
Performance Evaluation 40 (2000) 27–46

A novel approach to queue stability analysis of polling modelsq

Rocky K.C. Chang∗, Sum Lam
Department of Computing, The Hong Kong Polytechnic University, Kowloon, Hong Kong

Abstract

Previous work in the stability analysis of polling models concentrated mainly on stability of the whole system. This system
stability analysis, however, fails to model many real-world systems for which some queues may continue to operate under an
unstable system. In this paper we address this problem by consideringqueue stability problemthat concerns stability of an
individual queue in a polling model. We present a novel approach to the problem which is based on a new concept of queue
stability orderings, dominant systems, and Loynes’ theorem. The polling model under consideration employs anm-limited
service policy, with or without prior service reservation; moreover, it admits state-dependent set-up time and walk time. Our
stability results generalize many previous results of system stability. Furthermore, we show that stabilities of any two queues
in the system can be compared solely based on their(λ/m)’s, whereλ is the customer arrival rate to a queue. ©2000 Elsevier
Science B.V. All rights reserved.

Keywords:Queue stability analysis; Queue stability ordering; Loynes’ theorem; Dominant systems; Polling models;
Reservation schemes; State-dependent walk time and set-up time

1. Introduction

Polling models have been studied extensively, owing to their applications in the performance analysis
of many computer and communications systems [1,2]. Recently, stability analysis of polling models has
received a lot of attention [3–10]; this growing interest is perhaps due to both the depth and importance of
the problem. Stability defines a system’s achievable operating region, thus directly affecting the system
performance, such as customer delay and maximum throughput. Previous work in the stability analysis
of polling models concentrated mainly onsystem stabilitythat addresses stability of the whole system.
A polling system is considered stable ifall queues in the system are stable; the system, by definition, is
unstable if any queue in the system becomes unstable. By queue stability we mean that the queue length

q An earlier version of this paper was presented at the Performance and Control of Network Systems II Conference, in: Wai
Sum Lai, Robert B. Cooper (Eds.), Proceedings of SPIE (The International Society for Optical Engineering), Vol. 3530, Boston,
Mass., 2–4 November 1998.

∗ Corresponding author. Tel.:+852-2766-7258; fax:+852-2774-0842.
E-mail address:csrchang@comp.polyu.edu.hk (R.K.C. Chang)

0166-5316/00/$ – see front matter ©2000 Elsevier Science B.V. All rights reserved.
PII: S0166-5316(99)00068-1

28 R.K.C. Chang, S. Lam / Performance Evaluation 40 (2000) 27–46

process for a queue with unlimited buffer space possesses a limiting distribution. Applications of stability
results to the modeling of computer networking systems can be found in Refs. [11–13].

The system stability analysis, even though a difficult problem already, is inadequate in modeling many
real-world systems. For example, token-passing LAN, polling scheme, and processor sharing schedule
are all engineered such that an unstable queue will not cause other queues unstable. Therefore, the system
stability analysis cannot address those stable queues which continue to operate under an unstable system.
In this paper we address the scenario just described by considering a more general problem:queue stability
problem. Queue stability concerns stability of anindividual queue in a polling model; therefore, queue
stability results generalize system stability results. Furthermore, queue stability analysis provides insight
into how individual (or classes of) queues, equipped with certain service policies, interact with one another
in sharing a single resource. Queue stability results are also needed for approximating queueing delay
through interpolation techniques [14]. Our main contribution in this paper is a novel approach to the queue
stability problem. We apply the approach to a polling system equipped withm-limited service policy,
with or without prior service reservation; moreover, both set-up time and walk time are state-dependent.
This polling model is considerednonlinearbecause the stability conditions are nonlinear functions of
the customer arrival rates. We also extend the stability results to unlimited service policies; that is,
m = ∞.

To the best of our knowledge, a formal queue stability analysis for polling models has not been
undertaken, although there is a growing number of publications in the area of system stability analy-
sis. Ibe and Cheng [8] considered polling systems with limited service policies, and employed a heuristic
argument to obtain sufficient queue stability conditions. The necessity of the conditions was left unproved
(see Corollary 4 in Section 5 for the proof); moreover, their approach cannot be extended to nonlinear
polling systems, such as the one considered in this paper. Georgiadis and Szpankowski [7] employed
Loynes’ theorem for the stability of G/G/1 queue, dominant systems, and an induction procedure to
prove the well-known system stability conditions for a gatedm-limited policy. They and Tassiulas [15]
applied the same approach to find system stability conditions for a ring network with spatial reuse. Their
approach alone, however, is not sufficient for determining queue stability conditions, because queue sta-
bility analysis requires a comparison of stabilities of the queues in the system. Nevertheless, we shall
adopt their approach of applying Loynes’ theorem to a single queue in the system, if such comparison
is known. Fricker and Jaïbi, on the other hand, considered a very general class of service policies, and
each queue could employ different policies during each stage. They obtained system stability conditions
through stochastic monotonicity property of Markov chains, and an inductive procedure [6]. Like the
previous work just cited, their approach does not apply to the nonlinear polling model considered in this
paper.

Another important result obtained in this paper isqueue stability orderingthat determines the sequence
of queues becoming unstable if the rates of customers arriving to the queues are increasing proportionally.
Stability ordering is a crucial instrument for us to obtain queue stability conditions in this paper. The
concept of stability ordering had been alluded to in an earlier work in Ref. [17], and the queue, the first
one responsible for the system instability, was termed a least stable queue [4]. Moreover, Fricker and Jaïbi
[6] reported a similar stability ordering result. They showed that, if the queues are ordered according to a
nonincreasing order of theirλ/m, this ordering is the same as the order of the queues becoming unstable,
whereλ is the customer arrival rate to a queue. This result can be obtained based on only the system
stability conditions. For example, given two queues with(λ1/m1) > (λ2/m2), the stability ordering states
that queue 1 will become unstable before queue 2. Their result, however, is only partial because nothing
has been said about whether(λ1/m1) > (λ2/m2) still holds, given that queue 1 becomes unstable before

R.K.C. Chang, S. Lam / Performance Evaluation 40 (2000) 27–46 29

queue 2. The proof of this new result, unlike the one given by Fricker and Jaïbi, requires queue stability
analysis. By combining these two results, we can then show that the stabilities of any two queues in the
system can be compared based on only theirλ/m.

We organize the rest of this paper as follows. In Section 2 we describe the polling model considered
in this paper, and explore the Markovian properties of the underlying queue length processes. In Section
3 we introduce our main approach to the queue stability problem, which is based on queue stability
ordering, dominant systems, and Loynes’ theorem; in particular, we obtain queue stability condition of a
target queue for a given queue stability ordering. In Section 4 we present several queue stability ordering
results. In Section 5, by combining the results in Sections 3 and 4, we present complete queue stability
conditions for our polling model, and for several other special cases. Moreover, we apply our stability
analysis to a pipeline polling system, which slightly deviates from the polling model described in Section
2. We finally conclude this paper in Section 6, with a discussion of our findings and future work needed
in this area.

2. Model description and Markovian properties

The polling model considered in this paper consists of a single server, and a finite set of distributed
queues. LetQ be the set of queues, andqi, i = 1, . . . , |Q|, be the members ofQ. Each queue has infinite
buffers to store incoming customers. The arrival process of customers toqi is assumed to be Poisson with
rateλi ; the arrival process at a queue is independent of the arrival processes at other queues.Bk

i is the
service time of thekth customer atqi , and the service time process{Bk

i }∞k=1 is i.i.d. with a finite mean
bi > 0. The service time process at a queue is assumed to be independent of the arrival processes at all
queues, and of the service time processes at other queues. We also letρi = λibi andρ = ∑|Q|

i=1 ρi . The
server visits the queues in a deterministic and cyclic order:q1, q2, . . . , q|Q|, q1, q2, . . . , and he serves
the queues according to anm-limited service policy with two variants:gated at server arrival instants
(GSA) andgated at server departure instants(GSD). Each queue is either a GSA queue or a GSD queue.
The server will serve min(x, mi) customers when he, upon his arrival, findsx customers in a GSAqi ,
wheremi , a positive and finite integer, represents an upper limit on the number of services performed
during each visit. The server, on the other hand, reserves min(y, mi) number of services when he is about
to leave behindy customers in a GSDqi ; therefore, he will serve only min(y, mi) customers in his next
visit. As a result, the GSD and GSA queues model reservation and nonreservation schemes, respectively.

Given the queue length (and the number of reserved services for the GSD queues) at the arrival instant
of the server, the service policies are independent of the history of the system prior to the arrival of
the server. We also assume that, after starting the service, the server will not be idle until the service
is complete (work-conserving), and that the queueing discipline does not depend on the service time.
Furthermore,fi(x), the number of customers served in a GSAqi givenx customers waiting in the queue
upon the arrival of the server, ismonotonic and contractivein x [18]; that is, if x1 ≥ x2, then the two
inequalities in Eq. (2.1) hold:

fi(x1) ≥ fi(x2) and fi(x1) − fi(x2) ≤ x1 − x2. (2.1)

Similarly,gi(y), the number of services reserved by the server in a GSDqi giveny customers waiting in
the queue just before making the service reservation, is monotonic and contractive iny.

