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In this paper, we consider TCP throughput deadlock problems caused by an inter-
play between the Nagle algorithm, delayed acknowledgment algorithm, and sev-
eral implementation details. For some combinations of send and receive buffers, a 
TCP sender cannot send more segments due to the Nagle algorithm and, at the 
same time, a TCP receiver cannot acknowledge more segments received due to the 
delayed acknowledgment algorithm. The outcome is a deadlock, which can only 
be resolved by the receiver’s timer. Although the deadlock can take place in any 
types of networks, it is generally more difficult to ensure deadlock-free connec-
tions on high-speed networks. Moreover, the impact is much more significant on 
high-speed networks, and the deadlock renders the connection practically unus-
able. Several straightforward solutions, such as turning off the Nagle algorithm 
and acknowledging every segment, have been proposed; however, they reintro-
duce the same problems that they were initially designed for. In this paper we pro-
pose an adaptive acknowledgment algorithm (A3) to eliminate throughput dead-
locks on the receiver side while preserving the original intent of employing the 
Nagle algorithm and delayed acknowledgment. An A3-receiver uses the same de-
layed acknowledgment as before, but with an additional component to adaptively 
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compute the acknowledgment threshold, which is adjusted according to the maxi-
mum amount of segments sent by the sender. By adapting to the sender’s state, an 
A3-receiver can avoid deadlocks when there is no network congestion. To further 
adapt to possible network congestion, A3-receivers are enhanced by incorporating 
a slow-start-like algorithm to adjust the acknowledgment threshold when network 
congestion is suspected. The resulting algorithm is referred to as congestion-
sensitive A3 (CSA3). Extensive simulation experiments have confirmed the effec-
tiveness of both A3 and CSA3. 

15.1 INTRODUCTION 

Transport control protocol (TCP) continues to dominate Internet traffic by 
providing end-to-end reliability, flow control, and congestion control services to a 
number of very popular application and session protocols, such as HTTP, FTP, 
TELNET, SSL, etc. Being designed as a generic transport protocol back in the 
mid-1980s, the TCP performance has to keep up with rapid advances in the under-
lying networking technologies and new application requirements. One area of TCP 
performance degradation is brought by new data-link technologies’ characteristics, 
such as long delay-bandwidth-product of satellite links [1-3], channel asymmetry 
of cable modem networks [4], and high error rates of wireless links [5]. Each of 
these issues affects the growth of TCP sending window size in different ways, but 
the results are the same: the TCP’s throughput is severely limited with respect to 
the available bandwidth between end hosts. 

On the other hand, implementation issues are equally, if not more, important 
in affecting TCP performance, e.g., [6-8]. The performance of a network protocol 
realization is particularly important for TCP because TCP is currently defined by 
implementations rather by formal protocol specifications [7]. In this paper, we 
consider TCP throughput deadlock problems that are caused mainly by an inter-
play between the Nagle algorithm, delayed acknowledgment algorithm, and vari-
ous TCP implementation issues. The Nagle algorithm and delayed acknowledg-
ment algorithm were in fact designed to address the “small-packet problem,” 
which significantly reduces network throughput as a result of sending small-sized 
data (say 1 byte) in one IP datagram (usually 40 bytes) instead of a full segment. 
The small-packet problem is also referred to as a silly window syndrome (SWS) 
problem [9]. The Nagle algorithm is a sender-side SWS avoidance solution, which 
prevents a sender from sending small segments when there are outstanding seg-
ments to be acknowledged [10]. A TCP segment is considered small if it is less 
than the sender-side maximum segment size (MSS); therefore, a nonMSS-sized 
segment is considered small. The delayed acknowledgment algorithm, on the other 
hand, is a receiver-side SWS avoidance solution, which prevents a receiver from 
acknowledging small segments [11]. 

A throughput deadlock rises when a pair of TCP sender and receiver gets 
into a circular-wait situation. That is, the sender cannot send more segments due to 
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Nagle algorithm, while the receiver cannot send acknowledgments due to the de-
layed acknowledgment algorithm. Although the deadlock state is finally escaped 
by the firing of a coarse-spaced delayed acknowledgment timer, the resulting TCP 
throughput is so low that the connection is practically not usable. A necessary 
condition for getting into the deadlock situation is that a TCP sender sends 
nonMSS-sized segments. When the amount of outstanding segments is not enough 
to trigger an immediate acknowledgment from the receiver, a throughput deadlock 
will occur. However, there are different factors responsible for the sending of 
nonMSS-sized segments. For example, 
1. An application data may consist of an odd number of MSS-sized segments 

with a nonMSS-sized final segment. In this case, the receiver may not be able 
to promptly acknowledge the last MSS-sized segment due to the delayed ac-
knowledgment algorithm. At the same time, the sender is unable to send the 
nonMSS-sized final segment due to Nagle algorithm. The resulting through-
put degradation was reported in the context of persistent HTTP connections 
[12].  

2. Even if the application data size does not fall into scenario (1), nonMSS-sized 
segments may still be generated as a result of buffer tearing, in which an ap-
plication data is usually broken up into a number of nonMSS-sized segments 
when copied to the write buffers used by TCP. This is because the write 
buffer sizes are usually not multiples of MSS. 

3. Other OS implementation issues, such as the send-receiver buffer size combi-
nations, data copying rules, and order of actions when receiving acknowl-
edgments, can cause the sender to send nonMSS-sized segments. Throughout 
degradation as a result of these issues was reported by Moldeklev and Gun-
ningberg [14], and Comer and Lin [15]. 

