
Appraising the Delay Accuracy in Browser-based Network
Measurement

Weichao Li, Ricky K. P. Mok, Rocky K. C. Chang, and Waiting W. T. Fok
Department of Computing

The Hong Kong Polytechnic University
{csweicli|cskpmok|csrchang|cswtfok}@comp.polyu.edu.hk

ABSTRACT
Conducting network measurement in a web browser (e.g., speedtest
and Netalyzr) enables end users to understand their networkand
application performance. However, very little is known about the
(in)accuracy of the various methods used in these tools. In this pa-
per, we evaluate the accuracy of ten HTTP-based and TCP socket-
based methods for measuring the round-trip time (RTT) with the
five most popular browsers on Linux and Windows. Our measure-
ment results show that the delay overheads incurred in most of the
HTTP-based methods are too large to ignore. Moreover, the over-
heads incurred by some methods (such as Flash GET and POST)
vary significantly across different browsers and systems, making it
very difficult to calibrate. The socket-based methods, on the other
hand, incur much smaller overhead. Another interesting andim-
portant finding is thatDate.getTime(), a typical timing API in
Java, does not provide the millisecond resolution assumed by many
measurement tools on some OSes (e.g., Windows 7). This results
in a serious under-estimation of RTT. On the other hand, sometools
over-estimate the RTT by including the TCP handshaking phase.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network Opera-
tions; C.4 [Performance of Systems]: Measurement Techniques

Keywords
Delay; Measurement; Accuracy; Web

1. INTRODUCTION
The accuracy of a network measurement system can be defined

as how the measurement results deviate from the real networkper-
formance. Following ISO 5725 [3], a network measurement can
be considered more accurate if its produced results are closer to
the actual values (trueness) and are more consistent than the others
(precision or repeatability). Measurement accuracy depends on a
number of factors, including the correctness of adopted methodol-
ogy, time resolution, system load, and so on. To ensure high accu-
racy, network measurement is traditionally performed in dedicated

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this workowned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
IMC’13, October 23–25, 2013, Barcelona, Spain.
Copyright 2013 ACM 978-1-4503-1953-9/13/10 ...$15.00.
http://dx.doi.org/10.1145/2504730.2504760.

hosts with careful resource management [9, 24], and the network
performance is sampled using Poisson process [4, 5, 6, 23, 30].

Recently, more measurement tools are available to end usersto
measure their network performance and diagnose problems. Such
efforts include various speedtest services, residential broadband mea-
surement [34], and several host-based tools [17, 32]. In particular,
many of these tools, such as Netalyzr [19] and Ookla’s speedtest
[1], take advantage of browser’s ubiquity by implementing them
in browsers. Thesebrowser-based measurement tools usually can
measure the network round-trip time (RTT) and throughput. Some
can even measure packet loss and reordering rates. The effort to-
wards this direction is recently stepped up by Fathom [11] which
provides a number of APIs for network measurement functions.

Although browser-based measurement has gained popularityam-
ong end users, very little is known about the (in)accuracy ofvarious
methods used in these tools. This paper focuses on the accuracy of
network delay measured by these tools, because a browser-based
tool could easily inflate the network delay measurement (butnot so
much for loss and reordering). The delay obtained on the browser
level may over-estimate (or under-estimate) the actual RTTdue to
a number of reasons. The inflated delay will also affect jitter, band-
width measurement, and passive measurement methods (e.g.,[13,
14]) that assume a very small inflation.

We quantify the delay inflation by investigating thedelay over-
head on the browser side, which is the difference between the value
measured by browser-based tools and the actual value (calculated
through packet capturing). The amount of this overhead depends
on how the rendering engine (e.g., JavaScript engine) interprets the
measurement code and invokes system function calls. We study ten
different methods (seven based on HTTP and three on TCP sock-
ets, including WebSocket) which are usually implemented using
JavaScript (native in browsers), Flash, and Java applet. Weimple-
ment these methods and experiment with the five major browsers
on Windows and Ubuntu.

Our measurement results show that the socket-based methods
incur much lower delay overhead than the HTTP-based methods
in general. The Flash GET and POST methods are most unre-
liable, because their overheads are the highest among all meth-
ods, and their overhead variabilities are also the highest across
different browsers and systems. WebSocket, on the other hand,
provides the most accurate and consistent RTT measurement in
the context of JavaScript and DOM (Document Object Model).
Another interesting finding is that the typical timing API inJava,
Date.getTime(), cannot return precise system time in some
OSes (e.g., Windows 7). Although this function is supposed to pro-
vide timestamps with millisecond resolution, we find that the actual
granularity is not constant. It can be one of the two values observed
in our experiments: 1 ms or∼15 ms, and each possible value will

last for a period of time (several minutes) before changing to other
values. Consequently, the timestamps produced by this API can
significantly under-estimate or fluctuate the measured RTTs.

In this paper, we report two important cases with detailed in-
vestigations. First, we discover that some HTTP-based methods
over-estimate the RTT, because they include the TCP handshak-
ing in the delay. Second, we study the effect of timing meth-
ods in the Java applet case by replacing the timing function with
System.nanoTime(). The experiment results show that the
under-estimation of RTT disappears after introducing the new tim-
ing function. Furthermore, the new implementation introduces very
small and consistent delay overhead. In particular, the variation of
delay overhead in the socket-based measurement can approximate
to 0 ms, meaning that it can estimate the RTTs accurately as what
WinDump can do.

