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ABSTRACT

The accuracy and speed of path capacity measurement could

be seriously affected by the presence of cross traffic on the

path. In this paper, we propose a new cross-traffic filtering

method called minimum delay difference (MDDIF). Unlike

the classic packet-pair dispersion techniques, the MDDIF

method can obtain accurate capacity estimate from the min-

imal possible delay of packets from different packet pairs.

We have proved that the MDDIF method is correct and that

it takes less time to obtain accurate samples than the mini-

mum delay sum (MDSUM) method. We also present analyt-

ical and measurement results to evaluate the MDDIF method

and to compare its performance with the MDSUM method.

Categories and Subject Descriptors

C.2.3 [Computer-Communication Networks]: Net-
work Operations; C.4 [Performance of Systems]: Mea-
surement Techniques

General Terms

Measurement, Experimentation, Performance

Keywords

Network capacity, Bottleneck bandwidth, Non-cooperative
measurement, Packet-pair dispersion, Packet delay

1. INTRODUCTION

Knowing network capacity is useful for many net-
work applications to improve their performance. Net-
work capacity (a.k.a. bottleneck bandwidth) refers to
the smallest transmission rate of a set of network links,
forming a network path from a source to a destination
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[5]. Measuring capacity is, however, a challenging task
in practice, because the accuracy and speed can be ad-
versely affected by cross traffic, packet loss and reorder-
ing events, packet sizes, time resolution supported by
measurement endpoints, probing methods, and others.
Existing capacity measurement tools are mostly ac-

tive methods which are based on two main approaches:
variable packet size and packet dispersion. The focus
of this paper is on the latter approach, in particular,
the packet-pair dispersion (PPD) technique that sends
a pair of back-to-back probe packets to measure their
dispersion. The PPD technique could be conducted in
a cooperative (e.g., [5, 10]) or non-cooperative manner
(e.g., [25, 14, 4]).
The accuracy and speed of the PPD technique, how-

ever, could be seriously degraded by the cross traffic
present on the path under measurement. Therefore, the
basic PPD technique is usually augmented by a com-
ponent to filter measurement samples that have been
biased by cross traffic. A notable example is the mini-
mum delay sum (MDSUM) method first introduced to
CapProbe [10]. The MDSUM method filters out packet
pairs that do not meet a minimum delay sum condition.
However, the existing cross-traffic filtering techniques

still suffer from slow speed and a large overhead. Ap-
plications, such as determining optimal software down-
load rates, forming peer-to-peer networks, and estab-
lishing multicast trees, will benefit from a fast estima-
tion of network capacity [25]. Moreover, injecting a
large amount of probe traffic unnecessarily not only pro-
longs the estimation process, but also affects the normal
traffic and introduces additional processing burdens to
both the measuring and remote nodes.
In this paper, we propose a new technique called min-

imum delay difference (MDDIF). Unlike the MDSUM
method that admits a packet pair as the basic unit for
capacity measurement, the MDDIF method admits a
packet as a basic unit. The MDDIF method obtains
minimal possible delay of a first probe packet and a
second probe packet, but these two packets do not nec-
essarily belong to the same packet pair. By exploiting



useful information in a single packet (which is discarded
by the MDSUM method), the MDDIF method requires
less time to obtain accurate capacity estimates and has
very low computation and storage costs.
In §2, we first summarize the existing cross-traffic fil-

tering techniques. In §3, we present the model and as-
sumptions used throughout this paper and review the
classical PPD technique. We then introduce the MD-
DIF method in §4 and compare its performance with
the MDSUM method based on their first passage times
in §5. In §6, we further evaluate the MDDIF method’s
performance based on Internet and testbed experiment
results. We finally conclude this paper in §7.

2. RELATED WORK

There are some apparent similarity between the VPS
techniques [9, 18, 6] and the MDDIF method in terms
of requiring minimal possible packet delay. The VPS
techniques require the minimal possible delay for a se-
quence of variable-sized packets; the MDDIF method,
however, requires the minimal possible delay only for
a pair of packets with the same size. As a result, the
MDDIF method achieves a faster capacity estimation
with a lower storage requirement.
Previous works [24, 22, 5, 25, 10, 4] using packet

dispersion for capacity measurement compute capacity
estimates by measuring the PPDs based on the inter-
arrival time of the two packets or the difference between
the two packets’ delay. Although the MDDIF method
also involves sending packet pairs, it does not measure
packet pairs’ PPDs. Instead, it measures the minimal
possible packet delay for the first and second packets.
Many cross-traffic filtering techniques have been pro-

posed in the past. Carter and Crovella propose Bprobe
[24] which filters inaccurate estimates using union and
intersection of packet-pair measurements with different
packet sizes. Lai and Baker [15] use a kernel density
estimation method to filter capacity estimates. Pásztor
and Veitch [22] analyze several types of components em-
bedded in the packet-pair dispersion and select the ca-
pacity mode from the high-resolution histogram. Kapoor
et al. [10] propose the use of the minimum of packet-pair
delay sum to filter distorted dispersion samples.
The packet train dispersion (PTD) technique, on the

other hand, performs capacity measurement with the
dispersion of a burst of back-to-back probe packets.
Pathrate [5] uses both PPD and PTD for capacity mea-
surement. DSLprobe [4] exploits the PTD technique
for capacity measurement and various methods to re-
move any cross-traffic interfered spacing between adja-
cent packets in the packet train. A most notable prob-
lem with the packet train technique is that as the trunk
length increases, it is more likely for the packet train to
be affected by cross traffic.

3. MODEL AND PRELIMINARIES

3.1 The model

This paper considers the capacity measurement sce-
nario in Figure 1. A local endpoint measures the path
capacity by dispatching a sequence of packet pairs (two
back-to-back packets) to a remote endpoint. Each probe
packet elicits a response packet from the remote end-
point. The (round-trip) network path under the mea-
surement starts from and ends at the local endpoint,
consisting of n (where n ≥ 2) hops. The first m hops
(where 1 ≤ m < n) belong to the forward path and the
remaining n −m hops to the reverse path. The probe
packets travel on the forward path; the response packets
travel on the reverse path.
Each hop consists of a (local, remote, or forwarding)

node and its outgoing link. We use H(h) (1 ≤ h ≤ n)
to denote the hth hop which transmits packets to the
outgoing link with a rate of C(h) bits/second. For con-
venience, we label the hops on the path sequentially.
Therefore, the local endpoint belongs to H(1), whereas
the remote endpoint belongs to H(m+1). The figure also
shows a bottleneck link on the forward path which be-
longs to a hop denoted by H(hf ). If there are more
than one bottleneck hop on the forward path, H(hf ) is
referred to the one with the largest hf . The above ap-
plies similarly to the reverse path, where the bottleneck
link belongs to a hop denoted by H(hr).
There are three types of path capacity metrics: forward-

path capacity (denoted by C
(n)
f ), reverse-path capacity

(denoted by C
(n)
r ), and round-trip capacity (denoted by

C
(n)
b ), where

C
(n)
f ≡ C(hf ) = min

1≤h≤m
C(h).