The three scenarios discussed above involve the application, socket, and 
TCP layers. Moreover, all three factors could cause throughput deadlocks on low-
speed networks as well as high-speed networks. However, the impact is more no-
ticeable in high-speed, end-to-end connections, e.g., client and server on a 100-
Mbps LAN. Furthermore, it is more difficult to guarantee deadlock-free TCP con-
nection in high-speed networks, because the MSS value is usually very high on 
those networks. Hence, we consider the deadlock problems mainly for high-speed 
TCP connections. Although the speed of an end-to-end connection is generally not 
high today, this TCP deadlock problem is expected to have a more significant im-
pact as the effort of deploying TCP/IP on top of many high-speed networks, such 
as ATM, WDM, and broadband satellites, accelerates. 

In terms of resolving throughput deadlocks, Mogul and Minshall [13] pro-
posed an improved implementation of the Nagle algorithm to overcome the first 
two scenarios of deadlocks. However, they did not address the third scenario. 
Moldeklev and Gunningberg, on the other hand, proposed several straightforward 
solutions to solving the deadlock problems arising from the third scenario, such as 
disabling the Nagle algorithm and acknowledging every segment [14]. These solu-
tions can guarantee deadlock-free connections, but they will clearly reintroduce 
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the SWS problem. Murayama and Yamaguchi [16] proposed to use new TCP flags 
to implement “No Delayed ACK” and “Force Delayed ACK” options. But this 
proposal also requires new TCP implementations on all systems, which is unlikely 
to happen.  

In this paper we propose an adaptive approach to avoid SWS on the receiver 
side, referred to A3. An A3-receiver is the same as a typical TCP receiver except 
for an additional component that “adaptively” determines when to send acknowl-
edgments based on the information gathered on the sender. In other words, 
throughput deadlocks are avoided on the receiver, instead of the sender side. The 
A3 also does not distinguish the exact causes for throughput deadlocks, and it is 
therefore designed to handle all three scenarios of deadlocks. 

The rest of this paper is organized as follows: In Section 15.2, we first de-
scribe necessary background information on the socket buffer management, the 
Nagle algorithm, and delayed acknowledgment algorithm. We then describe the 
throughput deadlock problem in more details. In Section 15.3, we introduce the A3 
and show that it eliminates all classes of deadlocks in the absence of network con-
gestion. In Section 15.4, we explain why throughput deadlocks still occur to the A3 
in the presence of network congestion. Subsequently, we introduce Congestion-
Sensitive A3 (CSA3), and show that the CSA3 is able to ensure deadlock-free TCP 
connections even in a congested network environment. Finally, we conclude this 
paper with future work in Section 15.5. 

15.2 THE TCP THROUGHPUT DEADLOCK PROBLEM 

15.2.1 Unix Socket Layer 

The networking codes in most BSD-based Unix kernels are organized into 
three layers: socket, protocol, and interface [17]. The socket layer is a protocol-
independent interface to the protocol-dependent layer below while the latter two 
layers implement specific network protocol suites and device drivers for data-link 
technologies. 

Data transfer between the application and protocol layers largely relies on 
memory buffers. An efficient memory management scheme called mbufs (memory 
buffers) was first introduced in BSD 4.3 and later adopted by SunOS 4.x. The 
mbufs scheme provides fixed and variable size memory allocation that improves 
efficiency by reducing physical data replication within the kernel memory space. 
The mbufs memory is allocated during system initialization and is part of the per-
manent kernel memory that always resides in the physical memory. There are two 
types of mbufs: small (or plain) and cluster. The plain mbufs are 128 bytes long 
with 112 bytes data storage which form a cluster of mbufs when an external page 
(1024 bytes from mbufs memory pool) is attached to the existing plain mbufs. The 
cluster mbufs’ data is stored exclusively in the external page to facilitate pointer 
referencing. 
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In SunOS 4.1.3 bulk data transfer, data will be added in the form of multiple 
1024-byte cluster mbufs when the send buffer and user data are larger than or 
equal to 512 bytes. Figure 15.1 illustrates the data copy routine in the socket layer. 
One important thing to note from the figure is that as soon as the send buffer col-
lects 4096 bytes of data, it will send them out to the TCP output for delivery, 
without waiting for more application data. This data copy mechanism, as we will 
see later, turns out to be an important implementation issue that is partially respon-
sible for TCP throughout deadlock. 

 
write ()

user_data > 0

available space in send
buffer ≥ 1024 bytes

  user_data ≥ 1024 bytes   user_data < 1024 bytes

user_data ≥ 512 bytesallocate cluster mbuf
copy 1024 bytes

user_data −= 1024 bytes
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buffer full
process sleep
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copy user_data
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TCP output ()
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True

False  
 

Figure 15.1. Socket layer data copy rules in BSD. 
 

15.2.2 Nagle algorithm and delayed acknowledgment algorithm 

Figure 15.2 shows the Nagle algorithm implemented in SunOS 4.x. When 
there is no outstanding unacknowledged data or the Nagle algorithm is off, the 
sender can send a segment of any size as long as it is permitted by the usable win-
dow size. Otherwise, the unsent data needs to wait in the send buffer if the data 
unsent is less than both MSS and half of the maximum usable window size. In this 
case, the sender waits either for more data delivered from the socket layer or for 
acknowledgments.  