30 R.K.C. Chang, S. Lam / Performance Evaluation 40 (2000) 27–46

2.1. State-dependent set-up time and walk time

The last two aspects of our polling model concern set-up time and walk time. Unlike previous work in
the analysis of polling models, we allow both state-dependent set-up time and walk time in our model.
The nonnegative set-up time is incurred between the arrival instant of the server and the actual start of
service; the nonnegative walk time, between the departure instant of the server and the arrival instant of
the server at the next queue. In general, both set-up time and walk time may depend on any system states
prior to the start of the set-up and walk, respectively; however, they must be independent of the processes
that occur after the completion of set-up time and walk time, respectively (independent of future). In this
paper, we assume that the set-up time distribution for a queue depends on only the states of the queue
at the arrival instants of the server; the walk time distribution, the states of the queue at the departure
instants of the server. Given that the state ofqi at the arrival instant of the server isx, we denote the
set-up time byUi(x) with a finite meanui(x) > 0, and letΘi(x) be the length of aservice periodatqi ,

the total amount of time servingqi . We also takeΘi(x)
def=Ui(x) + Θi(x) asqi ’s extended service period.

Similarly, given that the state ofqi at the departure instant of the server isy, we denote the walk time by
Vi(y) with a finite meanvi(y) > 0. 1

Given the service policies, our model can accommodate any state-dependent set-up time and walk time,
provided that the following two requirements are fulfilled by all queues:
1. Θi(x) andVi(y) are stochastically monotonic inx andy, respectively; that is, ifx1 ≥ x2, then

Θi(x1) ≥st Θi(x2), and similarly forVi(y). By stochastic monotonicity we meanΘi(x1) ≥st Θi(x2)

if and only if E[h(Θi(x1))] ≥ E[h(Θi(x2))] for all monotonic increasing functionsh.

2. There exists a finitex∗
i > 0 such thatΘi(x)

d=Θ
∗
i for x ≥ x∗

i ; similarly, there exists a finitey∗
i > 0

such thatVi(y)
d=V ∗

i for y ≥ y∗
i . Both Θ

∗
i andV ∗

i are independent of each other, and of any other
processes in the system, and have finite means ofθ

∗
i > 0 andv∗

i > 0, respectively.
BecauseΘi(x) is stochastically equivalent toΘi(mi) for x ≥ mi , the two requirements imply that

Ui(x) also is stochastically monotonic inx only for x ≥ x∗
i ; that is,Ui(x)

d=U ∗
i with a finite meanu∗

i > 0
for x ≥ x∗

i ≥ mi . Finally, we observe thatθ
∗
i = u∗

i + mibi . Note that the two requirements are very
general, and they could accommodate a wide range of models, such as one that the set-up time is nonzero
if the server finds an empty queue, but it is zero for a nonempty queue (see Section 5.1 for such a system).
Of course, they include the following special cases also:
• Both set-up time and walk time are independent of each other, and of other processes in the system;

that is,Ui(x)
d=U ∗

i , ∀x, with a finite meanu∗
i > 0 andVi(y)

d=V ∗
i , ∀y, with a finite meanv∗

i > 0. In

this case, it is clear thatΘi(x) is stochastically monotonic inx; furthermore,Θi(x)
d=U ∗

i + Θi(mi) for
x ≥ mi .

• Ui(x) is stochastically monotonic inx, andUi(x)
d=U ∗

i for x ≥ x ′
i > 0 with a finite meanu∗

i > 0. This
case is similar to the first case withx∗

i = max(x ′
i , mi).

• Ui(x)
d=U ∗

i for x ≥ x ′
i > 0; Ui(x) = 0, otherwise. The result is the same as the second case.

If walk time depends also on the states of the queue at the arrival instants of the server, we could
absorb the walk time into the extended service period; the two requirements forVi(y) are no longer
needed for the GSA queues, but they are still required for the GSD queues. In the remainder of this paper,
we assume that the set-up time and walk time for the GSA (GSD) queues depend on the queue length

1 We may allow either set-up time or walk time to be zero, but not both.

R.K.C. Chang, S. Lam / Performance Evaluation 40 (2000) 27–46 31

(the queue length and the number of reserved services) at the respective time instants. Because of the
monotonicity property ofg(y), the walk times for the GSD queues depend on only the queue lengths at
the server departure instants. Moreover, when comparing two multi-dimensional variables, we understand
that(x1, x2) ≥ (x ′

1, x
′
2) if and only if x1 ≥ x ′

1 andx2 ≥ x ′
2.

2.2. Markovian properties

After describing our polling model in the preceding discussion, we now explore the Markovian prop-
erties of the model in the rest of this section. The imbedded points are server arrival instants at the GSA
queues, and server departure instants from the GSD queues. At thenth epoch,Nn

i is qi ’s queue length

andGn
i , only for the GSD queues, is the number of reserved services forqi . LetΦΦΦn

Q

def=(Φn
1 , . . . , Φn

|Q|),
n ≥ 1, whereΦn

i = Nn
i , if qi is a GSA queue; andΦn

i = (Nn
i , Gn

i) if qi is a GSD queue. We also find it
convenient to consider another process{ΦΦΦk

Q(j)}∞k=1, for which the imbedded points are only those related
to qj ;ΦΦΦk

Q(j), Nk
i (j), andGk

i (j) have similar meanings as before. Furthermore, we define the following
quantities related to thekth (k ≥ 1) visit atqi :
• Uk

i is the set-up time at the beginning of the visit.
• Fk

i is the number of customers served during the visit.
• Θk

i is the length of the service period.
• V k

i is the walk time incurred at the end of the visit.
In addition, we defineCk(j) as thekth cycle time referenced atqj , the amount of time elapsed between the
kth and(k+1)th arrivals at (departures from)qi if it is a GSA (GSD) queue. Moreover, we assume, through-
out this paper, that in the beginning (n = k = 1) the server arrives at GSA (or departs from GSD)q1.

Having defined the quantities for thekth visit at qi , we now return toΦΦΦn
Q and define the following

quantities for all imbedded points:
• kn is the cycle number, corresponding to thenth epoch; that is,kn = b(n − 1)/|Q|c + 1.
• Jn is the index of the queue associated with thenth epoch; that is,Jn = n − |Q|(kn − 1).
• Tn is the time instant of thenth epoch.
• Fn

i is the total number of customers served atqi from the beginning up toTn.
• Ψn is the time period betweenTn andTn+1.
• Ai(t) is the total number of customers arrived atqi during(0, t].
• Xn

i is the total number of customers arrived atqi betweenTn andTn+1; that is,Xn
i = Ai(Tn + Ψn) −

Ai(Tn).
To completely describe the queue length process, we need to consider four different scenarios, depending
on the types of queues associated with two consecutive imbedded points. Eq. (2.2) corresponds to the case
that thenth epoch is an arrival epoch, and the(n + 1)th is a departure epoch; other cases can be obtained

similarly. Note that ifqJn
is a GSA queue,Θkn

Jn
= ∑min(Nn

Jn
,mJn)

j=1 B
Fn

Jn
+j

Jn
; moreover, ifqJn+1 is a GSD queue,

Θ
kn+1
Jn+1

= ∑Gn
Jn+1

j=1 B
Fn+1

Jn+1
+j

Jn+1
. We also adopt the notation [x]+ = max(x, 0) in this paper. Finally, Lemma 1,

the main result of this subsection, states the Markovian properties of the polling model.

Nn+1
i = Nn

i + Xn
i if i 6= Jn, Jn+1,

Nn+1
Jn

= [Nn
Jn

− mJn
]+ + Xn

i ,

Nn+1
Jn+1

= Nn
Jn+1

− Gn
Jn+1

+ Xn
i and Gn+1

Jn+1
= min(Nn+1

Jn+1
, mJn+1), where

Ψn = U
kn

Jn
+ Θ

kn

Jn
+ V

kn

Jn
+ U

kn+1
Jn+1

+ Θ
kn+1
Jn+1

.

(2.2)

32 R.K.C. Chang, S. Lam / Performance Evaluation 40 (2000) 27–46

Lemma 1. The process{ΦΦΦn
Q}∞n=1 is a (generally nonhomogeneous) Markov chain; furthermore,

{ΦΦΦk
Q(j)}∞k=1 is a homogeneous, irreducible, and aperiodic Markov chain.