C(n)
r ≡ C(hr) = min

m+1≤h≤n
C(h).

C
(n)
b = min{C

(n)
f , C(n)

r }.

3.2 The assumptions

Unless stated otherwise, we adopt the following as-
sumptions in this paper:

1. Both the forward and reverse paths are unique and
do not change during the measurement.

2. The forwarding node in each hop is a store-and-
forward device using a FIFO queue.

3. Each probe packet elicits a single response packet
from the remote endpoint with negligible delay.

4. All probe and response packets are received suc-
cessfully. Combining with (1)-(3) also implies that
the probe packets arrive at the remote endpoint in
the original order, and the response packets arrive
at the local endpoint in the original order.



Figure 1: The capacity measurement scenario considered in this paper.

5. The processing delay introduced by the forward-
ing nodes is small compared with the packet-pair
dispersion and therefore negligible.

6. The packet pairs are sufficiently spaced out that a
first probe packet is never queued behind the pre-
ceding packet pair, and a first response packet is
never queued behind the preceding response pack-
ets.

Assumptions (1)-(2) are reasonable and have been
adopted in previous works [3, 24, 15, 5, 7]. Assump-
tions (3)-(5) are required to ensure that the packet-pair
dispersion is not biased by the remote endpoint’s pro-
cessing delay, packet loss and reordering events, and
forwarding nodes’ processing delay. Finally, assump-
tion (6) is valid for adequately spaced packet pairs.

3.3 Preliminaries

This section provides preliminary results for deriving
the main results in the next two sections. These prelim-
inary results are not new as they appeared in previous
works, such as [16, 22, 14].
In a capacity measurement session, a local endpoint

dispatches a sequence of packet pairs Pi, i = 1, 2, . . ..
Now consider any packet pair {pj−1, pj} in the sequence,
where j = 2i indicates the position of the second packet
in Pi. We also let Sf and Sr be the sizes of the probe
and response packets in bits, respectively. Due to as-
sumption (3), it is convenient to regard the first re-
sponse packet as the first probe packet “bounced back”
from the remote endpoint and similarly for the second
response packet. Therefore, we also use pj−1 and pj to
refer to the first and second response packets, respec-
tively, but Sf and Sr are generally different.

Individual packet delay Let d
(h)
j be the time interval

that pj spends on the first h hops. As illustrated in

Figure 2, d
(h)
j can be defined recursively by

d
(h)
j = d

(h−1)
j + (w

(h)
j +X(h) + T (h)) for h ≥ 1, (1)

and d
(0)
j = 0 [16]. The delay at H(h) comprises a queue-

ing delay (w
(h)
j ), a constant transmission delay of X(h)

(X(h) = Sf/C
(h) for 1 ≤ h ≤ m andX(h) = Sr/C

(h) for
h > m), and a constant delay (T (h)) for propagating the

packet to the next hop. The expression of d
(h)
j−1 for pj−1

is the same as Eqn. (1) after updating the subscripts.

Figure 2: The delay components for pj to tra-
verse the first h hops.

Packet-pair dispersion and capacity The (round-trip)
packet-pair dispersion (PPD) for {pj−1, pj}, denoted by

δ
(n)
j−1,j , is given by [22]

δ
(n)
j−1,j = d

(n)
j − d

(n)
j−1 + τ

(1)
j−1,j , (2)

where τ
(1)
j−1,j is the inter-arrival time for pj−1 and pj at

H(1). Without loss of generality, we let τ
(1)
j−1,j = 0.

If the PPD is not affected by the cross traffic on the
path, the unbiased PPD is given by [14]

δ
(n)
j−1,j ≡ X(hb) = max

{

X(hf), X(hr)
}

, (3)

where hb = hf if X(hf) > X(hr) and hb = hr if X(hf ) ≤

X(hr). Since X(hf ) = Sf/C
(n)
f and X(hr) = Sr/C

(n)
r ,

the path capacity computed based on δ
(n)
j−1,j can give

C
(n)
f (= Sf/X

(hb)) and C
(n)
r (= Sr/X

(hb)). For the

case of Sf = Sr, C
(n)
b = Sf/X

(hb) = Sr/X
(hb).

4. MITIGATING CROSS-TRAFFIC INTER-

FERENCE

Previous studies [19, 23] have shown that the PPD
could be distorted by two types of cross traffic. The
first type is the traffic already existing in a forward-
ing node located after the bottleneck link when the



first probe/response packet arrives. This cross traffic
could delay the first packet to the extent that the PPD
is compressed, causing a capacity overestimation. The
second type is the traffic intervening the first and sec-
ond probe/response packets in a forwarding node. This
cross traffic could increase the second packet’s queueing
delay, thus causing a capacity underestimation [5].

4.1 Minimum delay sum

A minimum delay sum (MDSUM) method is pro-
posed to remove distorted PPDs for, such as, Cap-
Probe [10] and AsymProbe [14]. The basic idea is that if
any packet in a packet pair is interfered by cross traffic,
additional packet delay will be introduced; therefore, a
sum of the two packets’ delay (i.e., a delay sum) will also
increase. To implement this idea, CapProbe dispatches
a sequence of packet pairs until a Pi satisfies the MD-
SUM conditions: Eqn. (4) holds for Pi, and the left and
right hand sides in Eqn. (4) remain unchanged for the
next I consecutive packet pairs (I = 40 suggested in
[10]). CapProbe then uses Pi’s PPD to compute the
path capacity.

min
i

{

d
(n)
2i−1 + d

(n)
2i

}

= min
i

{

d
(n)
2i−1

}

+min
i

{

d
(n)
2i

}

. (4)

The drawback of the MDSUM technique is that it
considers only the packet pair whose packets are both
unaffected by cross traffic. It therefore discards all other
packet pairs, including those in which only a single
packet has been interfered. As a result, useful informa-
tion in those packet pairs is not fully utilized to speed
up the measurement process. This observation leads us
to propose a new filtering technique that is based on the
minimum delay of a single packet (instead of a packet
pair), to be discussed next.

4.2 Minimal possible packet delay

Our new filtering technique is based on the notion of
minimal possible packet delay (or minDelay) defined as:

Definition 1. A minimal possible packet delay is the
delay experienced by a packet in a packet pair for which
both the probe packet and the elicited response packet do
not encounter any cross-traffic-induced queueing delay
on the path, including

1. Type-H queueing delay: the queueing delay caused
by the cross traffic present at the “head” of the
queue upon the first packet’s arrival, and

2. Type-I queueing delay: the queueing delay caused
by the intervening cross traffic between the first
and second packets in a packet pair.

