

15
Deadlock-Free TCP Over High-
Speed Internet

Rocky K. C. Chang
The Hong Kong Polytechnic University, Kowloon (Hong Kong).

Ho Y. Chan
University of Southern California, Los Angeles, CA, USA.

Adam W. Yeung
Cisco Systems Inc., San Jose, CA, USA.

In this paper, we consider TCP throughput deadlock problems caused by an inter-
play between the Nagle algorithm, delayed acknowledgment algorithm, and sev-
eral implementation details. For some combinations of send and receive buffers, a
TCP sender cannot send more segments due to the Nagle algorithm and, at the
same time, a TCP receiver cannot acknowledge more segments received due to the
delayed acknowledgment algorithm. The outcome is a deadlock, which can only
be resolved by the receiver’s timer. Although the deadlock can take place in any
types of networks, it is generally more difficult to ensure deadlock-free connec-
tions on high-speed networks. Moreover, the impact is much more significant on
high-speed networks, and the deadlock renders the connection practically unus-
able. Several straightforward solutions, such as turning off the Nagle algorithm
and acknowledging every segment, have been proposed; however, they reintro-
duce the same problems that they were initially designed for. In this paper we pro-
pose an adaptive acknowledgment algorithm (A3) to eliminate throughput dead-
locks on the receiver side while preserving the original intent of employing the
Nagle algorithm and delayed acknowledgment. An A3-receiver uses the same de-
layed acknowledgment as before, but with an additional component to adaptively

532 R. K. C. Chang et al.

compute the acknowledgment threshold, which is adjusted according to the maxi-
mum amount of segments sent by the sender. By adapting to the sender’s state, an
A3-receiver can avoid deadlocks when there is no network congestion. To further
adapt to possible network congestion, A3-receivers are enhanced by incorporating
a slow-start-like algorithm to adjust the acknowledgment threshold when network
congestion is suspected. The resulting algorithm is referred to as congestion-
sensitive A3 (CSA3). Extensive simulation experiments have confirmed the effec-
tiveness of both A3 and CSA3.

15.1 INTRODUCTION

Transport control protocol (TCP) continues to dominate Internet traffic by
providing end-to-end reliability, flow control, and congestion control services to a
number of very popular application and session protocols, such as HTTP, FTP,
TELNET, SSL, etc. Being designed as a generic transport protocol back in the
mid-1980s, the TCP performance has to keep up with rapid advances in the under-
lying networking technologies and new application requirements. One area of TCP
performance degradation is brought by new data-link technologies’ characteristics,
such as long delay-bandwidth-product of satellite links [1-3], channel asymmetry
of cable modem networks [4], and high error rates of wireless links [5]. Each of
these issues affects the growth of TCP sending window size in different ways, but
the results are the same: the TCP’s throughput is severely limited with respect to
the available bandwidth between end hosts.

On the other hand, implementation issues are equally, if not more, important
in affecting TCP performance, e.g., [6-8]. The performance of a network protocol
realization is particularly important for TCP because TCP is currently defined by
implementations rather by formal protocol specifications [7]. In this paper, we
consider TCP throughput deadlock problems that are caused mainly by an inter-
play between the Nagle algorithm, delayed acknowledgment algorithm, and vari-
ous TCP implementation issues. The Nagle algorithm and delayed acknowledg-
ment algorithm were in fact designed to address the “small-packet problem,”
which significantly reduces network throughput as a result of sending small-sized
data (say 1 byte) in one IP datagram (usually 40 bytes) instead of a full segment.
The small-packet problem is also referred to as a silly window syndrome (SWS)
problem [9]. The Nagle algorithm is a sender-side SWS avoidance solution, which
prevents a sender from sending small segments when there are outstanding seg-
ments to be acknowledged [10]. A TCP segment is considered small if it is less
than the sender-side maximum segment size (MSS); therefore, a nonMSS-sized
segment is considered small. The delayed acknowledgment algorithm, on the other
hand, is a receiver-side SWS avoidance solution, which prevents a receiver from
acknowledging small segments [11].

A throughput deadlock rises when a pair of TCP sender and receiver gets
into a circular-wait situation. That is, the sender cannot send more segments due to

Deadlock-Free TCP 533

Nagle algorithm, while the receiver cannot send acknowledgments due to the de-
layed acknowledgment algorithm. Although the deadlock state is finally escaped
by the firing of a coarse-spaced delayed acknowledgment timer, the resulting TCP
throughput is so low that the connection is practically not usable. A necessary
condition for getting into the deadlock situation is that a TCP sender sends
nonMSS-sized segments. When the amount of outstanding segments is not enough
to trigger an immediate acknowledgment from the receiver, a throughput deadlock
will occur. However, there are different factors responsible for the sending of
nonMSS-sized segments. For example,
1. An application data may consist of an odd number of MSS-sized segments

with a nonMSS-sized final segment. In this case, the receiver may not be able
to promptly acknowledge the last MSS-sized segment due to the delayed ac-
knowledgment algorithm. At the same time, the sender is unable to send the
nonMSS-sized final segment due to Nagle algorithm. The resulting through-
put degradation was reported in the context of persistent HTTP connections
[12].

2. Even if the application data size does not fall into scenario (1), nonMSS-sized
segments may still be generated as a result of buffer tearing, in which an ap-
plication data is usually broken up into a number of nonMSS-sized segments
when copied to the write buffers used by TCP. This is because the write
buffer sizes are usually not multiples of MSS.

3. Other OS implementation issues, such as the send-receiver buffer size combi-
nations, data copying rules, and order of actions when receiving acknowl-
edgments, can cause the sender to send nonMSS-sized segments. Throughout
degradation as a result of these issues was reported by Moldeklev and Gun-
ningberg [14], and Comer and Lin [15].