The delayed acknowledgment strategy, on the other hand, delays sending 
acknowledgments until they can be piggybacked onto either a data segment or a 
window update packet. For example, in the SunOS implementation, a separate 
window update with a piggybacked acknowledgment will be sent if the window 
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can slide more than either (a) 35% of the receive buffer size or (b) two MSSes of 
the size. Even if both conditions are not met, a delayed acknowledgment timer 
allows sending 1 acknowledgment every 200 ms. 

 

TCP output ()

All outstanding
data acknowledged

U ≥ MSS

Send MSS bytes of data
D −= MSS bytes Send D bytes of data

IP output ()

T
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R

Nagle algorithm ON
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D ≥ 1/2 max usable
window

Send min(D, U) bytes of data

True

False

D: Number of unsent bytes
U: Usable window in bytes

 
 
 

Figure 15.2. The Nagle algorithm. 

15.2.3 An Experimental Setup 

Unlike the ATM network setup used in [14], in this section we demonstrate 
that the throughput experiments can be performed in a single workstation (running 
SunOS 4.1.3 in our case). To allow communication between a sending process and 
a receiving process, both running in the same machine, we make use of the loop-
back interface as a logical data link between them. Therefore, the kernel performs 
complete data processing in SunOS 4.1.3’s transport and network layers, and the 
loopback driver redirects packets sent to the receiving process back to an appro-
priate input queue. It turns out that changing the loopback driver’s MTU is not a 
trivial task. Our solution is to perform a “software hijack” by putting a loopback 
MTU adjustment request (a few lines of code) in tcp_trace.c, a debug function that 
can be initiated via SO_DEBUG socket option at the socket level. We also wrote a 
socket program lperf to measure SunOS 4.1.3 memory-to-memory TCP through-
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put. The program uses BSD socket interface to perform inter-process communica-
tion. Upon execution, the program forks a receiver process to collect all sender 
data via the loopback routine. The sender transmits a continuous data stream, and 
the established TCP connection would not terminate until the sender finishes send-
ing data. 

 
              R 
     S 

4 KB 8 KB 16 KB 24 KB 32 KB 40 KB 48 KB 52 KB 

4 KB 23.49 31.61 0.16 0.16 0.16 0.161 0.16 0.16 

8 KB 28.33 30.28 0.16 0.16 0.16 0.16 0.16 0.16 

16 KB 27.89 34.97 36.24 0.49 0.33 0.47 0.47 0.47 

24 KB 27.19 35.42 34.81 41.15 40.83 40.50 0.75 0.75 

32 KB 27.63 34.63 35.41 39.60 39.58 38.92 38.46 38.50 

40 KB 26.58 34.63 34.97 38.81 39.73 39.39 39.57 38.73 

48 KB 27.35 34.50 34.55 38.21 39.61 39.31 39.47 39.09 

52 KB 27.01 34.23 34.07 38.35 39.29 39.23 38.89 40.27 

         

     Class I deadlocks        

     Class II deadlocks        

     Class III deadlocks        

 
Table 15.1. Throughput measurements for a TCP connection with an MSS of 9148 
bytes (in Mbps). 

 
The throughput measurements are based on two timestamps generated from 

the gettimeofday system call. The start time is taken at the instant when the sender 
makes the write system call, and the end time is taken at the instant when the 
sender completes the data transmission. The TCP throughput is computed by di-
viding the total amount of application data sent by the difference between the two 
timestamps. In Table 15.1, we present the throughput measurements with the MSS 
set to 9148 bytes. Each data is an average value computed from 10 independent 
experiments. All measurements assume zero connection setup time, no packet 
losses, and a bulk data transfer. Moreover, there is a delay of 180 seconds between 
experiments in order to alleviate the CPU loading. As shown in the table, through-
put deadlocks occur in the shaded region, which are contributed from three differ-
ent sources, as will be explained next.  
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15.2.4 Three Classes of Throughput Deadlocks 

As explained in Section 15.1, all throughput deadlocks are resulted from a 
circular-wait condition between a TCP sender and a TCP receiver. Moldeklev and 
Gunningberg classified the causes for the throughput deadlock into (I) deadlocks 
predictable from the acknowledgment strategy, (II) deadlocks caused by the socket 
copy rule and the Nagle algorithm, and (III) deadlocks caused by the timer ac-
knowledgment and the Nagle algorithm [3]. To summarize, class I deadlock oc-
curs if Equation (1) is satisfied, and classes II and III deadlocks occur if Equation 
(2) is satisfied. 

S  <  min{2 MSS, 0.35 R}. (1) 
S <  min{3 MSS, 0.35 R + MSS}, (2) 

where S and R are the send socket buffer size and receive socket buffer size, 
respectively. 

Equation (1) represents a sufficient deadlock condition for which a maxi-
mum sized segment sent by the sender cannot trigger acknowledgments from the 
receiver. Thus, this type of deadlock depends only on the socket buffer size com-
bination, but not on other implementation issues, such as data copying rules.  

Even when Equation (1) does not hold, class II and III deadlocks could still 
occur according to Equation (2), and these two classes, unlike the first one, depend 
also on other implementation details. Moreover, the exact causes for classes II and 
III deadlocks are subtly different. In class II deadlocks, a sender may immediately 
push out a nonMSS-sized segment of size d because of the data copying rule, thus 
leaving S − d for buffering new data in the send buffer. As a result, sufficient con-
ditions for deadlocks are given by (i) S − d < MSS and (ii) d < min{2 MSS, 0.35 
R}. The Nagle algorithm and condition (i) prevent the sender from sending more 
segments. The delayed acknowledgment strategy and condition (ii), on the other 
hand, prevent the receiver from acknowledging immediately. S/R = 8 KB/16 KB 
and 16 KB/40 KB are examples of this class of deadlocks (see Table 15.1). 

