
QDASH: A QoE-aware DASH system

Ricky K. P. Mok§, Xiapu Luo§, Edmond W. W. Chan†‡, and Rocky K. C. Chang§

Department of Computing§ Corporate Research Department†
The Hong Kong Polytechnic University Huawei Research, China

{cskpmok|csxluo|csrchang}@comp.polyu.edu.hk edmond.chan@huawei.com

ABSTRACT
Dynamic Adaptation Streaming over HTTP (DASH) en-
hances the Quality of Experience (QoE) for users by auto-
matically switching quality levels according to network con-
ditions. Various adaptation schemes have been proposed to
select the most suitable quality level during video playback.
Adaptation schemes are currently based on the measured
TCP throughput received by the video player. Although
video buffer can mitigate throughput fluctuations, it does
not take into account the effect of the transition of quality
levels on the QoE.

In this paper, we propose a QoE-aware DASH system
(or QDASH) to improve the user-perceived quality of video
watching. We integrate available bandwidth measurement
into the video data probes with a measurement proxy archi-
tecture. We have found that our available bandwidth mea-
surement method facilitates the selection of video quality
levels. Moreover, we assess the QoE of the quality transi-
tions by carrying out subjective experiments. Our results
show that users prefer a gradual quality change between the
best and worst quality levels, instead of an abrupt switch-
ing. Hence, we propose a QoE-aware quality adaptation
algorithm for DASH based on our findings. Finally, we inte-
grate both network measurement and the QoE-aware quality
adaptation into a comprehensive DASH system.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network
Operations –Network monitoring ; H.1.2 [Models and Prin-
ciples]: User/Machine Systems – Human factors; H.5.1
[Information Interfaces and Presentation]: Multime-
dia Information Systems – Evaluation/methodology

General Terms
Design, Measurement, Human Factors

‡This work was partially done when the author worked at
The Hong Kong Polytechnic University.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MMSys’12, February 22-24, 2012, Chapel Hill, North Carolina, USA.
Copyright 2012 ACM 978-1-4503-1131-1/12/02 ...$10.00.

Keywords
QoE, Dynamic Adaptive Streaming over HTTP, Available
Bandwidth, Quality Adaptation, H.264/AVC

1. INTRODUCTION
Billions of videos are watched every day via HTTP stream-

ing [2]. By using standard HTTP to transmit video data,
HTTP streaming can easily traverse firewalls and NAT de-
vices. Furthermore, the progressive download technology
[10] enables users to watch incompletely downloaded video
clips. However, users have increasing expectations of video
streaming, from improved usability to better Quality of Ex-
perience (QoE). Dynamic Adaptation Streaming over HTTP
(DASH) is proposed to improve the user perceived quality
[34].

Before using DASH, video clips are first encoded into mul-
tiple quality levels by adjusting the video bit rate, resolution,
frame rate, or audio bit rate. The resulting set of clips is
referred to as an MBR (Multiple Bit Rate) video. The qual-
ity level is the main control option in both HTTP streaming
and DASH. In the classic HTTP streaming, users can only
choose the quality levels manually. This is clearly insuffi-
cient for providing the best QoE, as a user’s choice may
not be optimal and may not adapt to fast-changing network
conditions, particularly in wireless and mobile networks [32].

DASH, as an extension of the classic HTTP streaming, is
able to automatically switch the video quality level accord-
ing to the current network conditions. Moreover, the video
clips are logically divided into small fragments according to
the size of GOPs (Group of Pictures). The fragment size
is usually between two to ten seconds of video [13]. Be-
fore downloading each fragment, the video player decides
the most suitable quality level based on the historical TCP
throughput of the last or last few fragments.

The video player usually chooses a quality level that has
a lower bit rate than the measured throughput, so that the
download rate is higher than the playback rate. This avoids
rebuffering caused by buffer starvation [13, 26]. The behav-
ior of different video player implementations, however, is not
the same. For example, the Netflix player is more forceful in
attempting to provide higher quality levels, while Microsoft
Smooth Streaming is on the more conservative side [11].

Measuring the throughput on the client side is relatively
straighforward. An estimate can be obtained by dividing the
number of downloaded bytes by the download time. How-
ever, averaging techniques, such as exponential average or
weighted average, are often applied to the measurement re-
sults to mitigate short-term fluctuations caused by the lower

layers. If the averaging period is too long, the result cannot
correctly reflect on the current network conditions. Hence,
wrong decision on choosing the quality levels could be made.

On the other hand, playing at a higher quality level does
not always result in a higher QoE. We should also consider
the transition of quality levels. This is especially relevant to
DASH, as the quality changes with the network conditions.
Normal users do not usually watch the same video more
than once within a short period of time. Therefore, they
have no reference to judge the video quality. However, they
can identify the spatial artifacts by comparing past experi-
ences of other videos they have watched. Previous studies
[17, 31, 36] have shown that users show little appreciation
for quality improvements, while they heavily criticize qual-
ity degradation. Therefore, users may prefer a lower initial
quality rather than a sudden decline in video quality when
the network throughput drops.

This paper proposes a comprehensive and QoE-aware DASH
system, named QDASH. This system aims at providing a
practical solution to improve the QoE for the current DASH
systems. The video service providers do not need to re-
encode existing video clips and do not require to install extra
softwares in the server. QDASH composes of two modules –
QDASH-abw and QDASH-qoe.

QDASH-abw is a novel probing methodology to detect the
highest quality level the current network conditions can sup-
port. This module is implemented in a measurement proxy.
The measurement proxy is placed in front of the video server
and manipulates the packets in video data flows. QDASH-
abw measures the available bandwidth by RTT variations
[21]. However, we speed up the convergence of available
bandwidth estimates by only considering a few discrete send-
ing rates which match to the bit rate of video quality levels.
we also exploit the packet sending sequence to increase the
number of RTT samples.

With the available bandwidth estimates, QDASH-qoe is
responsible for helping clients to select the most suitable
video quality level. To understand the perceived quality
of video quality adaptation, we carry out subjective assess-
ments. The assessment simulate different value of buffer
size and switching approaches. Our results show that insert-
ing intermediate levels provides a better QoE than directly
switching to the target quality level. With this finding, we
propose a QoE-aware adaption algorithm to utilize the video
buffer and select a suitable quality levels.

The rest of this paper organizes as follow. Section 2 de-
scribes the background of DASH and existing quality adap-
tion algorithms. Section 3 gives an overview on the QDASH
system. Section 4 illustrates the methodology of QDASH-
abw. Section 5 examines the QoE impacts of quality adap-
tion and proposes the QDASH-qoe. Section 6 highlights
some related works, and finally we conclude the paper in
section 7.

2. BACKGROUND

2.1 DASH
The principle of DASH is to encode video clips into multi-

ple bit rates or quality levels, by varying the resolution, pic-
ture, audio quality, etc. After the encoding, the video clips
are logically divided into fragments by generating meta data
in the file header. The meta data maps the video fragment
position to video time according to the size of GOPs (Group

of Pictures) [3]. When the appropriate modules are installed
on the web server, the video fragments can be randomly ac-
cessed by clients.

Figure 1 shows a typical deployment of a DASH system.
A client attempts to watch a video that has been encoded
into three quality levels A, B, and C. The video server first
delivers a DASH-capable video player to the client’s web
browser. While the client is watching the video stream, the
quality adaptation algorithm in the video player continu-
ously updates the recommended quality level according to
the network throughput measured by the video player. The
video player then requests the respective video fragments
via standard HTTP GET requests. By continuously playing
consecutive fragments, the video player can reassemble the
fragments (the first three fragments with level A, followed
by four fragments with level B and the last three fragments
with level C) into a seamless video playback. Adobe Dy-
namic Streaming [9], Microsoft Smooth Streaming [28] and
Apple HTTP Live Streaming [12] are popular implementa-
tions of DASH systems.

