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Abstract

Previous work in the stability analysis of polling models concentrated mainly on stability of the whole system. This system
stability analysis, however, fails to model many real-world systems for which some queues may continue to operate under an
unstable system. In this paper we address this problem by considgrng stability problerthat concerns stability of an
individual queue in a polling model. We present a novel approach to the problem which is based on a new concept of queue
stability orderings, dominant systems, and Loynes’ theorem. The polling model under consideration empidisited
service policy, with or without prior service reservation; moreover, it admits state-dependent set-up time and walk time. Our
stability results generalize many previous results of system stability. Furthermore, we show that stabilities of any two queues
in the system can be compared solely based on thgin)'s, wherea is the customer arrival rate to a queue. ©2000 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Polling models have been studied extensively, owing to their applications in the performance analysis
of many computer and communications systems [1,2]. Recently, stability analysis of polling models has
received a lot of attention [3—10]; this growing interest is perhaps due to both the depth and importance of
the problem. Stability defines a system'’s achievable operating region, thus directly affecting the system
performance, such as customer delay and maximum throughput. Previous work in the stability analysis
of polling models concentrated mainly sgstem stabilitghat addresses stability of the whole system.

A polling system is considered stableaif queues in the system are stable; the system, by definition, is
unstable if any queue in the system becomes unstable. By queue stability we mean that the queue length
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process for a queue with unlimited buffer space possesses a limiting distribution. Applications of stability
results to the modeling of computer networking systems can be found in Refs. [11-13].

The system stability analysis, even though a difficult problem already, is inadequate in modeling many
real-world systems. For example, token-passing LAN, polling scheme, and processor sharing schedule
are all engineered such that an unstable queue will not cause other queues unstable. Therefore, the system
stability analysis cannot address those stable queues which continue to operate under an unstable system.
Inthis paper we address the scenario just described by considering a more general gpodlerstability
problem Queue stability concerns stability of ardividual queue in a polling model; therefore, queue
stability results generalize system stability results. Furthermore, queue stability analysis provides insight
into how individual (or classes of) queues, equipped with certain service policies, interact with one another
in sharing a single resource. Queue stability results are also needed for approximating queueing delay
through interpolation techniques [14]. Our main contribution in this paper is a novel approach to the queue
stability problem. We apply the approach to a polling system equippedmvitmited service policy,
with or without prior service reservation; moreover, both set-up time and walk time are state-dependent.
This polling model is consideredonlinearbecause the stability conditions are nonlinear functions of
the customer arrival rates. We also extend the stability results to unlimited service policies; that is,
m = OQ.

To the best of our knowledge, a formal queue stability analysis for polling models has not been
undertaken, although there is a growing number of publications in the area of system stability analy-
sis. Ibe and Cheng [8] considered polling systems with limited service policies, and employed a heuristic
argument to obtain sufficient queue stability conditions. The necessity of the conditions was left unproved
(see Corollary 4 in Section 5 for the proof); moreover, their approach cannot be extended to nonlinear
polling systems, such as the one considered in this paper. Georgiadis and Szpankowski [7] employed
Loynes’ theorem for the stability of G/G/1 queue, dominant systems, and an induction procedure to
prove the well-known system stability conditions for a gatedimited policy. They and Tassiulas [15]
applied the same approach to find system stability conditions for a ring network with spatial reuse. Their
approach alone, however, is not sufficient for determining queue stability conditions, because queue sta-
bility analysis requires a comparison of stabilities of the queues in the system. Nevertheless, we shall
adopt their approach of applying Loynes’ theorem to a single queue in the system, if such comparison
is known. Fricker and Jaibi, on the other hand, considered a very general class of service policies, and
each queue could employ different policies during each stage. They obtained system stability conditions
through stochastic monotonicity property of Markov chains, and an inductive procedure [6]. Like the
previous work just cited, their approach does not apply to the nonlinear polling model considered in this
paper.

Another important result obtained in this papegigue stability orderinghat determines the sequence
of queues becoming unstable if the rates of customers arriving to the queues are increasing proportionally.
Stability ordering is a crucial instrument for us to obtain queue stability conditions in this paper. The
concept of stability ordering had been alluded to in an earlier work in Ref. [17], and the queue, the first
one responsible for the system instability, was termed a least stable queue [4]. Moreover, Fricker and Jaibi
[6] reported a similar stability ordering result. They showed that, if the queues are ordered according to a
nonincreasing order of their/m, this ordering is the same as the order of the queues becoming unstable,
where is the customer arrival rate to a queue. This result can be obtained based on only the system
stability conditions. For example, given two queues witfy m1) > (12/m>), the stability ordering states
that queue 1 will become unstable before queue 2. Their result, however, is only partial because nothing
has been said about wheth{@g /m1) > (12/m>) still holds, given that queue 1 becomes unstable before
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gueue 2. The proof of this new result, unlike the one given by Fricker and Jaibi, requires queue stability
analysis. By combining these two results, we can then show that the stabilities of any two queues in the
system can be compared based on only thgit.

We organize the rest of this paper as follows. In Section 2 we describe the polling model considered
in this paper, and explore the Markovian properties of the underlying queue length processes. In Section
3 we introduce our main approach to the queue stability problem, which is based on queue stability
ordering, dominant systems, and Loynes’ theorem; in particular, we obtain queue stability condition of a
target queue for a given queue stability ordering. In Section 4 we present several queue stability ordering
results. In Section 5, by combining the results in Sections 3 and 4, we present complete queue stability
conditions for our polling model, and for several other special cases. Moreover, we apply our stability
analysis to a pipeline polling system, which slightly deviates from the polling model described in Section
2. We finally conclude this paper in Section 6, with a discussion of our findings and future work needed
in this area.

2. Model description and Markovian properties

The polling model considered in this paper consists of a single server, and a finite set of distributed
gueues. LeQ be the setof queues,anpdi =1, ..., |Q]|, be the members @. Each queue has infinite
buffers to store incoming customers. The arrival process of customgristassumed to be Poisson with
rate);; the arrival process at a queue is independent of the arrival processes at other ffiési¢ise
service time of theth customer afy;, and the service time proce§Bf}%°, is i.i.d. with a finite mean
b; > 0. The service time process at a queue is assumed to be independent of the arrival processes at all
gueues, and of the service time processes at other queues. We alse:l@th; andp = Zl‘;)'l pi. The
server visits the queues in a deterministic and cyclic orgerg,, ... , g0, 91, q2. - . ., and he serves
the queues according to anlimited service policy with two variantgjated at server arrival instants
(GSA) andgated at server departure instaf{tS8SD). Each queue is either a GSA queue or a GSD queue.
The server will serve migx, m;) customers when he, upon his arrival, findsustomers in a GS4&;,
wherem;, a positive and finite integer, represents an upper limit on the number of services performed
during each visit. The server, on the other hand, reserve§min) number of services when he is about
to leave behind customers in a GSB;; therefore, he will serve only miiy, m;) customers in his next
visit. As a result, the GSD and GSA queues model reservation and nonreservation schemes, respectively.