The outline of this paper is as follows. In Section 2, we first
survey the measurement methods used in browser-based network
measurement tools and services. We then describe our measure-
ment setup in Section 3, followed by a report of the results inSec-
tion 4. Based on our evaluation, we summarize several practical
considerations in Section 5. After highlighting the related works in
Section 6, we conclude the paper in Section 7.

2. BROWSER-BASED NETWORK MEASURE-
MENT

A browser-based network measurement tool can generally pro-
vide many different services. Netalyzr [19], for example, pro-
vides network-layer information (e.g., RTT and path MTU), ser-
vice reachability, and DNS measurement. In this paper, we con-
sider the accuracy of the network RTT measurement, because a
browser-based tool, being operated on the application layer, may
significantly inflate the actual network RTT. The inflation also af-
fects jitter and throughput (Tput) measurement. However, we do
not anticipate such impact on packet loss and reordering measure-
ment.

We have studied the RTT measurement methods employed by a
number of browser-based tools, such as Netalyzr [19], Janc’s meth-
ods [16], and How’s My Network (HMN) [31], and speedtest ser-
vices, including Speedof.me [2] and Ookla [26, 25], by inspect-
ing their codes and the packets exchanged between browsers and
servers. Their methods comprise a preparation phase and a mea-
surement phase, as shown in Figure 1. In the preparation phase, the
browser first loads from a web server a container page containing a
piece of measurement code. In the measurement phase,

1. (Send) The measurement code is executed at the browser to
instantiate an object which sends a “request” message (e.g.,
HTTPGET or binary data) to the origin server or another web
server to elicit a “response” message. The timestamp (t

B

s) is
recorded just before sending the request message which may
be sent in one IP packet (for RTT measurement) or multiple
IP packets (for throughput measurement).

2. (Receive) The web server that receives the response message
returns a “response” message (e.g., HTTP response message
or binary data) to the browser. The timestamp (t

B

r) is recorded
immediately after receiving the response message. The RTT
is then estimated bytBr − t

B

s . Similar to the send case, the
response message may be sent in one or more IP packets.

2.1 HTTP-based and socket-based methods
The methods for a browser to send a request message to a web

server for RTT measurement can be classified into HTTP-based
and socket-based. Table 1 summarizes eleven such methods and

Client

Web Server

Application

Network Stack

ts
B

tr
B

ts
N

tr
N

Container page Request Response

Preparation Measurement

Figure 1: Two phases in browser-based network measurement.

the tools that use them. The HTTP-based method could be im-
plemented through JavaScript, Flash, or Java applet. A JavaScript
code imbedded in the container page creates an XHR object and
calls thesend() function to send out an HTTP request. The ob-
ject recordstBs using the JavaScript functionDate.getTime()
and uses theonreadystatechange event listener to determine
whether the response has been received for recordingt

B

r . Another
JavaScript method is based on DOM element that first recordst

B

s

before inserting a new DOM element to the page using a<script>
tag or tag. This tag points to a specified URL to download
the requested object. A successful loading triggers anonload
event which prompts the logging oftBr . Flash, on the other hand,
provides classURLLoader to handle HTTP data, and Java applet
offers classURL. Both of them provide functionDate.getTime()
to log the current timestamps, and they recordt

B

s just before send-
ing out the request. Flash detects the completion of receiving the re-
sponse via functionaddEventListener for recordingtBr . Al-
though there is no such event listener in Java applet, the completion
can be detected by reading the response content.

The socket-based method, on the other hand, establishes net-
work connections/associations through TCP or UDP sockets for
exchanging binary data. TCP socket is supported by Flash, Java
applet, and WebSocket, whereas UDP socket is only supportedby
Java applet. Flash manipulates network socket with classSocket.
This class also provides functionaddEventListener which
detects data arrival. In Java applet, the sockets are created via class
Socket for TCP andDatagramSocket for UDP. The times-
tamps are recorded after the receive function call. WebSocket pro-
vides its functionality through JavaScript. WebSocket is like TCP
socket on the abstraction level, except that the data transmissions
are based on messages. Therefore, WebSocket obtains the times-
tamps in a similar way as Flash and Java applet.

All the HTTP-based methods, except for DOM, suffer from the
restriction imposed by the same-origin policy which prevents a
browser from accessing other servers except the original one host-
ing the container page. However, Flash can bypass this restriction
through the Flash cross-domain policy, and Java applet’s approach
is through a signed Java applet. On the other hand, except forFlash,
the socket-based methods are not affected by the same-origin pol-
icy, but they are required to open service ports for socket connec-
tions. Another important consideration is that Flash and Java ap-
plet, as the third-party plug-ins, are not supported in mobile com-
puting platforms. As a result, WebSocket is the remaining choice
for performing socket-based measurement in both fixed and mobile
network platforms.

2.2 Measuring the delay overhead
The main objective of this paper is to accurately measure the

delay overhead incurred at browsers when measuring RTT. Back
to Figure 1, supposing that the request and response messages are
sent in one packet each, the network RTT is given by the difference

Table 1: A summary of the browser-based network measurementmethods and tools.

Approaches Technology Availability Methods

Subject to
the same-

origin policy
by default?