2.2 Quality Adaptation Algorithms
The quality adaptation algorithm is the core component

of DASH. It controls the quality level of fragments to be
downloaded. Algorithm 1 shows the quality adaptation al-
gorithm used by the Adobe’s Open Source Media Framework
(OSMF) [5]. Before downloading each fragment, the video
player will run this procedure once to determine the most
suitable quality level. The procedure actually relies on the
historical network throughput by recording the time taken
to download the last video fragment.

Besides quality level switching, the video buffer is often
used to mitigate possible spatial or temporal artifacts caused
by sudden change in network conditions. The video player
can request fragments prior than the actual play time. Even
the network throughput shrinks below the bit rate of current
quality level, the quality level can still be maintained for a
short period of time by consuming the buffer. At the same
time, the adaptation algorithm suggests for a new quality
levels to avoid the occurrence of rebuffering events.

Recently proposed quality adaptation algorithms for DASH,
such as [19, 26], select a quality level that is as close as pos-
sible to the network throughput. A commonly used strat-
egy to swap between quality levels is AIMD (Additive In-
crease and Multiplicative Decrease) [20, 17]. The MD com-
ponent produces a sharp degradation in playback quality.
This strategy under-utilizes the buffer to provide intermedi-
ate quality levels to enhance the QoE. Hence, we propose a
buffer-aware strategy to overcome this shortcoming.

3. OVERVIEW OF QDASH
QDASH consists of two building blocks – QDASH-abw

and QDASH-qoe. QDASH-abw measures the network avail-
able bandwidth, and QDASH-qoe determines the video qual-
ity levels. These two modules can be integrated into existing
DASH systems, while the modifications to the systems are
kept to minimum.

QDASH is designed for streaming H.264/AVC video clips,
and aims at immediate deployment to current systems. The
main shortcoming for using H.264/AVC in DASH is that the
storage overhead is large for multiple copies of video for dif-
ferent bit rates. To reduce the overhead, researchers recently
propose employing H.264/SVC ,which encodes video clip

4 5 6 7 8 9 10

Client

Quality Level A

A video

fragment

A video clip with three quality levels

Quality Level B

Quality Level C

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

HTTP GET QualA-frag1

HTTP GET QualB-frag4

HTTP GET QualB-frag5

HTTP GET QualC-frag8

1

.

.

.

4

HTTP GET QualA-frag2

.

.

.

8

.

.

.

R
e

q
u

e
s
t

Q
u

a
lit

y
 L

e
v
e

l
A

R
e

q
u

e
s
t

Q
u

a
lit

y
 L

e
v
e

l
B

R
e

q
u

e
s
t

Q
u

a
lit

y
 L

e
v
e

l
C

1 2 3

Video server

Received Video data

Video player

Quality

Adaptation

Algorithm

Network

Throughput

Figure 1: A typical DASH system.

Algorithm 1 Quality adaptation algorithm in OSMF [5]

tlastfrag: Time of downloading the last fragment
lcur: Current quality level
lnxt: Proposed quality level
lmin: Lowest quality level
lmax: Highest quality level
b(l): Bit rate of quality level l
rdownload ← θ/tlastfrag
if rdownload < 1 then

if lcur > lmin then

if rdownload < (b(lcur − 1)/b(lcur)) then

lnxt ← lmin

else

lnxt ← lcur − 1
end if

end if
else

if lcur < lmax then

if rdownload ≥ (b(lcur − 1)/b(lcur)) then
repeat

lnxt ← lnxt + 1
until (lnxt = lmax) or (rdownload < (b(lnxt +
1)/b(lcur)))

end if

end if

end if

into enhancement layers [33], to improve the efficiency. How-
ever, millions of existing video clips have already been en-
coded into multiple bit rates with H.264/AVC codec. They
only need to insert meta data in order to enable DASH,
while H.264/SVC solution requires video re-encoding which
is computationally expensive. Therefore, the proposed ar-
chitecture is targeted for DASH systems using H.264/AVC.

Figure 2 shows the overall QDASH’s architecture. A mea-
surement proxy, which is equipped with the QDASH-abw,
is directly connected to the video server. Therefore, all the
network traffic to the video server has to pass through the
measurement proxy. It inspects video data flows and shapes
the packet sending rate according to the bit rates of video
quality levels and sends packets according to the QDASH-
abw probing method (c.f. Section 4). The proxy is an IP-less
device, which does not require an IP address and is trans-
parent to both clients and servers.

Employing the measurement proxy paradigm reduces the
overhead of measurement. The proxy manipulates real video
data packets to perform inline measurement. Extra probing
packets, such as the RTT test in Akamai’s video stream-

ing [18], are not required. Furthermore, by coupling the
measurement flow with the video data flow, we avoid using
additional measurement flows, which may not go through
the same path as the data flow because of load balancers
on the path. Hence, measured performance can be obtained
with higher accuracy and less overhead.

With the measurement proxy, the server-side is able to
measure their clients without installing additional softwares
or requiring root privilege at either side for lower levels’
information. The measurement tasks are offloaded to the
measurement proxy and do not induce additional loading to
the video server. The server-side only needs to modify the
video player at the application level. The client-side also
does not need to install softwares, such as libpcap [7], to
cooperate with the measurement [25].

At the client-side, we proposed a QoE-aware quality adap-
tation algorithm – QDASH-qoe (c.f. Section 5). We first
perform subjective experiments to evaluate the effect of qual-
ity switching on perceive quality under the same network
scenario. We found that introducing an intermediate level
could smooth out the abrupt changes in video quality and
hence improve the QoE. QDASH-qoemakes use of this found-
ing to adjust the video quality. It can be implemented in
the video player delivered to the clients’ browser. On the
other hand, QDASH enabled video player to establish a
lightweight flow to receive updates on the measurement re-
sults measured by QDASH-abw. At the same time, this
flow can also report application level events or user-viewing
activities to help inferring the QoE [30].

The video delivery procedure for QDASH is described as
follow. Clients first sends an HTTP request to the video
server to initiate the video streaming. The video server
transmits the HTTP responses with the requested video
fragments. Then, the measurement proxy hijacks the data
flows and transmits the data packets according to QDASH-
abw probing methodology. Hence, the RTT can be measured
by using the acknowledgement packets triggered by the re-
ordered data packets. At the same time, clients can start
playing the video once the video buffer is full. Clients also
connect to the measurement proxy for the latest measure-
ment results and choose the most suitable quality level with
QDASH-qoe.

4. MEASURING AVAILABLE BANDWIDTH
FOR DASH

Video server

TCP DATA TCP DATA...TCP DATA TCP DATA... TCP DATA

Packet Sending

Rate:

Packet Sending

Rate:

Packet Sending

Rate:
...

...

TCP ACKTCP ACK TCP ACKTCP ACKTCP ACK ...

Measurement Results

DASH Video Data

HTTP Requests for video data(1)

(2)(3)

(4)

(5)

Video player

w/QDASH-qoe Measurement Proxy

w/QDASH-abw

Figure 2: The overall QDASH architecture.