Given the queue length (and the number of reserved services for the GSD queues) at the arrival instant
of the server, the service policies are independent of the history of the system prior to the arrival of
the server. We also assume that, after starting the service, the server will not be idle until the service
is complete (work-conserving), and that the queueing discipline does not depend on the service time.
Furthermoref; (x), the number of customers served in a GgAjivenx customers waiting in the queue
upon the arrival of the server, monotonic and contractivim x [18]; that is, if x; > x», then the two
inequalities in Eq. (2.1) hold:

filxy) = filx2) and fi(x1) — fi(x2) < x1— x2. (2.1)

Similarly, g; (), the number of services reserved by the server in a @SJiveny customers waiting in
the queue just before making the service reservation, is monotonic and contragtive in
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2.1. State-dependent set-up time and walk time

The last two aspects of our polling model concern set-up time and walk time. Unlike previous work in
the analysis of polling models, we allow both state-dependent set-up time and walk time in our model.
The nonnegative set-up time is incurred between the arrival instant of the server and the actual start of
service; the nonnegative walk time, between the departure instant of the server and the arrival instant of
the server at the next queue. In general, both set-up time and walk time may depend on any system states
prior to the start of the set-up and walk, respectively; however, they must be independent of the processes
that occur after the completion of set-up time and walk time, respectively (independent of future). In this
paper, we assume that the set-up time distribution for a queue depends on only the states of the queue
at the arrival instants of the server; the walk time distribution, the states of the queue at the departure
instants of the server. Given that the stateyo#t the arrival instant of the server is we denote the
set-up time byU; (x) with a finite mean:; (x) > 0, and let®; (x) be the length of aervice periodtg;,

the total amount of time serving. We also take, (x)d:EfU,- (x) + ©;(x) asg;’s extended service period
Similarly, given that the state qf at the departure instant of the serveyjsve denote the walk time by
V;(y) with a finite meany; (y) > 0.1
Given the service policies, our model can accommodate any state-dependent set-up time and walk time,

provided that the following two requirements are fulfilled by all queues:
1. ®;(x) and V;(y) are stochastically monotonic in and y, respectively; that is, ity > x,, then

O;(x1) >« O,(x2), and similarly forV; (y). By stochastic monotonicity we mea# (x1) > ©; (x2)

if and only if E[1(©;(x1))] = E[h(O;(x2))] for all monotonic increasing functioris
2. There exists a finite; > 0 such tha®; (x)g@k for x > x7; similarly, there exists a finitg} > 0

such thatV; (y)gVi* for y > y*. Both @f andV* are independent of each other, and of any other
processes in the system, and have finite meaﬁé of 0 andv; > 0, respectively.
Becausep; (x) is stochastically equivalent t®; (m;) for x > m;, the two requirements imply that
U, (x) also is stochastically monotonic.inonlyfor x > x}; that is,U; (x)iUi* with a finite mean:f > 0
for x > x* > m;. Finally, we observe thal,; = u* + m;b;. Note that the two requirements are very
general, and they could accommodate a wide range of models, such as one that the set-up time is nonzero
if the server finds an empty queue, but itis zero for a nonempty queue (see Section 5.1 for such a system).
Of course, they include the following special cases also:
e Both set-up time and walk time are independent of each other, and of other processes in the system;
that is,U,-(x)iUl.*, Vx, with a finite mean:; > 0 andV,»(y)iVl.*,Vy, with a finite mearv’ > 0. In
this case, itis clear tha; (x) is stochastically monotonic in; furthermore ®; (x)gUi* + ©;(m;) for
X = m;.
e U;(x) is stochastically monotonic in, andU; (x)gU;" for x > x/ > 0 with a finite mean; > 0. This
case is similar to the first case witfi = max(x;, m;).
o U; (x)gU,.* forx > x/ > 0; U;(x) = 0, otherwise. The result is the same as the second case.
If walk time depends also on the states of the queue at the arrival instants of the server, we could
absorb the walk time into the extended service period; the two requiremen¥s(fgrare no longer

needed for the GSA queues, but they are still required for the GSD queues. In the remainder of this paper,
we assume that the set-up time and walk time for the GSA (GSD) queues depend on the queue length

L We may allow either set-up time or walk time to be zero, but not both.
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(the queue length and the number of reserved services) at the respective time instants. Because of the
monotonicity property og(y), the walk times for the GSD queues depend on only the queue lengths at
the server departure instants. Moreover, when comparing two multi-dimensional variables, we understand
that (x1, x2) > (x7, x5) if and only if x; > x; andx, > x5.

2.2. Markovian properties

After describing our polling model in the preceding discussion, we how explore the Markovian prop-
erties of the model in the rest of this section. The imbedded points are server arrival instants at the GSA

queues, and server departure instants from the GSD queues. #thtepoch,N!" is ¢;'s queue length

andG?, only for the GSD queues, is the number of reserved serviceg .fhetcandzef(@", e, (p\an)’

n > 1, where®! = N/, if g; is a GSA queue; an@” = (N, G?) if ¢; is a GSD queue. We also find it

convenient to consider another proc@%(j)},f‘;l, for which the imbedded points are only those related

tog;; chQ(j), Nl."(j), ande(j) have similar meanings as before. Furthermore, we define the following

quantities related to thith (k > 1) visit atg;:

e U is the set-up time at the beginning of the visit.

e F}is the number of customers served during the visit.

e OF is the length of the service period.

e VFisthe walk time incurred at the end of the visit.

In addition, we defin€* () as thekth cycle time referenced af, the amount of time elapsed between the

kthand(k+1)th arrivals at (departures from)ifitisa GSA (GSD) queue. Moreover, we assume, through-

out this paper, that in the beginning £ k = 1) the server arrives at GSA (or departs from GgR)
Having defined the quantities for tieh visit atg;, we now return top’, and define the following

guantities for all imbedded points:

k, is the cycle number, corresponding to #th epoch; thatisk, = |(m — 1)/| 0[] + 1.