Class II deadlocks could not occur in S/R = 16 KB/24 KB, 16 KB/32 KB, 24 
KB/48 KB, and 24 KB/52 KB, because the sender has enough buffer space to 
compose an MSS-sized segment. However, class III deadlocks could still occur to 
them when a sender receives a timer-triggered acknowledgment from the receiver. 
To be specific, let d be the amount of outstanding segments sent by the sender at a 
certain time. After that, the sender receives a timer-triggered acknowledgment, 
which generally could acknowledge any amount of the outstanding segments, and 
let a ≤ d be the amount of segments acknowledged by the timer-triggered ac-
knowledgment. Similar to class II deadlocks, sufficient conditions for deadlocks 
are given by (i) S − (d − a) < MSS, (ii) d − a < min{2 MSS, 0.35 R}. These two 
conditions are again reduced to Equation (2). 

Based on Equation (2), a straightforward solution to avoiding throughput 
deadlocks is to choose an S/R that violates Equation (2). That is, a static approach 
is to set the send socket buffer to 3 MSS, regardless of the receive socket buffer 
size. For 10/100-Mbps Ethernet, for example, only 4380 bytes of socket memory 
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to meet the requirement. However, this requirement becomes more demanding in 
the ATM networks with MSS equal to 9148 bytes, where a sender needs to reserve 
more than 27 KB of buffer memory for a single TCP connection. When the sender 
maintains a large number of concurrent connections, the memory allocated to the 
TCP communication would be too enormous to support. Further, this solution is 
still dependent on the network speed, and the buffer requirement becomes more 
stringent as the Internet’s speed continues to increase.  

Another method of violating Equation (2) is to let the sender obtain receive 
socket buffer information, but this requires additional support from the TCP proto-
col. Yet another obvious solution is to turn off the Nagle algorithm on the sender 
side and to explicitly acknowledge every segment received, i.e., without delayed 
acknowledgment. This solution will clearly reintroduce the small-segment prob-
lems that the Nagle algorithm and the delayed acknowledgment strategy were 
originally designed to solve. To sum up, the inadequacies of these solutions moti-
vate us to examine better solutions to eliminate the deadlock problems, to be dis-
cussed next. 

15.3 AN ADAPTIVE ACKNOWLEDGMENT ALGORITHM (A3) 

We have identified three important requirements for any solution to the 
deadlock problem. First, the solution must cater to heterogeneous receivers, which 
may or may not implement the new solution. Second, an implementation of the 
solution must involve only a minimal change in the coding. Third, the solution 
must be adaptive to the network size and the amount of socket buffers available. 
All three requirements above ensure that the solution is compatible with the cur-
rent TCP and is immediately deployable. Moreover, the requirements imply that 
the solution is scalable to the rapid development of the Internet in the future. 
Based on these requirements, we expect that the new algorithm is a receiver-side 
SWS avoidance algorithm and the sender-side SWS avoidance algorithm should 
remain unchanged. In other words, the receiver is solely responsible for ensuring 
deadlock-free operations, and it only assumes that the sender transmission behav-
ior is governed by a window-based flow control mechanism. 

Based on the design requirements, we propose a new A3 that determines 
when to send acknowledgments based on the sender’s behavior. A key quantity 
maintained by an A3-receiver is referred to as maximum unacknowledged data size 
(MUDS) in terms of bytes, which is defined to be the maximum amount of data 
continuously sent by the sender when the receiver is not acknowledging. When 
deadlocks do not occur and there is no network congestion, the MUDS is upper 
bounded by min{S, R}. In general, the MUDS’ exact value depends on the buffer 
sizes, data copying rule, and other implementation issues. For example, the MUDS 
is given by MSS + 4 KB for MSS + 4 KB ≤ S < min{3 MSS, 0.35 R + MSS} 
(class II deadlocks). Given an MUDS estimate, an A3-receiver sends an acknowl-
edgment whenever the segments received reach or exceed 35% of the estimated 
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MUDS. Thus, an A3-receiver no longer relies on the receiver’s actual buffer size 
and the actual value of the MSS, and it is able to adapt to various network MTUs 
and different combinations of send and receive buffer sizes. Moreover, it is clear 
that the new acknowledgment algorithm removes all three classes of deadlocks by 
having the receiver promptly send back acknowledgments. 

One approach to estimating the MUDS is to perform “samplings” periodi-
cally by an A3-receiver. During a sampling, the receiver keeps track of the amount 
of segments received, and it will not acknowledge any segments. Based on the 
sampling information, an A3-receiver estimates the sender’s MUDS. Thus, an A3-
receiver alternates between sampling periods and nonsampling periods. 

The packet samplings incur overheads and delay, because acknowledgments 
will not be sent during these periods. Thus, controlling the length of the sampling 
periods and the frequency of performing samplings are major factors influencing 
the A3’s performance. For this purpose, an A3-receiver is equipped with the fol-
lowing timer, counter, and thresholds. We also show in Figure 15.3 an A3-
receiver’s state transition diagram during sampling periods. 
• Sampling period timer (SP_timer): A timer to control the length of a sampling 

period 
• Sampling period threshold (SP_t): A value (in time units) used in conjunction 

with the SP_timer to control the length of a sampling period 
• Inter-sampling period counter (ISP_counter): A counter to control the inter-

sampling period 
• Inter-sampling period threshold (ISP_t): A value (in number of packets) used 

in conjunction with the ISP_counter to control the inter-sampling period 

15.3.1 Inter-Sampling Period Control and Sampling Initialization 

The value of ISP_t determines the time interval between two consecutive 
samplings and it is set according to the following algorithm, where MUDScurrent 
and MUDSprevious are the current and previous estimates of the MUDS, respec-
tively. 

if (MUDSprevious does not exist) 
 ISP_t = 10; 
else { 
 if (|MUDScurrent − MUDSprevious| < MSS) { 
  ISP_t  = 3 ISP_t; 
     the acknowledgment threshold remains unchanged; 
 } else  { 
  ISP_t  = 10; 
        if (MUDScurrent > MUDSprevious) 
         the acknowledgment threshold = 0.35 MUDScurrent; 
 } 
} 
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Figure 15.3. An A3-receiver’s state diagram during a sampling period. 