Proof. The proof follows a standard argument, and is therefore omitted. �

3. The main approach

We adopt the definition for queue stability provided by Loynes [16]. A queue isstableif the distribution
of the queue length process{Nn}∞n=1 tends to a honest distribution function at all its points of continuity;
that is, forx ∈ R, whereR is a set of real numbers,

lim
n→∞Pr{Nn ≤ x} = F(x) and lim

x→∞F(x) = 1. (3.1)

Moreover, the queue issubstableif the distribution is bounded in probability sense; that is,

lim
x→∞lim inf

n→∞ Pr{Nn ≤ x} = 1. (3.2)

If the queue is not substable, then it isunstable. Similar definitions of stability apply also to multi-
dimensional processes, with the understanding that two processes are compared based on their respective
components.

We employ three instruments for solving the queue stability problem: stability ordering, appropriately
constructed dominant systems, and Loynes’ theorem for the stability of an isolated G/G/1 queue. Loynes’
stability result essentially states that the arrival rate of customers must be less than the service rate.
When applying to a particular queue in a polling system, Loynes’ theorem still holds, provided that the
cycle time process is stationary and ergodic [7]. As a preliminary result, Theorem 1 states the stability
condition for a GSA or GSD queue for which the server takes a vacation after servicing the queue. Similar
to Loynes’ result, the stability condition for this system has an intuitive explanation: the average number
of customers arrived during a cycle must be less than the maximum number of customers departed during
a cycle.

Theorem 1. Consider a GSA or GSD queue, and a server who always performs m services during his
visit at the queue. If the queue is short of customers, the server generates just enough dummy customers to
reach the limit m at his arrival (departure) for a GSA (GSD) queue. Moreover, the server takes a vacation
after servicing the queue, and the vacation period is independent of the arrival process. If the cycle time
process is a stationary and ergodic sequence with mean EC, then
1. if λEC < m, then the queue is stable in the sense of Eq.(3.1),and
2. if λEC > m, then the queue is unstable.

Proof. Because there are alwaysm customers to serve, the queue length process is given by

Nn+1 = [Nn − m]+ + Xn, (3.3)

whereXn is the number of arrivals at the queue during thenth cycle. Eq. (3.3) is valid for both GSA
and GSD queues, provided that the epochs are referred to the respective time instants. By lettingYn+1 =
Nn+1 − Xn, Eq. (3.3) becomes

Yn+1 = [Yn + Xn−1 − m]+. (3.4)

R.K.C. Chang, S. Lam / Performance Evaluation 40 (2000) 27–46 33

Because the cycle time is a stationary and ergodic sequence, and the arrival process is Poisson and
independent of the cycle time,Xn is a stationary and ergodic sequence, thus fulfilling the stationarity
requirement for Loynes’ theorem. The queue is, therefore, stable ifE(Xn−1 − m) < 0 and unstable if
E(Xn−1 − m) > 0. Finally, we haveE(Xn−1) = λEC to complete the proof. �

In addition to Theorem 1, we also need an appropriate dominant system, serving as an auxiliary system,
for deriving stability conditions for, say, a target queueqt ∈ Q, which is either a GSA queue or a GSD
queue. The dominant systemdominatesthe original system in the sense that the states (including the
queue length) in the dominant system are stochastically greater than those in the original system, if
both systems are started with identical initial states. In this dominant system, the queues are classified
into eitherpersistent queuesor nonpersistent queues. A persistent queue in the dominant system always
generates enough dummy customers, so that the server serves the queue to the maximum limit. As we
shall see in Section 3.2,qt and the queues that are less stable thanqt are persistent, and the queues that
are more stable thanqt are nonpersistent. To construct the dominant system, we need the result of queue
stability ordering. Therefore, we first define stability ordering, and note several stability ordering results
in Section 3.1. By applying Theorem 1 to the target queue, we then obtainqt ’s stability condition in the
dominant system (Lemma 3). Finally, we prove that the stability condition obtained for the dominant
system holds also for the original system (Lemma 4). Lemma 4, therefore, completes the derivation of
qt ’s stability condition for a given queue stability ordering.

3.1. Stability ordering

A stability orderingspecifies the order of queues becoming unstable if the system traffic increases
according to a certain pattern. Without loss of generality, we consider a linear increase in the system
traffic; that is, we represent the traffic vectors by parametric equations:λi = riλ, i = 1, . . . , |Q|, where
ri ≥ 0 ∀i andλ ≥ 0. LetRRR be the set of(r1, r2, . . . , r|Q|). If λ increases according to a givenrrro ∈ RRR, one
of the following three possible outcomes will occur: (1)qi is more stable thanqj ; (2) qi is as stable asqj ,
and (3)qi is less stable thanqj . Items (1)–(3) are denoted byqi � qj , qi = qj , andqi ≺ qj , respectively.
Note that the operator� on Q, at least as stable as, is a partial ordering; that is, the following three
properties hold: (1)qi � qi ; (2) if qi � qj andqj � qk, thenqi � qk, and; (3) ifqi � qj andqj � qi ,
thenqi = qj .

We shall show in Theorem 2 and Corollaries 1 and 2 of Section 4 that stabilities of any two queues in
the system, whether they be GSA or GSD queues, can be compared solely based on theirλ/m. This result
thus enables us to compute stability ordering, and to partition the entire parameter space into regions,
each of which corresponds to a unique stability ordering. Nevertheless, for the purpose of computingqt ’s
stability conditions, we need only regions that give the same set of queues that are more stable thanqt. To
be precise, we define such a region byΓΓΓ o = ΓΓΓ (qt,Mo,Lo) = {rrr ∈ RRR|M(qt, rrr) =Mo,L(qt, rrr) = Lo},
for whichM(qt, rrro) = {qi ∈ Q|qi � qt for a givenrrro ∈ RRR},L(qt, rrro) = {qi ∈ Q − {qt}|qt � qi for a
givenrrro ∈ RRR}, andMo andLo are assumed given. In other words, the stability orderings withinMo and
Lo are immaterial to computingqt ’s stability conditions inΓΓΓ o. To determineqt ’s stability region, we,
therefore, first obtain stability region for a givenΓΓΓ o; we then take a union of stability regions obtained
for all possibleΓΓΓ o’s.

Before leaving this section, we find it helpful to note a number of important points concerning stability
ordering. We first letQ∞ ⊆ Q be a set of queues employing unlimited service policy (mi = ∞), and
other queues with finite limits. The first point is thatqi � qj for qi ∈ Q∞ andqj ∈ Q−Q∞ because, for

34 R.K.C. Chang, S. Lam / Performance Evaluation 40 (2000) 27–46

any givenλj/mj , we can always find ami that is large enough to ensure(λi/mi) < (λj/mj). Second,
qi = qj for qi, qj ∈ Q∞; that is, queues equipped with unlimited policy are as stable as one another,
simply because limmi→∞(λi/mi) = limmj →∞(λj/mj) = 0. Another explanation for the stability result
is that neitherqi nor qj will become unstable before the other; this statement can be illustrated by two
examples. In the first example, aqi ∈ Q∞ becomes unstable (ρi > 1). This queue, therefore, monopolizes
the entire service; and other queues, with unlimited or limited policies, will also become unstable; an
unstableqj ∈ Q − Q∞, on the other hand, will not cause the queues inQ∞ unstable. As a result, the
queues inQ∞ always become stable (or unstable)at the same time. The second example, given in Ref.
[15], is more subtle than the first one. The system considered there consists of two queues with unlimited
policies; andρi < 1, i = 1, 2, butρ1 + ρ2 > 1. Under this situation,both queues cause the system
unstable. Each queue length returns to zero at the end of the visit (due to the unlimited policy), thus
causing an oscillation of the queue lengths at the departure instants of the server; that is,q1 has an empty
queue whileq2 builds up a long queue, and the situation is reversed when switching to another queue.
Both queue lengths at the arrival instants of the server, however, continue to build up; as a result, both
queues become unstable at the same time. In general, queues employing unlimited policies are always as
stable as one another, independent of other factors.

3.2. Dominant systems and queue stability

Having defined quantities related to queue stability ordering, in this section we consider the polling
model for a givenΓΓΓ o = (qt,Mo,Lo), denoted byΞ(ΓΓΓ o), and a dominant system forΞ(ΓΓΓ o), denoted
by Ξd(ΓΓΓ o). We introduce additional superscript d to the quantities inΞd(ΓΓΓ o), to distinguish them from
those in the original system. Recall from the discussion at the beginning of this section that the queues
in Mo are nonpersistent, and they behave identically in bothΞ(ΓΓΓ o) and4d(ΓΓΓ o). On the other hand,
queues belonging toLo ∪ {qt} are persistent inΞd(ΓΓΓ o), and they behave differently in the dominant
system in two aspects. First, the server always servesmi customers at a GSAqi by generatingjust enough
dummy customers if the queue is short of customers to reachmi . The server, similarly, always reserves
mi number of services upon his departure from a GSDqi by generatingjust enoughdummy customers.
To be precise, upon departure from a GSDqi ∈ Lo ∪ {qt} with Nn

i < mi , both queue length and number
of reserved services are inflated tomi, N

n
i = Gn

i = mi ; on the other hand,Nn
i andGn

i remain unchanged
for Nn

i ≥ mi . Furthermore, we assume that both the initial queue length and the initial number of reserved
services for a GSDqi are at leastmi in Ξd(ΓΓΓ o). Second, the set-up time and walk time for a persistent
queueqi are given byU ∗

i andV ∗
i , respectively.