J, is the index of the queue associated with#ttie epoch; thatis/, = n — |Q|(k, — 1).

T, is the time instant of theth epoch.

JF! is the total number of customers served;arom the beginning up td@,.

¥, is the time period betwe€h;, andT,,, ;.

A; (1) is the total number of customers arrivedyatiuring (0, #].

X' is the total number of customers arrivedzabetween?,, and7,,,4; thatis, X! = A;(T, + ¥,) —

Ai(T)).

To completely describe the queue length process, we need to consider four different scenarios, depending

on the types of queues associated with two consecutive imbedded points. Eq. (2.2) corresponds to the case

that thenth epoch is an arrival epoch, and ttve+ 1)th is a departure epoch; other cases can be obtained
similarly. Note that ifg;, isa GSA queue@ﬁ: = Z?;nlw’” m’”)BJ”’” +’; moreover, ifg,,,, isa GSD queue,

@’J‘Zﬁ = Zfﬁ”l“ Biz+11+j. We also adopt the notatior][t = max(x, 0) in this paper. Finally, Lemma 1,
the main result of this subsection, states the Markovian properties of the polling model.
N}’*l =N+ X! ifi# Jy, Juga,
Ny =ING = my 1T+ X
N N G 4+ X! and G’}i =min(N},m,, ), where

Jn+1 JrH»l J'l+1 ’

W, = Uy + 0y + vy + Uy + 65

]n+l 1"

(2.2)



32 R.K.C. Chang, S. Lam/Performance Evaluation 40 (2000) 27-46

Lemma 1. The process{®}72, is a (generally nonhomogeneous) Markov chain; furthermore
{<D"Q(j)};j‘;1 is a homogeneous, irreducible, and aperiodic Markov chain

Proof. The proof follows a standard argument, and is therefore omitted. O

3. The main approach

We adopt the definition for queue stability provided by Loynes [16]. A quesilseif the distribution
of the queue length proceg¥”}° , tends to a honest distribution function at all its points of continuity;
that is, forx € R, wherefR is a set of real numbers,
limPr{N" <x}=F(kx) and IlimF()=1 (3.2)

n—oo

Moreover, the queue substabldf the distribution is bounded in probability sense; that is,

lim liminf P{N" < x} =1 (3.2)

X—>00 n—>o0
If the queue is not substable, then ituastable Similar definitions of stability apply also to multi-
dimensional processes, with the understanding that two processes are compared based on their respective
components.

We employ three instruments for solving the queue stability problem: stability ordering, appropriately
constructed dominant systems, and Loynes’ theorem for the stability of an isolated G/G/1 queue. Loynes’
stability result essentially states that the arrival rate of customers must be less than the service rate.
When applying to a particular queue in a polling system, Loynes’ theorem still holds, provided that the
cycle time process is stationary and ergodic [7]. As a preliminary result, Theorem 1 states the stability
condition for a GSA or GSD queue for which the server takes a vacation after servicing the queue. Similar
to Loynes’ result, the stability condition for this system has an intuitive explanation: the average number
of customers arrived during a cycle must be less than the maximum number of customers departed during
acycle.

Theorem 1. Consider a GSA or GSD queue, and a server who always performs m services during his
visit at the queue. If the queue is short of customers, the server generates just enough dummy customers to
reach the limit m at his arrival (departure) for a GSA (GSD) queue. Moreover, the server takes a vacation
after servicing the queue, and the vacation period is independent of the arrival process. If the cycle time
process is a stationary and ergodic sequence with mean EC, then

1. if AEC < m, then the queue is stable in the sense of([Bdl),and

2. if AEC > m, then the queue is unstable

Proof. Because there are alwaysscustomers to serve, the queue length process is given by
N = [N" —m]* + X", (3.3)

where X" is the number of arrivals at the queue during #itle cycle. Eq. (3.3) is valid for both GSA
and GSD queues, provided that the epochs are referred to the respective time instants. By'lettiag
N1 — X" Eq. (3.3) becomes

Yy =[y" + X" —m]t (3.4)



R.K.C. Chang, S. Lam/Performance Evaluation 40 (2000) 27-46 33

Because the cycle time is a stationary and ergodic sequence, and the arrival process is Poisson and
independent of the cycle timé” is a stationary and ergodic sequence, thus fulfilling the stationarity
requirement for Loynes’ theorem. The queue is, therefore, staldléXf—1 — m) < 0 and unstable if

E(X" —m) > 0. Finally, we haveE (X"~1) = AEC to complete the proof. O

In addition to Theorem 1, we also need an appropriate dominant system, serving as an auxiliary system,
for deriving stability conditions for, say, a target queges Q, which is either a GSA queue or a GSD
gueue. The dominant systetlominateshe original system in the sense that the states (including the
gueue length) in the dominant system are stochastically greater than those in the original system, if
both systems are started with identical initial states. In this dominant system, the queues are classified
into eitherpersistent queuas nonpersistent queueA persistent queue in the dominant system always
generates enough dummy customers, so that the server serves the queue to the maximum limit. As we
shall see in Section 3.2; and the queues that are less stable fhare persistent, and the queues that
are more stable thap are nonpersistent. To construct the dominant system, we need the result of queue
stability ordering. Therefore, we first define stability ordering, and note several stability ordering results
in Section 3.1. By applying Theorem 1 to the target queue, we then aptaistability condition in the
dominant system (Lemma 3). Finally, we prove that the stability condition obtained for the dominant
system holds also for the original system (Lemma 4). Lemma 4, therefore, completes the derivation of
g:'s stability condition for a given queue stability ordering.

3.1. Stability ordering

A stability orderingspecifies the order of queues becoming unstable if the system traffic increases
according to a certain pattern. Without loss of generality, we consider a linear increase in the system
traffic; that is, we represent the traffic vectors by parametric equatiprsr;A,i =1,...,|Q|, where
r; > 0 Viandx > 0. LetR be the setofri, ro, ... , rjg)). If A increases according to a givene R, one
of the following three possible outcomes will occur: g1)s more stable thag;; (2) ¢; is as stable ag;,
and (3)g; is less stable thag;. Items (1)—(3) are denoted gy > ¢, ¢; = ¢, andg; < g;, respectively.