Measured path-
quality metrics Tools / Services

HTTP-
based

XHR Native GET Yes RTT, Tput Speedof.me [2], BandwidthPlace [21]
Janc’s methods [16]POST Yes RTT, Tput

DOM Native GET No RTT, Tput [16], [21], Wang’s method [35]

Flash Plug-in GET Yes∗ RTT, Tput Speedtest [26], AuditMyPC [7], Speedchecker [33]
Bandwidth Meter [10], InternetFrog [15]POST Yes∗ RTT, Tput

Java applet Plug-in GET Yes∗ RTT, Tput
POST Yes∗ RTT, Tput

Socket-
based

WebSocket Native TCP No RTT, Tput

Java applet Plug-in
TCP No RTT, Tput Netalyzr [19], HMN [31], JavaNws [20],

Pingtest [25], NDT [22], AuditMyPC [8]UDP No RTT, Tput, Loss
Flash Plug-in TCP Yes∗ RTT, Tput [26]

Note:∗ The same-origin policy can be bypassed.

of the packet’s receive and send timestamps which is measured by
WinDump and tcpdump:tNr −t

N

s . Since browsers cannot access to
network stack directly, the measured RTT is based ont

B

r − t
B

s . The
time resolution for this browser-level measurement is usually as-
sumed to be 1 ms, determined by the functionDate.getTime()
(we will discuss the real-time granularity of this functionfor Java
applet in Section 4.2). The accuracy of the browser-level RTT mea-
surement depends on several factors:

1. Accuracy of the timing function invoked by the adopted mea-
surement method,

2. The delay for the browser to propagate the request message
to the network stack and the delay for delivering the response
message to the browser, and

3. The behavior of how the browser sends the message, for ex-
ample, whether the delay includes the time for establishinga
TCP connection.

To appraise the delay accuracy in browser-based network mea-
surement, we therefore measure the delay overhead as

∆d = (tBr − t
B

s)− (tNr − t
N

s). (1)

Besides affecting the RTT measurement, the delay overhead,if not
stable enough, will also affect the jitter measurement. Moreover,
the actual round-trip throughput could be seriously under-estimated
by an inflated RTT.

3. EXPERIMENT SETUP
In measuring the delay overhead incurred on the RTT measure-

ment, we consider all the HTTP/TCP measurement methods in Ta-
ble 1. To make the comparison more comparable, we do not include
Java’s UDP socket method. Besides the ten measurement methods,
we investigate the consistency of delay overhead of a given method
across browsers and systems. Ideally, a browser-based toolis ex-
pected to incur similar delay overhead, regardless of whichbrowser
and system it is operated on. To this end, we consider the five ma-
jor browsers on Windows 7 and Ubuntu in Table 2 with the Flash
and Java applet plug-in configurations. Note that the IE and Safari
versions used in the experiments do not support WebSocket. Al-
though the latest IE 10 and Safari 6 both support WebSocket, we
use IE 9 and Safari 5 instead, because IE 9 is the default browser
for Windows 7 and Safari 6 is not available in Windows 7. For fair
comparison, what we have tested are all 32-bit browsers, because
some of the browsers do not provide 64-bit version.

We set up a testbed consisting of two machines connected to a
switch by 100-Mbps Ethernet, as shown in Figure 2. Both machines
have the same hardware configuration: equipped with a 1.86GHz

Table 2: Configurations of the browsers and systems used in the
experiments.

OS Browsers Version Flash
Java

applet
Web

Socket

Windows

Chrome 23.0 11.7.700 1.7.0
√

Firefox 17.0 11.5.502 1.7.0
√

IE 9.0.8 11.5.502 1.7.0 ×
Opera 12.11 11.5.502 1.7.0

√

Safari 5.1.7 11.5.502 1.7.0 ×

Ubuntu
Chrome 23.0 11.5.31 1.6.0

√

Firefox 17.0 11.2.202 1.6.0
√

Opera 12.11 11.2.202 1.6.0
√

Intel Core 2 Duo processor (E6320) and 2GB memory. One is a
dual-boot system with Windows 7 and Ubuntu 12.04 LTS, and is in-
stalled with the five browsers. The other machine hosts an Apache
web server version 2.2 on Ubuntu 10.04. We also introduce an ad-
ditional delay of 50 ms on the server side to simulate the Internet
environment. Without such delay, the link RTT (< 1 ms) is too
small to sample. Beyond that, as we shall see in the next section,
this delay is a major factor determining the amount of RTT infla-
tion when a measurement method includes TCP handshaking in the
delay measurement.

Request

Response

Web serverClient Switch

Figure 2: Testbed Setup.
We have prepared a container page using PHP or HTML for each

measurement method imbedded with JavaScript code, Flash object,
or Java applet1. The entire suite of experiments is executed auto-
matically. Each browser program is executed on command line, and
it retrieves from the server a container page for a given measure-
ment method. When the browser renders the page, it executes the
measurement code to instantiate the required object which sends
a request message to the same web server which returns a reply
message with the 50 ms delay. As discussed in section 2, the mea-
surement code recordstBs and t

B

r . At the same time, the client
machine runs WinDump/tcpdump to capturet

N

s andtNr .

1Source codes are available athttp://www4.comp.polyu.
edu.hk/~oneprobe/src.php

Considering the possible impact on the browser to instantiate
the object for the first RTT measurement, we conduct a second
RTT measurement immediately after the first one and reusing the
same object. Therefore, for each setting, we obtain two setsof de-
lay overheads, denoted by∆d1 and∆d2. Moreover, we choose
small request and reply messages, each of which can be sent inone
packet. This setting allows us to remove other possible delay due
to data segmentation, send and receive buffering, and throttling by
the send window. During the measurement period, we also ensure
that the network was free of cross traffic, packet loss, and retrans-
missions. Although the web server could bias the RTT, the bias, if
any, is mitigated by the subtraction oftBr − t

B

s andtNr − t
N

s in the
same round of measurement.