In Lemma 2 we first consider the mean cycle time forΞ(ΓΓΓ o) andΞd(ΓΓΓ o). We useEC to denote the
former if all queues are stable, andECd(ΓΓΓ o) to denote the latter if the queues inMo are stable. Then
in Lemma 3 we use the approach in Ref. [7] to deriveqt ’s stability condition underΞd(ΓΓΓ o). After that,
in Lemma 4 we apply a standard argument for stochastic comparison, and a proposition in Ref. [15] to
prove thatqt ’s stability conditions are the same under bothΞd(ΓΓΓ o) andΞ(ΓΓΓ o). We adopt the following
new notations for the lemmas:̂Φk

i and Φ̃k
i are the states ofqi at thekth arrival instant of the server

andkth departure instant of the server, respectively. Relating back to our previous notations, we have
Φ̂k

i ≡ Φ
(k−1)|Q|+i

i for the GSA queues and̃Φk
i ≡ Φ

(k−1)|Q|+i

i for the GSD queues. Moreover, we denote
the mean set-up time and mean walk time for a stableqi by ui andvi , respectively.

Lemma 2. Given that all queues in the polling model are stable, the mean cycle time forΞ(ΓΓΓ o), with
any givenΓΓΓ o, is given by

R.K.C. Chang, S. Lam / Performance Evaluation 40 (2000) 27–46 35

EC =
∑|Q|

i=1(ui + vi)

1 − ρ
. (3.5)

Given that all queues in a givenMo are stable, the mean cycle time forΞd(ΓΓΓ o) is given by

ECd(ΓΓΓ o) =
∑

qi∈Mo
(ui + vi) +∑

qi∈Lo∪{qt}(u
∗
i + v∗

i + mibi)

1 −∑
qi∈Mo

ρi

. (3.6)

Proof. We first consider the mean cycle time forΞ(ΓΓΓ o), in which all queues are assumed to be stable. Eq.
(3.7) gives the length of thekth cycle time referenced atq1, and the change in the queue length between
thekth and(k + 1)th arrival instants of the server atq1:

Ck(1) = Tn′+|Q| − Tn′ = ∑n′+|Q|−1
`=n′ Ψ` = ∑|Q|

i=1(U
k
i + Θk

i + V k
i);

N
n′+|Q|
i − Nn′

i = Ai(C
k(1)) − Fk

i , i = 1, . . . , |Q|,
(3.7)

wheren′ = (k − 1)|Q| + 1. Taking expectation of Eq. (3.7) gives Eq. (3.8). We also substituteE[Uk
i]

by E[Ui(Φ̂
k
i)], and similarly for other quantities, to emphasize their dependencies on the states of the

queues:

E[Ck(1)] = ∑|Q|
i=1(E[Ui(Φ̂

k
i)] + E[Θi(Φ̂

k
i)] + E[Vi(Φ̃

k
i)]);

E[Nn′+|Q|
i] − E[Nn′

i] = E[Ai(C
k(1))] − E[Fi(Φ̂

k
i)], i = 1, . . . , |Q|.

(3.8)

If all queues are stable, according to an isolation lemma (Lemma 5 in Ref. [7]), the joint queue
length process is substable. Furthermore, becauseGn

i is bounded, the last statement implies that the
Markov chain{ΦΦΦk

Q(1)}∞k=1 is ergodic, and its limiting distribution is denoted byφ. We now start the
process{ΦΦΦk

Q(1)}∞k=1 by φ, and it is well-known that the process is stationary and ergodic. As a result,

the expected values in Eq. (3.8) no longer depend on the cycle number; therefore, letΦ̂k
i

d=Φ̂i , Φ̃k
i

d=Φ̃i ,

andCk(1)
d=C(1) for k ≥ 1. Moreover,E[Nn′+|Q|

i] − E[Nn′
i] = 0 andE[Ai(C

k(1))] = λiE[C(1)]. We
thus haveE[Fi(Φ̂i)] = λiE[C(1)]; by applying Wald’s identity,E[Θi(Φ̂i)] = ρiE[C(1)]. As a result,
E[Ck(1)] in Eq. (3.8) becomes

E[C(1)] =
|Q|∑
i=1

(E[Ui(Φ̂i)] + ρiE[C(1)] + E[Vi(Φ̃i)]). (3.9)

Using our notations,E[Ui(Φ̂i)] = ui andE[Vi(Φ̃i)] = vi ; as a result, we arrive at Eq. (3.5). It is clear
from the derivation that the mean cycle time is independent of the choice of the reference queue, and of
the service policy.

We can conduct a similar analysis forΞd(ΓΓΓ o), in which the queues inMo are assumed to be sta-
ble. Clearly, the process{ΦΦΦk,d

Q (1)}∞k=1 is also a Markov chain; forqt and queues inLo, E[Ui(Φ̂
k,d
i)] +

E[Θi(Φ̂
k,d
i)] + E[Vi(Φ̃

k,d
i)] = u∗

i + v∗
i + mibi for k ≥ 1. As a result, we consider a reduced system,

denoted by{ΦΦΦk,d
Mo

(1)}∞k=1, consisting of only the queues inMo, and we treat the time periods incurred by
qt and queues inLo as independent walk times in the reduced system. Note that these new walk times do
not affect the Markovian property of the reduced system. Furthermore, by invoking the isolated lemma
again, the joint queue length process forMo is substable. Consequently, the Markov chain{ΦΦΦk,d

Mo
(1)}∞k=1

is ergodic, and has a limiting distributionφ. The same arguments used in the last case apply. �

36 R.K.C. Chang, S. Lam / Performance Evaluation 40 (2000) 27–46

Lemma 3. qt is stable inΞd(ΓΓΓ o) if λtECd(ΓΓΓ o) < mt, and it is unstable ifλtECd(ΓΓΓ o) > mt.

Proof. We first consider the case ofMo 6= ∅. Assuming the queues inMo to be stable guarantees a
nonempty stability region forqt. Without loss of generality, the cycle starts fromq1 ∈ Mo. Moreover,
the rest of the proof assumes thatq1 is a GSA queue, and the proof also applies to a GSDq1. For a GSA
qt, its queue length process is given by

N
k+1,d
t (1) = [Nk,d

t (1) + X̂
k,d
t (1) − mi]

+ + X̃
k,d
t (1)

≤ max(Nk,d
t (1) + X

k,d
t (1) − mi, X

k,d
t (1)), k ≥ 1, (3.10)

whereX̂
k,d
t (1) is the number of arrivals atqt between thekth arrival instant of the server atq1, and the

kth arrival instant of the server atqt. X̃
k,d
t (1), on the other hand, is the number of arrivals atqt between

the kth arrival instant of the server atqt, and the(k + 1)th arrival instant of the server atq1. Clearly,
X

k,d
t (1) = X̂

k,d
t (1) + X̃

k,d
t (1). Furthermore, we define another process{N k,d

t }∞k=1 such thatN k+1,d
t =

max(N k,d
t + X

k,d
t (1) − mi, X

k,d
t (1)) andN

1,d
t (1) = N 1,d

t . From the preceding construction, it is easy to
see thatN k,d

t ≥ N
k,d
t (1) for k ≥ 1. As a result, stability of{N k,d

t }∞k=1 implies stability of our original
process{Nk,d

t (1)}∞k=1; the stability conditions for{N k,d
t }∞k=1 can be obtained directly from Theorem 1,

provided that the cycle time process is stationary and ergodic.
We next consider a GSDqt and its queue length process is given by

N
k+1,d
t (1) = max(Nk,d

t (1) + X̂
k,d
t (1) − mi, mi) + X̃

k,d
t (1)

≤ max(Nk,d
t (1) + X

k,d
t (1) − mi, X

k,d
t (1) + mi), k ≥ 1, (3.11)

whereX̂
k,d
t (1), X̃

k,d
t (1), andX

k,d
t (1) are defined similarly as before, except that the first two quantities

are referenced to thekth departure instant of the server fromqt (instead of arrival instant). Because

N
k,d
t (1) ≥ mi for k ≥ 1 (qt is a persistent queue), letN

k,d
t (1) = N

k,d
t (1) − mi and Eq. (3.11) becomes

N
k+1,d
t (1) ≤ max(N

k,d
t (1) + X

k,d
t (1) − mi, X

k,d
t (1)). (3.12)

Following the approach for the GSA queues, we define a new process{N k,d
t }∞k=1 with N

1,d
t (1) = N 1,d

t ;
similar to the GSA queues, stability of{N k,d

t }∞k=1 implies stability of{Nk,d
t (1)}∞k=1. Stability conditions

for {N k,d
t }∞k=1 also can be obtained directly from Theorem 1, provided that the cycle time process is

stationary and ergodic. To show the stationarity and ergodicity of the cycle time process, we note from
the proof of Lemma 2 that the Markov chain{ΦΦΦk,d

Mo
(1)}∞k=1 is ergodic, and has a limiting distributionφ.