Instead of simple throughput measurement, we employ
available bandwidth measurement to assist clients to suit-
ably select the video quality levels. Available bandwidth
measurement methods, such as Pathload [21], aim at ac-
quiring accurate estimates by varying the packet size or the
packet sending rate. However, these tools need tens of sec-
ond to obtain one estimate, and this time is too long for
DASH to adjust the quality.

In fact, video quality levels have a limited number of
values. To determine whether the current available band-
width is higher than any of the video quality levels, a high-
resolution estimate is not required. Instead, timely up-
dates of estimates are more important for correctly selecting
or withdrawing the quality levels. We therefore propose a
quantization approach to reduce the number of probes and
speed up the convergence of results.

4.1 Assumptions
Wemake the following assumptions for the available band-

width measurement methodology:
1. The average bit rates of video quality levels are known.
2. The available bandwidth between the server and the

client is always higher than or equal to the least video
bit rate (the lowest video quality level).

3. The client has sufficient computational power to render
all the video quality levels.

These assumptions are realistic. The service providers are
often responsible for encoding video clips. They can there-
fore easily obtain the video quality level information from
the encoding profiles. Our probing methodology (c.f. Sec-
tion 4.2) does not test the available bandwidth lower than
the least video bit rate. Moreover, DASH cannot help im-
prove the scenario if the client consistently has low available
bandwidth. In this paper, we are only interested in the
change in quality levels for adapting to the network condi-
tions, instead of other factors, such as clients’ computational
power and system loading. Therefore, we assume all the
clients can smoothly render the highest quality video clips.

4.2 QDASH-abw Probing Methodology
The basic idea of our measurement method comes from

the observation that if the packet sending rate λ is higher
than the available bandwidth A, the mean and the variance
of the packets’ round-trip times (RTT) will be larger than
the values obtained when the packet sending rate is less than
the available bandwidth [35]. Although the basic idea is
simple, there are three challenging issues to be tackled:

1. How to generate the probing packets for measurement?
2. How to collect the measurement samples?

3. How to determine the acceptable sending rate?
These issues are closely related to the design of QDASH and
we will elaborate on our solutions below.

To the best of our knowledge, existing tools for available
bandwidth measurement use customized probing packets.
Part of the available bandwidth is consumed for the mea-
surement. In contrast, we propose using inline measure-
ment that employs the media data packets directly to deter-
mine whether a certain sending rate is supported by the cur-
rent available bandwidth. The rational behind such design
is two-fold. First, measurement results from an additional
TCP connection may not be accurate because the new TCP
connection may not go through the same network path as
the media data because of the load balancing. Second, the
additional measurement packets will waste the bandwidth.

A probing round is defined as a sequence of packets send-
ing at the same rate from the measurement proxy. For each
probing round, the server side (measurement proxy) elic-
its a packet train with K pairs of W -byte probe packets at
a sending rate λ. We denote the TCP data packets sent
from the video server by Sa|b and the response packets from
the client by Ca|b. a and b are the data segments’ sequence
number and acknowledgement number, respectively. Instead
of showing the exact TCP sequence and acknowledgement
number, we simply use a = 1, 2, 3, ... to label server’s TCP
data segments and b = 1′, 2′, 3′, ... client’s data segments.

Figure 3 illustrates an example of two probing rounds with
sending rates (kbps) λ0 and λ1, and the available bandwidth
is between λ0 and λ1. We assume that the TCP connection
between the client and the video server has been established,
and the server receives an HTTP GET request from the client
for the first video fragment. The response packets do not
send to the client directly, and are intercepted by the mea-
surement proxy. At the slow start phase of TCP connec-
tion, the sending window in the video server is small. The
number of on-the-flight respond packets is not enough for
a probing round. Hence, the measurement proxy needs to
send pure TCP ACKs to the video server for fetching more
video data packets. In each probing round, the measure-
ment proxy buffers 2K data packets, S1, ..., S2K. Then, it
sends a TCP ACK with zero receive window to suppress the
server from sending out more video data packets and over-
flow the proxy. After a new probing round starts, the proxy
re-opens the sending window of the video server by sending
a duplicated TCP ACK with non-zero window size. In our
implementation, we set the window size to two times of the
Maximum Segment Size (MSS).

Existing tools for available bandwidth measurement usu-
ally adopt binary search technique for the sake of determin-

Meas. Proxy

(inner)

Server

Client

S
2

S
1

S
4

S
3

S
2
K

Server

C
1
'|0

C
1
'|2

C
1
'|2

C
1
'|4

C
1
'|(2
K

-2
)

S
(2
K

-1
)

C
1
'|2
K

C
1

'|2
K

W
in

2
M

S
S

S
(2
K

+
2
)

S
(2
K

+
1
)

S(4
K-1)

S
4
K

C
1
'|2
K

C
1
'|(2
K

+
2
)

C
1
'|(4
K

-2
)

C
1
'|4
K

time

Meas. Proxy

(outer)

Meas. Proxy

(outer)

Meas. Proxy

(inner)

...

S1...S2K S(2K+1)...S4K

...

C
1

'|2
K

W
in

0

C
1
'|2

C
1
'|2

K

...

C
1

'|4
K

W
in

0

C
1
'|2

K
+

1

C
1
'|4

K

... ...

...

...

...

...

C
1

'|4
K

W
in

2
M

S
S

...

...

S(4K+1)...S6K

 0 1 2 3 2k-2 2k-1 2k 4k-1...

 '0 '1 '2 '3 '2k-2 '2k-1 '2k '4k-1... '2k+1 '4k-2

 2k+1

...

...

Figure 3: Two probe rounds of sending rates.

ing the accurate available bandwidth in a short period [35].
However, the time required is still too long for seeking a
suitable video quality level. In fact, it is not necessary to
probe the network with all possible sending rates for decid-
ing whether a video quality level can be smoothly played by
the client under the current network condition. Instead, we
propose probing the network with a set of selected sending
rates that correspond with the bit rate of quality levels. By
doing so, we can quickly know whether a sending rate is sup-
ported by the network through the obtained RTT samples.

We adjust the packet sending rate by varying the inter-
departure time (IDT) of packets in each probing round. The
IDT γk of packet sending rate λk is computed by

γk = (W × 8)/λk, k = 0, 1, ... (1)

The RTT samples can be computed as the duration from
sending a TCP data packet to receiving a corresponding ac-
knowledgement packet (i.e., ACK). However, the TCP de-
layed acknowledgement mechanism [14] may bias the results
because it allows the receiving side to acknowledge multi-
ple data packets with a single TCP ACK. To address this
problem, the measurement proxy reorders the data packets
by pairs, so that clients send an ACK packet for every TCP
data packet. After the reordering, the packet sending se-
quence for the first probing round is {S2, S1, S4, S3, ...,
S2K, S(2K − 1)} with the sending time {ρ0, ρ1, ..., ρ2k−1}.
Assume there is no packet loss, the response packets for
the first probing round are {C1′|0, C1′|2, C1′|2, C1′|4, ...,
C1′|(2K − 2), C1′|2K} and arrive the measurement proxy
at time {ρ′0, ρ

′
1, ..., ρ

′
2k−1}, respectively. Hence, the RTT es-

timates are retrieved by {ρ′0 − ρ0, ρ
′
1 − ρ1, ...}.