In the following we consider a packet pair {pj−1, pj}.
It is not difficult to see that pj−1’s minDelay can be
obtained iff the probe packet and the elicited response

packet are not queued (behind type-H cross traffic) at
all hops of the path. Therefore,

Proposition 1. (The first packet’s minDelay) The

necessary and sufficient conditions for d
(n)
j−1 being a min-

Delay are w
(h)
j−1 = 0, h = 1, . . . , n.

However, obtaining the conditions for a second packet’s
minDelay is more involved. We first derive in Prop. 2

general expressions for w
(h)
j and δ

(h)
j−1,j which take into

account the two types of cross traffic. Figure 3 illus-
trates the two scenarios for which their PPDs are not
the same.

Proposition 2. AtH(h), pj’s queueing delay is given
by Eqn. (5), and {pj−1, pj}’s PPD is given by Eqn. (6).

w
(h)
j =

(

w
(h)
j−1 +X(h) − δ

(h−1)
j−1,j

)+

+ q
(h)
j−1,j , (5)

where (x)+ = max{0, x}, and q
(h)
j−1,j is pj’s type-I queue-

ing delay at H(h).

δ
(h)
j−1,j =

{

X(h) + q
(h)
j−1,j , if w

(h)
j−1 +X(h) ≥ δ

(h−1)
j−1,j ,

δ
(h−1)
j−1,j − w

(h)
j−1 + q

(h)
j−1,j , otherwise.

(6)

Proof. It is straightforward to obtain w
(h)
j and δ

(h)
j−1,j

directly from Figures 3(a)-3(b). Alternatively, w
(h)
j can

be derived from the Lindley’s recurrence equation [13].

(a) w
(h)
j−1 +X(h) < δ

(h−1)
j−1,j . (b) w

(h)
j−1 +X(h)

≥ δ
(h−1)
j−1,j .

Figure 3: Two scenarios for deriving the queue-
ing delay and packet-pair dispersion at H(h).

We next consider the following three lemmas which
will be used to prove the main results for pj’s minDelay
in Prop. 3. Lemma 1 addresses the effect of type-I cross
traffic on pj ’s delay, whereas Lemmas 2-3 address that of

type-H cross traffic. We let w
(h)
j,H be the type-H queueing

delay experienced by pj at H(h).

Lemma 1. For d
(n)
j to be free from type-I queueing

delay, q
(h)
j−1,j = 0 for h = 1, . . . , n.



Proof. It is clear from Eqn. (5) that w
(h)
j does not

include type-I queueing delay iff q
(h)
j−1,j = 0. There-

fore, type-I cross traffic does not contribute to d
(n)
j iff

q
(h)
j−1,j = 0, ∀h.

For the next two lemmas, Lemma 1 is assumed true,
and we consider two types of hops: H(h) is a local bot-

tleneck hop (LBH) if X(h) ≥ δ
(h−1)
j−1,j and a non-LBH,

otherwise. In the absence of type-I cross traffic, pj−1

and pj will be sent back to back on an LBH, but the two
packets may be sent with a time gap on a non-LBH.

Lemma 2. Considering that Lemma 1 holds and H(h)

is a non-LBH, pj does not experience type-H queueing

delay at H(h) iff w
(h)
j−1 ≤ δ

(h−1)
j−1,j −X(h).

Proof. Note that for a non-LBH,

w
(h)
j,H =

(

w
(h)
j−1 +X(h) − δ

(h−1)
j−1,j

)+

. (7)

Eqn. (7) shows that w
(h)
j−1 ≤ δ

(h−1)
j−1,j − X(h) is the only

condition for w
(h)
j,H = 0.

Lemma 3. Consider that Lemma 1 holds and H(h) is
an LBH.

(i) For h = 1, pj does not experience type-H queueing

delay at H(1) iff w
(1)
j−1 = 0.

(ii) For h > 1, given that H(h) is preceded immediately
by s (0 ≤ s ≤ h−2) adjoining non-LBHs and then
an LBH, pj does not experience type-H queueing

delay at H(h) iff w
(h−k)
j−1 = 0 for k = 0, . . . , s.

Proof. For case (i), note that H(1) is an LBH, be-

cause X(1) > δ
(0)
j−1,j ≡ τ

(1)
j−1,j = 0. From Eqn. (5),

w
(1)
j = w

(1)
j−1+X(1); therefore, it is required that w

(1)
j,H ≡

w
(1)
j−1 = 0.
For case (ii), we first consider the case of s = 0 (i.e.,

H(h−1) is an LBH). From Eqn. (6), δ
(h−1)
j−1,j = X(h−1),

and from Eqn. (5),

w
(h)
j = w

(h)
j−1 +X(h) − δ

(h−1)
j−1,j ,

= w
(h)
j−1 +X(h) −X(h−1) ≥ 0.

Therefore, it is required that w
(h)
j,H ≡ w

(h)
j−1 = 0.

For case (ii) with s > 0, note that h > 2. Since
H(h−1) toH(h−s) are non-LBHs and the second packet’s
delay at these hops satisfy Lemma 2, from Eqn. (6),

δ
(h−k)
j−1,j = δ

(h−k−1)
j−1,j − w

(h−k)
j−1 for k = 1, . . . , s. (8)

By repeatedly substituting Eqn. (8) into w
(h)
j ,

w
(h)
j = w

(h)
j−1 +X(h) − δ

(h−1)
j−1,j ,

=

s
∑

k=0

w
(h−k)
j−1 +X(h) −X(h−s−1) ≥ 0. (9)

From Eqn. (9), w
(h)
j,H ≡

∑s
k=0 w

(h−k)
j−1 . Therefore, w

(h−k)
j−1 =

0 for k = 0, . . . , s yields w
(h)
j,H = 0.

Proposition 3. (The second packet’s minDelay) The

necessary and sufficient conditions for d
(n)
j being a min-

Delay are:

(i) q
(h)
j−1,j = 0, h = 1, . . . , n, and

(ii) w
(h)
j−1 = 0, h = 1, . . . , hb, and

(iii) w
(h)
j−1 ≤ δ

(h−1)
j−1,j −X(h), h = hb + 1, . . . , n.

When hb = n, condition (iii) is not needed.

Proof. Condition (i) is required because of Lemma 1.
For conditions (ii) and (iii), we first consider H(hb).