 
The ISP_t is set to a constant (10 in the algorithm) as soon as a TCP connec-

tion is established, and the ISP_counter is initialized to ISP_t and begins to count 
down, i.e., the counter is decremented whenever a packet is received. A packet 
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sampling starts when the ISP_counter’s value drops to zero. At the end of a packet 
sampling, the counter may be reset to ISP_t again. However, the counter is tripled 
if MUDScurrent is “close” to MUDSprevious because this is a clear indication that 
MUDScurrent is accurate and the number of samplings should be decreased. 

At the beginning of a packet sampling, the receiver will first send a maxi-
mum window update with an acknowledgment for all the segments received in the 
buffer. The acknowledgment and window update therefore allow the sender to 
transfer the maximum amount of data permitted by the sender-side SWS avoid-
ance mechanism. At the same time, the SP_timer is initialized to 1.5 RTT (round-
trip time) and the timer starts counting down. This initialization allows adequate 
time to receive the packets in transit and the packets sent upon receiving the re-
ceiver’s first acknowledgment. Once a sampling is started, the receiver is prohib-
ited from further acknowledging the incoming data until the sampling period ends. 

15.3.2 Sampling Period Control 

A TCP sender may dispatch an arbitrary amount of segments bounded by 
the sender-side flow control mechanism and the send buffer size. The receiver 
carefully records the amount of data received, and discards retransmissions. The 
sampling procedure terminates when (1) the receive buffer is saturated (or close to 
saturation) or (2) a single segment is received three times in a row (this is a strong 
indication of timeout or packet lost). Otherwise, the sampling will continue until 
(3) the connection has been inactive for a certain period of time, i.e., when the 
SP_timer becomes zero.  

We have mentioned that the SP_timer is initialized to 1.5 RTT when a con-
nection is established. The SP_timer is reset to the threshold SP_t whenever a 
packet is received. The timer then starts counting down and the receiver terminates 
the sampling period when the timer reaches zero. The choice of the threshold SP_t 
is important. Having a large threshold value will result in a performance penalty 
since no acknowledgments are sent during a sampling period. On the other hand, 
having a small value may result in terminating the sampling prematurely and, as a 
result, the receiver underestimates the MUDS. Here we use inter-packet arrival 
time (IPAT) to determine the threshold by setting the SP_t to 1.3 IPAT. In other 
words, the receiver concludes that the sender has sent a maximum amount of seg-
ment permitted by the sender-side SWS avoidance mechanism if there are no other 
packet arrivals after a period of 1.3 IPAT. To do so, the receiver continuously 
measures the IPAT for the incoming packets. For every five packets received, the 
receiver discards the maximum and minimum IPAT samples and takes the average 
of the remaining three values as the current IPAT estimate. The IPAT clearly de-
pends on the transmission delay, sender packetization delay, and other factors. By 
computing the IPAT for every five packets, we are hoping to obtain the most up-
dated estimate for the packet interarrival pattern. 

One exception to resetting the SP_timer to 1.3 IPAT upon receiving a packet 
is when the remaining time in the timer upon a packet arrival is larger than 1.3 
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IPAT. This will occur if a transit packet arrives at the receiver shortly after the 
initialization of a packet sampling. If the SP_timer is immediately reset to 1.3 
IPAT in this case, the packet sampling may terminate prematurely since the first 
acknowledgment sent by the receiver at the initialization stage may not arrive at 
the sender in time. Therefore, the A3 ensures that the sampling period is at least 1.5 
RTT.  

The following summarizes the algorithm of updating the SP_timer when a 
packet is received. 

if (SP_timer > 1.3 IPAT upon a packet arrival) 
       SP_timer continues to count down; 
else 
       SP_timer = 1.3 IPAT and the timer starts counting down. 

15.3.3 Computing the Thresholds 

During and at the end of a sampling period, an A3-receiver is required to up-
date the ISP_t, SP_t, and the acknowledgment threshold. The updates for the ISP_t 
and SP_t have already been discussed in the previous two sections. As for the ac-
knowledgment threshold, a sender’s actual MUDS normally does not change sig-
nificantly in the congestion avoidance phase. Thus, we only update the MUDS 
estimate when it is increased. To follow the delayed acknowledgment algorithm in 
the SunOS, we set the acknowledgment threshold to 35% of the MUDS estimate, 
as shown in the algorithm in Section 15.3.1. 