For each experiment, we run it for 50 times and compute from
them useful statistics, such as minimum, median, and 25% and75%
percentiles. We do not record the system load, but we ensure that
all the necessary processes (e.g.,explorer.exe in Windows,
init in Linux, and so on) run in the background. Besides, some
other programs, such as packet capturing program and automation
scripts, need to be dynamically invoked during the measurement
procedure. The browsers themselves also consume resourcesto
render the measurement objects. As a result, the delay overheads
may still vary, depending on how sensitive the measurement meth-
ods are to these system loads.

4. MEASUREMENT RESULTS
We plot the ten sets of measurement results (one per measure-

ment method) in Figure 3 using box-and-whisker plots. The first
row includes the four methods using native features in browsers.
The second comprises the Flash methods, and the third the Java ap-
plet methods. Each plot (except for WebSocket) includes themea-
surement by the eight browser-OS cases which are identified by the
browser’s initial (system’s initial). They are then followed by∆d1

(in red) or∆d2 (in cyan). For example, “C (U)∆d1” refers to∆d1

obtained by Chrome in Ubuntu.
In each box-and-whisker plot, the top and bottom of the box are

given by the 75th percentile and 25th percentile, and the mark in-
side is the median. The upper and lower whiskers are the maxi-
mum and minimum, respectively, after excluding the outliers. The
outliers above the upper whiskers are those exceeding 1.5 ofthe
upper quartile, and those below the minimum are less than 1.5of
the lower quartile.

Figures 3(a), 3(b), 3(c), 3(e), 3(f), 3(h), and 3(i) for the HTTP-
based methods show that the delay overhead generally cannotbe
ignored. The XHR methods’ delay overheads range from a few
milliseconds to tens of milliseconds. The overheads in Flash are
extremely high. The median overheads are between 20 ms and 100
ms. Even for the minimum overheads, they can reach as high as
100 ms (∆d1 of Opera in both Windows and Ubuntu). The DOM
methods achieves a better result than XHR and Flash. Most of the
median overheads are smaller than 5 ms. The Java applet methods
differ from the previous group in that they could (e.g., Firefox and
Opera) under-estimate the RTT (i.e., negative overhead) byas much
as 5 ms.

Another important result concerns the consistency of a measure-
ment method across different browsers and systems. If the over-
heads are dependent on specific browsers and systems, it willmake
the calibration very difficult. The delay overheads for the HTTP-
based methods generally see a very high variability across browsers
for the Flash methods. The DOM method provides the most consis-
tent overhead across all browsers, especially those on Ubuntu. The
two Java applet methods are also quite consistent on the Ubuntu but
less consistent on Windows.

On the other hand, Figures 3(d), 3(g), and 3(j) show that the
delay overheads incurred by the socket-based methods are consid-
erably small. The median overheads are mostly smaller than 1ms.
Nevertheless, the overheads for some browsers fluctuate within a
range of around 10 ms (e.g., Java applet for Firefox in Windows).
Overall, the WebSocket method achieves the most stable result, ex-
cept for Opera (W)∆d1. Similar to the other two Java applet meth-
ods, the Java applet socket method will under-estimate the delay,
especially those in Windows.

4.1 The effect of network behavior on HTTP-
based methods

The major difference between the HTTP-based and socket-based
methods is that the former needs to parse the additional HTTP
header. However, parsing HTTP alone cannot explain those high
delay overheads. We consider some of these cases next and ana-
lyze other possible reasons responsible for the RTT inflation.

Table 3 shows the median overheads for the Flash GET and
POST methods, obtained by Opera in Windows and Ubuntu. Al-
though the data are collected from different OSes, the delayover-
heads behave similarly. For the GET method, O(W) and O(U) both
suffer from a very large∆d1 (> 100 ms) but a relatively small∆d2

(< 20 ms). For the POST method, the median∆d1 is still high, but
the median∆d2 is much larger than that for the GET method.

Table 3: Median∆d1 and∆d2 for the Flash HTTP methods in
Opera.

O(W) O(U)

GET ∆d1 101.1 105.3
∆d2 19.8 19.8

POST ∆d1 100.1 105.6
∆d2 69.6 68.1

The packet capture files show that Opera opens a new TCP con-
nection to handle the HTTP request issued by the Flash objectfor
the first RTT measurement, therefore inflating the∆d1 measure-
ment. In the GET method, this existing connection can be reused
for the second measurement. Therefore, the∆d1 measurement ex-
cludes the TCP handshaking. However, a new connection will still
be opened for the POST method. We confirm this by subtracting 50
ms, the simulated network delay, from∆d2 in the POST method,
the result (∼20 ms) is almost the same as the GET method. More-
over, we compare the behavior of other browsers and find that even
for the first RTT measurement they will reuse the TCP connection
for downloading the container page in the preparation phase, thus
resulting in a much lower overhead.