With q
(h)
j−1,j = 0, ∀h, it is not difficult to see that

X(hb) ≥ δ
(hb−1)
j−1,j , because δ

(hb−1)
j−1,j ≤ max∀h{X

(h)}. There-

fore, H(hb) is an LBH. According to Lemma 3, if all the
hops between H(hb), where hb > 1, and H(1) are non-
LBHs, condition (ii) must hold. Even if there are one
or more LBHs between them, condition (ii) still holds,
because the same argument can be applied to each seg-
ment of adjoining non-LBHs.
For condition (iii), all the hops after H(hb), if any,

must be non-LBHs for d
(n)
j being a minDelay. To see

why, assume that H(ha), where hb < ha ≤ n, is an LBH.
Moreover, by setting ha − hb = s+ 1 (s ≥ 0), we could

apply Lemma 3 and Eqn. (9) to w
(ha)
j :

w
(ha)
j =

s
∑

k=0

w
(ha−k)
j−1 +X(ha) −X(hb),

= X(ha) −X(hb).

Since X(ha) < X(hb), w
(ha)
j < 0 which contradicts that

w
(ha)
j ≥ 0 for H(ha) being an LBH. Therefore, H(ha)

must be a non-LBH. By applying Lemma 2 to each hop
after H(hb), we obtain condition (iii).

4.3 Minimum delay difference

We propose a new cross-traffic filtering method called
minimum delay difference (MDDIF) which exploits the
minDelay of the packet pairs for capacity estimation.
Prop. 4 shows that the unbiased PPD in Eqn. (3) can
be obtained by the difference between a second packet’s
minDelay and a first packet’s minDelay, and the two
packets do not belong to the same packet pair.

Proposition 4. A sequence of packet pairs {p2i−1, p2i},
i = 1, 2, . . ., is dispatched by a local endpoint to mea-
sure the capacity of an n-hop path (n ≥ 2). Moreover,

d
(n)
2k−1 (for the first packet in Pk) and d

(n)
2l (for the sec-

ond packet in Pl) are minDelays, where l 6= k. Then,

d
(n)
2l − d

(n)
2k−1 = max

{

Sf

C
(n)
f

,
Sr

C
(n)
r

}

. (10)



Proof. First of all, from Eqn. (1),

d
(n)
2l − d

(n)
2k−1 = w

(n)
2l − w

(n)
2k−1 + d

(n−1)
2l − d

(n−1)
2k−1 . (11)

Using w
(n)
2k−1 = 0 (from Prop. 1), Eqn. (5) for w

(n)
2l , and

q
(n)
2l−1,2l = 0 (from Prop. 3(i)), Eqn. (11) becomes

d
(n)
2l − d

(n)
2k−1 = d

(n−1)
2l − d

(n−1)
2k−1 +

(

w
(n)
2l−1 +X(n) − δ

(n−1)
2l−1,2l

)+

.(12)

We now use mathematical induction on n for the proof.
The base case: n = 2 (i.e., hf = 1 and hr = 2) By
applying Eqn. (12) recursively for n = 2, we obtain

d
(2)
2l − d

(2)
2k−1 =

2
∑

h=1

(

w
(h)
2l−1 +X(h) − δ

(h−1)
2l−1,2l

)+

. (13)

Note that δ
(0)
2l−1,2l ≡ τ

(1)
2l−1,2l = 0. Moreover, H(hb) is

either H(1) (the forward-path hop) orH(2) (the reverse-
path hop):

Case 1 (hb = hf = 1): Since d
(2)
2l is a minDelay, w

(1)
2l−1 =

0 (from Prop. 3(ii)) and
(

w
(2)
2l−1 +X(2) − δ

(1)
2l−1,2l

)+

= 0

(from Prop. 3(iii)). Eqn. (13) therefore becomes

d
(2)
2l − d

(2)
2k−1 = X(1) = Sf/C

(1),

which is the same as Eqn. (10) for n = 2.

Case 2 (hb = hr = 2): Since d
(2)
2l is a minDelay, w

(1)
2l−1 =

w
(2)
2l−1 = 0 (from Prop. 3(ii)) and δ

(1)
2l−1,2l = X(1). Eqn. (13)

therefore becomes

d
(2)
2l − d

(2)
2k−1 = X(2) = Sr/C

(2),

which is the same as Eqn. (10) for n = 2.
The inductive step: Assuming that Eqn. (10) holds for
n ≥ 2, we prove that Eqn. (10) also holds for n+1. By
substituting Eqn. (10) (the inductive hypothesis for n)
into Eqn. (12) for n+ 1, we have

d
(n+1)
2l − d

(n+1)
2k−1 =

(

w
(n+1)
2l−1 +X(n+1) − δ

(n)
2l−1,2l

)+

,

+max
{

Sf/C
(n)
f , Sr/C

(n)
r

}

. (14)

There are two cases to consider: hb remains the same,
and hb = n+1. Note that H(n+1) introduces a new link
to the reverse path.

Case 1 (hb < n + 1): Since d
(n+1)
2l is a minDelay, ap-

plying w
(n+1)
2l−1 ≤ δ

(n)
2l−1,2l −X(n+1) (from Prop. 3(iii)) to

Eqn. (14) yields

d
(n+1)
2l − d

(n+1)
2k−1 = max

{

Sf/C
(n)
f , Sr/C

(n)
r

}

,

= max
{

Sf/C
(n+1)
f , Sr/C

(n+1)
r

}

.

(15)

Case 2 (hb = n + 1): Since d
(n+1)
2l is a minDelay, we

have w
(h)
2l−1 = 0, ∀1 ≤ h ≤ n + 1 (from Prop. 3(ii)).

Accordingly, both d
(n)
2l and d

(n)
2l−1 are also minDelays;

therefore, d
(n)
2l − d

(n)
2l−1 = max

{

Sf/C
(n)
f , Sr/C

(n)
r

}

(the

inductive hypothesis). Substituting w
(n+1)
2l−1 = 0 and

δ
(n)
2l−1,2l = d

(n)
2l − d

(n)
2l−1 (from Eqn. (2)) into Eqn. (14)

yields

d
(n+1)
2l − d

(n+1)
2k−1 = X(n+1) = Sr/C

(n+1),

which is the same as Eqn. (15).

5. A FIRST-PASSAGE-TIME ANALYSIS OF

THE MDDIF AND MDSUM METHODS

In this section, we analyze and compare the MD-
DIF and MDSUM methods based on their first passage
times. The MDDIF method’s first passage time (FPT)
is defined as the first time (in terms of the number of
packet pairs sent) to obtain the two minDelays. On the
other hand, the MDSUM method’s FPT is defined as
the first time to obtain the minimum delay sum (which
is equal to the sum of the two minDelays). Therefore,
a smaller FPT results in a faster measurement. More-
over, we consider a multi-hop path scenario, instead of
a single-hop model considered in [10].