15.3.4 Performance Evaluation 

To compare the performance of an A3-receiver with that of a typical TCP 
receiver equipped with the delayed acknowledgment algorithm, we simulate a 
TCP connection with an MSS of 9148 bytes. Each endpoint in the simulator is a 
4.3 BSD Unix terminal, which observes the essential 4.3 BSD socket mechanism, 
including the data copying rules and TCP segment buffering. Our simulated TCP 
channel takes no time to establish a connection, and the packet loss is assumed 
negligible. The TCP performance is measured through a ftp session from a sender 
to a receiver. The throughput is computed by the total amount of data transferred 
by the total transmission time. The experiments cover 8 × 8 send-receive buffer 
size combinations ranging from 4 KB to 52 KB, and each individual experiment is 
a continuous (back to back) transmission of 10-MB data. Every throughput meas-
urement reported in Table 15.2 is an average of 25 independent runs. 

Our simulation results show that the A3 has successfully reclaimed the TCP 
performance in the original deadlock regions. Additionally, the adaptive acknowl-
edgment threshold improves the performance in other nondeadlock areas. This is 
due to an earlier response from the receiver when the A3 is used, which results in a 
more efficient pipelining of the data from the sender. On the other hand, there is a 
marginal performance penalty caused by the A3’s operational overheads for small 
receivers, e.g., R = 4, 8 KB. Consider S/R = 16 KB/4 KB, the receiver acknowl-
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edgment threshold is 1.4 KB, and the sender maximum usable window size is 4 
KB. This suggests that a single data segment (4 KB) from the sender is enough to 
trigger a receiver acknowledgment from either acknowledgment algorithm. Unfor-
tunately, an A3-receiver requires more time to compute the IPAT, sampling 
threshold, and acknowledgment threshold, and these additional overheads intro-
duce performance degradation, as shown in the lower left triangular regions in 
Table 15.2, where the send buffer is relatively large when compared with the re-
ceive buffer.  

 
         R 
  S 

4 KB 
  (1)        (2)       (3) 

8 KB 
  (1)       (2)       (3) 

16 KB 
  (1)       (2)        (3) 

24 KB 
  (1)       (2)       (3) 

4 KB 20 20 21 20 20 21 6 20 20 6 20 20 

8 KB 21 20 20 25 20 20 6 25 25 6 25 26 

16 KB 21 20 20 41 41 41 55 50 50 19 50 50 

24 KB 21 20 20 41 40 40 79 80 80 74 87 89 

32 KB 20 20 21 41 40 40 81 80 82 80 89 95 

40 KB 20 20 21 41 40 41 81 80 80 99 98 103 

48 KB 20 20 20 41 40 42 81 80 81 99 99 102 

52 KB 21 20 21 41 40 41 82 80 80 100 98 98 

         R 
  S 

32 KB 
  (1)       (2)       (3) 

40 KB 
(1)       (2)       (3) 

48 KB 
(1)       (2)      (3) 

52 KB 
(1)       (2)       (3) 

4 KB 6 20 20 6 20 21 6 20 20 6 20 21 

8 KB 6 25 25 6 25 26 6 25 25 6 25 26 

16 KB 19 50 50 19 50 50 19 50 50 19 50 50 

24 KB 73 87 88 74 87 87 26 87 88 26 87 87 

32 KB 89 94 106 89 98 107 94 102 115 94 99 118 

40 KB 99 99 103 141 134 137 111 139 144 111 137 146 

48 KB 100 104 102 151 150 159 160 161 170 143 161 168 

52 KB 100 99 105 152 152 160 162 168 165 171 162 170 

 
(1) Delayed acknowledgment algorithm 
(2) The A3 according to Section 15.3 
(3) The A3 with a fewer number of samplings 
Shaded region: Deadlock region for the delayed acknowledgment algorithm 

 
Table 15.2. Throughputs of a TCP connection with an MSS of 9148 bytes (in KB 
per simulation second). 
 

A possible way to further improving the A3’s throughput performance is 
therefore to reduce the number of samplings required for computing the MUDS. 
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There are two ways to achieve that: (1) increase the inter-sampling period and (2) 
decrease each sampling period. In Table 15.2, we also present simulation results 
for a modified A3 in which ISP_t = 3 ISP_t is changed to ISP_t = 4 ISP_t under 
the if-statement, and ISP_t = 10 is changed to ISP_t = 0.5 ISP_t under the else 
statement in the algorithm presented in Section 15.3.1. Although the number of 
samplings decreases significantly (not shown in the table), the throughput im-
provement is not significant. In the original A3, the overhead incurred from addi-
tional samplings is compensated by a gain in throughput. In the modified A3, a 
loss of gain in throughput by not sampling as frequently is compensated by reduc-
ing the sampling overhead. 

15.4 EFFECT OF NETWORK CONGESTION ON THE A3 

The A3 was designed without network congestion in mind. In this section, 
we show and explain why the A3 fails to ensure throughput deadlock-free when a 
TCP connection experiences network congestion. Then we propose an enhance-
ment to the A3, referred to as congestion-sensitive A3 (CSA3), to ensure deadlock-
free even in the presence of network congestion. 

It is well known that a TCP sender detects possible network congestion ei-
ther by receiving three duplicate acknowledgments (fast retransmission) or by 
retransmission timeouts. In either case, the sender retransmits the oldest segment 
that has not been acknowledged. At the same time, the sender also adjusts its con-
gestion window size. In the former case, the sender exercises fast recovery in 
which the congestion window is reduced to only half of the current value. In the 
latter, the window size is reset to one MSS. Both cases effectively reduce the 
sender’s sending rate, and consequently the A3-receiver’s MUDS estimate over-
estimates the actual value. Therefore, the receiver may not be able to receive 
enough data to trigger acknowledgment, and throughput deadlock recurs.  