4.2 The effect of timestamp granularity
From Figure 3(h), 3(i), and 3(j), all three Java applet methods

suffer from the negative delay overheads on Windows, which in-
dicates that performing path measurement with Java applet can
severely under-estimate the RTT. At the same time, significant vari-
ance can be observed. For example, Safari’s overhead in Javaap-
plet socket method spans in the range of -13 ms and 13 ms, as
illustrated in Figure 3(j). Due to the page limit, we only discuss the
socket case for evaluation.

We show the CDFs of∆d1 and∆d2 of those experiments in Fig-
ure 4(a). The figure depicts that both∆d1 and∆d2 for Firefox and
Opera, and∆d1 for Safari have two discrete levels, whereas∆d2

for Safari spans continuously over the range.According to [28],
web browsers instantiate Java applet through Java Plug-in.In fact,
an applet runs in an instance of the Java Runtime Environment
(JRE) software, not within the browsers. To mitigate the influence
of browsers, we directly launch the applet withappletviewer

0

20

40

60

C
 (

U
) ∆

d1
C

 (
U

) ∆
d2

F
 (

U
) ∆

d1
F

 (
U

) ∆
d2

O
 (

U
) ∆

d1
O

 (
U

) ∆
d2

C
 (

W
) ∆

d1
C

 (
W

) ∆
d2

F
 (

W
) ∆

d1
F

 (
W

) ∆
d2

IE
 (

W
) ∆

d1
IE

 (
W

) ∆
d1

O
 (

W
) ∆

d1
O

 (
W

) ∆
d2

S
 (

W
) ∆

d1
S

 (
W

) ∆
d2

D
el

ay
 O

ve
rh

ea
d

(m
s)

(a) XHR GET.

0

20

40

60

80

C
 (

U
) ∆

d1
C

 (
U

) ∆
d2

F
 (

U
) ∆

d1
F

 (
U

) ∆
d2

O
 (

U
) ∆

d1
O

 (
U

) ∆
d2

C
 (

W
) ∆

d1
C

 (
W

) ∆
d2

F
 (

W
) ∆

d1
F

 (
W

) ∆
d2

IE
 (

W
) ∆

d1
IE

 (
W

) ∆
d1

O
 (

W
) ∆

d1
O

 (
W

) ∆
d2

S
 (

W
) ∆

d1
S

 (
W

) ∆
d2

D
el

ay
 O

ve
rh

ea
d

(m
s)

(b) XHR POST.

0

10

20

30

40

50

60

C
 (

U
) ∆

d1
C

 (
U

) ∆
d2

F
 (

U
) ∆

d1
F

 (
U

) ∆
d2

O
 (

U
) ∆

d1
O

 (
U

) ∆
d2

C
 (

W
) ∆

d1
C

 (
W

) ∆
d2

F
 (

W
) ∆

d1
F

 (
W

) ∆
d2

IE
 (

W
) ∆

d1
IE

 (
W

) ∆
d1

O
 (

W
) ∆

d1
O

 (
W

) ∆
d2

S
 (

W
) ∆

d1
S

 (
W

) ∆
d2

D
el

ay
 O

ve
rh

ea
d

(m
s)

(c) DOM.

0

10

20

30

40

50

C
 (

U
) ∆

d1

C
 (

U
) ∆

d2

F
 (

U
) ∆

d1

F
 (

U
) ∆

d2

O
 (

U
) ∆

d1

O
 (

U
) ∆

d2

C
 (

W
) ∆

d1

C
 (

W
) ∆

d2

F
 (

W
) ∆

d1

F
 (

W
) ∆

d2

O
 (

W
) ∆

d1

O
 (

W
) ∆

d2

D
el

ay
 O

ve
rh

ea
d

(m
s)

(d) WebSocket.

0

20

40

60

80

100

120

140

C
 (

U
) ∆

d1
C

 (
U

) ∆
d2

F
 (

U
) ∆

d1
F

 (
U

) ∆
d2

O
 (

U
) ∆

d1
O

 (
U

) ∆
d2

C
 (

W
) ∆

d1
C

 (
W

) ∆
d2

F
 (

W
) ∆

d1
F

 (
W

) ∆
d2

IE
 (

W
) ∆

d1
IE

 (
W

) ∆
d1

O
 (

W
) ∆

d1
O

 (
W

) ∆
d2

S
 (

W
) ∆

d1
S

 (
W

) ∆
d2

D
el

ay
 O

ve
rh

ea
d

(m
s)

(e) Flash GET.

0

20

40

60

80

100

120

140

C
 (

U
) ∆

d1
C

 (
U

) ∆
d2

F
 (

U
) ∆

d1
F

 (
U

) ∆
d2

O
 (

U
) ∆

d1
O

 (
U

) ∆
d2

C
 (

W
) ∆

d1
C

 (
W

) ∆
d2

F
 (

W
) ∆

d1
F

 (
W

) ∆
d2

IE
 (

W
) ∆

d1
IE

 (
W

) ∆
d1

O
 (

W
) ∆

d1
O

 (
W

) ∆
d2

S
 (

W
) ∆

d1
S

 (
W

) ∆
d2

D
el

ay
 O

ve
rh

ea
d

(m
s)

(f) Flash POST.