Note that the operatos on Q, at least as stable ags a partial ordering; that is, the following three
properties hold: (1y; > g;; (2) if ¢; = q; andg; > g, theng; > qx, and; (3) ifg; > ¢; andg; > g;,
theng; = g;.

We shall show in Theorem 2 and Corollaries 1 and 2 of Section 4 that stabilities of any two queues in
the system, whether they be GSA or GSD queues, can be compared solely based\gmithEfis result
thus enables us to compute stability ordering, and to partition the entire parameter space into regions,
each of which corresponds to a unique stability ordering. Nevertheless, for the purpose of cogfsuting
stability conditions, we need only regions that give the same set of queues that are more stapldthan
be precise, we define such a regionBy = I' (g1, Mo, Lo) = {r € RIM(gqt,r) = Mo, L(gt, 1) = Lo},
for which M(gt, ro) = {gi € Qlg; > qi for a givenr, € R}, L(gt,70) = {gi € Q — {qt}lqt > ¢; for a
givenr, € R}, and M, andL, are assumed given. In other words, the stability orderings withnand
L, are immaterial to computing,’s stability conditions inl",. To determineg’s stability region, we,
therefore, first obtain stability region for a givéh,; we then take a union of stability regions obtained
for all possiblel’y'’s.

Before leaving this section, we find it helpful to note a number of important points concerning stability
ordering. We first letD, € Q be a set of queues employing unlimited service poligy £ oco), and
other queues with finite limits. The first point is that- ¢, for ¢; € O andg; € Q — O because, for
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any givena;/m;, we can always find &; that is large enough to ensuie /m;) < (x;/mj). Second,

gi = qj for g, q; € Q«; that is, queues equipped with unlimited policy are as stable as one another,
simply because lim, . o (A; /m;) = lim,,, . (1;/m;) = 0. Another explanation for the stability result

is that neitheg; nor ¢; will become unstable before the other; this statement can be illustrated by two
examples. Inthe first examplegace Q. becomes unstable(> 1). This queue, therefore, monopolizes

the entire service; and other queues, with unlimited or limited policies, will also become unstable; an
unstableg; € Q — Q«, on the other hand, will not cause the queue®in unstable. As a result, the
gueues inQ ., always become stable (or unstaldeéthe same timerhe second example, given in Ref.

[15], is more subtle than the first one. The system considered there consists of two queues with unlimited
policies; andp; < 1,i = 1,2, butp; + p» > 1. Under this situationboth queues cause the system
unstable. Each queue length returns to zero at the end of the visit (due to the unlimited policy), thus
causing an oscillation of the queue lengths at the departure instants of the servergihassan empty

gueue whileg, builds up a long queue, and the situation is reversed when switching to another queue.
Both queue lengths at the arrival instants of the server, however, continue to build up; as a result, both
gueues become unstable at the same time. In general, queues employing unlimited policies are always as
stable as one another, independent of other factors.

3.2. Dominant systems and queue stability

Having defined quantities related to queue stability ordering, in this section we consider the polling
model for a givenl", = (g, Mo, Lo), denoted by (I',), and a dominant system f& (I",), denoted
by £9(I',). We introduce additional superscript d to the quantitieS#iI",), to distinguish them from
those in the original system. Recall from the discussion at the beginning of this section that the queues
in M, are nonpersistent, and they behave identically in ®ti",) and £29(I"). On the other hand,
queues belonging t6, U {¢} are persistent ir€9(I"y), and they behave differently in the dominant
system in two aspects. First, the server always senyesistomers at a GS4 by generatingust enough
dummy customers if the queue is short of customers to reacihe server, similarly, always reserves
m; number of services upon his departure from a GSbDy generatingust enoughdummy customers.
To be precise, upon departure from a Gglx L, U {¢:} with N/' < m;, both queue length and number
of reserved services are inflateditp, N = G = m;; on the other handy/” andG! remain unchanged
for N!' > m;. Furthermore, we assume that both the initial queue length and the initial number of reserved
services for a GSD; are at leasi; in £9(I",). Second, the set-up time and walk time for a persistent
queueg; are given byU; andV*, respectively.

In Lemma 2 we first consider the mean cycle time &(T",) and Z4(I",). We useEC to denote the
former if all queues are stable, altC%(I",) to denote the latter if the queues.M, are stable. Then
in Lemma 3 we use the approach in Ref. [7] to degjye stability condition undeZ%4(I",,). After that,
in Lemma 4 we apply a standard argument for stochastic comparison, and a proposition in Ref. [15] to
prove thaiy's stability conditions are the same under b&®I",) and 2 (I',). We adopt the following
new notations for the Iemmaé?{‘ and qS{‘ are the states af; at thekth arrival instant of the server
andkth departure instant of the server, respectively. Relating back to our previous notations, we have
&k = P for the GSA queues and! = @ V21" for the GSD queues. Moreover, we denote
the mean set-up time and mean walk time for a stapl®y u; andv;, respectively.

Lemma 2. Given that all queues in the polling model are stable, the mean cycle tin ), with
any givenl", is given by
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0] — | =
EC = M (3.5)
1-p
Given that all queues in a givem, are stable, the mean cycle time 8¢ (I",,) is given by
Ecd(ro) — ZQieMo(ﬁi + 51) + X:Qie»cou{éh}(M;k + U;k + mibi) . (36)

1 - Zqiej\/loloi
Proof. We first consider the mean cycle time f8(I",), in which all queues are assumed to be stable. Eq.
(3.7) gives the length of thigh cycle time referenced at, and the change in the queue length between
thekth and(k + 1)th arrival instants of the server at:

CHD = Tywior = T = L2y 700 = L 20Uf + 6f + V)
N/ N = ACR @) - FE =110l

1

(3.7

wheren’ = (k — 1)| Q| + 1. Taking expectation of Eq. (3.7) gives Eq. (3.8). We also substi{ite']

by E[U,-(qsf‘)], and similarly for other quantities, to emphasize their dependencies on the states of the
queues:

E[C*(D)] = YA (E[U; (1] + E[0;(85)] + E[Vi(S5));