5.1 The first passage time

Let Xi, i ≥ 1, be a sequence of independent and iden-
tically distributed (i.i.d.) Bernoulli random variables
with parameter pX (probability for Xi = 1) for the
minDelay event of p2i−1 (the first packet in Pi). Xi = 1

if d
(n)
2i−1 is a minDelay and Xi = 0, otherwise. Similarly,

Yi, i ≥ 1, is a sequence of i.i.d. Bernoulli random vari-
ables with parameter pY for the minDelay event of p2i
(the second packet in Pi). Yi = 1 if d

(n)
2i is a minDe-

lay and Yi = 0, otherwise. Moreover, the sequence of
the joint random variables (Xi, Yi) are i.i.d. with a joint
probability density function (pdf) pXY (x, y). Note that
Xi and Yi are generally not independent.
The MDDIF method’s FPT is given by

TDIF = inf{i : SXi > 0 and SYi > 0}, (16)

where SXi =
∑i

k=1 Xk and SYi =
∑i

k=1 Yk. To ob-
tain the pdf for TDIF , we consider another sequence of
random variables Zi, i ≥ 1, for which

Zi =















0, if SXi = 0 and SYi = 0,
1, if SXi = 0 and SYi > 0,
2, if SXi > 0 and SYi = 0,
3, if SXi > 0 and SYi > 0,

is a time-homogeneous Markov chain with transient states
0, 1, and 2, and an absorbing state 3. Denote the sta-
tionary transition probabilities by pmn = P [Zi+1 =
n|Zi = m], m, n = 0, 1, 2, 3, and the transition prob-



ability matrix P of the Markov chain by

P = [pmn],

=

[

Q A
0 1

]

,

=









pXY (0, 0) pXY (0, 1) pXY (1, 0) pXY (1, 1)
0 1− pX 0 pX
0 0 1− pY pY
0 0 0 1









,

where Q is for the transitions among the three tran-
sient states, whereas A is for the transitions from the
transient states to the absorbing state. Since the MD-
DIF method starts from state 0, the initial probability
vector for the first three (transient) states is given by
π0 = [1 0 0]. From [20],

P [TDIF = i] = π0Q
i−1A. (17)

To determine the expectation of the FPT, we obtain
t = [t0, t1, t2]

T , for which tk, k = 0, 1, 2, is the expected
number of steps taken prior to reaching the absorbing
state, given that the chain begins from state k. From
[12], t = (I − Q)−1c, where I is an identity matrix,
c = [1 1 1]T , and (I−Q)−1 is the fundamental matrix
of the Markov chain. We therefore have

E[TDIF ] = π0t,

=

(

1

1− pXY (0, 0)

)(

1 +
pXY (0, 1)

pX
+

pXY (1, 0)

pY

)

.

(18)

On the other hand, the MDSUM method’s FPT is
defined as

TSUM = inf{i : Xi = 1 and Yi = 1}. (19)

Therefore, TSUM is a geometrically distributed random
variable with parameter pXY (1, 1).
Besides showing that E[TDIF ] < E[TSUM ], Prop. 5

also states the main idea of the MDDIF method. The
necessary and sufficient condition for the MDDIF method
to obtain capacity estimates faster than the MDSUM
method is when it is possible to find the two minDe-
lays from different packet pairs (i.e., pXY (0, 1) > 0 and
pXY (1, 0) > 0).

Proposition 5. E[TDIF ] < E[TSUM ] iff pXY (0, 1) >
0 and pXY (1, 0) > 0.

Proof. By using Eqn. (18) andE[TSUM ] = 1/pXY (1, 1),
we compute the relative gain of E[TDIF ] as

Ψ =
E[TSUM ]− E[TDIF ]

E[TSUM ]
=

σ

σ + ξ
, (20)

where

σ = pXY (0, 1)pXY (1, 0)(pX + pY ), (21)

ξ = pXY (1, 1)[pXY (0, 1)(pX + pY ) + p2X ]. (22)

Assume that pXY (0, 1) > 0 and pXY (1, 0) > 0. Since
pX = pXY (1, 0)+pXY (1, 1), pXY (1, 0) > 0 implies pX >
0. Similarly, pXY (0, 1) > 0 implies pY > 0. From
Eqn. (21), σ > 0. Moreover, 0 ≤ pXY (1, 1) < 1 due to
the law of total probability, and it is easy to see that
0 < [pXY (0, 1)(pX+pY )+p2X ] < 1. Therefore, 0 ≤ ξ < 1
from Eqn. (22), and as a result, 0 < Ψ ≤ 1.
In the other direction, assume that Ψ > 0. From

Eqns. (20)-(21), pXY (0, 1)pXY (1, 0)(pX+pY ) > 0 which
is equivalent to pXY (0, 1) > 0 and pXY (1, 0) > 0.

Prop. 6 shows that the MDDIF method does not have
the speed advantage for hb = n. Since H(n) is a reverse-
path hop, the MDDIF and MDSUM methods give the

same expected FPTs for measuring C
(n)
r . Nevertheless,

the MDDIF method’s speed advantage may still be re-

tained for measuring C
(n)
f if Sf and Sr are selected such

that hb = hf . This could be done for C
(n)
r ≥ C

(n)
f

(e.g., by choosing Sf = Sr), and for C
(n)
r < C

(n)
f if it

is feasible to achieve Sf/Sr > C
(n)
f /C

(n)
r > 1 (see the

discussion for Eqn. (3)).

Proposition 6. E[TDIF ] = E[TSUM ] for hb = n.

Proof. The event of Xi = 0 and Yi = 1 is not possi-
ble (i.e., pXY (0, 1) = 0) for this scenario. Since p2i−1 is

not a minDelay, w
(h)
2i−1 6= 0 for some h (from Prop. 1).

Thus, it is not possible for p2i being a minDelay, because

w
(h)
2i−1 = 0 is required for all h (according to Prop. 3).

As a result, σ = 0 in Eqn. (21); thus, Ψ = 0.

5.2 A first-passage-time analysis for hb = n− 1

To quantify the MDDIF method’s speed advantage
for hb 6= n, we analyze the case of hb = n − 1 here.
We model the node in H(h) as a single FIFO queue
with unlimited buffer. The packet inter-arrival times
for the cross traffic to the queue at H(h) (denoted by
A(h)) are exponentially distributed with rate λ(h). This
assumption is based on the previous study that the
cross traffic distribution is reasonably represented by
the Poisson process on sub-second timescales [11]. The
inter-arrival process for the packet pairs to the queue is
also exponential; therefore, they take a random look at
the state of the queue. Since the packet pairs do not
generate a significant load to H(n), the average packet
arrival rate λ(h) is retained. The packet service time
at H(h) (denoted by B(h)) is a random variable which
depends on the packet size (denoted by S(h)) distribu-
tion and C(h). To make the analysis simple, we as-
sume that B(h) is an exponential random variable with
µ(h) = 1/E[B(h)] = C(h)/E[S(h)] being the packet ser-
vice rate at H(h). As a result, each node is modeled as
a classic M/M/1 queue.