4.3 Determining the Video Quality Levels
Before conducting the measurement, we can first measure

the network capacity of the path using existing tools, like
TRIO [15]. After that, we use the sending rate that is equal
to the capacity to do a round of measurement and calcu-
late the loss rate (i.e., Umax), the average RTT (i.e., Tmax),
and the variance of RTT (i.e., Vmax). Since the available
bandwidth should be less than or equal to the capacity, the
values {Umax, Tmax, and Vmax} serve as the upper bound
of these metrics. Similarly, we use the minimal sending rate
to perform another round of measurement and compute the
loss rate (i.e., Umin), mean RTT (i.e., Tmin), and variance

(i.e., Vmin). Since we assume that the available bandwidth
is larger than the minimal sending rate, these values {Umin,
Tmin, and Vmin} are the lower bound of the metrics.

When the sending rate is higher than the available band-
width, the probability of packet loss increases [22]. An ac-
ceptable sending rate leads to a smaller packet loss rate than
Umax. Using a packet sending rate higher than the available
bandwidth will inflate the mean RTT and the RTT variance,
both of which severely affect the average throughput of net-
work path. In contrast, a lower RTT and RTT variance
can be observed when a lower packet sending rate is used.
The performance will be acceptable to users. Therefore, we
adopt a conservative approach that bounds the mean RTT
and the RTT variance to determine whether a sending rate
is acceptable. More precisely, besides the loss rate should be
smaller than Umax, an acceptable sending rate should result
in a mean RTT less than Tmin+a×Vmin and a variance less
than b× Vmax + c× Vmin. In our experiments, we set a = 3
and b = c = 1/2. The highest acceptable packet sending
rate will be the preferred rate.

After each round of measurement, the measurement proxy
informs the latest preferred rate to clients for quality adap-
tation. If clients selects a quality level with bit rate lower
than the preferred rate, video rebuffering is unlikely to oc-
cur. However, sometimes, we choose quality level with bit
rate higher than the preferred rate for a short period of
time. We will elaborate our quality adaptation algorithm,
QDASH-qoe, in section 5.

4.4 Evaluating QDASH-abw

4.4.1 Experiment Setup
We have implemented a prototype of measurement proxy

by using a Linux bridge. The QDASH-abw module hooks to
the bridge with NFQUEUE target in iptables [4]. This design
enables the QDASH-abw module to capture, discard, or ma-
nipulate all the packets flowing between the video server and
clients. We inject a TCP MSS option with value W in the
TCP SYN packet such that the server sends W -byte video
data packets [27]. Once the QDASH-abw module recognizes
an HTTP GET, it buffers and resends video data packets ac-
cording to the probing methodology described in section 4.2.

In the following evaluation, we adopted a dumbbell client-
server architecture. A click modular router [23] was placed
between the video server and the client to control the avail-
able bandwidth. The packet size W and the packet train
length, K were set to 576 bytes and 25, respectively. The
packet sending rates, λ ∈ {λ0, λ1, λ2, λ3, λ4}, were respec-
tively selected as {0.3, 0.7, 1.5, 2.5, 3.5} Mbps which are the
bit rate of video quality levels adopted by Akamai Adap-
tive Video Streaming [18]. The client uses wget [8] to send
HTTP GET requests to download an MP4 video file from the
server. For better illustrating the variations of RTT in dif-
ferent packet sending rate during the whole experiments, the
sending rates were scheduled in a round-robin manner.

4.4.2 Experiment Result
Figure 4 shows the CDF of sampled RTTs under different

available bandwidth. In Figure 4(a), the available band-
width is 1 Mbps. When λ0 and λ1 are used to measure the
available bandwidth, the RTTs are similar and do not have
large variance compared to the results from other sending
rates. The reason is that λ0 and λ1 are less than the avail-

able bandwidth and the packets do not suffer from a long
queuing delay. On the other hand, when using λ2 to λ4, we
can observe much longer RTTs with larger variance. The
reason is that the bottleneck needs much more time to pro-
cess the packets and the queueing delay increase. In Figure
4(b), the available bandwidth is 2 Mbps and we can observe
similar results as Figure 4(a). The only difference is that
since λ2 is less than 2 Mbps the corresponding RTTs are
similar to those resulted from λ0 and λ1.

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

RTT /s

C
D

F

λ
0

λ
1

λ
2

λ
3

λ
4

λ
2

λ
0
 and λ

1
λ

3

λ
4

(a) 1 Mbps

0.02 0.03 0.04 0.05 0.06 0.07 0.08
0

0.2

0.4

0.6

0.8

1

RTT /s

C
D

F

λ
0

λ
1

λ
2

λ
3

λ
4

λ
0 λ

1

λ
2

λ
3

λ
4

(b) 2 Mbps

Figure 4: CDF of sampled RTTs under available
bandwidth of 1 Mbps and 2 Mbps.

Figure 5 illustrates the mean and the variance (expressed
in standard deviations, std) of sampled RTTs with different
packet sending rate, λ, and different available bandwidth.
The number on the x-axis, {0, ..., 4}, represents the packet
sending rate, {λ0, ..., λ4}, respectively. For each available
bandwidth, our system conducts the measurement with dif-
ferent packet sending rate. The x-axis indicates the sending
rate (λ0 to λ4) and the y-axis is the mean RTT. We plot the
standard deviations (std) of the RTT along with its mean
values.

In Figure 5(a), since the available bandwidth is 0.5 Mbps,
all except λ0 resulted in high average RTT with large std.
When the available bandwidth increases to 1 Mbps as shown
in Figure 5(b), the average RTTs and the corresponding std

resulted from λ2 to λ4 are still larger than that of λ0 and λ1

because λ2 to λ4 are larger than the available bandwidth.
However, compared to Figure 5(a), the average RTT and
the std for λ2 to λ4 decrease. In Figure 5(c) and 5(d), the
available bandwidth becomes 2 Mbps and 3 Mbps, respec-
tively. From these two figures, we can still observe that the
rate(s) higher than the available bandwidth led to larger
mean RTT and std than the rates less than the available
bandwidth. However, such difference decreases with the in-
crease of the available bandwidth. In Figure 5(e), the avail-
able bandwidth is 5 Mbps larger than all packet sending
rates. Therefore, the average RTTs and the std from differ-
ent sampling rate are similar.

We adopted available bandwidth changing profiles in [11]
to simulate changes in network conditions and examine the
behaviors of QDASH-abw. Figure 6 shows the time series of
mean RTT of different packet sending rates in three profiles
– persistent variations, short term variations with positive
spikes, and short term variations with negative spikes. The
black dashed line, with the legend A, in the figures plot the
emulated network available bandwidth.

Figure 6(a) plots the results and the emulated available
bandwidth for a persistent variations. We emulate this con-
dition by sequentially limit the available bandwidth to 5
Mbps for 20 seconds, 1 Mbps for 20 seconds, 5 Mbps for 30
seconds, and finally 2 Mbps until the experiment ends. For
the first 20 seconds, the available bandwidth is sufficient for
all the sending rates. The RTTs are close to the emulated
delay (20 ms). During the period of 20 to 40 seconds, the
sending rates λ2 to λ4 are higher than the available band-
width. The RTTs for these three sending rates inflate at
least 3 times than the RTT in the previous period. Then,
the RTTs for all the sending rates fall back to around 20 ms
after the available bandwidth restored to 5 Mbps. After 70
seconds, the available bandwidth is 2 Mbps, which is higher
than λ0 to λ2, but lower than that of λ3 to λ4. Hence, we
only observe inflated RTTs for λ3 and λ4.