, , N (3.8)
E[N! 1% — E[N?] = E[A:(C*(D)] - E[F:(@P)], i=1,....10l

If all queues are stable, according to an isolation lemma (Lemma 5 in Ref. [7]), the joint queue
length process is substable. Furthermore, becaifses bounded, the last statement implies that the
Markov chain{di"Q(l)};ji1 is ergodic, and its limiting distribution is denoted By We now start the

process[tb’b(l)},‘:il by ¢, and it is well-known that the process is stationary and ergodic. As a result,
the expected values in Eg. (3.8) no longer depend on the cycle number; therefdﬁ;@f—_lét, éfiqi-,
andC*(1)2¢ (1) for k > 1. Moreover,E[N! *19] — E[N"] = 0 andE[A,(C*(1))] = A, E[C(1)]. We

thus haveE[F;(®,)] = A E[C(1)]; by applying Wald's identityE[®; (®;)] = p; E[C(1)]. As a result,
E[CK(1)]in Eqg. (3.8) becomes

10|
E[C(D)] = ) (E[Uy(®)] + pE[C(D)] + E[Vi(D)]). (3.9)
i=1

Using our notationsE[U; (®;)] = u; and E[V;(®;)] = T;; as a result, we arrive at Eq. (3.5). It is clear
from the derivation that the mean cycle time is independent of the choice of the reference queue, and of
the service policy.

We can conduct a similar analysis f&4(I',), in which the queues itM, are assumed to be sta-
ble. Clearly, the proces{sb’gd(l)},fil is also a Markov chain; fog;, and queues ito, E[U;(d57)] +
E[©:(®5] + E[Vi(®FY)] = ur + vf + m;b; for k > 1. As a result, we consider a reduced system,
denoted b){di’j(,(do(l)},fil, consisting of only the queues i, and we treat the time periods incurred by
gt and queues i, as independent walk times in the reduced system. Note that these new walk times do
not affect the Markovian property of the reduced system. Furthermore, by invoking the isolated lemma
again, the joint queue length process.fdy, is substable. Consequently, the Markov cr{mﬁ(jo(l)},fil
is ergodic, and has a limiting distributign The same arguments used in the last case apply. [
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Lemma 3. ¢ is stable ing94(I",) if MECY(I",) < my, and it is unstable il ECY(I"y) > my.

Proof. We first consider the case d#, # . Assuming the queues M, to be stable guarantees a
nonempty stability region fag;. Without loss of generality, the cycle starts frgme M,. Moreover,
the rest of the proof assumes thats a GSA queue, and the proof also applies to a GaPor a GSA
gt, its queue length process is given by

NERID) = [NEUD) + XY — mi]t + X4
<max (N + XEND) —mi, XEYD), k=1, (3.10)

Wheref(f’d(l) is the number of arrivals aj between theéth arrival instant of the server at, and the
kth arrival instant of the server at. )?f’d(l), on the other hand, is the number of arrivalg@abetween
the kth arrival instant of the server at, and the(k + 1)th arrival instant of the server a. Clearly,
x£4) = X4 + X£9Q). Furthermore, we define another procgs§ )2, such that\f ¢ =
max N9 + x591) — my, xF9(1)) andNH9(1) = MY From the preceding construction, it is easy to
see that\{? > N{%(1) for k > 1. As a result, stability of ;%) implies stability of our original
process{N{ (1)}2°,; the stability conditions fofA;"?}>°, can be obtained directly from Theorem 1,
provided that the cycle time process is stationary and ergodic.

We next consider a GSR and its queue length process is given by

N 1) = max( V@) + X5 — my, my) + XE9)
<max(NF (D) + XD — me, XPUD) +my), k> 1 (3.11)

whereX*4(1), X*91), and X*%(1) are defined similarly as before, except that the first two quantities
are referenced to thith departure instant of the server frgyp(instead of arrival instant). Because
Nt"’d(l) > m; for k > 1 (g; is a persistent queue), IErf’d(l) = Nt"’d(l) — m; and Eq. (3.11) becomes

N < max @) + XEYD) — e, XEA). (3.12)

Following the approach for the GSA queues, we define a new prasgs$> , with N-9(1) = N

similar to the GSA queues, stability (W’tk’d},fo:l implies stability of{Ntk’d(l)},fil. Stability conditions

for {/\/’t"’d},f‘;1 also can be obtained directly from Theorem 1, provided that the cycle time process is
stationary and ergodic. To show the stationarity and ergodicity of the cycle time process, we note from
the proof of Lemma 2 that the Markov cha{h‘b" d (D}, is ergodic, and has a limiting distributign

By starting the system witis, {d5 (1)}k 1 Is a stationary and ergodic process; consequently, the cycle
time process is stationary and ergodlc (see Ref. [7] for the details). The preceding analysis applies also
to the case ofM, = ; the cycle time is given by |} (U* + ©,(m;) + V), and is stationary and
ergodic. a

Lemma 4. The stability conditions in Lemnhold for & (I" ) also

Proof. Sufficiency (stablqt in 29(I",) = stableg; in & (I")): We prove the sufficiency part by showing
that ®*; d(1) >y P oD,k = 1,2,..., provided that both systems are under identical initial states;
therefore, it is sufﬂuent to prove by induction thrafgd >t q>”Q for n > 1. Thus, we assume that

@3¢ > @7 for ¢ +1— Q] < n < ¢, wheret > |Q], and we set out to prove thdt, ™ > &5
As mentioned in Section 2, there are four cases to consider. We consider here only the cage that
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is a GSA queue angy,,, is a GSD queue, because this case contains all the elements required for
proving similar results for the other three cases. Based on Eq. (2.2), the prcdbﬁfb? >t diZQ*l is
equivalent to proving three inequalities: (ll/f >qt ¥, (2) [Nf;d —my]" >s [Nfl —my]", and (3)
NG9 G,Hl > NJ,., G‘jé . The inequality (2) is obviously true becau?s{éd >t Nj,. Furthermore,

Jot1
Nﬁ 4> Nf implies that@ >st 5’;‘@ because of the stochastic monotonicity property (s.m.p.) of the
extended service period. BeS|des, we deggts queue length at thie th departure instant of the server
in &(I') by N, which is given by

—k
N =[NY —my ]+ A,0O)). (3.13)

A similar expression fon?’jf’d can also be obtained,; moreov&’}f*d >st N’jf becausei\ffl’d >« Ny, and

@]}i‘d > @IZ Finally, Nﬁf’d >g N implies thatvjkf’d > V¢, because of the s.m.p. of the walk time

process.
We now turn tog,, ,, and denotey,,,,’s state at the,1th arrival instant of the server i8' (I'y) by

(NkHl Gk““) where

Jop1?