The three scenarios discussed above involve the application, socket, and
TCP layers. Moreover, all three factors could cause throughput deadlocks on low-
speed networks as well as high-speed networks. However, the impact is more no-
ticeable in high-speed, end-to-end connections, e.g., client and server on a 100-
Mbps LAN. Furthermore, it is more difficult to guarantee deadlock-free TCP con-
nection in high-speed networks, because the MSS value is usually very high on
those networks. Hence, we consider the deadlock problems mainly for high-speed
TCP connections. Although the speed of an end-to-end connection is generally not
high today, this TCP deadlock problem is expected to have a more significant im-
pact as the effort of deploying TCP/IP on top of many high-speed networks, such
as ATM, WDM, and broadband satellites, accelerates.

In terms of resolving throughput deadlocks, Mogul and Minshall [13] pro-
posed an improved implementation of the Nagle algorithm to overcome the first
two scenarios of deadlocks. However, they did not address the third scenario.
Moldeklev and Gunningberg, on the other hand, proposed several straightforward
solutions to solving the deadlock problems arising from the third scenario, such as
disabling the Nagle algorithm and acknowledging every segment [14]. These solu-
tions can guarantee deadlock-free connections, but they will clearly reintroduce

534 R. K. C. Chang et al.

the SWS problem. Murayama and Yamaguchi [16] proposed to use new TCP flags
to implement “No Delayed ACK” and “Force Delayed ACK” options. But this
proposal also requires new TCP implementations on all systems, which is unlikely
to happen.

In this paper we propose an adaptive approach to avoid SWS on the receiver
side, referred to A3. An A3-receiver is the same as a typical TCP receiver except
for an additional component that “adaptively” determines when to send acknowl-
edgments based on the information gathered on the sender. In other words,
throughput deadlocks are avoided on the receiver, instead of the sender side. The
A3 also does not distinguish the exact causes for throughput deadlocks, and it is
therefore designed to handle all three scenarios of deadlocks.

The rest of this paper is organized as follows: In Section 15.2, we first de-
scribe necessary background information on the socket buffer management, the
Nagle algorithm, and delayed acknowledgment algorithm. We then describe the
throughput deadlock problem in more details. In Section 15.3, we introduce the A3
and show that it eliminates all classes of deadlocks in the absence of network con-
gestion. In Section 15.4, we explain why throughput deadlocks still occur to the A3
in the presence of network congestion. Subsequently, we introduce Congestion-
Sensitive A3 (CSA3), and show that the CSA3 is able to ensure deadlock-free TCP
connections even in a congested network environment. Finally, we conclude this
paper with future work in Section 15.5.

15.2 THE TCP THROUGHPUT DEADLOCK PROBLEM

15.2.1 Unix Socket Layer

The networking codes in most BSD-based Unix kernels are organized into
three layers: socket, protocol, and interface [17]. The socket layer is a protocol-
independent interface to the protocol-dependent layer below while the latter two
layers implement specific network protocol suites and device drivers for data-link
technologies.

Data transfer between the application and protocol layers largely relies on
memory buffers. An efficient memory management scheme called mbufs (memory
buffers) was first introduced in BSD 4.3 and later adopted by SunOS 4.x. The
mbufs scheme provides fixed and variable size memory allocation that improves
efficiency by reducing physical data replication within the kernel memory space.
The mbufs memory is allocated during system initialization and is part of the per-
manent kernel memory that always resides in the physical memory. There are two
types of mbufs: small (or plain) and cluster. The plain mbufs are 128 bytes long
with 112 bytes data storage which form a cluster of mbufs when an external page
(1024 bytes from mbufs memory pool) is attached to the existing plain mbufs. The
cluster mbufs’ data is stored exclusively in the external page to facilitate pointer
referencing.

Deadlock-Free TCP 535

In SunOS 4.1.3 bulk data transfer, data will be added in the form of multiple
1024-byte cluster mbufs when the send buffer and user data are larger than or
equal to 512 bytes. Figure 15.1 illustrates the data copy routine in the socket layer.
One important thing to note from the figure is that as soon as the send buffer col-
lects 4096 bytes of data, it will send them out to the TCP output for delivery,
without waiting for more application data. This data copy mechanism, as we will
see later, turns out to be an important implementation issue that is partially respon-
sible for TCP throughout deadlock.

write ()

user_data > 0

available space in send
buffer ≥ 1024 bytes

 user_data ≥ 1024 bytes user_data < 1024 bytes

user_data ≥ 512 bytesallocate cluster mbuf
copy 1024 bytes

user_data −= 1024 bytes
data_copied += 1024 bytes

buffer full
process sleep

data_copied ≥ 4096 bytes

copy user_data
to plain mbufs

copy user_data to a
cluster of mbufs

TCP output ()

S
O
C
K
E
T

L
A
Y
E
R

True

False

Figure 15.1. Socket layer data copy rules in BSD.

15.2.2 Nagle algorithm and delayed acknowledgment algorithm

Figure 15.2 shows the Nagle algorithm implemented in SunOS 4.x. When
there is no outstanding unacknowledged data or the Nagle algorithm is off, the
sender can send a segment of any size as long as it is permitted by the usable win-
dow size. Otherwise, the unsent data needs to wait in the send buffer if the data
unsent is less than both MSS and half of the maximum usable window size. In this
case, the sender waits either for more data delivered from the socket layer or for
acknowledgments.

The delayed acknowledgment strategy, on the other hand, delays sending
acknowledgments until they can be piggybacked onto either a data segment or a
window update packet. For example, in the SunOS implementation, a separate
window update with a piggybacked acknowledgment will be sent if the window

536 R. K. C. Chang et al.

can slide more than either (a) 35% of the receive buffer size or (b) two MSSes of
the size. Even if both conditions are not met, a delayed acknowledgment timer
allows sending 1 acknowledgment every 200 ms.

TCP output ()

All outstanding
data acknowledged

U ≥ MSS

Send MSS bytes of data
D −= MSS bytes Send D bytes of data

IP output ()

T
C
P

L
A
Y
E
R

Nagle algorithm ON

D ≥ MSS

D ≥ 1/2 max usable
window

Send min(D, U) bytes of data

True

False

D: Number of unsent bytes
U: Usable window in bytes

Figure 15.2. The Nagle algorithm.

