004 IEEE. 557

SSF
Client Program

SSF Server
Program

Flash Interface

Player

{ HTTP }

1

*

SSF Game
Database

Game states
are stored at
the Database

The server program generates
dynamic web pages that contain the
most update game-state to be sent
to the clients.

Players interact with the
Web-based client program

The Client Program received
the newest game -state and
display it to the player
graphically

Fig. 1. SSF’s architecture.

II. STRIFESHADOW FANTASY (SSF)

SSF is a massive multi-player online role-playing game
which was 100% developed locally in Hong Kong [6]. The first
author single-handedly developed and maintained the entire
system on part-time basis. SSF has over 10,000 registered
players who come from various countries. SSF’s story is about
a fantasy world in which there is a conflict between the God
of Construction and God of Destruction. Players, acting as
avatars, search for the ancient signs, and their ultimate goals
are to defeat the God of Destruction.

A. SSF’s architecture

SSF is based on a very simple server-client model. As
shown in Fig. 1, there is a central server hosting the SSF
server program or game engine, and a SSF game database.
Players connect to the game server through the SSF client
application in order to participate in the game. Although the
server-client model may suffer from the bandwidth scalability
and single-point-of-failure problems, it is perhaps the best
model to start with for the development of any MMOG. It
can also be adapted to the mirrored-server model in the later
stage of the development.

Besides the ease of implementation, there are a number of
issues that can be easily addressed by a server-client model.
The first one is system robustness. Since the game server
serves each participant independently, the failure of any of
the clients has no effect on others. This obviously cannot be
said for the peer-to-peer model.

Another is data security requirement. The SSF game data
is protected from hacking or other abuses by splitting the
entire application into server and client parts. The server
application part handles all the computation and processing of
the game data. The client application part, on the other hand,
is responsible for retrieving the most updated game data and
displaying them. Therefore, the game data is in the “read only
mode” on the client side. If the client needs to modify any

SSF Server Program
URM

- Client ID
- User Commands 1. Check Client ID

2. Process User Command
3. Update Game State
4. Storing Game State
5. Return Updated Game
State

SSF Game
Database

SSF Client
Program

Game State

Fig. 2. Operational diagram of the SSF server.

of the game data, it has to send a valid procedure call to the
server to request the modification.

Moreover, the ability of recovering data in an MMOG is
an important requirement, because it is quite common for
data lost during the message transmission from the server to
client or vice versa. In SSF, data recovery is ensured that even
if there is some game data missing or corrupted during the
transmission. The client side can still reconstruct the full game
state in the next successful data transmission.

B. SSF’s connection model

SSF’s connection model is similar to that used for the Web
chat rooms, where the clients continue to send HTTP requests
to the chat-room server to refresh the Web page and receive
the most updated chat history. In SSF, each client sends a
Update Request Message (URM) using HTTP to the server at
regular intervals called game rounds. Each URM consists of
two parts. The first part contains a client ID, and the second
contains the user commands.

C. SSF server’s design

The SSF server is written using Active Server Page (ASP)
that can create powerful Web-based applications through the
combination use of HTML, scripts, and Microsoft ActiveX
server components. It handles the following tasks for the game:

1) Handle the member registration, login, logout, and game
saving operations.

2) Receive and validate the URMs by checking its client
ID, and then process the user command that is contained
in the URMs.

3) Handle any modifications and updates of the game state.
4) Write the most updated game states to the SSF Game

Database.
5) Send back the most updated game state to the clients in

the format of HTTP Query String.

D. SSF client’s design

The SSF client provides the SSF virtual environment in-
terface for users to interact with, and it also acts as a
communication bridge between the current user and the SSF
server. It is written using Macromedia Flash 4.0. The client
handles the following tasks for the game:

0-7803-8145-9/04/$17.00 ©2004 IEEE. 558

SSF Client Program

URM

- Client ID
- User Commands

1. Connect to SSF Server.
2. Receive new Game State
from SSF Server Program
3. Display Game State in
Graphical format
4. Receive player command
5. Generate URM.
6. Send URM to SSF Server

SSF Human
Player

Game State

SSF Server
Program

Player Command

Graphical Interface

- Game State

Fig. 3. Operational diagram of the SSF client.

1) Provide the interactive GUI that represents the SSF
virtual world environment.

2) Receive user commands from the GUI and convert them
into HTTP Query String format

3) Build the URMs and send them to the server at regular
intervals.

4) Receive game states from the server, and display them
by converting the game states into meaningful graphics
and animations,

Fig. 4 shows the states that a typical SSF client would go
through.

E. The SSF game database

The SSF game database stores member accounts, game
states, and game activities. It is responsible for providing the
correct game states to the SSF server. The database is based
on the relational database technology that is quite suitable for
storing game data, because it require few assumptions about
how data is related or how it is extracted from the database.

III. A LOCAL STATE CONSISTENCY PROBLEM

Sometimes the actions taken place at the SSF game world
cannot be displayed correctly on the client side, which is
due to the various speeds and lossy conditions of the clients’
networking environments. Therefore, the design of SSF must
mask these conditions, such that each action taken place in
the game world should be eventually displayed on each client
once and only once.