0

5

10

C
 (

U
) ∆

d1
C

 (
U

) ∆
d2

F
 (

U
) ∆

d1
F

 (
U

) ∆
d2

O
 (

U
) ∆

d1
O

 (
U

) ∆
d2

C
 (

W
) ∆

d1
C

 (
W

) ∆
d2

F
 (

W
) ∆

d1
F

 (
W

) ∆
d2

IE
 (

W
) ∆

d1
IE

 (
W

) ∆
d1

O
 (

W
) ∆

d1
O

 (
W

) ∆
d2

S
 (

W
) ∆

d1
S

 (
W

) ∆
d2

D
el

ay
 O

ve
rh

ea
d

(m
s)

(g) Flash TCP socket.

0

10

20

30

C
 (

U
) ∆

d1
C

 (
U

) ∆
d2

F
 (

U
) ∆

d1
F

 (
U

) ∆
d2

O
 (

U
) ∆

d1
O

 (
U

) ∆
d2

C
 (

W
) ∆

d1
C

 (
W

) ∆
d2

F
 (

W
) ∆

d1
F

 (
W

) ∆
d2

IE
 (

W
) ∆

d1
IE

 (
W

) ∆
d1

O
 (

W
) ∆

d1
O

 (
W

) ∆
d2

S
 (

W
) ∆

d1
S

 (
W

) ∆
d2

D
el

ay
 O

ve
rh

ea
d

(m
s)

(h) Java applet GET.

−10

0

10

20

C
 (

U
) ∆

d1
C

 (
U

) ∆
d2

F
 (

U
) ∆

d1
F

 (
U

) ∆
d2

O
 (

U
) ∆

d1
O

 (
U

) ∆
d2

C
 (

W
) ∆

d1
C

 (
W

) ∆
d2

F
 (

W
) ∆

d1
F

 (
W

) ∆
d2

IE
 (

W
) ∆

d1
IE

 (
W

) ∆
d1

O
 (

W
) ∆

d1
O

 (
W

) ∆
d2

S
 (

W
) ∆

d1
S

 (
W

) ∆
d2

D
el

ay
 O

ve
rh

ea
d

(m
s)

(i) Java applet POST.

−10

−5

0

5

10

15

C
 (

U
) ∆

d1
C

 (
U

) ∆
d2

F
 (

U
) ∆

d1
F

 (
U

) ∆
d2

O
 (

U
) ∆

d1
O

 (
U

) ∆
d2

C
 (

W
) ∆

d1
C

 (
W

) ∆
d2

F
 (

W
) ∆

d1
F

 (
W

) ∆
d2

IE
 (

W
) ∆

d1
IE

 (
W

) ∆
d1

O
 (

W
) ∆

d1
O

 (
W

) ∆
d2

S
 (

W
) ∆

d1
S

 (
W

) ∆
d2

D
el

ay
 O

ve
rh

ea
d

(m
s)

(j) Java applet TCP socket.

Figure 3: Box plots of the delay overheads (by methods).

provided by Oracle Java Development Kit (JDK). We plot the CDFs
of ∆d1 and∆d2 in Figure 4(b). Similar discrete levels are observed
without web browser and Java Plug-in. We thereupon can rule out
browsers and their corresponding Java Plug-ins being the cause of
this problem.

We then focus on the JRE itself. The timing function in Java,
Date.getTime(), is implemented with another Java function
System.currentTimeMillis(). An Oracle’s documenta-
tion warns that while the resolution of the return value is 1 ms,
the granularity depends on the underlying system [29]. We test the
timestamp granularity with the code shown in Figure 5. The piece
of code keeps querying the timestamp withDate.getTime()
until the current value is different from the previous one. The dif-
ference in the two timestamps is the granularity that this function
can achieve. Surprisingly, we find that the granularity is not a con-
stant value. It can be 1 ms, or∼15 ms. Each possible value will
last for a period of time (several minutes) and then change toother
values. While such a coarse granularity of timestamp in Windows
was reported [27], it has not mentioned the non-constant granu-
larity. Initially, we conjecture that the varying time granularity is
related to the 32-bit JRE. However, we later find that 64-bit JRE
also suffers from the same problem. To further validate our find-
ings, we analyze the data obtained from the delay overhead experi-
ments. The gap between the two significant discrete levels isabout
16 ms, which concurs with one of the timestamp granularity ob-

tained from the test codes. Hence, we believe that the coarseand
instable timestamp granularity is the main reason for the bizarre
behavior observed in the previous delay overhead experiments.

−15 −10 −5 0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

C
D

F

∆ d /ms

∆ d
1
,C

∆ d
2
,C

∆ d
1
,F

∆ d
2
,F

∆ d
1
,IE

∆ d
2
,IE

∆ d
1
,O

∆ d
2
,O

∆ d
1
,S

∆ d
2
,S

(a) Launched in browsers.

−15 −10 −5 0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

∆ d /ms

C
D

F

∆ d
1

∆ d
2

(b) Launched with appletviewer.

Figure 4: CDF plots of∆d1 and∆d2 using the Java applet socket
in Windows.

Table 4: Delay overheads measured by Java applet methods in Windows when functionSystem.nanoTime() is adopted (mean with 95%
confidence interval, in ms).