Figure 6(b) shows a case of short term variations with
positive spikes. The available bandwidth for most of the
time in the experiment is 1 Mbps, except there is a 2-second
spike to 5 Mbps and a 5-second spike to 10 Mbps at time
30 seconds and 62 seconds respectively. The RTTs for λ2 to
λ4 are significantly higher than that of λ0 and λ1 when the
available bandwidth is 1 Mbps. In the 2-second spike, the
measured RTTs for λ3 and λ4 drops sharply to the same level
as λ0 and λ1. λ2 does not show a RTT decrease, because
there is no sample with λ2 during that spike. At the second
spike to 10 Mbps, the RTTs for all sending rates fall to the
same level, which means the available bandwidth is higher
than the highest sending rate.

In Figure 6(c), we illustrate the case of short term varia-
tions negative spikes. The available bandwidth at most of
the time is 5 Mbps, we emulate three spikes with duration of
2 seconds, 5 seconds, and 10 seconds to 1 Mbps at the time
30 seconds, 62 seconds, and 97 seconds, respectively. In the
2-second spike, the rates λ0 and λ2 shows RTT inflation.
But, the increase in RTT for λ0 is due to packet loss during
the moment of switching the available bandwidth setting in
the click router. Other sending rates are not scheduled dur-
ing this short spike. For the spike longer than 5 seconds, our
measurement can capture significant RTT inflation for the
sending rate higher than available bandwidth.

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Packet Sending Rate, λ

R
T

T
 /s

 (
m

ea
n

 a
n

d
 s

td
)

(a) 0.5 Mbps

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Packet Sending Rate, λ

R
T

T
 /s

 (
m

ea
n

 a
n

d
 s

td
)

(b) 1 Mbps

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0
0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

Packet Sending Rate, λ

R
T

T
 /s

 (
m

ea
n

 a
n

d
 s

td
)

(c) 2 Mbps

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0
0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

Packet Sending Rate, λ

R
T

T
 /s

 (
m

ea
n

 a
n

d
 s

td
)

(d) 3 Mbps

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0
0.02

0.022

0.024

0.026

0.028

0.03

Packet Sending Rate, λ

R
T

T
 /s

(m
ea

n
 a

n
d

 s
td

)

(e) 5 Mbps

Figure 5: The mean and the standard deviation of sampled RTTs with different sampling rate and different
available bandwidth.

4.5 Summary
QDASH-abw provides a novel probing methodology to de-

termine the highest quality level the network can support.
It fastens the existing available bandwidth measurements
by sending probes with a few selected packet sending rate.
Our evaluation shows that QDASH-abw is accurate and is
sensitive to available bandwidth variations. With a timely
estimation of the network condition, the video player at
the client can better select a suitable video quality levels
to download.

5. A QOE-AWARE SWITCHING ALGORITHM

5.1 Buffer-aware Strategies
Similar to other streaming technologies, such as UDP stream-

ing and classic HTTP streaming, a buffer is deployed to re-
duce the chance of playback interruptions. However, it is not
feasible to stream videos at a higher bit rate than the end-
to-end available bandwidth. In this case, congestion and
packet loss will occur at the bottleneck link. As a result,
spatial artifacts, such as blocking frames, are often seen due

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

0.12

Time /s

R
T

T
 /s

1

2

3

4

5

A
va

ila
bl

e
B

an
dw

id
th

 /M
bp

s

λ
0

λ
1

λ
2

λ
3

λ
4

A

(a) Persistent variations

0 10 20 30 40 50 60 70 80 90
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Time /s

R
T

T
 /s

0

2

4

6

8

10

A
va

ila
bl

e
B

an
dw

id
th

 /M
bp

s

λ
0

λ
1

λ
2

λ
3

λ
4

A

(b) Short term variations – positive spikes

0 20 40 60 80 100 120
0.02

0.04

0.06

0.08

0.1

Time /s

R
T

T
 /s

0

2

4

6

8

A
va

ila
bl

e
B

an
dw

id
th

 /M
bp

s

λ
0

λ
1

λ
2

λ
3

λ
4

A

(c) Short term variations – negative spikes

Figure 6: Evaluations with three network profiles.

to incomplete video decoding.
DASH transfers video data via TCP/IP. The reliable ser-

vice provided by TCP ensures the integrity of video data.
Video with a higher bit rate than the network through-
put can be delivered without loss of picture quality. Even
though the download rate is lower than the playback rate,
interruption-free playback can be sustained for a short pe-
riod of time by using the buffer. During this short time
period, we can first request the video fragments with qual-

ity level between the original and the final level to append
to the video buffer. By inserting this intermediate quality
levels, the original and final (lower) quality levels can be
bridged.

Figure 7 gives an example of how we can utilize the buffer
in quality level transitions. The y-axis at the left is the bit
rate of the different quality levels, while the y-axis at the
right is the measured network throughput. The x-axis rep-
resents the time. This example illustrates a video encoded
into a set of five quality levels, L ∈ {l0, l1, ..., l4}. The solid
line, dashed line, and the dot-dashed line represent the video
levels requested by the video player, the network through-
put, and the quality level shown to the user, respectively.

At time t0, we assume the video buffer of size B is full. The
video player plays and requests video fragments at quality
level l4. However, the network throughput decreases to a
level that is barely higher than the bit rate of quality level
l1 at t1. After the video player detects the change at t2,
existing adaptation algorithms [11] switch the quality level
to l1 in order to adapt to the network conditions. As a result,
users would perceive a sudden decline in picture quality. In
order to avoid this, we propose to insert an intermediate
level, for example l2, between l4 and l1. With the same
scenario, the download rate is higher than the playback rate
(i.e. the time to download the fragments,(t3 − t2), is longer
than the length of fragments (t5−t4)). If this situation were
maintained for a longer time period, rebuffering would occur.
However, while the video player is downloading fragments
of l2, it continues playing the buffered video at the original
quality. Therefore, we can use the buffered video playback
period, from t2 to t4, to download the video fragments at
the intermediate level.

l0

l1

l2

l3

l4

V
id

e
o
 q

u
a

lit
y
 l
e

v
e

l
b

it
 r

a
te

 /
M

b
p
s

Time /st1t2

M
e
a
s
u
re

d
 n

e
tw

o
rk

 t
h
ro

u
g
h
p
u
t
/M

b
p
s

t0 t3t4

Buffer consuming

Intermediate

level

t5

Requested

Video Level

Playing Video

Level

Network

Throughput

Figure 7: A quality transition.

Although intermediate levels can smooth out the picture
quality change, rebuffering events also reduce the QoE [29].
Downloading intermediate quality levels should also avoid
causing the buffer starvation. The maximum number of in-
termediate quality video fragments to be downloaded, nfrag,
is given by (2).

nfrag = ⌊tbuffer
β

sfrag
⌋, (2)

tbuffer =
B

(

1− β
sfrag

) , (3)

sfrag = λi × θ, (4)

where λi is the average bit rate of the intermediate qual-
ity level, li with a fragment length of θ seconds of video.
B is the video buffer size in second of video, and β is the
degraded network throughput. sfrag computes the average
size of each video fragment of quality level, li. tbuffer is
the time period for which the video buffer is able to off-
set the download of intermediate quality levels. Therefore,
nfrag gives the number of complete fragments that can be
downloaded within tbuffer.

5.2 Evaluating the QoE Impact on Quality Adap-
tation

In section 5.1, we have discussed how to utilize the buffer
to provide an intermediate quality level. Under this model,
we can have many possibilities by choosing different inter-
mediate levels, the number of intermediate levels, and buffer
sizes. However, the perception to users for each case is not
the same. We assess the QoE on the cases to identify the
impact of each factor.