 
         R 
 S 

4 
KB 

8 
KB 

16 
KB 

24 
KB 

32 
KB 

40 
KB 

48 
KB 

52 
KB 

4 KB 
8 KB 

 

16 KB 

24 KB 
32 KB 

 
                 Deadlock-prone region I 
 

40 KB 

48 KB 
52 KB 

 

Deadlock-

free region 

 
 

 
Deadlock-prone 
region II 

 
Table 15.3. A classification of send-receive buffer combinations for an MSS of 
9148 bytes for A3-receivers. 
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15.4.1 A Classification of Operating Regions 

Before introducing the CSA3, it is convenient to divide the 64 send-receive 
buffer combination into three regions assuming that the MSS is 9148 bytes, as 
shown in Table 15.3. In the deadlock-free region, throughput deadlocks will not 
occur to TCP connections equipped with A3-receivers in the presence of network 
congestion and we postpone the explanation to the next section. On the other hand, 
throughput deadlocks recur in the two deadlock-prone regions when there is net-
work congestion. The throughput degradation is more serious in the deadlock-
prone region II than that in the deadlock-prone region I. 

A.  Deadlock-Free Region 
Figure 15.4 shows the throughput for a scenario in the deadlock-free region 

(S/R = 4 KB/4 KB). Network congestions of short durations are injected into the 
simulation at several time instants. The two curves, with and without congestion, 
are overlapped before the network congestion first occurred at around 500 sec-
onds, and when the time is more than 2000 seconds. Between the two times, very 
small throughput drops are noted in the curve indicated by “A3 under congestion” 
because the dropped segments need to be retransmitted.  Other scenarios in this 
region, though not shown here, actually exhibit very similar behavior as Figure 
15.4. Specific points about this set of experiments are as follows. 

When the send buffers are small (4 KB and 8 KB), the sender’s MUDS ob-
viously cannot be very large. In fact, owing to the data copying rule, the sender 
always pushes out a 4-KB segment, and the next segment, if any, can be sent out 
only after receiving an acknowledgment from the receiver. As a result, the net-
work congestion only causes the sender to time out and to retransmit the dropped 
segments (therefore the drops in the throughput), but it will not affect the MUDS 
value. Therefore, the receiver can promptly send back acknowledgments for any 
segments received, and no deadlocks occur. 

When the send buffers are large enough (≥ 16 KB), the send buffer allows 
the sender to send more than one segment at a time. However, since the receive 
buffers are small in this region (4 KB and 8 KB), the sender’s usable window is 
limited by the receive buffer size, which is advertised to the sender in the TCP 
segments. Thus, the sender’s MUDS is also given by 4 KB. Similar to the small 
send-buffer cases, network congestion will only delay the recipient of the dropped 
segments, but will not affect the MUDS estimates. As a result, no deadlocks occur. 
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Figure 15.4. Throughput of a 4-KB sender with a 4-KB A3-receiver. 

 

B. Deadlock-Prone Region II 
Figure 15.5 shows a scenario belonging to the deadlock-prone region II. The 

upper curve corresponds to the no-congestion case. Therefore, the throughput in-
creases steadily as the window size continues to increase. However, congestions 
are injected into the simulation for the lower curve at three different times. When-
ever congestion occurs, the throughput drops significantly, because the A3-receiver 
has over-estimated the MUDS. When the sender times out due to congestion, the 
sender resets its congestion window size to one MSS. Therefore, without knowing 
the time-out event, the A3-receiver continues to use the MUDS estimate, which is 
obtained before congestion, for computing the acknowledgment threshold. As a 
result, a deadlock recurs and the A3-receiver acknowledges segments upon timing 
out its delayed acknowledgment timer. After updating the MUDS based on the 
new samplings, the A3-receiver is again able to avoid deadlocks, and the through-
put subsequently increases. 
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AAA without congestion  

AAA with congestion  
A3 under no congestion  

A3 under 
congestion  

 
Figure 15.5. Throughput of a 52-KB sender with a 52-KB A3-receiver. 

C. Deadlock-Prone Region I 
Figure 15.6 shows a scenario belonging to the deadlock-prone region I. 

Similar to the region II, throughput drops are observed in both scenarios. How-
ever, the magnitudes of the throughput degradation are not as significant and the 
throughput can also be recovered relatively quickly. Although the buffer sizes are 
much smaller than those in region II, the over-estimations of the MUDS are sig-
nificant enough that deadlocks recur in this region.  

 

 
Figure 15.6. Throughput of a 24-KB sender with a 24-KB A3-receiver. 
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15.4.2 Congestion-Sensitive A3 (CSA3) 

A straightforward approach to resolving the congestion problem is to reset 
the MUDS and to perform samplings all over again to find the new value when-
ever congestion is detected. However, the main disadvantage of this approach is 
that deadlock still exists before the sampling is completed. As a result, the sam-
pling needs to run for a long time, and therefore the overhead incurred would be 
very significant. Because of that, our approach proposed here is to enhance the A3 
so that the enhanced A3 is able to react to network congestion. 

A. A Slow-Start-Like Algorithm for Updating the MUDS 
A CSA3-receiver is now required to infer network congestion based on the 

information received, and to reduce its MUDS estimate based on a procedure very 
similar to TCP senders’ slow-start and congestion avoidance algorithms. Specifi-
cally, whenever a CSA3-receiver suspects network congestion based on the infor-
mation to be discussed in the latter part of this section, it remembers MUDS/2 in a 
variable r_ssthresh and resets MUDS to one MSS. One exception to this is when 
the current MUDS is smaller than MSS, and this is possible when either the send 
buffer or receive buffer is smaller than MSS, such as those cases in the deadlock-
free region. In other words, this MUDS updating procedure does not apply to the 
scenarios in the deadlock-free region. 