15.2.3 An Experimental Setup

Unlike the ATM network setup used in [14], in this section we demonstrate
that the throughput experiments can be performed in a single workstation (running
SunOS 4.1.3 in our case). To allow communication between a sending process and
a receiving process, both running in the same machine, we make use of the loop-
back interface as a logical data link between them. Therefore, the kernel performs
complete data processing in SunOS 4.1.3’s transport and network layers, and the
loopback driver redirects packets sent to the receiving process back to an appro-
priate input queue. It turns out that changing the loopback driver’s MTU is not a
trivial task. Our solution is to perform a “software hijack” by putting a loopback
MTU adjustment request (a few lines of code) in tcp_trace.c, a debug function that
can be initiated via SO_DEBUG socket option at the socket level. We also wrote a
socket program lperf to measure SunOS 4.1.3 memory-to-memory TCP through-

Deadlock-Free TCP 537

put. The program uses BSD socket interface to perform inter-process communica-
tion. Upon execution, the program forks a receiver process to collect all sender
data via the loopback routine. The sender transmits a continuous data stream, and
the established TCP connection would not terminate until the sender finishes send-
ing data.

 R
 S

4 KB 8 KB 16 KB 24 KB 32 KB 40 KB 48 KB 52 KB

4 KB 23.49 31.61 0.16 0.16 0.16 0.161 0.16 0.16

8 KB 28.33 30.28 0.16 0.16 0.16 0.16 0.16 0.16

16 KB 27.89 34.97 36.24 0.49 0.33 0.47 0.47 0.47

24 KB 27.19 35.42 34.81 41.15 40.83 40.50 0.75 0.75

32 KB 27.63 34.63 35.41 39.60 39.58 38.92 38.46 38.50

40 KB 26.58 34.63 34.97 38.81 39.73 39.39 39.57 38.73

48 KB 27.35 34.50 34.55 38.21 39.61 39.31 39.47 39.09

52 KB 27.01 34.23 34.07 38.35 39.29 39.23 38.89 40.27

 Class I deadlocks

 Class II deadlocks

 Class III deadlocks

Table 15.1. Throughput measurements for a TCP connection with an MSS of 9148
bytes (in Mbps).

The throughput measurements are based on two timestamps generated from

the gettimeofday system call. The start time is taken at the instant when the sender
makes the write system call, and the end time is taken at the instant when the
sender completes the data transmission. The TCP throughput is computed by di-
viding the total amount of application data sent by the difference between the two
timestamps. In Table 15.1, we present the throughput measurements with the MSS
set to 9148 bytes. Each data is an average value computed from 10 independent
experiments. All measurements assume zero connection setup time, no packet
losses, and a bulk data transfer. Moreover, there is a delay of 180 seconds between
experiments in order to alleviate the CPU loading. As shown in the table, through-
put deadlocks occur in the shaded region, which are contributed from three differ-
ent sources, as will be explained next.

538 R. K. C. Chang et al.

15.2.4 Three Classes of Throughput Deadlocks

As explained in Section 15.1, all throughput deadlocks are resulted from a
circular-wait condition between a TCP sender and a TCP receiver. Moldeklev and
Gunningberg classified the causes for the throughput deadlock into (I) deadlocks
predictable from the acknowledgment strategy, (II) deadlocks caused by the socket
copy rule and the Nagle algorithm, and (III) deadlocks caused by the timer ac-
knowledgment and the Nagle algorithm [3]. To summarize, class I deadlock oc-
curs if Equation (1) is satisfied, and classes II and III deadlocks occur if Equation
(2) is satisfied.

S < min{2 MSS, 0.35 R}. (1)
S < min{3 MSS, 0.35 R + MSS}, (2)

where S and R are the send socket buffer size and receive socket buffer size,
respectively.

Equation (1) represents a sufficient deadlock condition for which a maxi-
mum sized segment sent by the sender cannot trigger acknowledgments from the
receiver. Thus, this type of deadlock depends only on the socket buffer size com-
bination, but not on other implementation issues, such as data copying rules.

Even when Equation (1) does not hold, class II and III deadlocks could still
occur according to Equation (2), and these two classes, unlike the first one, depend
also on other implementation details. Moreover, the exact causes for classes II and
III deadlocks are subtly different. In class II deadlocks, a sender may immediately
push out a nonMSS-sized segment of size d because of the data copying rule, thus
leaving S − d for buffering new data in the send buffer. As a result, sufficient con-
ditions for deadlocks are given by (i) S − d < MSS and (ii) d < min{2 MSS, 0.35
R}. The Nagle algorithm and condition (i) prevent the sender from sending more
segments. The delayed acknowledgment strategy and condition (ii), on the other
hand, prevent the receiver from acknowledging immediately. S/R = 8 KB/16 KB
and 16 KB/40 KB are examples of this class of deadlocks (see Table 15.1).

Class II deadlocks could not occur in S/R = 16 KB/24 KB, 16 KB/32 KB, 24
KB/48 KB, and 24 KB/52 KB, because the sender has enough buffer space to
compose an MSS-sized segment. However, class III deadlocks could still occur to
them when a sender receives a timer-triggered acknowledgment from the receiver.
To be specific, let d be the amount of outstanding segments sent by the sender at a
certain time. After that, the sender receives a timer-triggered acknowledgment,
which generally could acknowledge any amount of the outstanding segments, and
let a ≤ d be the amount of segments acknowledged by the timer-triggered ac-
knowledgment. Similar to class II deadlocks, sufficient conditions for deadlocks
are given by (i) S − (d − a) < MSS, (ii) d − a < min{2 MSS, 0.35 R}. These two
conditions are again reduced to Equation (2).