By starting the system withφ, {ΦΦΦk,d
Mo

(1)}∞k=1 is a stationary and ergodic process; consequently, the cycle
time process is stationary and ergodic (see Ref. [7] for the details). The preceding analysis applies also
to the case ofMo = ∅; the cycle time is given by

∑|Q|
i=1(U

∗
i + Θi(mi) + V ∗

i), and is stationary and
ergodic. �
Lemma 4. The stability conditions in Lemma3 hold forΞ(ΓΓΓ o) also.

Proof. Sufficiency (stableqt in Ξd(ΓΓΓ o) ⇒ stableqt in Ξ(ΓΓΓ o)): We prove the sufficiency part by showing
that ΦΦΦk,d

Q (1) ≥st ΦΦΦk
Q(1), k = 1, 2, . . . , provided that both systems are under identical initial states;

therefore, it is sufficient to prove by induction thatΦΦΦ
n,d
Q ≥st ΦΦΦn

Q for n ≥ 1. Thus, we assume that

ΦΦΦ
n,d
Q ≥st ΦΦΦn

Q for ` + 1 − |Q| ≤ n ≤ `, where` ≥ |Q|, and we set out to prove thatΦΦΦ
`+1,d
Q ≥st ΦΦΦ`+1

Q .
As mentioned in Section 2, there are four cases to consider. We consider here only the case thatqJ`

R.K.C. Chang, S. Lam / Performance Evaluation 40 (2000) 27–46 37

is a GSA queue andqJ`+1 is a GSD queue, because this case contains all the elements required for
proving similar results for the other three cases. Based on Eq. (2.2), the proof forΦΦΦ

`+1,d
Q ≥st ΦΦΦ`+1

Q is

equivalent to proving three inequalities: (1)Ψ d
` ≥st Ψ`, (2) [N`,d

J`
− mJ`

]+ ≥st [N`
J`

− mJ`
]+, and (3)

N
`,d
J`+1

− G
`,d
J`+1

≥st N
`
J`+1

− G`
J`+1

. The inequality (2) is obviously true becauseN
`,d
J`

≥st N
`
J`

. Furthermore,

N
`,d
J`

≥st N`
J`

implies thatΘ
k`,d
J`

≥st Θ
k`

J`
, because of the stochastic monotonicity property (s.m.p.) of the

extended service period. Besides, we denoteqJ`
’s queue length at thek`th departure instant of the server

in Ξ(ΓΓΓ o) by Ñ
k`

J`
, which is given by

Ñ
k`

J`
= [N`

J`
− mJ`

]+ + AJ`
(Θ

k`

J`
). (3.13)

A similar expression forÑk`,d
J`

can also be obtained; moreover,Ñ
k`,d
J`

≥st Ñ
k`

J`
becauseN`,d

J`
≥st N`

J`
and

Θ
k`,d
J`

≥st Θ
k`

J`
. Finally, Ñk`,d

J`
≥st Ñ

k`

J`
implies thatV k`,d

J`
≥st V

k`

J`
, because of the s.m.p. of the walk time

process.
We now turn toqJ`+1, and denoteqJ`+1’s state at thek`+1th arrival instant of the server inΞ(ΓΓΓ o) by

(N̂
k`+1
J`+1

, Ĝ
k`+1
J`+1

), where

N̂
k`+1
J`+1

= N`
J`+1

+ AJ`
(Θ

k`

J`
+ V

k`

J`
). (3.14)

A similar expression forN̂k`+1,d
J`+1

can also be obtained; moreover, the previous monotonicity results for

qJ`
imply thatN̂k`+1,d

J`+1
≥st N̂

k`+1
J`+1

. Furthermore, the induction hypothesisG
`,d
J`+1

≥st G
`
J`+1

yieldsĜ
k`+1,d
J`+1

≥st

Ĝ
k`+1
J`+1

, because the numbers of reserved services are the same at both epochs. As a result,Θ
k`+1,d
`+1 ≥st Θ

k`+1

`+1
because of the s.m.p. of the extended service period; this inequality, with the earlier results for the GSA
queue, proves inequality (1).

To prove inequality (3), we first note thatN`
J`+1

= N
`+1−|Q|
J`+1

+ X
k`

J`+1
, whereX

k`

J`+1
is the number of

arrivals atqJ`+1 betweenT`+1−|Q| andT`, andG`
J`+1

= G
`+1−|Q|
J`+1

. Therefore

N`
J`+1

− G`
J`+1

= (N
`+1−|Q|
J`+1

− G
`+1−|Q|
J`+1

) + X
k`

J`+1
. (3.15)

A similar expression can also be obtained for the dominant system. We are now ready to show that

N
`+1−|Q|,d
J`+1

− G
`+1−|Q|,d
J`+1

≥st N
`+1−|Q|
J`+1

− G
`+1−|Q|
J`+1

andX
k`,d
J`+1

≥st X
k`

J`+1
. For the first inequality, we note

thatG`,d
J`+1

≥st G`
J`+1

implies thatN`+1−|Q|,d
J`+1

≥st N
`+1−|Q|
J`+1

, because of the monotonicity property of the

service policy. The first inequality, therefore, holds becauseN
`+1−|Q|,d
J`+1

≥st N
`+1−|Q|
J`+1

and the contractive

property of the service policy; the second inequality holds becauseΦΦΦ
n,d
Q ≥st ΦΦΦ

n
Q, ` + 1 − |Q| ≤ n ≤ `,

implies thatT d
`+1−|Q| − T d

` ≥st T`+1−|Q| − T`.

To complete the proof, we use induction to prove thatΦΦΦ
n,d
Q ≥st ΦΦΦn

Q for 1 ≤ n ≤ |Q|. Assuming that

ΦΦΦ
n,d
Q ≥st ΦΦΦn

Q for 1 ≤ n ≤ `, where` < |Q|, we set out to prove thatΦΦΦ`+1,d
Q ≥st ΦΦΦ`+1

Q . The proof is
similar to the previous case, and is therefore skipped.

Necessity (unstableqt in Ξd(ΓΓΓ o) ⇒ unstableqt in Ξ(ΓΓΓ o)): We considerΞd(ΓΓΓ o) in which the queues
inMo are assumed to be stable. According to the previous analysis in the proof of Lemma 2, the Markov
chain{ΦΦΦk,d

Mo
(1)}∞k=1 is ergodic; consequently, the cycle time process is stationary and ergodic. By setting

λt > mt/ECd(ΓΓΓ o), we know from Lemma 3 thatqt is unstable inΞd(ΓΓΓ o) and, due to the stability

38 R.K.C. Chang, S. Lam / Performance Evaluation 40 (2000) 27–46

ordering, the queues inLo are unstable as well; that is, limk→∞N
k,d
i (1) = ∞ for qi ∈ Lo ∪ {qt}. We now

apply Proposition 4 in Ref. [15] to{ΦΦΦk,d
Q (1)}∞k=1 with modifications to suit our polling model, and we

present the modified proposition in Proposition 1. �
Proposition 1. We consider the Markov chain{ΦΦΦk,d

Q (1)}∞k=1. Assume that it is known that if the pro-

cess starts from stateuuu, then for all qi ∈ Lo ∪ {qt}, limk→∞N
k,d
i (1) = ∞. Then, given any bounded

one-dimensional set A, there is a stateccc such thatci /∈ A for all qi ∈ Lo ∪{qt}, andPr{Nk,d
i (1) /∈ A, qi ∈

Lo ∪ {qt}, k ≥ 1|ΦΦΦ1,d
Q (1) = ccc} > 0.

We setA to [0, maxqi∈Lo∪{qt}di], wheredi = max(x∗
i , y

∗
i +mi). From Section 2.1,x∗

i andy∗
i are defined

for a GSAqi such thatUi(x)
d=U ∗

i for x ≥ x∗
i , andVi(y)

d=V ∗
i for y ≥ y∗

i . Similarly for a GSDqi , they are

defined such thatUi(x1, x2)
d=U ∗

i for (x1, x2) ≥ (x∗
i , mi), andVi(y)

d=V ∗
i for y ≥ y∗

i , wherex1 andx2 are
the queue length and number of reserved services at the server arrival instants, respectively. By applying
Proposition 1 to our model, we conclude that there is a set of sample paths of positive probability for
which N

k,d
i (1) > di , k = 1, 2, As a result, on this set of sample paths the queues inΞd(ΓΓΓ o) and

Ξ(ΓΓΓ o) are identical; that is, the queues inLo ∪ {qt} are unstable underΞ(ΓΓΓ o) also.