Method GET POST Socket
∆d1 ∆d2 ∆d1 ∆d2 ∆d1 ∆d2

Chrome 2.96±0.02 4.80±0.09 2.71±0.03 1.84±0.00 0.01±0.00 0.07±0.01

Firefox 2.73±0.02 4.38±0.08 2.41±0.03 1.49±0.01 0.00±0.00 0.07±0.01

IE 2.73±0.03 4.56±0.09 2.57±0.09 1.49±0.04 0.02±0.01 0.06±0.01

Opera 2.83±0.03 4.46±0.07 2.51±0.03 1.57±0.01 0.01±0.00 0.06±0.01

Safari 1.88±0.05 1.52±0.02 1.62±0.07 1.42±0.01 0.07±0.00 0.13±0.01

We replace the timing functionDate.getTime()with a more
preciseSystem.nanoTime() and then rerun the experiments
with the same configurations. The measurement results are summa-
rized in Table 4. We present the mean delay overhead as well asthe
95% confidence intervals. The under-estimation and the large vari-
ation of RTTs disappears after the replacement, including the other
two Java applet methods. For the GET and POST methods, the
mean delay overheads range from 2 ms to 5 ms, only a little larger
than the WebSocket cases. As for the socket methods, the delay
overheads are trivial. Considering the accuracy of software packet
capturer being larger than 0.3 ms [7], we can regard the accuracy
of the Java socket method comparable to tcpdump/WinDump if
System.nanoTime() is adopted.

long start = 0;

long end = 0;

while (true) {

if (start == 0) {

start = new Date().getTime();

} else {

long current = new Date().getTime();

if (current != start) {

end = current;

break;

}

}

}

System.out.println((end - start) + "ms");

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Figure 5: Codes for testing the timestamp granularity.

5. PRACTICAL CONSIDERATIONS
Based on the overall evaluation, the Java applet socket method

is recommended if the proper timing function is applied. However,
our inspection of some Java applet-based tools shows that many
of them are still usingSystem.currentTimeMillis() or
Date.getTime(), such as [8, 19, 22]. Switching to the more
precise functionSystem.nanoTime() can greatly improve their
accuracy in Windows. Based on our evaluation, the Flash GET and
POST methods are not so suitable for the purpose of measurement.

For the measurements performed in Windows, Firefox is the pre-
ferred browser, whereas in Ubuntu Chrome is a better choice.We
do not recommend Safari even for the Java applet socket method
due to the fact that its default Java interface (JavaPlugin.jar
andnpJavaPlugin.dll) runs into problems easily. The mea-
surement results obtained from Safari are much higher than the
other browsers. After deleting the two files, we can force it to use
the JRE provided by Oracle, and the inaccuracies are subsequently
removed.

There are also issues of reusing existing connections and web
objects for network measurement. The real-world applications are
more complicated than our experiment settings. The browsers have
to establish new connections due to the competition of download-
ing the other files. If a measurement object can be reused, the

delay overhead can be better estimated by∆d2 without includ-
ing the TCP handshaking delay. However, some methods, as de-
scribed in Section 4.1, always open new connections for measure-
ment whether the measurement object can be reused or not. In this
case, the additional delay cannot be avoided.

6. RELATED WORKS
Although browser-based network measurement tools and ser-

vices have been widely deployed, only a handful of studies are
devoted to appraising them. These previous works consider only
a small number of methods. Janc et al. [16] proposed HTTP-based
methods using JavaScript and Flash for measuring network perfor-
mance, and performed control and web experiments to compare
the methods. Later, Kaplan et al. [18] performed testbed experi-
ments to investigate the delay overhead incurred by browserwith
four HTTP-based methods using JavaScript and Flash. Both papers
concluded that JavaScript performs better than Flash for delay mea-
surement, which is coherent with our results. However, theydid not
compare the HTTP-based methods with socket-based methods.

Krintz and Wolski [20] compared the performance between Java
applet and C program with JavaNws, and found that Java appletis
comparable with C socket. Yeboah et al. [36] performed an Inter-
net measurement study to compare the delay measurement results
from ICMP ping, King [12], Flash (socket-based), and JavaScript
(HTTP-based). They found that the results from Flash socketmea-
surement were close to ping, whereas JavaScript had an inflated
delay. However, both papers did not utilize any network stack in-
formation, such as tcpdump capture, to investigate the actual over-
head caused by the applications.

7. CONCLUSION
In this paper, we studied the impact of application-level delay

overheads on browser-based network measurement tools. By evalu-
ating all the HTTP/TCP methods employed by the current browser-
based measurement tools and services with our carefully designed
testbed experiments, we showed that both socket-based and HTTP-
based methods may introduce different degrees of inaccuracy in
measuring the RTT due to a number of intrinsic and system issues.
Based on the results, the socket-based methods are generally more
reliable than the HTTP-based methods. Although our work is done
in desktop environment, the methodology can be extended to the
mobile environment. Another extension is to investigate the delay
overhead incurred on the server side.

Acknowledgement
We thank the four anonymous reviewers for their very useful com-
ments and feedback for improving the paper, and our shepherdJef-
frey Pang for guiding us during the revision process. This work
is partially supported by an ITSP Tier-2 project grant (ref.no.
GHP/027/11) from the Innovation Technology Fund in Hong Kong.

8. REFERENCES
[1] Ookla.com.http://www.ookla.com.
[2] Speedof.me.http://speedof.me/.
[3] Accuracy (trueness and precision) of measurement methods

and results – part 1: General principles and definitions. ISO
5725-1, 1994.

[4] G. Almes, S. Kalidindi, and M. Zekauskas. A one-way delay
metric for IPPM. RFC 2679, IETF, Sept. 1999.

[5] G. Almes, S. Kalidindi, and M. Zekauskas. A one-way
packet loss metric for IPPM. RFC 2680, IETF, Sept. 1999.