Based on Equation (2), a straightforward solution to avoiding throughput
deadlocks is to choose an S/R that violates Equation (2). That is, a static approach
is to set the send socket buffer to 3 MSS, regardless of the receive socket buffer
size. For 10/100-Mbps Ethernet, for example, only 4380 bytes of socket memory

Deadlock-Free TCP 539

to meet the requirement. However, this requirement becomes more demanding in
the ATM networks with MSS equal to 9148 bytes, where a sender needs to reserve
more than 27 KB of buffer memory for a single TCP connection. When the sender
maintains a large number of concurrent connections, the memory allocated to the
TCP communication would be too enormous to support. Further, this solution is
still dependent on the network speed, and the buffer requirement becomes more
stringent as the Internet’s speed continues to increase.

Another method of violating Equation (2) is to let the sender obtain receive
socket buffer information, but this requires additional support from the TCP proto-
col. Yet another obvious solution is to turn off the Nagle algorithm on the sender
side and to explicitly acknowledge every segment received, i.e., without delayed
acknowledgment. This solution will clearly reintroduce the small-segment prob-
lems that the Nagle algorithm and the delayed acknowledgment strategy were
originally designed to solve. To sum up, the inadequacies of these solutions moti-
vate us to examine better solutions to eliminate the deadlock problems, to be dis-
cussed next.

15.3 AN ADAPTIVE ACKNOWLEDGMENT ALGORITHM (A3)

We have identified three important requirements for any solution to the
deadlock problem. First, the solution must cater to heterogeneous receivers, which
may or may not implement the new solution. Second, an implementation of the
solution must involve only a minimal change in the coding. Third, the solution
must be adaptive to the network size and the amount of socket buffers available.
All three requirements above ensure that the solution is compatible with the cur-
rent TCP and is immediately deployable. Moreover, the requirements imply that
the solution is scalable to the rapid development of the Internet in the future.
Based on these requirements, we expect that the new algorithm is a receiver-side
SWS avoidance algorithm and the sender-side SWS avoidance algorithm should
remain unchanged. In other words, the receiver is solely responsible for ensuring
deadlock-free operations, and it only assumes that the sender transmission behav-
ior is governed by a window-based flow control mechanism.

Based on the design requirements, we propose a new A3 that determines
when to send acknowledgments based on the sender’s behavior. A key quantity
maintained by an A3-receiver is referred to as maximum unacknowledged data size
(MUDS) in terms of bytes, which is defined to be the maximum amount of data
continuously sent by the sender when the receiver is not acknowledging. When
deadlocks do not occur and there is no network congestion, the MUDS is upper
bounded by min{S, R}. In general, the MUDS’ exact value depends on the buffer
sizes, data copying rule, and other implementation issues. For example, the MUDS
is given by MSS + 4 KB for MSS + 4 KB ≤ S < min{3 MSS, 0.35 R + MSS}
(class II deadlocks). Given an MUDS estimate, an A3-receiver sends an acknowl-
edgment whenever the segments received reach or exceed 35% of the estimated

540 R. K. C. Chang et al.

MUDS. Thus, an A3-receiver no longer relies on the receiver’s actual buffer size
and the actual value of the MSS, and it is able to adapt to various network MTUs
and different combinations of send and receive buffer sizes. Moreover, it is clear
that the new acknowledgment algorithm removes all three classes of deadlocks by
having the receiver promptly send back acknowledgments.

One approach to estimating the MUDS is to perform “samplings” periodi-
cally by an A3-receiver. During a sampling, the receiver keeps track of the amount
of segments received, and it will not acknowledge any segments. Based on the
sampling information, an A3-receiver estimates the sender’s MUDS. Thus, an A3-
receiver alternates between sampling periods and nonsampling periods.

The packet samplings incur overheads and delay, because acknowledgments
will not be sent during these periods. Thus, controlling the length of the sampling
periods and the frequency of performing samplings are major factors influencing
the A3’s performance. For this purpose, an A3-receiver is equipped with the fol-
lowing timer, counter, and thresholds. We also show in Figure 15.3 an A3-
receiver’s state transition diagram during sampling periods.
• Sampling period timer (SP_timer): A timer to control the length of a sampling

period
• Sampling period threshold (SP_t): A value (in time units) used in conjunction

with the SP_timer to control the length of a sampling period
• Inter-sampling period counter (ISP_counter): A counter to control the inter-

sampling period
• Inter-sampling period threshold (ISP_t): A value (in number of packets) used

in conjunction with the ISP_counter to control the inter-sampling period

15.3.1 Inter-Sampling Period Control and Sampling Initialization

The value of ISP_t determines the time interval between two consecutive
samplings and it is set according to the following algorithm, where MUDScurrent
and MUDSprevious are the current and previous estimates of the MUDS, respec-
tively.

if (MUDSprevious does not exist)
 ISP_t = 10;
else {
 if (|MUDScurrent − MUDSprevious| < MSS) {
 ISP_t = 3 ISP_t;
 the acknowledgment threshold remains unchanged;
 } else {
 ISP_t = 10;
 if (MUDScurrent > MUDSprevious)
 the acknowledgment threshold = 0.35 MUDScurrent;
 }
}

Deadlock-Free TCP 541

Initialization

Termination

Sampling MUDS

1) Send init. ack.
2) SP_timer = 1.5 RTT
3) SP_timer starts
 counting down

1) Count the number
 of packets received
2) Reset SP_timer
3) SP_timer starts
 counting down

1) Send acknowledgment
2) Update ISP_counter
 and acknowledgment
 threshold

A packet arrival
and

SP_timer > 0

Begin
sampling

SP_timer > 0

A packet arrival
and

SP_timer > 0

SP_timer = 0 or
R is saturated or

a segment received
for three times

End
sampling

Figure 15.3. An A3-receiver’s state diagram during a sampling period.

The ISP_t is set to a constant (10 in the algorithm) as soon as a TCP connec-

tion is established, and the ISP_counter is initialized to ISP_t and begins to count
down, i.e., the counter is decremented whenever a packet is received. A packet

542 R. K. C. Chang et al.

sampling starts when the ISP_counter’s value drops to zero. At the end of a packet
sampling, the counter may be reset to ISP_t again. However, the counter is tripled
if MUDScurrent is “close” to MUDSprevious because this is a clear indication that
MUDScurrent is accurate and the number of samplings should be decreased.