To assess the QoE, common approaches employ objective
metrics, such as PSNR (Peak signal-to-noise ratio) and car-
rying out subjective experiments. However, objective met-
rics are not useful in our case, because objective metrics only
consider the spatial quality, but not the transition of qual-
ity. Therefore, we perform subjective assessments of human
subjects to evaluate the overall perceived quality (i.e., the
QoE).

As quality degradations are usually noticeable and cause
larger impact to the QoE [17], we carry out subjective as-
sessments on their perception of quality adaptation which is
possible under the same network conditions. To ensure the
consistency among subjects, we pre-define a set of rule sets
to profile the quality level changes. Then, the subjects rate
the QoE on different rule sets in terms of MOS.

5.2.1 Experiment Setup
We have implemented an experimental video delivery plat-

form to carry out subjective assessments. The video server
is installed with Debian 6.0, Apache web server 2.2.16, and
Adobe’s HTTP Origin Module [9] in order to support Adobe
Dynamic Streaming. In addition, the video player is devel-
oped using the OSMF (Open Source Media Framework) [5]
and SMP (Strobe Media Playback) [6]. We replace the orig-
inal quality adaption algorithm in the OSMF, so that the
quality level switching follows a pre-defined scenario.

We defined each scenario with a rule set, R, expressed by
(5). Each rule set contains at least one rule tuple represented
by < ℓ, d >, where ℓ is the quality level and d is the number
of bytes to be downloaded at that quality level. One rule
tuple is completed when the number of bytes downloaded at
the quality level is greater than or equal to the defined value.
The player proceeds to the next rule tuple until all the rule
tuples have been used. At this point, the quality level stays
at the last level. Therefore, we can emulate different kinds
of quality changes by defining these rule sets.

R = {< ℓ0, d0 >,< ℓ1, d1 >, ..., < ℓk, dk >} (5)

, k = 0, 1, 2, ...

5.2.2 Generation of Rule Sets
In our experiments, we emulate a sudden drop of through-

put from 4 Mbps to 400 Kbps after playing the first three

fragments. Therefore, the highest possible quality drop is
from l4 to l0. We also emulate three buffer sizes, 1 fragment,
3 fragments, and 8 fragments. These three buffer sizes are
typical values employed by DASH video players. Then, we
compute the maximum number of fragments supported at
the intermediate quality levels, nfrag, (2). Table 1 lists the
values of nfrag for our experiments. For 1-fragment buffer,
only quality levels below l2 allow downloading at least one
complete fragment during the buffer compensated period.

Three different initial quality levels, l4, l2, and l0, are em-
ployed in the experiments. As the subjects have not watched
the video before, varying the initial quality levels can give
an insight as to how the subjects perceive the picture quality
in a no reference context.

Table 2 lists the rule sets we employed in our experiments.
Except for R0, the subjects watch the first three fragments
of the video at the original quality level defined in the first
tuple of the rule set. Then, the video player plays all the
fragments in the buffer to emulate the consumption of the
buffer due to a decrease in throughput. After that one or two
intermediate quality levels are inserted and played. Finally,
the player reaches the target level, l0.

R0 is the base case providing the worst video quality. The
rule sets denoted with R1,x, R3,x, and R8,x are of buffer size
1, 3, and 8 fragments, respectively. R3,8, R3,9, and R3,10

have two intermediate levels. Half of the buffer is used to
load a higher quality level, and the remaining half is used to
load a lower quality level. Figure 8 depicts the quality level
transition of R1,4, R3,7, and R3,8. R1,4 and R3,8 have one and
two intermediate levels, respectively, while R3,7 starts with
quality level l2. The buffer of R8,4 and R8,5 is large enough
to allow the intermediate level to be used until the end of
video clip. Therefore, these two rule sets do not switch to
quality level l0.

Table 1: The maximum number of fragments sup-
ported at intermediate levels, nfrag.

Buffer size
Quality levels 1 (fragment) 3 (fragments) 8 (fragments)

l4 0 1 4
l3 0 2 6
l2 1 4 11
l1 5 15 42

5.2.3 Video Materials
We prepared 11 short video clips, each with a duration

of about 90 seconds. The video clips were taken from var-
ious kinds of sources, including sports, movie trailers, ani-
mations, and music videos. The quality of the source video
was at least equal to that of l4 in Table 3. We subsequently
downsampled the source video clips to other quality levels.
To emulate more realistic environment, we used the video
quality specification adopted by Akamai Adaptive Video
Streaming [1]. Table 3 shows the profiles of all the qual-
ity levels [18]. Adobe’s File Packager [9] was then used to
package the video files of different quality levels and trans-
late the encoded video files into fragments. We define frag-
ment length, θ, be four seconds of video, which is the default
value in the File Packager. Therefore, each video clip con-
tains about 23 (⌈90/4⌉) fragments.

Table 2: Experiment rule sets.

R0 < l0, 23× s0 >
R1,1 < l4, 3× s4 >, < l4, 1× s4 >, < l2, 1× s2 >, < l0, 17× s0 >
R1,2 < l4, 3× s4 >, < l4, 1× s4 >, < l1, 5× s1 >, < l0, 13× s0 >
R1,3 < l4, 3× s4 >, < l4, 1× s4 >, < l0, 19× s0 >
R1,4 < l2, 3× s2 >, < l2, 1× s2 >, < l1, 5× s1 >, < l0, 13× s0 >
R1,5 < l2, 3× s2 >, < l2, 1× s2 >, < l0, 19× s0 >
R3,1 < l4, 3× s4 >, < l4, 3× s4 >, < l4, 1× s4 >, < l0, 16× s0 >
R3,2 < l4, 3× s4 >, < l4, 3× s4 >, < l3, 2× s3 >, < l0, 15× s0 >
R3,3 < l4, 3× s4 >, < l4, 3× s4 >, < l2, 4× s2 >, < l0, 13× s0 >
R3,4 < l4, 3× s4 >, < l4, 3× s4 >, < l1, 15× s1 >, < l0, 2× s0 >
R3,5 < l4, 3× s4 >, < l4, 3× s4 >, < l0, 17× s0 >
R3,6 < l2, 3× s2 >, < l2, 3× s2 >, < l1, 15× s1 >, < l0, 2× s0 >
R3,7 < l2, 3× s4 >, < l2, 3× s4 >, < l0, 17× s0 >
R3,8 < l4, 3× s4 >, < l4, 3× s4 >, < l3, 1× s3 >, < l2, 2× s2 >, < l0, 14× s0 >
R3,9 < l4, 3× s4 >, < l4, 3× s4 >, < l3, 1× s3 >, < l1, 7× s1 >, < l0, 9× s0 >
R3,10 < l4, 3× s4 >, < l4, 3× s4 >, < l2, 1× s2 >, < l1, 7× s1 >, < l0, 9× s0 >
R8,1 < l4, 3× s4 >, < l4, 7× s4 >, < l4, 4× s4 >, < l0, 9× s0 >
R8,2 < l4, 3× s4 >, < l4, 7× s4 >, < l3, 6× s3 >, < l0, 7× s0 >
R8,3 < l4, 3× s4 >, < l4, 7× s4 >, < l2, 11× s2 >, < l0, 2× s0 >
R8,4 < l4, 3× s4 >, < l4, 7× s4 >, < l1, 13× s1 >
R8,5 < l2, 3× s2 >, < l2, 7× s2 >, < l1, 13× s1 >

l0

l1

l2

l3

l4

t1t0

R3,8

R1,4

R3,7

Figure 8: The quality transition of R1,4, R3,7, and
R3,8.

