Rocky K. C. Chang 26 October 2012 MY REFLECTIONS ON WHAT TO TEACH IN COMPUTER NETWORKING

My \rightarrow 20 years of teaching experience

- Undergraduate level
 - A first course on computer networking
- Post-graduate level
 - Internetworking protocols I (proposed in 1994) : TCP/IP fundamentals
 - Internetworking protocols II (proposed in 1999): Advances in TCP/IP
 - Internet Infrastructure Security (proposed in 2004): Security in TCP/IP

My research

- Network-quality measurement and applications
 - Publications and patents
 - Running a live measurement platform for HARNET for almost four years
- Network security and privacy
 - Publications
 - Release CVEs for Android security

My problem statements

- Now could the students learn the complex and fast-changing computer networking field effectively?
 - Not necessarily MORE subjects
- The purpose of our curriculum?
 - Career: Technicians, engineers, network operators, network architects, researchers
 - How about beyond career preparation?
 What Are Universities for? by Stefan Collini

Agenda

Curriculum design

Objectives and teaching/learning methods

Conclusions

Curriculum design

A common approach

- Core/fundamental" subjects
 - Packet switching, layered model, protocol and service, data-link, etc
- Advanced" subjects
 - Require knowledge in core subjects, e.g., Internet security
 - More recent topics, such wireless/mobile, multimedia networking, etc
 - More in-depth treatment of a subject, e.g., advanced topics in routing

My example

- A first course on computer networking
- Internetworking protocols I: TCP/IP fundamentals
- Internetworking protocols II:
 - IPv6, IP multicast, Mobile IP, IP telephony, and IP security
- Internet Infrastructure Security
 - Security problems when introducing cryptographic primitives to TCP/IP

Another approach: Three Ps

- Product
 - Understand what has already been produced.
 - E.g., how does IP network work?
- Probing
 - Understand beyond what-is and probe into why-is.
 - E.g., why is IP network designed in this way and why not the other way?
- Principle
 - Understand the principles underlying the design and implementation.
 - E.g., what principles were used to guide the design of IP network?

The first P: Product

- Study a finished and well-tested "product."
 - The selected topics are usually "useful."
 - Shifting from OSI to TCP/IP
- Challenges: Understand the problems involved and how they are solved in the current "product."
- My examples:
 - A first course on computer networking
 - Internetworking protocols II: Advances in TCP/IP
 - Internet Infrastructure Security

The second P: Probing

- Understand beyond what-is and probe into why-is and even why-not.
 - The selected topics are not necessarily "useful."
 - Why is IP router designed to be stateless?
- Challenges: Understand the rationales beyond a certain design/implementation.
- My example:
 - Internetworking protocols I: TCP/IP fundamentals

The third P: Principle

- Understand the principles underlying the design and implementation.
- Ochallenges: Think outside the box
- My example:
 - Internetworking protocols I: TCP/IP fundamentals (10%)
- References:
 - Patterns in Network Architecture: A Return to Fundamentals by John Day
 - Network Algorithmics by G. Varghese

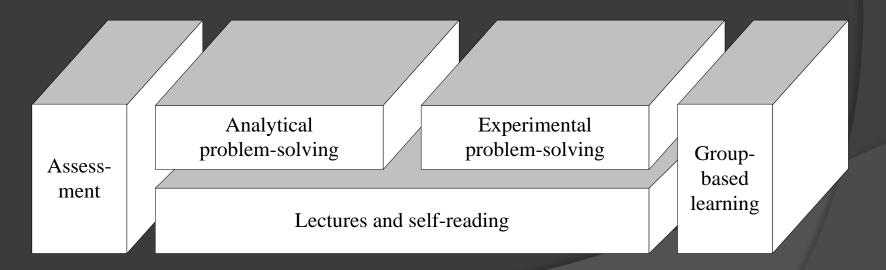
Objectives and teaching/learning methods

The first course on computer networks

- A "product" course
- Objective:
 - Understand the main topics.
 - Increase their interest in the subject.