At the beginning of a packet sampling, the receiver will first send a maxi-
mum window update with an acknowledgment for all the segments received in the
buffer. The acknowledgment and window update therefore allow the sender to
transfer the maximum amount of data permitted by the sender-side SWS avoid-
ance mechanism. At the same time, the SP_timer is initialized to 1.5 RTT (round-
trip time) and the timer starts counting down. This initialization allows adequate
time to receive the packets in transit and the packets sent upon receiving the re-
ceiver’s first acknowledgment. Once a sampling is started, the receiver is prohib-
ited from further acknowledging the incoming data until the sampling period ends.

15.3.2 Sampling Period Control

A TCP sender may dispatch an arbitrary amount of segments bounded by
the sender-side flow control mechanism and the send buffer size. The receiver
carefully records the amount of data received, and discards retransmissions. The
sampling procedure terminates when (1) the receive buffer is saturated (or close to
saturation) or (2) a single segment is received three times in a row (this is a strong
indication of timeout or packet lost). Otherwise, the sampling will continue until
(3) the connection has been inactive for a certain period of time, i.e., when the
SP_timer becomes zero.

We have mentioned that the SP_timer is initialized to 1.5 RTT when a con-
nection is established. The SP_timer is reset to the threshold SP_t whenever a
packet is received. The timer then starts counting down and the receiver terminates
the sampling period when the timer reaches zero. The choice of the threshold SP_t
is important. Having a large threshold value will result in a performance penalty
since no acknowledgments are sent during a sampling period. On the other hand,
having a small value may result in terminating the sampling prematurely and, as a
result, the receiver underestimates the MUDS. Here we use inter-packet arrival
time (IPAT) to determine the threshold by setting the SP_t to 1.3 IPAT. In other
words, the receiver concludes that the sender has sent a maximum amount of seg-
ment permitted by the sender-side SWS avoidance mechanism if there are no other
packet arrivals after a period of 1.3 IPAT. To do so, the receiver continuously
measures the IPAT for the incoming packets. For every five packets received, the
receiver discards the maximum and minimum IPAT samples and takes the average
of the remaining three values as the current IPAT estimate. The IPAT clearly de-
pends on the transmission delay, sender packetization delay, and other factors. By
computing the IPAT for every five packets, we are hoping to obtain the most up-
dated estimate for the packet interarrival pattern.

One exception to resetting the SP_timer to 1.3 IPAT upon receiving a packet
is when the remaining time in the timer upon a packet arrival is larger than 1.3

Deadlock-Free TCP 543

IPAT. This will occur if a transit packet arrives at the receiver shortly after the
initialization of a packet sampling. If the SP_timer is immediately reset to 1.3
IPAT in this case, the packet sampling may terminate prematurely since the first
acknowledgment sent by the receiver at the initialization stage may not arrive at
the sender in time. Therefore, the A3 ensures that the sampling period is at least 1.5
RTT.

The following summarizes the algorithm of updating the SP_timer when a
packet is received.

if (SP_timer > 1.3 IPAT upon a packet arrival)
 SP_timer continues to count down;
else
 SP_timer = 1.3 IPAT and the timer starts counting down.

15.3.3 Computing the Thresholds

During and at the end of a sampling period, an A3-receiver is required to up-
date the ISP_t, SP_t, and the acknowledgment threshold. The updates for the ISP_t
and SP_t have already been discussed in the previous two sections. As for the ac-
knowledgment threshold, a sender’s actual MUDS normally does not change sig-
nificantly in the congestion avoidance phase. Thus, we only update the MUDS
estimate when it is increased. To follow the delayed acknowledgment algorithm in
the SunOS, we set the acknowledgment threshold to 35% of the MUDS estimate,
as shown in the algorithm in Section 15.3.1.

15.3.4 Performance Evaluation

To compare the performance of an A3-receiver with that of a typical TCP
receiver equipped with the delayed acknowledgment algorithm, we simulate a
TCP connection with an MSS of 9148 bytes. Each endpoint in the simulator is a
4.3 BSD Unix terminal, which observes the essential 4.3 BSD socket mechanism,
including the data copying rules and TCP segment buffering. Our simulated TCP
channel takes no time to establish a connection, and the packet loss is assumed
negligible. The TCP performance is measured through a ftp session from a sender
to a receiver. The throughput is computed by the total amount of data transferred
by the total transmission time. The experiments cover 8 × 8 send-receive buffer
size combinations ranging from 4 KB to 52 KB, and each individual experiment is
a continuous (back to back) transmission of 10-MB data. Every throughput meas-
urement reported in Table 15.2 is an average of 25 independent runs.

Our simulation results show that the A3 has successfully reclaimed the TCP
performance in the original deadlock regions. Additionally, the adaptive acknowl-
edgment threshold improves the performance in other nondeadlock areas. This is
due to an earlier response from the receiver when the A3 is used, which results in a
more efficient pipelining of the data from the sender. On the other hand, there is a
marginal performance penalty caused by the A3’s operational overheads for small
receivers, e.g., R = 4, 8 KB. Consider S/R = 16 KB/4 KB, the receiver acknowl-

544 R. K. C. Chang et al.

edgment threshold is 1.4 KB, and the sender maximum usable window size is 4
KB. This suggests that a single data segment (4 KB) from the sender is enough to
trigger a receiver acknowledgment from either acknowledgment algorithm. Unfor-
tunately, an A3-receiver requires more time to compute the IPAT, sampling
threshold, and acknowledgment threshold, and these additional overheads intro-
duce performance degradation, as shown in the lower left triangular regions in
Table 15.2, where the send buffer is relatively large when compared with the re-
ceive buffer.