4. Computing the queue stability ordering

In the last section we assume a given queue stability ordering; in this section we present in Corollary 2
a necessary and sufficient condition for comparing stabilities of any two queues in the system. To prove
the queue stability result, we first present in Theorem 2 a condition under which two queues in the system
are as stable as each other. Consequently, we obtain in Corollary 2 a condition, under which all queues
are as stable as one another; we refer the system to be in aload-balancedstate.

Theorem 2. Consider any two queuesqi, qj ∈ Q; qi andqj are as stable as each other, qi = qj , for
anyrrr ∈ RRR for which(ri/mi) = (rj /mj) (or (λi/mi) = (λj/mj)).

Proof. Let us start with the notationRRRi,j = {rrr ∈ RRR|(ri/mi) = (rj /mj)}. In the following we first prove
that there exists at least anrrr that givesqi = qj (existence); we then show that thoserrr ’s that giveqi = qj

must belong toRRRi,j (exclusiveness).
Existence.We prove this part using the argument of contradiction by assuming that such anrrr does not

exist; that is, the stability boundaries ofqi andqj do not intersect. This assumption, therefore, implies
thatqi ’s stability region is a subset (excluding any overlaps of the two stability boundaries) ofqj ’s, or
vice versa, because the stability regions of both queues should be bounded and closed. As a result, one
queue is always more stable than the other for anyrrr ∈ RRR; this conclusion is obviously invalid for any
limited policies, thus contradicting the assumption that therrr that givesqi = qj does not exist.

Exclusiveness.We assume that there is anrrro that givesqi = qj but it does not belong toRRRi,j , and we
shall show that thisrrro does not exist. Towards this end, we consider a subset ofRRR: RRR(i, j) = {rrr ∈ RRR|rk =
ck for k 6= i, j}, whereck is a constant; that is, we fix the arrival rates toqk, k 6= i, j . We then proceed
to find the instability regions forqi andqj in RRR(i, j) by computing the instability condition of the more
stable queue in two regions:qi � qj andqj � qi , denoted byRRRi(i, j) andRRRj(i, j), respectively. Clearly,
RRR(i, j) = RRRi(i, j) ∪ RRRj(i, j).

Let us first consider the case ofqi � qj . Because the arrival rates toqk, k 6= i, j , are fixed, stabilities
of bothqi andqj in this subspace are affected only byri andrj . Furthermore, by definition, the stabilities

R.K.C. Chang, S. Lam / Performance Evaluation 40 (2000) 27–46 39

of the queues that are at least as stable asqi are not affected byrj ; as a result,M(qi, rrr) andL(qi, rrr) are
invariant for anyrrr ∈ RRRi(i, j), and we denote this set of stability orderings byΓΓΓ o = (qi,Mo,Lo). By
applying Lemmas 2–4 toqi , we thus obtain instability conditions forqi andqj for the first case in Eqs.
(4.1) and (4.2).

λi >
mi

ECd(ΓΓΓ o)
for rrr ∈ RRRi(i, j), (4.1)

where

ECd(ΓΓΓ o) =
∑

qk∈Mo
(uk + vk) +∑

qk∈Lo∪{qi ,qj }(u
∗
k + v∗

k + mkbk)

1 −∑
qk∈Mo

ρk

. (4.2)

Because the cases ofqi � qj andqj � qi are symmetrical, we observe that the mean cycle time for the
case ofqj � qi is given by Eq. (4.2) also. As a result, we obtain the overall instability conditions forqi

andqj in RRR(i, j):

λi >
mi

ECd(ΓΓΓ o)
for rrr ∈ RRR(i, j) and λj >

mj

ECd(ΓΓΓ o)
for rrr ∈ RRR(i, j). (4.3)

The earlier assumption aboutrrro and Eq. (4.3) implies thatqi always becomes unstable atλi = mi/ECd(ΓΓΓo)

for anyrrro ∈ RRRi(i, j); the conclusion is obviously invalid, thus contradicting the assumption that therrro

does not belong toRRRi,j . The same contradiction can be said also for anyrrro ∈ RRRj(i, j). Lastly, note that
the conclusion is independent of the subsetRRR(i, j). �
Corollary 1. All queues are as stable as one another, q1 = q2 = · · · = q|Q|, for anyrrr ∈ RRR for which
(λ1/m1) = (λ2/m2) = · · · = (λ|Q|/m|Q|).

Proof. The proof is straightforward, and is therefore omitted. �
Corollary 2. For anyrrr ∈ RRR, qi ≺ (�)qj iff (λi/mi) > (<)(λj/mj).

Proof. We again considerRRR(i, j), in particular, the subset that satisfies(ri/mi) > (rj/mj). First, we
observe that there is at least anrrr in this subset that givesqi ≺ qj ; the obvious one is given byri 6= 0 and
rj = 0. Second, we argue that in this subset eitherqi ≺ qj or qi � qj is true; otherwise, the two stability
boundaries should have at least one intersection in the subset. The latter statement implies that there is
at least anrrr in this subset that yieldsqi = qj , but we know from the proof for Theorem 2 that this result
cannot be true. Combining the two items above completes the proof. �

5. Stability results

We are now ready to present the complete stability conditions for our polling model, and also for
several special cases and a pipeline polling system. By combining the results in Sections 3 and 4, we
obtain in Theorem 3 stability conditions for individual queues in the polling model. We then show that
the stability results yield closed-form stability conditions for a number of special cases. For example, in
Corollary 3 we first consider system stability conditions for our model, which generalize the previous
results obtained by Kuehn [17] and later proved rigorously by Georgiadis and Szpankowski [7] for the
GSA policy. In Corollary 4 we obtain closed-form queue stability conditions if the walk time and set-up
time are independent, and the results are identical to the sufficient conditions obtained by Ibe and Cheng

40 R.K.C. Chang, S. Lam / Performance Evaluation 40 (2000) 27–46

for the GSA policy [8]. In Corollary 5 we obtain the well-known stability condition for a class of queues
employing unlimited service policies. Because those unlimited queues are as stable as one another, the
stability condition in Corollary 5 serves as the system stability condition for the set of queues. Finally, in
Section 5.1 we apply the queue stability analysis to a pipeline polling system.

Although our proofs do not cover stability boundaries, previous analyses of similar systems indicated
that the stability boundaries usually fall into the instability region. An evidence for supporting this
proposition comes from the pseudo-conservation laws for polling models, which give exact expressions
for a weighted sum of mean waiting times [19,20]. The pseudo-conservation laws, therefore, immediately
yield mean waiting times for symmetric systems, which consist of identical queues. The mean waiting
times obtained for both unlimited and limited policies are indeed unbounded at the stability boundaries.
Furthermore, if one or more queues operate at their stability boundaries in our polling model, the Markov
chain{ΦΦΦk

Q(j)}∞k=1 is believed to berecurrent null, because it is still possible for the system to reach the
null state(when all queues are empty) but the mean recurrence time is unbounded.

Theorem 3. For a givenΓΓΓ o = ΓΓΓ (qt,Mo,Lo), qt is stable if Eq.(5.1) holds; otherwise, it is unstable
with possible exception of the boundaries.

λt <
mt∑

qi∈Mo
(ui + vi) +∑

qi∈Lo∪{qt}(u
∗
i + v∗

i + mibi)


1 −

∑
qi∈Mo

ρi


 . (5.1)

The entire stability region forqt is given by the union of stability regions obtained for all possibleΓΓΓ o’s,
which can be obtained from Corollary2.

Proof. By combining Lemmas 2–4. �
In Fig. 1 we show the parameter space partitioned into six regions, each of which is associated with a

unique stability ordering. For example, the stability ordering for region II is given byq3 � q2 � q1; and

Fig. 1. Parameter regions corresponding to six queue stability orderings for a three-queue system (α : (r2/m2) = (r3/m3);
β : (r1/m1) = (r2/m2); γ : (r1/m1) = (r3/m3)).

R.K.C. Chang, S. Lam / Performance Evaluation 40 (2000) 27–46 41

that for region VI,q2 � q1 � q3. Nevertheless, when computing stability conditions forq1, for example,
there are at most fourΓΓΓ o’s to consider, which are given by region I∪ region II, region III, region VI, and
region IV∪ region V.

Corollary 3. The polling model is substable if and only if Eq.(5.2)holds.

λi <
mi∑

k 6=i(uk + vk) + u∗
i + v∗

i + mibi


1 −

∑
k 6=i

ρk


 , i = 1, . . . , |Q|. (5.2)

Furthermore, if the walk time and set-up time are independent of each other, and of other processes in
the system, then Eq.(5.2) is reduced to the well-known result stated as follows:

λiw

1 − ρ
< mi, i = 1, . . . , |Q|, (5.3)

wherew = ∑|Q|
i=1(u

∗
i + v∗

i).