5.2.1 Computing the probabilities

In this section we derive analytical expressions for
the probabilities in Eqn. (18) for the MDDIF method
and pXY (1, 1) for the MDSUM method. We also note
that it is sufficient to obtain expressions for pXY (1, 1),
pX , and pY , because they can be used to obtain other
probabilities.
Computing pX We again consider {pj−1, pj}. Since

pj will not affect pj−1, pX is the probability that all
nodes on the path are empty upon pj−1’s arrival. The
empty probability is given by 1− ρ(h) for H(h) [20]. By
applying an independence assumption for the nodes,

pX =

n
∏

h=1

(

1− ρ(h)
)

, (23)

where ρ(h) = λ(h)/µ(h).
Computing pXY (1, 1) Same as the last case, pj−1 ar-

rives at an empty node in H(h) with probability 1−ρ(h).
Given that a period of t has been passed since the last
cross-traffic packet arrival upon pj−1’s arrival at H

(h),
the probability that pj will not be delayed by the in-
tervening cross traffic between pj−1 and pj is given by

P [A(h) > t + δ
(h−1)
j−1,j |A

(h) > t]. By the memoryless
property of an exponential distribution, this conditional

probability is given by P [A(h) > δ
(h−1)
j−1,j ] = e−λ(h)δ

(h−1)
j−1,j .

Hence,

pXY (1, 1) =

n
∏

h=1

(

1− ρ(h)
)

e−λ(h)δ
(h−1)
j−1,j . (24)

Computing pY Since hb = n − 1, we consider two
subpaths for the analysis: (i) {H(1), . . . , H(n−1)} and
(ii) {H(n)}. Let p′Y be the probability that pj’s delay
on subpath (i) is a minDelay and p′′Y the probability
that pj ’s delay on subpath (ii) is a minDelay. Therefore,
pY = p′Y p

′′
Y .

For subpath (i), due to Prop. 3(i)-(ii), both pj−1 and
pj do not experience queueing delay on the subpath.
Therefore, p′Y is the same as Eqn. (24) except for the
last hop.
The subpath (ii) consists ofH(n) which is after H(hb).

Therefore, according to Prop. 3(iii), pj−1 must not be

delayed by more than ω = δ
(n−1)
j−1,j − X(n) > 0. Let

W (n) be the random variable for pj−1’s queueing delay
at H(n). Based on the Pollaczek-Khinchin equation for
an M/M/1 queue [20],

pW (n)(t) =
(

1− ρ(n)
)(

δ0(t) + λ(n)e−µ(n)(1−ρ(n))t
)

,

(25)
where δ0(t) is the Dirac delta function. Moreover, pj
does not encounter intervening cross traffic atH(n) (from
Prop. 3(i)). The probability for this event, conditioned
on the event that pj−1 has encountered a queueing de-
lay of t, is given by the probability of the event A(n) >

δ
(n−1)
j−1,j − t. Therefore, we can obtain p′′Y and pY :

p′′Y =

∫ ω

0

P [W (n) = t, A(n) > δ
(n−1)
j−1,j − t]dt,

= (1 − ρ(n))e−λ(n)δ
(n−1)
j−1,j

[

1 +
ρ(n)

1− 2ρ(n)

×
(

1− e−µ(n)(1−2ρ(n))ω
)]

, (26)

pY = p′Y p
′′
Y ,

= pXY (1, 1)

[

1 +
ρ(n)

1− 2ρ(n)

(

1− e−µ(n)(1−2ρ(n))ω
)

]

.

(27)

5.2.2 Analytical results

Using the analytical results from the last section for
hb = n − 1, Figure 4 reports Ψ for n = 5 with link ca-
pacities of {100, 75, 55, 40, 80} Mbits/s and Sf = {240,
576, 1500} bytes. Each sub-figure plots Ψ against a
mean utilization ρ (ρ(h) = ρ, ∀h) with a given mean
(cross-traffic) packet size Sc (E[S(h)] = Sc, ∀h). The
results are in agreement with Prop. 5.
Figure 4 shows that the benefit of the MDDIF method

increases with Sf and ρ, but decreases with Sc. As
ρ increases, pX , pXY (1, 1), pY , pXY (0, 1) all decrease
(Eqns. (23), (24), (27), and (28)). That is, it is harder
for both MDDIF and MDSUM methods to find valid
samples as the intensity of cross traffic increases. How-
ever, the impact on the MDSUM method is much more
serious, because it is required to obtain the minDelay
for both packets from the same packet pair.
As for the impact of Sf and Sc, Figure 5(a) shows the

distribution of pXY (1, 1) with Sc = [240, 1500] bytes,
Sf = Sr = [240, 1500] bytes, and ρ = 20%. Notice that
pXY (1, 1) drops drastically as Sf increases and Sc de-
creases, causing the MDSUM method a longer time to
find a valid capacity sample. This is because the PPD

(δ
(hb)
j−1,j) increases with Sf and the probability for the

cross-traffic packets intervening between the two pack-
ets increases for a small Sc. Although Sf and Sc also af-
fect the MDDIF method in a similar fashion, the impact
is less severe, because it can obtain the two minDelays
from different packet pairs.
There is also a subtle relationship between Sf and

Sc concerning pXY (0, 1), which is illustrated in Figure
5(b). By inspecting Eqn. (27),

pXY (0, 1) =
pXY (1, 1)ρ

(n)

1− 2ρ(n)

(

1− e−µ(n)(1−2ρ(n))ω
)

.

(28)

Clearly, the likelihood of fulfilling Prop. 3(iii) increases
with Sf , because the probability of pj ’s queueing due
to pj−1’s decreases. Increasing Sf , however, can de-
crease the probability of fulfilling Prop. 3(i), because
the increased dispersion can accommodate more cross-
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Figure 4: The relative gain of the expected first passage times for the MDDIF and MDSUM methods.
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Figure 5: The values of pXY (1, 1) and pXY (0, 1)
for ρ = 20%, and different probe and cross-traffic
packet sizes.

traffic packet arrivals between the two packets [5, 10].
Therefore, Figure 5(b) shows that pXY (0, 1) peaks near
Sf = Sc but drops for Sc > Sf and Sf > Sc.
Besides the speed advantage, the MDDIF method is

also simpler than the MDSUM method. According to
Eqn. (4), the MDSUM method is required to keep track
of the minimum delay sum and the minDelay for the
first and second packets, and performs a validation test
for each measurement. Clearly, the MDSUM also needs
to store the packet-pair dispersion sample responsible
for the minimum delay sum. The MDDIF method, on
the other hand, only needs to store two minDelays.