 R
 S

4 KB
 (1) (2) (3)

8 KB
 (1) (2) (3)

16 KB
 (1) (2) (3)

24 KB
 (1) (2) (3)

4 KB 20 20 21 20 20 21 6 20 20 6 20 20

8 KB 21 20 20 25 20 20 6 25 25 6 25 26

16 KB 21 20 20 41 41 41 55 50 50 19 50 50

24 KB 21 20 20 41 40 40 79 80 80 74 87 89

32 KB 20 20 21 41 40 40 81 80 82 80 89 95

40 KB 20 20 21 41 40 41 81 80 80 99 98 103

48 KB 20 20 20 41 40 42 81 80 81 99 99 102

52 KB 21 20 21 41 40 41 82 80 80 100 98 98

 R
 S

32 KB
 (1) (2) (3)

40 KB
(1) (2) (3)

48 KB
(1) (2) (3)

52 KB
(1) (2) (3)

4 KB 6 20 20 6 20 21 6 20 20 6 20 21

8 KB 6 25 25 6 25 26 6 25 25 6 25 26

16 KB 19 50 50 19 50 50 19 50 50 19 50 50

24 KB 73 87 88 74 87 87 26 87 88 26 87 87

32 KB 89 94 106 89 98 107 94 102 115 94 99 118

40 KB 99 99 103 141 134 137 111 139 144 111 137 146

48 KB 100 104 102 151 150 159 160 161 170 143 161 168

52 KB 100 99 105 152 152 160 162 168 165 171 162 170

(1) Delayed acknowledgment algorithm
(2) The A3 according to Section 15.3
(3) The A3 with a fewer number of samplings
Shaded region: Deadlock region for the delayed acknowledgment algorithm

Table 15.2. Throughputs of a TCP connection with an MSS of 9148 bytes (in KB
per simulation second).

A possible way to further improving the A3’s throughput performance is
therefore to reduce the number of samplings required for computing the MUDS.

Deadlock-Free TCP 545

There are two ways to achieve that: (1) increase the inter-sampling period and (2)
decrease each sampling period. In Table 15.2, we also present simulation results
for a modified A3 in which ISP_t = 3 ISP_t is changed to ISP_t = 4 ISP_t under
the if-statement, and ISP_t = 10 is changed to ISP_t = 0.5 ISP_t under the else
statement in the algorithm presented in Section 15.3.1. Although the number of
samplings decreases significantly (not shown in the table), the throughput im-
provement is not significant. In the original A3, the overhead incurred from addi-
tional samplings is compensated by a gain in throughput. In the modified A3, a
loss of gain in throughput by not sampling as frequently is compensated by reduc-
ing the sampling overhead.

15.4 EFFECT OF NETWORK CONGESTION ON THE A3

The A3 was designed without network congestion in mind. In this section,
we show and explain why the A3 fails to ensure throughput deadlock-free when a
TCP connection experiences network congestion. Then we propose an enhance-
ment to the A3, referred to as congestion-sensitive A3 (CSA3), to ensure deadlock-
free even in the presence of network congestion.

It is well known that a TCP sender detects possible network congestion ei-
ther by receiving three duplicate acknowledgments (fast retransmission) or by
retransmission timeouts. In either case, the sender retransmits the oldest segment
that has not been acknowledged. At the same time, the sender also adjusts its con-
gestion window size. In the former case, the sender exercises fast recovery in
which the congestion window is reduced to only half of the current value. In the
latter, the window size is reset to one MSS. Both cases effectively reduce the
sender’s sending rate, and consequently the A3-receiver’s MUDS estimate over-
estimates the actual value. Therefore, the receiver may not be able to receive
enough data to trigger acknowledgment, and throughput deadlock recurs.

 R
 S

4
KB

8
KB

16
KB

24
KB

32
KB

40
KB

48
KB

52
KB

4 KB
8 KB

16 KB

24 KB
32 KB

 Deadlock-prone region I

40 KB

48 KB
52 KB

Deadlock-

free region

Deadlock-prone
region II

Table 15.3. A classification of send-receive buffer combinations for an MSS of
9148 bytes for A3-receivers.

546 R. K. C. Chang et al.

15.4.1 A Classification of Operating Regions

Before introducing the CSA3, it is convenient to divide the 64 send-receive
buffer combination into three regions assuming that the MSS is 9148 bytes, as
shown in Table 15.3. In the deadlock-free region, throughput deadlocks will not
occur to TCP connections equipped with A3-receivers in the presence of network
congestion and we postpone the explanation to the next section. On the other hand,
throughput deadlocks recur in the two deadlock-prone regions when there is net-
work congestion. The throughput degradation is more serious in the deadlock-
prone region II than that in the deadlock-prone region I.

A. Deadlock-Free Region
Figure 15.4 shows the throughput for a scenario in the deadlock-free region

(S/R = 4 KB/4 KB). Network congestions of short durations are injected into the
simulation at several time instants. The two curves, with and without congestion,
are overlapped before the network congestion first occurred at around 500 sec-
onds, and when the time is more than 2000 seconds. Between the two times, very
small throughput drops are noted in the curve indicated by “A3 under congestion”
because the dropped segments need to be retransmitted. Other scenarios in this
region, though not shown here, actually exhibit very similar behavior as Figure
15.4. Specific points about this set of experiments are as follows.

When the send buffers are small (4 KB and 8 KB), the sender’s MUDS ob-
viously cannot be very large. In fact, owing to the data copying rule, the sender
always pushes out a 4-KB segment, and the next segment, if any, can be sent out
only after receiving an acknowledgment from the receiver. As a result, the net-
work congestion only causes the sender to time out and to retransmit the dropped
segments (therefore the drops in the throughput), but it will not affect the MUDS
value. Therefore, the receiver can promptly send back acknowledgments for any
segments received, and no deadlocks occur.

When the send buffers are large enough (≥ 16 KB), the send buffer allows
the sender to send more than one segment at a time. However, since the receive
buffers are small in this region (4 KB and 8 KB), the sender’s usable window is
limited by the receive buffer size, which is advertised to the sender in the TCP
segments. Thus, the sender’s MUDS is also given by 4 KB. Similar to the small
send-buffer cases, network congestion will only delay the recipient of the dropped
segments, but will not affect the MUDS estimates. As a result, no deadlocks occur.