Proof. Recall that{ΦΦΦk
Q(1)}∞k=1 is substable if{Nk

i (1)}∞k=1 is stable according to Eq. (3.1) fori =
1, . . . , |Q|. One approach of deriving the system stability conditions is, therefore, to find the queue
stability condition of aleast stable queue(LSQ) for every possibleΓΓΓ o. An LSQ is one with a maximum
value ofλ/m. Thus, the overall system stability region is an union of stability regions obtained for the
LSQs in theseΓΓΓ o’s; however, we adopt another approach that avoids an explicit partitioning of the pa-
rameter space. We first observe that each queue is an LSQ in a nonempty parameter space; note that this
observation is valid for any polling systems that do not employ unlimited service policies. We then derive
stability regions forqi, i = 1, . . . , |Q|, for each of which we assume thatqi is alwaysthe LSQ by setting
Mo = Q − {qi} andLo = ∅ for all rrr ∈ RRR, and we denote the resulted stability region bySSSi . As a result,
the system stability region is given by

⋂|Q|
i=1SSSi because, by the definition of LSQ, the operation of set

intersection includes only stability regions of thetrue LSQs. Moreover, the inequality for eachi in Eq.
(5.2) defines the stability regionSSSi . �
Corollary 4. If the walk time and set-up time are independent of other processes in the system with
w = ∑|Q|

i=1(u
∗
i + v∗

i), the queue stability condition in Eq.(5.1) is equivalent to

λtw

mt
+

|Q|∑
i=1

min

(
λtmi

mt
, λi

)
bi < 1. (5.4)

Proof. A simple algebraic manipulation of Eq. (5.1) yields Eq. (5.4). �
Corollary 5. We consider our polling model, in which one or more queues employ unlimited service
policy by setting theirmi to ∞ (the set of unlimited queues is denoted byQ∞ ⊆ Q). The necessary and
sufficient stability condition forQ∞ is given by∑

qi∈Q∞

ρi < 1. (5.5)

Proof. We apply the stability conditions in Theorem 3 by setting the limitm to infinity for the unlimited
queues. Because the unlimited queues are as stable as one another, we need to ensure identical(λ/m)’s
for these queues. We, therefore, set(λi/mi) = (1/t), ∀qi ∈ Q∞, wheret > 0 is a real number, butt
does not take on all values becausemi is an integer. Now we apply Theorem 3 to aqt ∈ Q∞ by setting

42 R.K.C. Chang, S. Lam / Performance Evaluation 40 (2000) 27–46

t to ∞. Note thatMo = ∅ for any givenΓΓΓ o because no other queues are more stable than an unlimited
queue; we thus have

λt <
1∑

qi∈Qlim t→∞(u∗
i + v∗

i + mibi)/mt
. (5.6)

All the limits in Eq. (5.6) go to zero except for
∑

qi∈Q∞ lim t→∞(mibi/mt), in which the limit for a
qi ∈ Q∞ − {qt} is equal to(ρi/λt); consequently, we arrive at Eq. (5.5). �

5.1. A pipeline polling system

Lastly, we consider a pipeline polling system in this section, motivated by a satellite system based on
a polling scheme with reservation [21]. All the assumptions and notations about the arrival and service
processes in the pipeline polling system are the same as before, except that the service times here are
constants, denoted bybi for qi (because the satellite system is a time slotted system). When the server
(satellite) is about to leave behindy customers (packets) inqi (ith earth station), he reservesgi(y) number
of services for his next visit and

gi(y) = max(1, min(y, mi)). (5.7)

From Eq. (5.7), the pipeline polling policy is the same as the GSD policy fory > 0; however, the server in
the pipeline polling system still reserves one service at his departure fory = 0. This reserved service will
be wasted if the server finds an empty queue again at his next visit; this wasted service time may be treated
as set-up time in our model. On the other hand, the server will serve one customer if he finds a nonempty
queue next time, and the set-up time is zero in this case. In addition, the server has prior knowledge of
the service schedule through the reservation scheme; therefore, it takes no time to switch from one queue
to another by polling the next queue while serving the current one. As a result, the set-up time forqi in
the pipeline polling system is given byUi(x) = bi if x = 0 andUi(x) = 0, otherwise, and the walk
time is zero for all queues. Although the pipeline polling policy differs from the GSD policy when the
server leaves an empty queue, we could apply the same analysis in Sections 2–4 to this system. First, it is
simple to show that this policy also is monotonic and contractive. Second, it is straightforward to show
that the two requirements in Section 2 are satisfied by this system, becauseΘi(x1, x2) is monotonic in
(x1, x2) andΘi(x1, x2) = mibi for (x1, x2) ≥ (mi, mi), wherex1 is the queue length andx2 the number
of reserved services forqi at the arrival instant of the server. Consequently, Theorem 4 gives the queue
stability results for this system; system stability conditions can be obtained using the approach in the
proof for Corollary 3, and the results are given in Ref. [4].

Theorem 4. Consider the pipeline polling system with a givenΓΓΓ o = ΓΓΓ (qt,Mo,Lo); qt is stable if and
only if Eq.(5.8)holds.

λt <
mt∑

qi∈Mo
bi +∑

qi∈Lo∪{qt}mibi


1 −

∑
qi∈Mo

ρi

(
1 − 1

f
d
i (ΓΓΓ o)

) , (5.8)

wheref
d
i (ΓΓΓ o) is the mean number of customers ofqi ∈ Mo served inΞd(ΓΓΓ o), given that the server

visits a nonemptyqi . The entire stability region forqt is given by the union of stability regions obtained

R.K.C. Chang, S. Lam / Performance Evaluation 40 (2000) 27–46 43

Table 1
Three queues:mi = 6, λ2 = 0.33 (if stable),λ3 = 0.28 (if stable)

Stability forqi , i 6= 1 Stability conditions forq1

Stable Unstable Approximation Simulation

q2, q3 λ1 < 0.3900 λ1 < 0.3899
q2 q3 λ1 < 0.3350∗ λ1 < 0.3350
q3 q2 λ1 < 0.3600∗ λ1 < 0.3600

q2, q3 λ1 < 0.3333∗ λ1 < 0.3333

for all possibleΓΓΓ o’s. Moreover, the stability ordering results stated in Theorem2 and Corollaries1 and
2 apply to this system.

Proof. The results in Lemmas 3 and 4 apply also to aqt in the pipeline polling system, of course with
a differentECd(ΓΓΓ o). To obtainECd(ΓΓΓ o) for the pipeline polling system, letπi,0 be the steady-state
probability thatqi ∈Mo is empty when the server visits the queue. Forqi ∈ Lo ∪ {qt}, E[Ui(Φ̂

k,d
i)] +

E[Θi(Φ̂
k,d
i)] + E[Vi(Φ̃

k,d
i)] = mibi for k ≥ 1; for qi ∈ Mo, E[Ui(Φ̂i)] + E[Θi(Φ̂i)] + E[Vi(Φ̃i)] =

πi,0bi + ρiECd(ΓΓΓ o). Therefore, we have

ECd(ΓΓΓ o) =
∑

qi∈Mo
πi,0bi +∑

qi∈Lo∪{qt}mibi

1 −∑
qi∈Mo

ρi

. (5.9)

Moreover,E[Fi(Φ̂i)], the mean number of customers ofqi ∈Mo served in a cycle, is given by

E[Fi(Φ̂i)] = (1 − πi,0)f
d
i (ΓΓΓ o) = λiECd(ΓΓΓ o). (5.10)

From Eq. (5.10),πi,0 = 1 − (λiECd(ΓΓΓ o))/f
d
i (ΓΓΓ o) for qi ∈Mo. By substituting the expression forπi,0

into Eq. (5.9) and rearranging the terms, we obtain the mean cycle time and, subsequently, the stability
conditions from Lemmas 3 and 4. The proofs for the stability ordering results are the same as before.�

We present numerical results for the stability conditions of the pipeline polling system in Tables 1–3,
in whichq1 is the target queue in all cases. To make it simple, we also let the service time be one andmi

be six for all queues. We computeq1’s stability conditions using Eq. (5.8) with two methods to estimate

Table 2
Six queues:mi = 6, λ2 = 0.18 (if stable),λ3−6 = 0.11 (if stable)

Stability forqi, i 6= 1 Stability conditions forq1

Stable Unstable Approximation Simulation

q2−6 λ1 < 0.3799 λ1 < 0.3662
q2−5 q6 λ1 < 0.2450 λ1 < 0.2444
q2−4 q5, q6 λ1 < 0.2000 λ1 < 0.1997
q3−6 q2 λ1 < 0.2780 λ1 < 0.2785
q3−5 q2, q6 λ1 < 0.2333 λ1 < 0.2231
q3, q4 q2, q5, q6 λ1 < 0.1950 λ1 < 0.1950
q3 q2, q4−6 λ1 < 0.1780∗ λ1 < 0.1780

q2−6 λ1 < 0.1666∗ λ1 < 0.1666

44 R.K.C. Chang, S. Lam / Performance Evaluation 40 (2000) 27–46

Table 3
Twelve queues:mi = 6, λ2−3 = 5λ (if stable),λ4−12 = 3λ (if stable),λ = 0.02162