After resetting MUDS to one MSS, the CSA3-receiver doubles MUDS for 
every nonduplicate acknowledgment sent out. This phase corresponds to the 
sender’s slow-start phase. When the MUDS finally reaches or exceeds r_ssthresh, 
it is further increased linearly, which is similar to senders’ congestion avoidance 
phase. When the MUDS is finally increased to the old value before congestion, the 
CSA3-receiver continues to update the MUDS in the same way as for an A3-
receiver.  

The MUDS updating algorithm upon detecting congestion is summarized 
below.  

r_ssthresh = MUDS / 2; 
while (a new acknowledgment sent out by the receiver) { 
 if (MUDS ≤ r_ssthresh)  
  MUDS = MUDS * 2; 
 else { 
  MUDS += MSS * (MSS  / MUDS); 
  if (MUDS ≥  r_ssthresh * 2) exit; 
 } 
} 

There are altogether three conditions that would trigger a CSA3-receiver to 
update its MUDS estimate according to the algorithm above: 
1. When a router experiences short-term congestion, it drops a small number of 

segments. As a result, it is very likely that a CSA3-receiver is able to receive 
three duplicate acknowledgments, and it will perform fast retransmit and fast 
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recovery. Moreover, it will update its MUDS estimate according to the slow-
start-like algorithm.  

2. When a router experiences serious congestion, it drops a large number of 
segments. As a result, a CSA3-receiver may not be able to receive enough du-
plicate acknowledgments to perform fast retransmit and fast recovery. There-
fore, the sender will finally time out and retransmit lost segments. This also 
suggests that a CSA3-receiver needs to time out its MUDS estimate after a 
certain inactivity period. Upon time out, it performs the same slow-start-like 
algorithm to update the MUDS. 

3. Besides dropping segments, congested routers may also drop acknowledg-
ments on the reverse path. As a result, the sender will eventually time out and 
retransmit lost segments, and a CSA3-receiver may receive duplicate data 
segments. Therefore, the CSA3-receiver also performs the slow-start-like al-
gorithm when it receives duplicate segments. 

B. Performance Evaluation of the CSA3 
In Figures 15.7-15.9, we present simulation results to compare the through-

put performance of the A3 and CSA3 in the presence of network congestion. Since 
the A3’s throughput is minimally affected by congestion in the deadlock-free re-
gion, as shown in Figure 15.4, we only consider the two deadlock-prone regions in 
this section. The simulation settings are the same as those in Section 15.4.1. Net-
work congestions occur at several time instants, and the TCP sender retransmits 
lost segments upon timeout. 

Among all three scenarios (one in region I and two in region II), the im-
provement in throughput is most significant in the deadlock-prone region II when 
the CSA3 is employed. Since both send and receive buffers are large in this region, 
the MUDS value can be quite high when there is no congestion. Therefore, the 
CSA3’s receiver also keeps a large MUDS estimate. When network congestion 
occurs, the sender resets the congestion window to one MSS. Both the CSA3-
receiver and A3-receiver are unable to promptly acknowledge new segments due 
to the over-estimation of the sender’s MUDS, thus resulting in throughput drops in 
both cases. However, the CSA3-receiver is able to recover from throughput drop 
much faster than the A3-receiver, because the former promptly reduces the MUDS 
estimate and therefore can send a new acknowledgment much earlier than the A3-
receiver can. In TCP, the sender’s congestion window size increases based on a 
self-clocking acknowledgment mechanism. The faster new acknowledgments are 
received, the faster the window is opened up. As a result, the CSA3-receiver can 
recover from the throughput loss quickly, as shown in Figure 15.7. 

The throughput behaviors shown in Figure 15.8 and 15.9 for region I, on the 
other hand, are quite similar. The CSA3 attains similar throughput as the A3 at the 
beginning, but the former again responds to and recovers from network congestion 
much faster than the A3. In this region, the MUDS estimate may or may not be 
large enough to cause deadlocks. Apparently, when the first congestion occurs, the 
CSA3 receiver is unable to detect the network congestion; therefore, there is no 
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throughput gain by using the CSA3. However, in the latter congestion the CSA3 
receiver is able to detect congestion and to respond to it promptly. This shows that 
the CSA3 does not impose any penalty on the throughput performance even 
though it occasionally fails to detect congestion. 

 

 
Figure 15.7. Throughput of a 52-KB sender with a 52-KB A3/CSA3-receiver under conges-

tion. 
 

 

Figure 15.8. Throughput of a 24-KB sender with a 24-KB A3/CSA3-receiver under conges-
tion. 
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Figure 15.9. Throughput of a 24-KB sender with a 48-KB A3/CSA3-receiver under conges-
tion. 

15.5 CONCLUSIONS AND FUTURE WORK 

In this paper we have presented the TCP throughput deadlock problems in 
high-speed networks. This problem becomes very serious as the end-to-end net-
work speed continues to increase. We have proposed the A3 and CSA3 to over-
come this problem. We have shown by simulations that they have successfully 
reclaimed all deadlock regions for noncongested networks and congested net-
works, respectively. Currently, we are implementing them in Linux systems and  
we will put them in field tests. Another important area to study concerns fairness 
between the CSA3 receivers and nonCSA3 receivers. It remains to be seen whether 
the new acknowledgment algorithms impose any unfairness toward those that do 
not implement them. 
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