Deadlock-Free TCP 547

Figure 15.4. Throughput of a 4-KB sender with a 4-KB A3-receiver.

B. Deadlock-Prone Region II
Figure 15.5 shows a scenario belonging to the deadlock-prone region II. The

upper curve corresponds to the no-congestion case. Therefore, the throughput in-
creases steadily as the window size continues to increase. However, congestions
are injected into the simulation for the lower curve at three different times. When-
ever congestion occurs, the throughput drops significantly, because the A3-receiver
has over-estimated the MUDS. When the sender times out due to congestion, the
sender resets its congestion window size to one MSS. Therefore, without knowing
the time-out event, the A3-receiver continues to use the MUDS estimate, which is
obtained before congestion, for computing the acknowledgment threshold. As a
result, a deadlock recurs and the A3-receiver acknowledges segments upon timing
out its delayed acknowledgment timer. After updating the MUDS based on the
new samplings, the A3-receiver is again able to avoid deadlocks, and the through-
put subsequently increases.

A 3 under no congestion

A 3 under congestion

th
ro

ug
hp

ut

time (s)

548 R. K. C. Chang et al.

AAA without congestion

AAA with congestion
A3 under no congestion

A3 under
congestion

Figure 15.5. Throughput of a 52-KB sender with a 52-KB A3-receiver.

C. Deadlock-Prone Region I
Figure 15.6 shows a scenario belonging to the deadlock-prone region I.

Similar to the region II, throughput drops are observed in both scenarios. How-
ever, the magnitudes of the throughput degradation are not as significant and the
throughput can also be recovered relatively quickly. Although the buffer sizes are
much smaller than those in region II, the over-estimations of the MUDS are sig-
nificant enough that deadlocks recur in this region.

Figure 15.6. Throughput of a 24-KB sender with a 24-KB A3-receiver.

A 3 under no congestion

A 3 under congestion

th
ro

ug
hp

ut

th
ro

ug
hp

ut

time (s)

time (s)

Deadlock-Free TCP 549

15.4.2 Congestion-Sensitive A3 (CSA3)

A straightforward approach to resolving the congestion problem is to reset
the MUDS and to perform samplings all over again to find the new value when-
ever congestion is detected. However, the main disadvantage of this approach is
that deadlock still exists before the sampling is completed. As a result, the sam-
pling needs to run for a long time, and therefore the overhead incurred would be
very significant. Because of that, our approach proposed here is to enhance the A3
so that the enhanced A3 is able to react to network congestion.

A. A Slow-Start-Like Algorithm for Updating the MUDS
A CSA3-receiver is now required to infer network congestion based on the

information received, and to reduce its MUDS estimate based on a procedure very
similar to TCP senders’ slow-start and congestion avoidance algorithms. Specifi-
cally, whenever a CSA3-receiver suspects network congestion based on the infor-
mation to be discussed in the latter part of this section, it remembers MUDS/2 in a
variable r_ssthresh and resets MUDS to one MSS. One exception to this is when
the current MUDS is smaller than MSS, and this is possible when either the send
buffer or receive buffer is smaller than MSS, such as those cases in the deadlock-
free region. In other words, this MUDS updating procedure does not apply to the
scenarios in the deadlock-free region.

After resetting MUDS to one MSS, the CSA3-receiver doubles MUDS for
every nonduplicate acknowledgment sent out. This phase corresponds to the
sender’s slow-start phase. When the MUDS finally reaches or exceeds r_ssthresh,
it is further increased linearly, which is similar to senders’ congestion avoidance
phase. When the MUDS is finally increased to the old value before congestion, the
CSA3-receiver continues to update the MUDS in the same way as for an A3-
receiver.

The MUDS updating algorithm upon detecting congestion is summarized
below.

r_ssthresh = MUDS / 2;
while (a new acknowledgment sent out by the receiver) {
 if (MUDS ≤ r_ssthresh)
 MUDS = MUDS * 2;
 else {
 MUDS += MSS * (MSS / MUDS);
 if (MUDS ≥ r_ssthresh * 2) exit;
 }
}

There are altogether three conditions that would trigger a CSA3-receiver to
update its MUDS estimate according to the algorithm above:
1. When a router experiences short-term congestion, it drops a small number of

segments. As a result, it is very likely that a CSA3-receiver is able to receive
three duplicate acknowledgments, and it will perform fast retransmit and fast

550 R. K. C. Chang et al.

recovery. Moreover, it will update its MUDS estimate according to the slow-
start-like algorithm.

2. When a router experiences serious congestion, it drops a large number of
segments. As a result, a CSA3-receiver may not be able to receive enough du-
plicate acknowledgments to perform fast retransmit and fast recovery. There-
fore, the sender will finally time out and retransmit lost segments. This also
suggests that a CSA3-receiver needs to time out its MUDS estimate after a
certain inactivity period. Upon time out, it performs the same slow-start-like
algorithm to update the MUDS.

3. Besides dropping segments, congested routers may also drop acknowledg-
ments on the reverse path. As a result, the sender will eventually time out and
retransmit lost segments, and a CSA3-receiver may receive duplicate data
segments. Therefore, the CSA3-receiver also performs the slow-start-like al-
gorithm when it receives duplicate segments.

B. Performance Evaluation of the CSA3
In Figures 15.7-15.9, we present simulation results to compare the through-

put performance of the A3 and CSA3 in the presence of network congestion. Since
the A3’s throughput is minimally affected by congestion in the deadlock-free re-
gion, as shown in Figure 15.4, we only consider the two deadlock-prone regions in
this section. The simulation settings are the same as those in Section 15.4.1. Net-
work congestions occur at several time instants, and the TCP sender retransmits
lost segments upon timeout.