6. MEASUREMENT RESULTS

We have incorporated the MDDIF method into One-
Probe [17] to measure forward-path, reverse-path, and
round-trip capacity. OneProbe is a non-cooperative
measurement tool using a probe of two back-to-back
packets to measure multiple path-quality metrics. To
measure the reverse-path capacity, OneProbe dispatches

a specially crafted probe packet to elicit two back-to-
back response TCP data packets (which deviates from
assumption (3)). To measure the forward-path capacity,
OneProbe dispatches a pair of probe TCP data pack-
ets, and each probe TCP data packet elicits a response
TCP data packet. The MDDIF method is based on the
RTT samples that measure the time between sending a
probe packet and receiving the elicited response packet.
In the following, we present three sets of capacity

measurement results using the OneProbe implementa-
tion. For the first set, we used a controlled testbed
environment to evaluate the impact of cross traffic on
the measurement accuracy and the FPTs for both the
MDDIF and MDSUM methods. For the second and
third sets, we used ADSL links (real and emulated) as
the bottleneck links.

6.1 Testbed evaluation of the MDDIF and MD-
SUM methods

The testbed, shown in Figure 6, was configured with
a 16-hop round-trip path (n = 16), consisting of a probe
sender, a web server running Apache v2.2.3 as the re-
mote node, four cross-traffic clients X1−X4, and seven
forwarding devices—three Linux 2.6.26 routers R1−R3
and four store-and-forward Ethernet switches S1− S4.
S1 is a Gigabit switch, S4 is a 10 Mbits/s switch, and
the others are 100Mbits/s switches. Since we used Sf =

Sr, hb = 10 and C
(n)
b = 10 Mbits/s. We ran TC/Netem

[8] in each router to emulate a fixed RTT of 300 mil-
liseconds between the probe sender and web server. We
found that the delay emulated by TC/Netem in each
router was stable and similar to the results reported in
[21].

Figure 6: The testbed topology.



Each cross-traffic client generated forward-path (reverse-
path) cross traffic to another cross-traffic client to the
right (left) to emulate a loading rate of ρ on the corre-
sponding path segment. Similar to [5], the cross-traffic
packets had uniformly distributed sizes in the [40, 1500]
bytes range and Pareto inter-arrivals with a shape pa-
rameter α = 1.9. We ran OneProbe from the probe
sender to dispatch a sequence of L probes according
to a Poisson distribution with a mean rate of 2Hz. The
probe sender was equipped with a DAG 4.5 passive net-
work monitoring card [1] to obtain the PPD and RTTs
in microsecond resolution which was limited by the pcap
header structure [2].
We conducted three sets of experiments with different

cross-traffic loadings using the MDDIF and MDSUM
methods with Sf = Sr = 240 bytes, and the results were
plotted in Figures 7(a)-7(c). For each set, we conducted
experiments for different values of L, ranging from 1
to 120. Moreover, for each L value, we repeated the
experiments 50 times to obtain the mean and confidence

intervals for Ĉ
(n)
b (an estimate of C

(n)
b ) and Ψ. When

TSUM was undefined after sending L packet pairs, we

let TSUM = L and computed Ĉ
(n)
b using the PPD of the

packet pair with the smallest RTT sum.
For low cross-traffic loads, Figure 7(a) shows that the

capacity estimates obtained by the two methods coin-
cide for L ≥ 10, and both were very accurate (MDDIF:
9.54 Mbits/s, MDSUM: 9.58 Mbits/s). Moreover, the
figure shows that the MDDIF method has a clear speed
advantage with Ψ ≈ 25%.
For higher cross-traffic load, Figure 7(b) shows that

the measurement accuracy deteriorated for both meth-
ods. However, the impacts of the cross traffic on both
methods were very different. For L = 120, the MDDIF
method obtained 10.78 Mbits/s (7.8% error), whereas
the MDSUM method 12.94 Mbits/s (29.4% error). Sim-
ilar to the low cross-traffic case, the MDDIF method en-
joyed a relative gain of about 25% on the measurement
speed.
In the third set of experiments, we emulated a typical

high-load downlink condition (e.g., downloading from a
server) by deploying asymmetric cross-traffic loads of
ρ = 0.5 for X3 → X2 and X2 → X1, and ρ = 0.1
for others. Figure 7(c) shows that both methods were
sufficiently accurate for L = 120: the MDDIF method
obtained 9.42 Mbits/s (5.8% error) and the MDSUM
method 9.56 Mbits/s (4.4% error). Although the MD-
SUM method is slightly more accurate, its capacity
estimates saw a higher variation when L is not large
enough. Similar to the last two cases, the MDDIF
method had a clear speed advantage, and the relative
gain was also higher than that for the first two cases.

6.2 Measuring remote ADSL links

We deployed OneProbe to conduct both forward-path

and reverse-path capacity measurement from a local
measuring node connected to an 1 Gbit/s Ethernet link.
A sequence of probes with a fixed sampling interval of
500 milliseconds was dispatched to a remote ADSL end-
point with a downlink speed of 8 Mbits/s and an up-
link speed of 800 Kbits/s. Therefore, the forward path
(from the measuring node to the ADSL node) contained
the ADSL’s downlink, whereas the reverse path (from
the ADSL node to the measuring node) contained the
ADSL’s uplink. The ADSL downlink and uplink were
also the bottleneck links on the forward path and re-
verse path, respectively. Both nodes were located in
Hong Kong, and the forward path consisted of 11 hops.
Same as the last section, the measuring node was

equipped with a DAG 4.5 card to measure the RTTs
and PPDs. The RTT (PPD) measurement was used for
capacity estimation based on the MDDIF (MDSUM)
method. Both the ADSL links and the cross traffic on
the path could introduce interference to the RTT and
PPD measurement which were obtained at the same
time. We used Sf = 1440 bytes and Sr = 90 bytes (all
packet sizes include the IP headers) for the forward-
path measurement. According to Eqn. (3), this packet
size setting ensures that the largest dispersion was intro-
duced by the ADSL downlink. We used Sf = Sr = 1440
bytes for the reverse-path measurement.
Figures 8(a) and 8(c) report the PPDs for the forward-

path and reverse-path capacity measurement, respec-
tively. The ranges of the PPDmeasurement are [0.01, 5.7]
milliseconds for the forward path and [14.7, 20.3] mil-
liseconds for the reverse path. The corresponding ranges
of the forward-path and reverse-path capacity estimates