Table 3: Profiles of the video quality levels [18].
Parameters l0 l1 l2 l3 l4
Video height (pixel) 180 360 360 720 720
Video width (pixel) 320 640 640 1280 1280
Avg. video bit rate (kbps) 300 700 1500 2500 3500
Avg. audio bit rate (kbps) 160 128 128 128 128
Video frame rate (fps) 29.97 29.97 29.97 29.97 29.97
Video codec H.264 H.264 H.264 H.264 H.264
Audio codec AAC AAC AAC AAC AAC

5.2.4 Subject Assessment
Subjects were told that a sudden drop in network through-

put was emulated during each experiment. They were ad-
vised to watch the video in full screen, and not to pause
or time-shift the video playback. Each subject was asked
to watch 11 video clips, as mentioned in Section 5.2.3. We
applied one of the experiment rule sets from Table 2 to the
video playback. R0 was shown to all subjects. For the other
ten experiment sessions, the video player randomly selected
one of the experiment rule sets. Therefore, the sequence for
all subjects was randomized to mitigate the order effect.

After completing each playback, subjects were immedi-
ately required to answer questions on the video playback
they just watched. We first asked the subject if they no-

tice any quality change in video quality during the play-
back. Then, the subjects were asked to separately rate the
perceived quality on the following aspects – picture qual-
ity, sound quality, playback smoothness, and video content.
Finally, they were asked to give a composite score on the
overall perceived quality. We adopt a 7-point Likert scale,
from ‘1’ (Bad) to ‘7’ (Excellent), to measure the MOS for
higher granularity.

5.3 Assessment Results

5.3.1 Descriptive Statistic
A total of 24 subjects, 19 males and 5 females, partici-

pated in the subject assessment. All the subjects were vol-
unteers, and non-experts in video quality assessment, with
normal vision. They have the basic computer skills to use
the experiment platform. We obtained 242 valid samples of
rating on overall perceived quality. Figure 9 depicts the fre-
quency distribution of the overall QoE rating. No subject
rated ‘1’ and only two experiment sessions gave a rate of ‘7’.
We think this is reasonable as there was no service inter-
ruption and only quality degradation took place in all cases.
We have also validated that all the rule sets and the choice
of video were evenly distributed among all the samples.

1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

QoE Rating

F
re

qu
en

cy

Figure 9: The overall distribution of overall QoE
rating.

5.3.2 Comparisons on MOSes
We compare the QoE between all the rule sets by com-

puting the MOS difference as given by (6).

∆MOS(i, j) = MOS(Ri)−MOS(Rj) (6)

,where MOS(Rj) is the mean QoE rating obtained using
rule set Rj . In addition, we also determine the significance
level of the MOS difference, p, by using Independent-samples
t-test. Table 4 shows the MOS difference between rule sets,
∆MOS(column,row). Due to space constraints, we only
show the MOS differences at the significant level less than
0.1 (p <0.1).

Our results indicate that, R3,4, R8,4, and R8,5 obtain a
negative MOS difference with respect to most of the other
rule sets in the respective rows, meaning that these three
rule sets have a higher MOS compared to other cases and
outer-perform the other rule sets in terms of QoE. However,
no significant difference in MOS is observed among these
three cases. R8,4 and R8,5 do not drop to the lowest quality
level, l0, at the end of the video playback. Therefore, the
higher QoE could be due to the higher final picture quality.
The MOSes of R8,4, and R8,5 are significantly higher than
that of R8,1 which plays the longest time in highest qual-
ity level. This shows that providing as high video quality
as possible does not lead to the highest QoE. Surprisingly,
R0, which plays at the lowest quality level throughput the
whole playback, does not obtain the lowest MOS. As there is
no quality transitions, the subjects did not know they were
watching the video with the lowest quality.

Rule sets without intermediate quality levels usually have
lower perceived quality. One example is that R3,5 has lower
MOS than six other rule sets with intermediate levels. How-
ever, using two intermediate levels (R3,8, R3,9, R3,10) shows
only slight impact in improving the QoE. Among the three
rule sets, the QoE for R3,8 is significantly higher than five
other rule sets.

On the other hand, large video buffer size is not necessary
improve the QoE. Many rule sets with small buffer size have
no significant difference in MOS to those with large buffer
size. One example is R3,4 which provides better perceived
quality than R8,1. However, larger video buffer consumes
more resources at the client-side, such as cache memory.

To summarize the results, inserting intermediate levels
usually gives a better QoE, while one intermediate level gives
the highest perceived quality. A small video buffer can only
have short period to have intermediate level, and usually
produces lower QoE.

5.4 Designing an QoE-aware Switching Algo-
rithm

From the results obtained in section 5.3.2, the QoE can be
increased by inserting intermediate levels in between qual-
ity level down switching. Hence, we formulate and propose
a QoE-aware switching algorithm, which is shown in Algo-
rithm 2, by considering the intermediate levels and video
buffer size.

This algorithm is run before deciding the quality level of
the next video fragment. We obtain the supported quality
level, lsupport, by using QDASH-abw. If lsupport is lower
than the current quality level, lcur, by two levels, we com-
pute the number of fragments of intermediate levels to be
downloaded, nfrag, by using (2)-(4). We choose the interme-
diate level as one level above the target quality level. So, the

period of watching in intermediate level can be maximized.
It also shows effective in the QoE assessment in section 5.3.2.

Algorithm 2 A QoE-aware quality adaptation algorithm

lsupport: The quality level current network condition can sup-
port
lcur: Current quality level
lnxt: Proposed quality level
tbuffer: Number of intermediate quality video fragments to be
downloaded
B: Buffer size in video second
b(l): Bit rate of quality level l
s(l, θ): Average size of 1 video fragment at quality level l
nfrag: Number of fragments for the proposed quality level
if lsupport < lcur then

if (lcur − lsupport) > 1 then

tbuffer ←
B

1−b(lsupport)/s(lsupport,θ)

nfrag ← ⌊tbuffer × b(lsupport)/s(lsupport, θ)⌋
if nfrag > 0 then

lnxt ← lsupport + 1
else

lnxt ← lsupport
end if

else

lnxt ← lsupport
end if

else

lnxt ← lsupport
end if

6. RELATED WORKS
Application level throughput measurement is widely adopted

for adapting the video quality. However, throughput mea-
surement can be largely fluctuated by packet losses. Liu et
al. [26] proposed an adaption algorithm based on smoothed
network throughput to mitigate these fluctuations. How-
ever, the smoothing technique reduce the sensitivity of re-
sults.

Besides, adaptation requiring modification of servers are
usually harder to deploy to existing DASH systems. Kuschnig
et al. [24] evaluated three adaptation schemes for DASH of
H.264/SVC – application-layer bandwidth estimation, TCP
stack-based bandwidth estimation, and deadline-driven adap-
tive streaming. The latter two algorithms are harder to de-
ploy and are not compatible with existing DASH system.
They require to re-encode the existing H.264/AVC videos
and modify the video server. Feedback control is introduced
in [19] to feedback information to the video server for adjust-
ing the quality levels and its sending buffer at the server-side.

Cranley et al. [16, 17] investigated the user perception
on quality adaptation and proposed the Optimal Adapta-
tion Trajectory (OAT) to maximize the QoE of UDP-based
video streaming. UDP-based video streaming degrades the
picture quality of video in poor network conditions, while
DASH, which is TCP-based, reflects in rebuffering. The
user perception can be very different between both types of
streaming.

7. CONCLUSION
In this paper, we proposed a comprehensive QoE-aware

DASH system - QDASH. It consists of two modules. QDASH-
abw is a novel probing methodology which is tailor-made
for DASH system to measure the network. By reducing the
choice of packet sending rate, QDASH-abw is sensitive to

Table 4: The MOS difference, ∆MOS(column,row).