Among all three scenarios (one in region I and two in region II), the im-
provement in throughput is most significant in the deadlock-prone region II when
the CSA3 is employed. Since both send and receive buffers are large in this region,
the MUDS value can be quite high when there is no congestion. Therefore, the
CSA3’s receiver also keeps a large MUDS estimate. When network congestion
occurs, the sender resets the congestion window to one MSS. Both the CSA3-
receiver and A3-receiver are unable to promptly acknowledge new segments due
to the over-estimation of the sender’s MUDS, thus resulting in throughput drops in
both cases. However, the CSA3-receiver is able to recover from throughput drop
much faster than the A3-receiver, because the former promptly reduces the MUDS
estimate and therefore can send a new acknowledgment much earlier than the A3-
receiver can. In TCP, the sender’s congestion window size increases based on a
self-clocking acknowledgment mechanism. The faster new acknowledgments are
received, the faster the window is opened up. As a result, the CSA3-receiver can
recover from the throughput loss quickly, as shown in Figure 15.7.

The throughput behaviors shown in Figure 15.8 and 15.9 for region I, on the
other hand, are quite similar. The CSA3 attains similar throughput as the A3 at the
beginning, but the former again responds to and recovers from network congestion
much faster than the A3. In this region, the MUDS estimate may or may not be
large enough to cause deadlocks. Apparently, when the first congestion occurs, the
CSA3 receiver is unable to detect the network congestion; therefore, there is no

Deadlock-Free TCP 551

throughput gain by using the CSA3. However, in the latter congestion the CSA3
receiver is able to detect congestion and to respond to it promptly. This shows that
the CSA3 does not impose any penalty on the throughput performance even
though it occasionally fails to detect congestion.

Figure 15.7. Throughput of a 52-KB sender with a 52-KB A3/CSA3-receiver under conges-

tion.

Figure 15.8. Throughput of a 24-KB sender with a 24-KB A3/CSA3-receiver under conges-
tion.

RSA 3

CSA 3 - receiver

A 3 - receiver

RSA 3 with con gestion

RSA 3 without congestion

CSA 3 - receiver

A 3 - receiver

th
ro

ug
hp

ut

th
ro

ug
hp

ut

time (s)

time (s)

552 R. K. C. Chang et al.

Figure 15.9. Throughput of a 24-KB sender with a 48-KB A3/CSA3-receiver under conges-
tion.

15.5 CONCLUSIONS AND FUTURE WORK

In this paper we have presented the TCP throughput deadlock problems in
high-speed networks. This problem becomes very serious as the end-to-end net-
work speed continues to increase. We have proposed the A3 and CSA3 to over-
come this problem. We have shown by simulations that they have successfully
reclaimed all deadlock regions for noncongested networks and congested net-
works, respectively. Currently, we are implementing them in Linux systems and
we will put them in field tests. Another important area to study concerns fairness
between the CSA3 receivers and nonCSA3 receivers. It remains to be seen whether
the new acknowledgment algorithms impose any unfairness toward those that do
not implement them.

Acknowledgment

This work is partially supported by The Hong Kong Polytechnic University Re-
search Grant G-S909.

CSA 3 - receiver

A 3 - receiver

th
ro

ug
hp

ut

time (s)

Deadlock-Free TCP 553

REFERENCES

[1] N. Ghani and S. Dixit, “TCP/IP Enhancements for Satellite Networks,” IEEE Com-
mun. Mag., pp. 64-72, July 1999.

[2] C. Charalambous, V. Frost, and J. Evans, “Performance Evaluation of TCP Extensions
on ATM Over High Bandwidth Delay Product Networks,” IEEE Commun. Mag., pp.
57-63, July 1999.

[3] C. Partridge and T. Shepard, “TCP/IP Performance Over Satellite Links,” IEEE Net-
work Mag., pp. 44-49, Sept/Oct. 1997.

[4] H. Balakrishnan and V. Padmanabhan, “How Network Asymmetry Affects TCP,”
IEEE Commun. Mag., vol. 39, no. 4, pp. 60-67, Apr. 2001.

[5] G. Xylomenos, G. Polyzos, P. Mahonen, and M. Saaranen, “TCP Performance Issues
Over Wireless Links,” IEEE Commun. Mag., vol. 39, no. 4, pp. 52-59, Apr. 2001.

[6] C. Papadopoulos and G. Parulkar, “Experimental Evaluation of SUNOS IPC and
TCP/IP Protocol Implementation,” IEEE/ACM Trans. Networking, pp. 199-216, April,
1993.

[7] V. Paxson, “Automated Packet Trace Analysis of TCP Implementations,” Proc. ACM
SIGCOMM, pp. 167-179, 1997.

[8] J. Semke, J. Mahdavi, and M. Mathis, “Automatic TCP Buffer Tuning,” Proc. ACM
SIGCOMM, pp. 315-323, 1998.

[9] D. Clark, “Window and Acknowledgment Strategy in TCP,” RFC 813, July 1982.
[10] J. Nagle, “Congestion Control on TCP/IP Internetworks,” RFC 896, Jan. 1984.
[11] R. Braden, “Requirements for Internet HostsCommunication Layers,” RFC 1122,

Oct. 1989.
[12] J. Heidemann, “Performance Interactions Between P-HTTP and TCP Implementa-

tions,” ACM Computer Communication Review, vol. 27, no. 2, pp. 65-73, Apr. 1997.
[13] J. Mogul and G. Minshall, “Rethinking the TCP Nagle Algorithm,” ACM Computer

Communication Review, vol. 31, no. 1, pp. 6-20, Jan. 2001.
[14] K. Moldeklev and P. Gunningberg, “How a Large ATM MTU Causes Deadlocks in

TCP Data Transfers,” IEEE/ACM Trans. Networking, vol. 3., no. 4., pp. 409-422, Aug.
1995.

[15] D. Comer and J. Lin, “TCP Buffering and Performance over an ATM Network,” In-
ternetworking: Research and Experience, vol. 6, pp. 1-13, May 1995.

[16] Y. Murayama and S. Yamaguchi, “A Proposal for a Solution of the TCP Short-Term
Deadlock Problem,” Proc. 12th Intl. Conf. Information Networking, pp. 269-274,
1998.

[17] G. Wright and W. Stevens, TCP/IP Illustrated, vol. 2, Addison-Wesley, 1995.

554 R. K. C. Chang et al.