A. A action-flag approach

A simple solution would be to create an action flag to
indicate the status of each game action. For example, if the
action has taken place, then set the value of that action flag to
True; otherwise, it is set to False. Therefore, when a client

Yes

No

No

No

Yes

No

Yes

Yes

Fig. 4. The game states of a SSF client.

requests the latest game state, it would be able to know
whether it should display the action or not based on the value
of the action flag. After the action flag has been set to True
for a certain period of time, the action flag will be reset back
to False again to indicate that the action is already completed.

Unfortunately, this simple solution turns out to be a very
bad design. Some undesirable results will happen when the
client network connection is either too fast or too slow. The
correct case is shown in Fig. 5, where the action has taken
place and its action flag is set to True, then the client requests
for the game state, and displays the action properly. After the
value of the action flag set back to False after a period of
time, the client requests the game state again and this time it
doesn’t display the action.

In Fig. 6, a client has a slow network connection. Therefore,
the action has taken place and its action flag is set to True, but
one of the client’s network connection is so slow or lossy that
the action flag has been set back to False before that client
successfully requests the game state. As a result, the action is
not displayed in that particular client.

In Fig. 7, a client has a “too fast” network connection. The
action has taken place and its action flag is set to True, but
one of the client’s network connection is fast enough to request
for the game state twice before the action flag is reset back
to False. As a result, the action is displayed twice in that
particular client.

0-7803-8145-9/04/$17.00 ©2004 IEEE. 559

Fig. 5. Action X is displayed correctly using the action-flag approach.

Fig. 6. Action X is displayed correctly using the action-flag approach.

Fig. 7. Action X is displayed correctly using the action-flag approach.

Fig. 8. A action-log table and a action-log pointer for a client.

B. A action-log table approach

Another approach is to create a action-log table in the
database. Whenever an action has taken place, the SSF server
will insert a new record into the action-log table, and that
record will contain all the information related to that action.
In addition, the SSF server will assign an action-log pointer
to each of the clients, which points to the last action record
that the client has retrieved. An example is shown in Fig. 8.

When a client requests the SSF server for the latest game
state, the SSF server will retrieve those unread action records
by looking up the value of that client’s action log pointer.
After sending the state updates, the SSF server updates the
client’s action log pointer by making it point to the last
action record that the client has retrieved. This solution works
correctly, because the action retrieval model is independent of
the network connection. No matter whether the client has fast
or slow network connection speed, the sequence of actions are
still displayed correctly on the client side.

IV. A CONNECTION JAMMING PROBLEM

As the connection model between the SSF server and clients
is based on HTTP, the server cannot initiate a connection to
the client and send the latest game state to them. Therefore, the
SSF client has to frequently query the SSF server for the latest
game state. As a result, setting a proper request rate is a key
issue to avoid a connection jam which could seriously affect
the performance of the entire game system. In the following,
we describe and evaluate three approaches to this problem.

A. A periodic-updating approach

An obvious approach is to send URMs to the SSF server at
fixed intervals (e.g., 500ms). Even if there is no reply message
received from the server, or the reply message is delayed, the
client still sends the URMs to the server on schedule. If the
interval is too short, unnecessary URMs will be sent out, as
shown in Fig. 9.

If the SSF server is already congested with a lot of requests,
it will take a longer time for the server to reply the URM.
Therefore, the server will be even more congested if each
client keeps on sending URMs periodically. This is verified by
the data in Fig. 10, where the clients ping the server at a regular
interval of 500ms. At the beginning, the connection is quite
stable, but as time goes by the network connection becomes
slower and there are more and more lag spikes. After 400 game

0-7803-8145-9/04/$17.00 ©2004 IEEE. 560

Fig. 9. A periodic-updating approach.

0

5000

10000

15000

20000

25000

0 100 200 300 400 500

Game Round

Pi
ng

 T
im

e
(m

s)

 .

Fig. 10. Test results for the periodic-updating approach.

rounds, the network connection speed becomes unacceptably
slow (the average ping time reaching 4000ms).

B. A client-side timeout approach

A second approach attempts to improve the first one by
keeping more states about the requests. In this approach, a
client sends out a URM if (a) it is the first URM, or (b)
the timeout limit (e.g., 3 seconds) is reached, or (c) a reply
message has been received. In this case, there will only be at
most one URM, except that the server’s reply message cannot
reach the client before timeout.

This solution generally works better than the periodic-
updating approach. However, the same problem could occur if
the reply message cannot reach the client on time, as shown
in Fig. 11. Fig. 12 shows the results for this approach and
the timeout value is set to 3000ms. At the beginning, the
connection is very stable. However, when there are a few
pings exceeding the timeout limit, the connection starts to
become unstable, and more ping exceeds the timeout limit.
Again, after 400 game rounds, the network connection speed
becomes unacceptably slow (the average ping time reaching
3000ms).