R0 R1,1 R1,2 R1,3 R1,4 R1,5 R3,2 R3,3 R3,5 R3,6 R3,7 R3,10 R8,1 R8,2

R3,1 -1.03†
R3,3 -0.70†
R3,4 -1.03* -1.25* -1* -0.88† -1.23** -0.93* -1.67** -0.97* -1.25** -1.03* -1.21* -0.98*
R3,7 -0.92† -0.9† -1.33* -0.92†
R3,8 -0.92† -0.9* -1.33** -0.92* 1.12†
R3,9 -1.23† -0.82†
R3,10 0.88†
R8,2 -1.03*
R8,3 -1†
R8,4 -1.12* -1.33** -1.10* -0.96* -1.32** -1.02* -1.75*** -1.05** -1.33** -1.12* -1.29** -1.06* -0.72†
R8,5 -1.52* -1.27* -1.15† -1.5* -1.2* -1.93* -1.23* -1.52** -1.3* -1.48* -1.24†

Note: †p <0.1, ∗p <0.05, ∗ ∗ p <0.01, ∗ ∗ ∗p <0.001

the change in available bandwidth and provides accurate
decisions on which the video quality levels are supported by
current network conditions. On the other hand, we exam-
ined the effects of QoE by video quality adaptation. We
found that users is favored to have intermediate levels in
between quality drops. We thus proposed QDAHS-qoe, a
QoE-aware quality adaptation algorithm.

8. ACKNOWLEDGMENTS
We thank the three anonymous reviewers for their critical

comments, Michael Cumming for editing the paper, and all
the participants in the experiments. This work is partially
supported by a grant (ref. no. ITS/355/09) from the In-
novation Technology Fund in Hong Kong and a grant (ref.
no. H-ZL17) from the Joint Universities Computer Centre
of Hong Kong.

9. REFERENCES
[1] Akamai HD Video Demo.

http://wwwns.akamai.com/hdnetwork/demo/flash/default.html.

[2] comScore releases May 2010 U.S. online video rankings.
http://www.comscore.com/Press_Events/Press_Releases/2010/6/

comScore_Releases_May_2010_U.S._Online_Video_Rankings.

[3] F4V/FLV Technology Center.
http://www.adobe.com/devnet/f4v.html.

[4] Netfilter. http://www.netfilter.org.

[5] Open Source Media Framework (OSMF). http://www.osmf.org.

[6] Strobe Media Playback. http://sourceforge.net/adobe/smp.

[7] Tcpdump/libpcap. http://www.tcpdump.org.

[8] wget. http://www.gnu.org/s/wget.

[9] Adobe. HTTP Dynamic Streaming on the Adobe Flash
Platform.
http://www.adobe.com/products/httpdynamicstreaming.

[10] Adobe. Video technology center, delivery: Progressive
download.
http://www.adobe.com/devnet/video/progressive.html.

[11] S. Akhshabi, A. Begen, and C. Dovrolis. An experimental
evaluation of rate-adaptation algorithms in adaptive streaming
over HTTP. In Proc. ACM MMSys, 2011.

[12] Apple. HTTP Live Streaming.
http://developer.apple.com/resources/http-streaming.

[13] A. Begen, T. Akgul, and M. Baugher. Watching video over the
Web: Part 1: Streaming Protocols. IEEE Internet Comput.,
15(2):54 – 63, 2011.

[14] R. Braden. RFC1122. Requirements for Internet Hosts –
Communication Layers, 1989.

[15] E. Chan, A. Chen, X. Luo, R. Mok, W. Li, and R. Chang.
TRIO: Measuring asymmetric capacity with three minimum
round-trip times. In Proc. ACM CoNext, 2011.

[16] N. Cranley, L. Murphy, and P. Perry. User-perceived
quality-aware adaptive delivery of MPEG-4 content. In Proc.
ACM NOSSDAV, 2003.

[17] N. Cranley, P. Perry, and L. Murphy. User perception of
adapting video quality. Int. Journal of human-computer
studies, 64(8):637 – 647, 2006.

[18] L. De Cicco and S. Mascolo. An experimental investigation of
the Akamai adaptive video streaming. In Proc. USAB, 2010.

[19] L. De Cicco, S. Mascolo, and V. Palmisano. Feedback control
for adaptive live video streaming. In Proc. ACM MMSys, 2011.

[20] N. Feamster, D. Bansal, and H. Balakrishnan. On the
interactions between layered quality adaptation and congestion
control for streaming video. In Proc. Packet Video, 2001.

[21] M. Jain and C. Dovrolis. End-to-end available bandwidth:
measurement methodology, dynamics, and relation with TCP
throughput. IEEE/ACM Trans. on Networking, 11(4):537 –
549, 2003.

[22] L. Kleinrock. Queueing Systems. Volume 1: Theory.
Wiley-Interscience, 1975.

[23] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The click modular router. ACM Trans. Comput.
Syst., 18(3):263–297, 2000.

[24] R. Kuschnig, I. Kofler, and H. Hellwagner. An evaluation of
TCP-based rate-control algorithms for adaptive Internet
streaming of H.264/SVC. In Proc. ACM MMSys, 2010.

[25] A. Lie and J. Klaue. Evalvid-RA: trace driven simulation of
rate adaptive MPEG-4 VBR video. ACM Multimedia Systems
Journal, 14:33–50, 2008.

[26] C. Liu, I. Bouazizi, and M. Gabbouj. Rate adaptation for
adaptive HTTP streaming. In Proc. ACM MMSys, 2011.

[27] X. Luo, E. Chan, and R. Chang. Design and implementation of
TCP data probes for reliable and metric-rich network path
monitoring. In Proc. USENIX Annual Tech. Conf. 2009, 2009.

[28] Microsoft. IIS Smooth Streaming technical overview.
http://learn.iis.net/page.aspx/626/

smooth-streaming-technical-overview/.

[29] R. Mok, E. Chan, and R. Chang. Measuring the quality of
experience of HTTP video streaming. In Proc. IEEE/IFIP IM
(pre-conf.), 2011.

[30] R. Mok, E. Chan, X. Luo, and R. Chang. Inferring the QoE of
HTTP video streaming from user-viewing activities. In Proc.
of ACM SIGCOMM W-MUST, 2011.

[31] M. Pinson and S. Wolf. Comparing subjective video quality
testing methodologies. Visual Communications and Image
Processing, 5150(1):573 – 582, 2003.

[32] H. Riiser, P. Vigmostad, C. Griwodz, and P. Halvorsen. Bitrate
and video quality planning for mobile streaming scenarios using
a GPS-based bandwidth lookup service. In IEEE ICME, 2011.

[33] H. Schwarz, D. Marpe, and T. Wiegand. Overview of the
scalable video coding extension of the H.264/AVC standard.
IEEE Trans. on Circuits and Systems for Video Technology,
17(9):1103 – 1120, 2007.

[34] T. Stockhammer. Dynamic adaptive streaming over HTTP –:
Standards and design principles. In Proc. ACM MMSys, 2011.

[35] X. Xing, J. Dang, S. Mishra, and X. Liu. A highly scalable
bandwidth estimation of commercial hotspot access points. In
Proc. IEEE INFOCOM, 2011.

[36] M. Zink, O. Künzel, J. Schmitt, and R. Steinmetz. Subjective
impression of variations in layer encoded videos. In Proc.
IWQoS, 2003.