NS = N 4 4@ 4+ VY. (3.14)

Joyr T

A similar expression foi/}

q,, imply thatN ‘“ 4>q N ‘tl . Furthermore, the induction hypotheté?tz?d >t G‘ y|eIdsG “1

can also be obtained; moreover, the previous monotonicity results for

kr+1

'jif because the numbers of reserved services are the same at both epochs. A@/résuitst 011
because of the s.m.p. of the extended service period; this inequality, with the earlier results for the GSA
gueue, proves inequality (1).

To prove inequality (3), we first note that!, = N;*1719 4 Y]ZH, whereY]Z+l is the number of
arrivals atg,,,, betweerly1_o| andTy, andG', = G‘}Zﬁ 12 Therefore

-Gt

Jov1

NK

Jesa

(N€+17‘Q‘ . GHL\Qr) n X

Jot1 Jot1

(3.15)

Joy1”

A similar expression can also be obtained for the dominant system We are now ready to show that
Néri-lond _ gerl-iond o ( Ny G‘jjl 121 andX > X . For the first inequality, we note

Jot1 Jo+1

that G} >s GY, implies thatN’z+1 019 > ¢ N o because of the monotonicity property of the
service pollcy The first mequallty, therefore holds becami?e1 1919 > N3 712" and the contractive
property of the service policy; the second inequality holds bec@tzzéjezst 0 t+1-101<n<{,
implies thatT? T/ e 0] Te >st Tyv1-10) — T

To complete the proof, we use induction to prove m@“ >t @ for 1 < n < [Q|. Assuming that
qb’gd > @ for 1 < n < ¢, where¢ < |Q|, we set out to prove thal>@Q+1’d >s @, The proof is
similar to the previous case, and is therefore skipped.

Necessity (unstablg in £9(I'",) = unstabley, in & (I',)): We considet= (") in which the queues

in Mo are assumed to be stable. According to the previous analysis in the proof of Lemma 2, the Markov
charn{cp (1)}k , Is ergodic; consequently, the cycle time process is stationary and ergodic. By setting

At > mt/EC ('), we know from Lemma 3 thag; is unstable in9(I',) and, due to the stability
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ordering, the queues i, are unstable as well; that is, IimooNl.’"d(l) = oo for g; € L, U {q¢}. We now
apply Proposition 4 in Ref. [15] t({)rbgd(l)},fil with modifications to suit our polling model, and we
present the modified proposition in Proposition 1. O

Proposition 1. We consider the Markov chai{r«pgd(l)},‘jil. Assume that it is known that if the pro-

cess starts from state, then for allg; € Lo U {qt}, Iimk_moNl."’d(l) = oo. Then, given any bounded
one-dimensional set A, there is a statguch that; ¢ A forall g; € Lo U {gt}, andPr{Nl."'d(l) ¢ A, q €
LoU{q). k = 11@3°(1) = ¢} > 0.

We setd to [0, max,, ez uiqdil, Whered; = max(x}, y +m;). From Section 2.1y andy; are defined
for a GSAg; such that; (x)gUi* forx > x7, andVi(y)gvi* fory > y*. Similarly for a GSDy;, they are

defined such that; (x4, xz)gUi* for (x1, x2) > (x*, m;), andV,-(y)iVi* fory > y’, wherex; andx; are

the queue length and number of reserved services at the server arrival instants, respectively. By applying
Proposition 1 to our model, we conclude that there is a set of sample paths of positive probability for
which Nl."’d(l) > d;,k = 1,2,.... As aresult, on this set of sample paths the queues®il,) and

EZ(I',) are identical; that is, the queuesdg U {¢:} are unstable undef (I',) also.

4. Computing the queue stability ordering

In the last section we assume a given queue stability ordering; in this section we present in Corollary 2
a necessary and sufficient condition for comparing stabilities of any two queues in the system. To prove
the queue stability result, we first present in Th@o&a condition under which two queues in the system
are as stable as each other. Consequently, we obtain in Cgrdlacondition, under which all queues
are as stable as one another; we refer the system to bedddalancedstate.

Theorem 2. Consider any two queueg, g; € Q; ¢; andg; are as stable as each othef, = g;, for
anyr R for WhiCh(ri/mi) = (rj/mj) (Or (A,/ml) = (A]/m]))

Proof. Let us start with the notatioR"/ = {r € R|(r;/m;) = (rj/mj)}. In the following we first prove
that there exists at least arthat gives; = g; (existence); we then show that thesgthat giveg; = ¢,
must belong taR"/ (exclusiveness).

ExistenceWe prove this part using the argument of contradiction by assuming that seathoms not
exist; that is, the stability boundaries @f andg; do not intersect. This assumption, therefore, implies
thatg;’s stability region is a subset (excluding any overlaps of the two stability boundarigs)sor
vice versa, because the stability regions of both queues should be bounded and closed. As a result, one
gueue is always more stable than the other forramy R; this conclusion is obviously invalid for any
limited policies, thus contradicting the assumption thatrthieat gives; = g; does not exist.

ExclusivenesaVe assume that there is anithat givesg; = ¢; but it does not belong t®"/, and we
shall show that this, does not exist. Towards this end, we consider a subRtR{i, j) = {r € R|r; =
¢ for k # i, j}, wherec, is a constant; that is, we fix the arrival ratesjiok # i, j. We then proceed
to find the instability regions fog; andg; in R(i, j) by computing the instability condition of the more
stable queue in two regiong: > ¢; andg; > ¢;, denoted byR' (i, j) andR’ (i, j), respectively. Clearly,
R@, j)=R'G, ))UR'(, )).