Stability forqi, i 6= 1 Stability conditions forq1

Stable Unstable Approximation Simulation

q2−12 λ1 < 0.2006 λ1 < 0.1904
q2−11 q12 λ1 < 0.1325 λ1 < 0.1320
q2−10 q11,12 λ1 < 0.1099 λ1 < 0.1099
q2,4−12 q3 λ1 < 0.1542 λ1 < 0.1528
q2,4−11 q3,12 λ1 < 0.1244 λ1 < 0.1242
q2,4−10 q3,11,12 λ1 < 0.1095 λ1 < 0.1094
q4−12 q2,3 λ1 < 0.1388 λ1 < 0.1383
q4−11 q2,3,12 λ1 < 0.1203 λ1 < 0.1202
q4−10 q2,3,11,12 λ1 < 0.1092 λ1 < 0.1092
q4−9 q2,3,10−12 λ1 < 0.1018 λ1 < 0.1018
q4−8 q2,3,9−12 λ1 < 0.0965 λ1 < 0.0965
q4−7 q2,3,8−12 λ1 < 0.0926 λ1 < 0.0926
q4−6 q2,3,7−12 λ1 < 0.0895 λ1 < 0.0895
q4,5 q2,3,6−12 λ1 < 0.0870 λ1 < 0.0870
q4 q2,3,5−12 λ1 < 0.0850∗ λ1 < 0.0850

q2−12 λ1 < 0.0833∗ λ1 < 0.0833

f
d
i (ΓΓΓ o) — vacation model (labeled asApproximation) and computer simulation (labeled asSimulation).

We also mark those cases, in which we can obtain exact results, by ‘∗’ (when there are no more than two
stable queues in the system). All the numerical results indicate that the stability conditions obtained from
Eq. (5.1) and the vacation model are very accurate.

6. Conclusions and future work

We proposed in this paper a novel approach to the queue stability problem for a fairly general polling
model, and we obtained a number of interesting results for the polling model. First, provided with identical
arrival processes, service processes, and service limits, the GSA policy is as stable as the GSD policy
in the sense that the stability condition for a GSA queue remains the same if the queue switches to the
GSD policy. Moreover, we conjecture that the GSA policy gives a smaller average delay than the GSD
policy because reservation incurs additional delay; however, when approaching the stability boundary, the
difference in the delay performance for the two policies quickly diminishes. Second, as noted from Eq.
(5.1) and (5.8), the state-dependent set-up time and walk timenonlinearizethe stability conditions; for

example, the unknown quantityf
d
i (ΓΓΓ o) summarizesthese nonlinear interactions for the pipeline polling

system. On the other hand, the stability conditions are analytically computable if the set-up time and
walk time are independent. Third, the stability conditions for unlimited policies are independent of the
state-dependent set-up time and walk time. The set of unlimited queues (Q∞) behave essentially like a
single queue from the perspective of stability. Moreover, in a system mixed with limited and unlimited
policies, the maximum normalized utilization of the server available to the queues inQ − Q∞ is given
by 1−∑

qi∈Q∞ρi , provided that the queues inQ∞ are stable.
More importantly, the contribution of this paper goes beyond the polling models considered here. We

believe that our approach to the queue stability problem can be applied to analyze other service policies,

R.K.C. Chang, S. Lam / Performance Evaluation 40 (2000) 27–46 45

variants of polling models, and even general single-resource contention systems, such as buffered Aloha;
these results will be forthcoming. In addition, this work can be extended in various directions. We are
currently devising a general method to compute queue stability ordering, thus eliminating constructed
proofs for different polling models. We are also investigating how other nonPoisson traffic models, such as
the self-similar process, affect the system and queue stability conditions. Another important area is to apply
these newly obtained queue stability results to the design and analysis of computer and communications
systems; potential areas are capacity estimation and a schedulability study of ATM and wireless networks,
and formulation of internet pricing models.

Acknowledgements

This work was partially supported by The Hong Kong Polytechnic University Central Research Grants
350/492 and 351/690. The authors are grateful to the anonymous reviewers for carefully reading this
paper. The authors also thank Prof. Wojciech Szpankowski of Purdue University, Prof. Hideaki Takagi of
the University of Tsukuba, and Prof. Hong Chen of The Hong Kong University of Science and Technology
for their useful comments in an earlier version of this paper.

References

[1] O.J. Boxma, H. Takagi, Polling Models (special issue), Queueing Systems 11 (1992).
[2] H. Levy, M. Sidi, Polling systems: applications, modeling, and optimization, IEEE Trans. Commun. 38 (1990) 1750–1760.
[3] E. Altman, P. Konstantopoulos, Z. Liu, Stability, monotonicity and invariant quantities in general polling systems, Queueing

Systems 11 (1992) 35–57.
[4] K.C. Chang, Stability conditions for a pipeline polling scheme in satellite communications, Queueing Systems 14 (1993)

339–348.
[5] D. Down, On the stability of polling models with multiple servers, J. Appl. Probab. 35 (1998) 925–935.
[6] C. Fricker, M.R. Jaïbi, Monotonicity and stability of periodic polling models, Queueing Systems 15 (1994) 211–238.
[7] L. Georgiadis, W. Szpankowski, Stability of token passing rings, Queueing Systems 11 (1992) 7–33.
[8] O.C. Ibe, X. Cheng, Stability conditions for multiqueue systems with cyclic service, IEEE Trans. Automat. Control 33

(1988) 102–103.
[9] L. Massoulié, Stability of non-Markovian polling systems, Queueing Systems 21 (1995) 67–95.

[10] V. Sharma, Stability and continuity of polling systems, Queueing Systems 16 (1994) 115–137.
[11] L. Georgiadis, W. Szpankowski, L. Tassiulas, A scheduling policy with maximal stability region for ring networks with

spatial reuse, Queueing Systems 19 (1995) 131–148.
[12] S. Gorinsky, S. Baruah, T. Marlowe, A. Stoyenko, Exact and efficient analysis of schedulability in fixed-packet networks:

a generic approach, Proceedings of the IEEE INFOCOM, 1997, pp. 585–592.
[13] K.C. Chang, A hybrid analytic-simulation approach to compute throughput of FDDI networks, Proceedings of the

Communication Networks Modelling and Simulation Conference, La Jolla, CA, 1996, pp. 233–238.
[14] M.J. Fischer, C.M. Harris, J. Xie, An interpolation approximation for expected wait in a time-limited loop system, Technical

report, Systems Engineering and Operations Research Department, George Mason University, 1997.
[15] L. Georgiadis, W. Szpankowski, L. Tassiulas, Stability analysis of quota allocation access protocols in ring networks with

spatial reuse, IEEE Trans. Inform. Theory 43 (1997) 923–937.
[16] R. Loynes, The stability of a queue with non-independent inter-arrival and service times, Proc. Camb. Philos. 58 (1962)

497–520.
[17] P.J. Kuehn, Multiqueue systems with non-exhaustive cyclic-service, Bell System Tech. J. 58 (1979) 671–698.
[18] H. Levy, M. Sidi, O.J. Boxma, Dominance relations in polling systems, Queueing Systems 6 (1990) 155–172.
[19] O.J. Boxma, B. Meister, Pseudo-conservation laws in cyclic-service systems, J. Appl. Probab. 24 (1987) 949–964.
[20] K.C. Chang, D. Sandhu, Pseudo-conservation laws in cyclic-service systems with a class of limited service policies, Ann.

Oper. Res. 35 (1992) 209–229.

46 R.K.C. Chang, S. Lam / Performance Evaluation 40 (2000) 27–46

[21] F. Akashi, K. Kobyashi, J. Namiki, K. Watanabe, Pipeline polling for satellite communications, Technical report CS85-66,
IEICE, 1985.

Rocky K.C. Changreceived his B.Sc. degree in electrical engineering from Virginia Polytechnic Institute
and State University in Blacksburg, Virginia, in 1983. He received his M.E. degree in electrical engineering
in 1985, M.S. degree in operations research and statistics in 1987, and the Ph.D. degree in computer system
engineering in 1990, all from Rensselaer Polytechnic Institute, Troy, New York. From 1991 to 1993, he
was in the Computer Science Department of IBM Thomas J. Watson Research Center, Yorktown Heights,
New York. Since then he has been an Assistant Professor in the Department of Computing, The Hong
Kong Polytechnic University, Kowloon, Hong Kong (SAR). His research interests include performance
evaluation of computer and communications systems, TCP/IP protocol design and analysis, and queueing
theory. Dr. Chang is a member of IEEE and ACM.

Sum Lam received his B.E. degree in computer science and engineering from Xian Jiaotong University,
Xian, China, in 1994; and M.Phil. degree in computing from The Hong Kong Polytechnic University,
Hong Kong (SAR), China, in 1997. He is currently a lecturer in the Department of Computing, The Hong
Kong Polytechnic University, where he is also working toward his Ph.D. degree.