Approach:

 Identify and remove the obstacles to learning the subject.

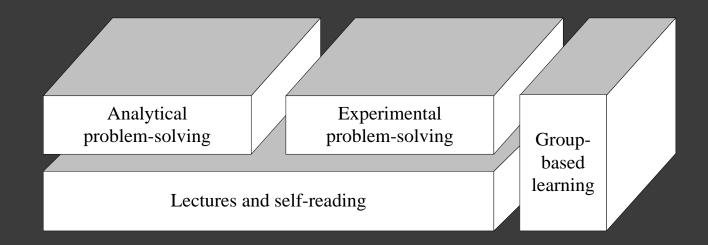

What so difficult to learn networking?

- Rapid development in the field (both in scope and depth)
- Abstract concepts
- Lack of hands-on experience
- Many terminologies and acronyms
- Heterogeneity of students' backgrounds
- Lack of motivation to learn
- Scaling to large class size

An integrative approach

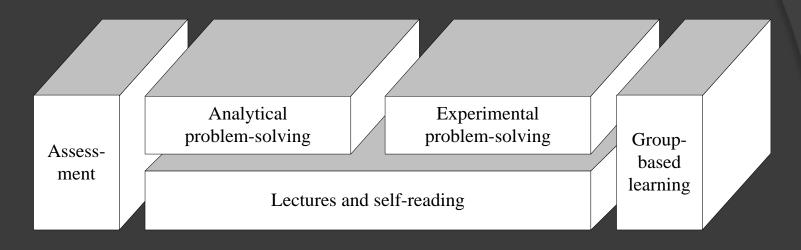
Three types of integration

- Teaching and learning activity integration
- Peer integration
- Teaching and assessment integration



Teaching and learning activity integration

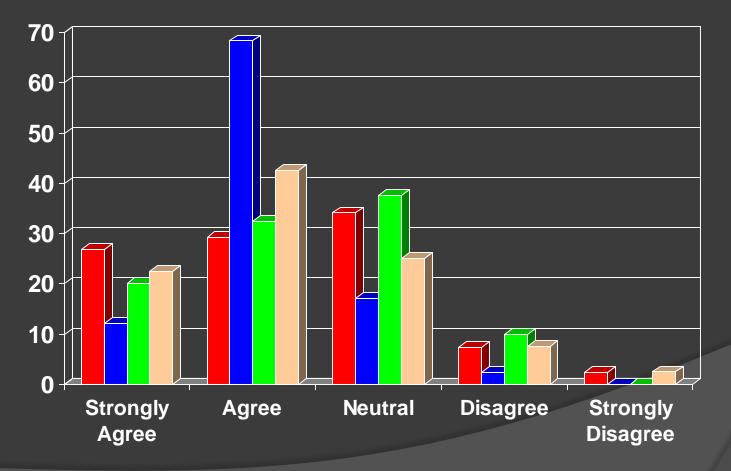
- The main foundation is still based on lectures and self-reading.
- The problem-solving layer intends to deepen the understanding.
 - Cover the important details and reinforce the concepts taught in lectures.
 - Interact with the concepts through experimentation.


Peer integration

The best teaching assistants are the students

- Students know their learning problems.
- Encouragement, support, and stimulation
- Study groups

Teaching and assessment integration


Teaching and assessment are nonseparable.

Meaning and purposes of assessments?

 Imbed assessment in the teaching and learning activities

Assessment

More interested Understood Study further Enjoy

A course on TCP/IP networks

- A "probing" course
- Objective:
 - Acquire foundational understanding on the concept of Internetworking in terms of the technologies and techniques that drive Internet.
- Approach:
 - Problem solving (paper and lab)
 - Research papers, RFCs, students' problems
 - Active engaging the students

Conclusions

Conclusive thoughts

- What is our philosophy of the curriculum on computer networking?
- Need for manpower who is creative and can innovate.
- What is the scalable approach to teaching computer networking?
- The approach based on three Ps: Product, Probing, and Principle
- Broaden the curriculum scope: business model, environmental, humanities, etc