Let us first consider the case @f > ¢;. Because the arrival rates4p, k # i, j, are fixed, stabilities
of bothg; andg; in this subspace are affected onlyyandr;. Furthermore, by definition, the stabilities
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of the queues that are at least as stablg ase not affected by;; as a resultM(q;, r) andL(g;,r) are
invariant for anyr € R'(i, j), and we denote this set of stability orderingsBy = (g;, Mo, Lo). By
applying Lemmas 2—-4 tg;, we thus obtain instability conditions fgy andg; for the first case in Egs.
(4.1) and (4.2).

m; .
r>— for R, j), 4.1
> ECITy) reR(,j) (4.1)
where
(up + ) + U v+ myby)
ECd(ro) — quEMo ZQkGCoU{qul} k k . (42)

1 - Z‘IkEMopk

Because the casesqf> ¢g; andg; > g; are symmetrical, we observe that the mean cycle time for the
case ofy; > g; is given by Eq. (4.2) also. As a result, we obtain the overall instability conditiong for
andg; in R(i, j):

m;
ECY4(I o)

m;

o> —
"7 ECY(T,)

for r e R(i,j) and A; > for r € R(, j). (4.3)
The earlierassumption abaytand Eq. (4.3) implies that always becomes unstabléat= m; | ECY(Iy)
for anyr, € R'(i, j); the conclusion is obviously invalid, thus contradicting the assumption that,the

does not belong t®"/. The same contradiction can be said also formng R’ (i, j). Lastly, note that

the conclusion is independent of the sulBét ). d
Corollary 1. All queues are as stable as one anothgr= g> = --- = gq|¢,, for anyr € R for which
(A¢1/m1) = (hz/m2) = --- = (Xjg|/m|))-

Proof. The proof is straightforward, and is therefore omitted. O

Corollary 2. Foranyr € R, g; < (>)q; iff (x;/m;) > (<)(%;/m;).

Proof. We again consideR(i, j), in particular, the subset that satisfies/m;) > (r;/m;). First, we

observe that there is at leastraim this subset that giveg < ¢;; the obvious one is given by # 0 and

r; = 0. Second, we argue that in this subset eithiex ¢; org; > ¢; is true; otherwise, the two stability
boundaries should have at least one intersection in the subset. The latter statement implies that there is
at least am in this subset that yieldg = ¢;, but we know from the proof for Theorem 2 that this result
cannot be true. Combining the two items above completes the proof. d

5. Stability results

We are now ready to present the complete stability conditions for our polling model, and also for
several special cases and a pipeline polling system. By combining the results in Sections 3 and 4, we
obtain in Theorem 3 stability conditions for individual queues in the polling model. We then show that
the stability results yield closed-form stability conditions for a number of special cases. For example, in
Corollary 3 we first consider system stability conditions for our model, which generalize the previous
results obtained by Kuehn [17] and later proved rigorously by Georgiadis and Szpankowski [7] for the
GSA policy. In Corollary 4 we obtain closed-form queue stability conditions if the walk time and set-up
time are independent, and the results are identical to the sufficient conditions obtained by Ibe and Cheng
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for the GSA policy [8]. In Corollary 5 we obtain the well-known stability condition for a class of queues
employing unlimited service policies. Because those unlimited queues are as stable as one another, the
stability condition in Corollary 5 serves as the system stability condition for the set of queues. Finally, in
Section 5.1 we apply the queue stability analysis to a pipeline polling system.

Although our proofs do not cover stability boundaries, previous analyses of similar systems indicated
that the stability boundaries usually fall into the instability region. An evidence for supporting this
proposition comes from the pseudo-conservation laws for polling models, which give exact expressions
for a weighted sum of mean waiting times [19,20]. The pseudo-conservation laws, therefore, immediately
yield mean waiting times for symmetric systems, which consist of identical queues. The mean waiting
times obtained for both unlimited and limited policies are indeed unbounded at the stability boundaries.
Furthermore, if one or more queues operate at their stability boundaries in our polling model, the Markov
chain{q)’zz(j)},‘ﬁil is believed to beecurrent null because it is still possible for the system to reach the
null state(when all queues are empty) but the mean recurrence time is unbounded.

Theorem 3. For a givenI", = I' (g1, Mo, Lo), q: is stable if Eq.(5.1) holds; otherwise, it is unstable
with possible exception of the boundaries

mt
)"t < — — ” ” 1- pPil. (51)
Dgiem, Wi F )+ D cr gy 7 V7 A+ miby) 111';/10

The entire stability region fog; is given by the union of stability regions obtained for all possiBles,
which can be obtained from Corollag

Proof. By combining Lemmas 2—4. O

In Fig. 1 we show the parameter space partitioned into six regions, each of which is associated with a
unique stability ordering. For example, the stability ordering for region Il is givegsby g2 > ¢1; and

Fig. 1. Parameter regions corresponding to six queue stability orderings for a three-queue gysteny i) = (r3/ms3);
B (ri/m1) = (ra/ma); y @ (r1/my) = (r3/m3)).
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that for region Vl,g» > g1 > g3. Nevertheless, when computing stability conditionsggrfor example,
there are at most four,'s to consider, which are given by regiotiregion I, region Ill, region VI, and
region IV U region V.

Corollary 3. The polling model is substable if and only if E§.2) holds

m; .
A< — 1- , 1=1..., . 5.2
e (i + T0) + uf + vF + mib; ;pk 2 (52)

Furthermore, if the walk time and set-up time are independent of each other, and of other processes in
the system, then E@b.2)is reduced to the well-known result stated as follows:

Aiw

<m;, i=1...,]0]|, (5.3)
1-p

wherew = Zlg'l(u;" +v)).

Proof. Recall that{t1>’§2(l)};§°:l is substable iffNf(1)}22, is stable according to Eq. (3.1) for =
1,...,]0|. One approach of deriving the system stability conditions is, therefore, to find the queue
stability condition of deast stable queu@SQ) for every possiblé™,. An LSQ is one with a maximum

value of1/m. Thus, the overall system stability region is an union of stability regions obtained for the
LSQs in thesd™'s; however, we adopt another approach that avoids an explicit partitioning of the pa-
rameter space. We first observe that each queue is an LSQ in a nonempty parameter space; note that this
observation is valid for any polling systems that do not employ unlimited service policies. We then derive

stability regions fog;, i = 1, ..., |Q|, for each of which we assume thatis alwaysthe LSQ by setting
Mo = Q0 —{g;}andL, = @ for allr € R, and we denote the resulted stability regionShyAs a result,
10

the system stability region is given Ify,Z; S; because, by the definition of LSQ, the operation of set
intersection includes only stability regions of ttrae LSQs. Moreover, the inequality for ea¢lin Eq.
(5.2) defines the stability regid). O

Corollary 4. If the walk time and set-up time are independent of other processes in the system with
w = Y12 (ur + v), the queue stability condition in E¢5.1)is equivalent to

Atw < . )»tm,-
~— + ) min ( ,,\I-) b; < 1. (5.4)
S—— i

Proof. A simple algebraic manipulation of Eq. (5.1) yields Eq. (5.4). 0

Corollary 5. We consider our polling model, in which one or more queues employ unlimited service
policy by setting theim; to co (the set of unlimited queues is denotedy € Q). The necessary and
sufficient stability condition foQ ., is given by