[6] G. Almes, S. Kalidindi, and M. Zekauskas. A round-trip
delay metric for IPPM. RFC 2681, IETF, Sept. 1999.

[7] Audit My PC.com. AuditMyPC.com Broadband Speed Test
(Flash).http://www.auditmypc.com/
internet-speed-test.asp.

[8] Audit My PC.com. Internet Speed Test (Java).
http://www.auditmypc.com/
internet-speed-test.asp.

[9] CAIDA. Archipelago Measurement Infrastructure.
http://www.caida.org/projects/ark/.

[10] cnet.com. Bandwidth Meter Online Speed Test.http:
//reviews.cnet.com/internet-speed-test/.

[11] M. Dhawan, J. Samuel, R. Teixeira, C. Kreibich, M. Allman,
N. Weaver, and V. Paxson. Fathom: A browser-based
network measurement platform. InProc. ACM/USENIX
IMC, 2012.

[12] K. P. Gummadi, S. Saroiu, and S. D. Gribble. King:
estimating latency between arbitrary internet end hosts. In
Proc. SIGCOMM IMW, 2002.

[13] E. Halepovic, J. Pang, and O. Spatscheck. Can you GET me
now? Estimating the time-to-first-byte of HTTP transactions
with passive measurements. InProc. ACM/USENIX IMC,
2012.

[14] J. Huang, F. Qian, Y. Guo, Y. Zhou, Q. Xu, Z. M. Mao,
S. Sen, and O. Spatscheck. An in-depth study of LTE: Effect
of network protocol and application behavior on
performance. InProc. ACM SIGCOMM, 2013.

[15] InternetFrog.com. InternetFrog.com Speed Test.http:
//www.internetfrog.com/mypc/speedtest/.

[16] A. Janc, C. Wills, and M. Claypool. Network performance
evaluation in a web browser. InProc. IASTED PDCS, 2009.

[17] D. Joumblatt, R. Teixeira, J. Chandrashekar, and N. Taft.
HostView: Annotating end-host performance measurements
with user feedback. InProc. ACM HotMetrics, 2010.

[18] M. Kaplan, M. Zeljkovic, M. Claypool, and C. Wills.
Javascript and Flash overhead in the web browser sandbox.
Tech. Rep. WPI-CS-TR-10-14, Computer Science
Department, Worcester Polytechnic Institute, 2012.

[19] C. Kreibich, N. Weaver, B. Nechaev, and V. Paxson.
Netalyzr: Illuminating the edge network. InProc.
ACM/USENIX IMC, 2010.

[20] C. Krintz and R. Wolski. Using JavaNws to compare C and
Java TCP-Socket performance.Concurrency Computat.:
Pract. Exper., 13(8-9):815–839, 2001.

[21] S. Limited. BandwidthPlace Speed Test.
http://www.bandwidthplace.com/.

[22] M-Lab. NDT (Network Diagnostic Tool).
http://measurementlab.net/run-ndt.

[23] J. Mahdavi and V. Paxson. IPPM metrics for measuring
connectivity. RFC 2678, IETF, Sept. 1999.

[24] D. Morato, E. Magana, M. Izal, J. Aracil, F. Naranjo,
F. Astiz, U. Alonso, I. Csabai, P. Haga, G. Simon, J. Steger,
and G. Vattay. The European Traffic Observatory
Measurement Infraestructure (ETOMIC): A testbed for
universal active and passive measurements. InProc.
Tridentcom, 2005.

[25] Ookla. Pingtest.net.http://www.pingtest.net/.
[26] Ookla. Speedtest.net.http://www.speedtest.net/.
[27] Oracle. Bad timing using System.currentTimeMillis()instead

of System.nanoTime().
http://whileonefork.blogspot.hk/2010/12/
bad-timing-using-systemcurrenttimemilli.
html.

[28] Oracle. Java Plug-in and Applet Architecture.http://
docs.oracle.com/javase/7/docs/technotes/
guides/jweb/applet/applet_execution.html.

[29] Oracle. System.http://docs.oracle.com/
javase/6/docs/api/java/lang/System.html#
currentTimeMillis().

[30] V. Paxson, G. Almes, J. Mahdavi, and M. Mathis. Framework
for IP performance metrics. RFC 2330, IETF, May 1998.

[31] A. Ritacco, C. Wills, and M. Claypool. How’s My Network?
- A Java approach to home network measurement. InProc.
IEEE ICCCN, 2009.

[32] M. Sánchez, J. Otto, Z. Bischof, D. Choffnes, F. Bustamante,
B. Krishnamurthy, and W. Willinger. Dasu: Pushing
experiments to the Internet’s edge. InProc. USENIX NSDI,
2013.

[33] Speedchecker Limited. Broadband Speedchecker.
http://www.broadbandspeedchecker.co.uk/.

[34] S. Sundaresan, W. de Donato, N. Feamster, R. Teixeira,
S. Crawford, and A. Pescape. Broadband Internet
performance: A view from the gateway. InProc. ACM
SIGCOMM, 2011.

[35] Y. Wang, C. Huang, J. Li, and K. Ross. Estimating the
performance of hypothetical cloud service deployments: A
measurement-based approach. InProc. IEEE INFOCOM,
2011.

[36] Y. Yeboah Jr., R. Nketia, and X. Hei. A measurement study
of application layer latency. Technical report, Huazhong
University of Science and Technology, 2011.