C. A server-side timeout approach

Unlike the second approach where clients regulates the
sending rate of URMs, this approach allows the SSF server to
timeout clients. In this approach, a client sends out a URM if
(a) it is the first URM, or (b) a reply is received. Moreover,

Fig. 11. A client-side timeout approach.

0

5000

10000

15000

20000

25000

0 100 200 300 400 500

Game Round

P
in

g
(m

s)

Fig. 12. Test results for the improved periodic-updating approach.

the server keeps a timer for timing the client’s next URM. If
the next URM is not received within the timeout period, the
SSF server considers that the client is not connected, therefore
removing the client from the connected client list. In this case,
the client needs to register again to join the game. As shown
in Fig. 13, there is at most one URM sent from a client at any
time. The data in Fig. 14 shows that the connections using
this approach are very stable from the beginning to the end.

V. OTHER ISSUES

Besides the problems described above, we have encountered
a number of other problems in the design and implementation
of SSF. We briefly describe some of them in the following.

A. High server resources usage

There is a serious shortcoming of using ASP for the server-
side program. Every time the client sends a URM requesting
the latest game state, the server must create a new process to
run the server side scripting in order to respond to it. Creating
a process for every single request requires time and significant

0-7803-8145-9/04/$17.00 ©2004 IEEE. 561

Client Side Server Side

Breaks timeout limit,
Client disconnected

Client Side Server Side

Fig. 13. A server-side timeout approach.

0

5000

10000

15000

20000

25000

0 100 200 300 400 500

Game Round

P
in

g
(m

s)

Fig. 14. Test results for the server-side timeout approach.

server resources, which limit the number of requests a server
can handle concurrently.

B. Excessive database connection

Another disadvantage of using ASP is that the variables
stored at a particular process will be removed from the
memory when the process ends. Therefore, when the server
needs to store the variables for future usage, it needs to write
them into hard disk or database file. As a result, it increases
the number of hard disk read/write operations, thus imposing
significant workload on the server.

C. Message delay

The global state consistency remains an open problem to
solve in SSF. Although the SSF could resolve the local state
consistency problem using the action-log table approach, the
clients are not guaranteed to receive the most updated game
state at the same time. To provide global state consistency,
other connection model, such as multicasting, may be a better
choice.

D. Large connection overhead

Having a large overhead when there is nothing to be updated
is another important issue to address, i.e., the server’s replies
are essentially empty. In this case, the game system should
be intelligent enough to eliminate, or minimize, the protocol
overhead and message processing.

VI. CONCLUSIONS AND FUTURE WORK

Developing a highly scalable, efficient, and fair MMOG
remains a very challenging task. In this paper, we have
described some of the technical details about Strifeshadow
Fantasy (SSF), a working MMOG that is actively used by a
large number of users. Although there are quite a few MMOGs
available today, we are not aware of any articles providing
sufficient details of their designs and describing how they
address some of the network-related issues described in this
paper. The work on MiMaze has been described in details in
[7]; however, it does not seem to be under active use as for
the case of SSF.

As seen from this paper, there remains quite a number of
issues for improving SSF’s performance and scalability. One of
the issues concerns the connection model. Nonpersistent HTTP
connections are currently used between the server and clients.
Another alternative is to use persistent HTTP connections or
even sockets, so that only a single connection is required for
each client. We have used sockets to implement a prototype
that incurs less overheads and message processing. Another
possibility is to use IP multicast or application-level multicast,
so that the server can push out the game state updates to all
clients at the same time.

REFERENCES

[1] B. Hoyt, “Full Circle: Why Peer-to-Peer Architectures
Should Replace Client/Server in MMOGs” available in
http://www.gignews.com/spotlight0901 hoyt.htm.

[2] E. Cronin, et al, “An Efficient Synchronization Mechanism for Mirrored
Game Architectures,” Proc. NetGames”, 2002.

[3] J. Steinman, et al, “Scalable Distributed Military Simulations Using
the SPEEDES Object-Oriented Simulation Framework,” Proc. Object-
Oriented Simulation Conf.”, pp. 3-23, 1998.

[4] S. Kim, F. Kuester, and K. Kim, “A Global Timestamp-Based Scalable
Framework for Multi-player Online Games,” Proc. IEEE Fourth Intl. Sym.
Multimedia Software Engineering, 2002.

[5] J. Weisz, ”Detecting Cheaters in a Distributed Multiplayer Game,” avail-
able from http://www-2.cs.cmu.edu/afs/cs.cmu.edu/user/mjs/ftp/thesis-
03/weisz.pdf.

[6] Strifeshadow Fantasy, http://ssfantasy.n3.net/.
[7] C. Diot and L. Gautier, “A Distributed Architecture for Multiplayer Inter-

active Applications on the Internet,” IEEE Network, pp. 6-15, July/Aug
1999.

0-7803-8145-9/04/$17.00 ©2004 IEEE. 562

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	footer1: 0-7803-8367-2/04/$20.00 ©2004 IEEE
	01: 3
	02: 4
	03: 5
	04: 6
	05: 7
	06: 8
	07: 9
	08: 10
	09: 11
	10: 47