(denoted by Ĉ
(n)
f and Ĉ

(n)
r ) are [2.215, 1272] Mbits/s

and [0.627, 0.865] Mbits/s, respectively. We also ap-
plied the approach in [4] to account for the layer-two
overhead. Since each 1440-byte probe packet was car-
ried by 30 ATM cells, each of which had 53 bytes,
we scaled up the capacity estimates by a factor of 1.1
(1590/1440). By using the MDSUM method, we ob-

tained Ĉ
(n)
f = 6.537 Mbits/s after processing 140 packet

pairs (for which the MDSUM conditions were fulfilled1)

and Ĉ
(n)
r = 0.750 Mbits/s after processing 63 packet

pairs.
Figures 8(b) and 8(d), on the other hand, report the

first and second probe packets’ RTTs for the MDDIF
method. The MDDIF method obtained fairly accurate

results: Ĉ
(n)
f = 8.01 Mbits/s and Ĉ

(n)
r = 0.776 MBits/s

after processing 106 and 22 packet pairs, respectively.
The above shows that the MDDIF method can resolve

the PPD variability problem observed in an ADSL en-
vironment [4]. In particular, it was reported that the

1The MDSUM conditions are considered fulfilled when the
difference between the left and right hand sides of Eqn. (4)
is less than 1%. [10].
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Figure 7: Round-trip capacity estimates for the MDDIF and MDSUM methods and the relative gain
using Sf = Sr = 240 bytes.
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(a) PPD for forward-path capacity measurement.

5 10 15 20 25 30 35 40 45 50 55 60
0

5

10

15

20

25

30

Time (seconds)

(m
il
li
s
e
c
o

n
d

s
)

 

 

d
(n)

j−1
d

(n)

j
min{d

(n)

j−1
} min{d

(n)

j
}

C
(n)

f
=8.01 Mbits/s

^

min{d
(n)

j
}−min{d

(n)

j−1
}=1.589 milliseconds

(b) RTT for forward-path capacity measurement.
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(c) PPD for reverse-path capacity measurement.
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Figure 8: Time series of the PPDs and RTTs for the ADSL-at-the-remote-node experiments.

inter-arrival time of adjacent packets under an ADSL
environment can vary significantly even in the absence
of cross traffic, and such variation could render the PPD
techniques ineffective. The MDDIF method, however,
does not suffer from this problem, because it neither
obtains the PPD directly from adjacent packets nor re-
quires achieving the minimal possible delays from the
same packet pair.

6.3 Measuring local ADSL links

We conducted another set of capacity measurement
experiments by “setting” the forward-path and reverse-
path bottleneck links to the local endpoint’s links. We
achieved this by emulating two types of asymmetric link
capacity—ADSL2 (upstream: 1 Mbits/s, downstream:
18 Mbits/s) and ADSL (upstream: 0.8 Mbits/s, down-
stream: 8 Mbits/s)—using a Click v1.6 router. We
deployed OneProbe in three separate machines on our
campus to measure the capacity of the paths to three
PlanetLab nodes: KAIST (in Korea), UMASS (in US),
and UNIBO (in Italy). Each machine targeted one of
the PlanetLab nodes. Based on our knowledge, the
forward-path and reverse-path capacity were limited by
the emulated ADSL2/ADSL links.

Besides OneProbe, we also attempted to deploy Asym-
Probe [14], a cooperative measurement tool that imple-
ments the MDSUM method, for comparison purposes.
Since our campus network blocked all incoming UDP
packets used by AsymProbe, we implemented Asym-
Probe using OneProbe’s two-packet probe and refer this
implementation to as AProbe. OneProbe used Sf =
Sr = 1500 bytes for reverse-path measurement and
Sf/Sr = 1500 bytes/260 bytes for forward-path mea-
surement, whereas AProbe used maximum/minimum
packet sizes of 1500 bytes/260 bytes. Each machine
conducted the OneProbe and AProbe measurement for
every 15 minutes. Each tool obtained a capacity es-
timate by processing at most 200 packet pair samples
with a fixed probing rate of 2Hz.
Table 1 shows the median capacity estimated by One-

Probe and AProbe based on 24-hour measurement. Mea-
surement results presented in the first two rows show
that the capacity measurement obtained by OneProbe
using the MDDIF method was very accurate. In par-
ticular, OneProbe could obtain accurate reverse-path
estimates even when bottleneck link was in the last hop
of the path. On the other hand, AProbe’s reverse-path
measurement was not accurate, because it could ob-



tain only the forward-path dispersion and therefore the
estimates represent the lower bounds for the reverse-
path capacity. Nonetheless, AProbe still obtained lower
bound values for the two ADSL cases: 1500/260×0.8 =
4.615 Mbits/s and 1500/260× 1 = 5.769 Mbits/s.
We repeated the experiments with a symmetric net-

work link of 10 Mbits/s which, according to the reasons
stated earlier, should be the bottleneck capacity. All
other settings were unchanged. As shown in the third
row of Table 1, OneProbe’s and AProbe’s results were
close to 10 Mbits/s. We did not try a higher bandwidth,
because we were no longer able to ensure that the bot-
tleneck link was still located in our campus network.

Table 1: Median capacity (in Mbits/s) measured
by OneProbe and AProbe.

Link Tools KAIST UMASS UNIBO

Type Ĉ
(n)
f

Ĉ
(n)
r Ĉ

(n)
f

Ĉ
(n)
r Ĉ

(n)
f

Ĉ
(n)
r

ADSL OneProbe 0.799 7.921 0.771 7.926 0.798 7.900
(Up = 0.8, AProbe 0.786 4.392 0.758 4.544 0.758 4.310
Down = 8)

ADSL2 OneProbe 1.018 17.817 0.962 17.870 0.991 17.804
(Up = 1, AProbe 0.988 5.472 0.989 5.262 1.025 5.300

Down = 18)

10 Mbits/s OneProbe 10.025 9.748 10.568 9.748 10.353 9.744
Ethernet AProbe 10.592 9.740 9.423 9.748 9.630 9.748
Link

7. CONCLUSIONS

This paper introduced the minimum delay difference
(MDDIF) method, a new cross-traffic filtering approach
for capacity measurement. Unlike the existing packet-
pair dispersion methods, the MDDIF method obtains
the packet-pair dispersion from the minimal possible
delay (minDelay) for a first probe packet and a second
probe packet both of which generally belong to differ-
ent packet pairs. We have proved that a difference of
these two minDelays gives the packet-pair dispersion
required for capacity estimation and that the MDDIF
method is faster than the minimum delay sum (MD-
SUM) method. We also conducted testbed and Internet
measurement experiments to compare the MDDIF and
MDSUM methods.
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