> o<l (5.5)
qi€0Q0c
Proof. We apply the stability conditions in Theorem 3 by setting the limtb infinity for the unlimited
gueues. Because the unlimited queues are as stable as one another, we need to ensuréigienscal
for these queues. We, therefore, €et/m;) = (1/1),Vq; € O, Wheret > 0 is a real number, but
does not take on all values becauseis an integer. Now we apply Theorem 3 tgiae O, by setting
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t to oo. Note thatM, = @ for any givenI”, because no other queues are more stable than an unlimited
gueue; we thus have
1

)"t < . .
> geoliMisco(uy +vf +mib;)/my

(5.6)

All the limits in Eq. (5.6) go to zero except fozqieQxlimt_)oo(mibi/mt), in which the limit for a
g; € O — {qt} is equal to(p; /At); consequently, we arrive at Eq. (5.5). O

5.1. A pipeline polling system

Lastly, we consider a pipeline polling system in this section, motivated by a satellite system based on
a polling scheme with reservation [21]. All the assumptions and notations about the arrival and service
processes in the pipeline polling system are the same as before, except that the service times here are
constants, denoted liy for ¢; (because the satellite system is a time slotted system). When the server
(satellite) is about to leave behigdustomers (packets) in (ith earth station), he reservesy) number
of services for his next visit and

gi(y) = max(1, min(y, m;)). (5.7)

From Eq. (5.7), the pipeline polling policy is the same as the GSD policy for0; however, the serverin

the pipeline polling system still reserves one service at his departuye£dd. This reserved service will

be wasted if the server finds an empty queue again at his next visit; this wasted service time may be treated
as set-up time in our model. On the other hand, the server will serve one customer if he finds a nonempty
gueue next time, and the set-up time is zero in this case. In addition, the server has prior knowledge of
the service schedule through the reservation scheme; therefore, it takes no time to switch from one queue
to another by polling the next queue while serving the current one. As a result, the set-up timmfor

the pipeline polling system is given liy; (x) = b; if x = 0 andU;(x) = 0, otherwise, and the walk

time is zero for all queues. Although the pipeline polling policy differs from the GSD policy when the
server leaves an empty queue, we could apply the same analysis in Sections 2—4 to this system. First, itis
simple to show that this policy also is monotonic and contractive. Second, it is straightforward to show
that the two requirements in Section 2 are satisfied by this system, be@atisex,) is monotonic in

(x1, X2) @and®; (x1, x2) = m;b; for (x1, x2) > (m;, m;), wherex, is the queue length ang the number

of reserved services fer at the arrival instant of the server. Consequently, Theorem 4 gives the queue
stability results for this system; system stability conditions can be obtained using the approach in the
proof for Corollary 3, and the results are given in Ref. [4].

Theorem 4. Consider the pipeline polling system with a gilep = I'" (¢t, Mo, Lo); gt is stable if and
only if Eq.(5.8) holds

ny 1
)"t < 1- Pi (l - ) s (58)
Zq;EMobi + Z({iEEoU{‘]t}mibi ql.;/[o fi (ro)

where??(l‘o) is the mean number of customersgpfe M, served inZ9(I",,), given that the server
visits a nonempty;. The entire stability region fog; is given by the union of stability regions obtained
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Table 1

Three queuesn; = 6, A, = 0.33 (if stable) .3 = 0.28 (if stable)

Stability forg;, i # 1 Stability conditions fog;

Stable Unstable Approximation Simulation

492, 43 A1 < 0.3900 A1 < 0.3899

q2 q3 A1 < 0.3350¢« A1 < 0.3350

qs3 q2 A1 < 0.3600« A1 < 0.3600
q2, 93 A1 < 0.3333« A1 < 0.3333

for all possibleI’ ;’s. Moreover, the stability ordering results stated in Theo2and Corollariesl and
2 apply to this system

Proof. The results in Lemmas 3 and 4 apply also i@ & the pipeline polling system, of course with
a different ECY(I",). To obtain ECY(I",,) for the pipeline polling system, let; o be the steady-state
probability thatg; € M, is empty when the server visits the queue. &0& Lo U {gi}, E[U;(®Fh)] +
E[0i(B)] + E[Vi(®)] = m;b; for k = 1;forg; € Mo, E[U;(®)] + E[0,(D)] + E[Vi(®)] =
7;.0bi + p; ECY(I" ). Therefore, we have

g emTi0bi + 2y e i) Mibi

ECYI o) = (5.9)
° 1 - Z’/iGMopi
Moreover,E[F;(®;)], the mean number of customersgfe M, served in a cycle, is given by
A —d
E[Fi(®)] = (1 —mi0)f; (T'o) = MECY (o). (5.10)

From Eq. (5.10)7r;0 =1 — (AiECd(FO))/??(I‘O) for ¢; € M,. By substituting the expression faf o
into Eq. (5.9) and rearranging the terms, we obtain the mean cycle time and, subsequently, the stability
conditions from Lemmas 3 and 4. The proofs for the stability ordering results are the same asBefore.

We present numerical results for the stability conditions of the pipeline polling system in Tables 1-3,
in which ¢, is the target queue in all cases. To make it simple, we also let the service time be ome and
be six for all queues. We compuje’s stability conditions using Eq. (5.8) with two methods to estimate

Table 2

Six queuesm; = 6, 1, = 0.18 (if stable),x3_s = 0.11 (if stable)

Stability forg;, i # 1 Stability conditions fog,

Stable Unstable Approximation Simulation
qd2—6 )\1 < 0.3799 )\1 < 0.3662
qo—s qs A1 < 0.2450 A < 0.2444
qr-4 qs. g6 A1 < 0.2000 A1 < 0.1997
q3-6 q2 A < 0.2780 A < 0.2785
435 42, g6 M < 0.2333 M < 0.2231
43, qa 42, 45, 46 )\1 < 0.1950 )\1 < 0.1950
q3 42,446 )\1 < 0.1780« )»1 < 0.1780

qdo—6 )»1 < 0.1666« )»1 < 0.1666
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Table 3
Twelve queuesn; = 6, A,_3 = 5 (if stable),r4_1> = 3A (if stable),», = 0.02162
Stability forg;, i # 1 Stability conditions fog;
Stable Unstable Approximation Simulation
q2-12 A1 < 0.2006 A1 < 0.1904
q2-11 q12 A < 0.1325 A < 0.1320
q2-10 q11,12 A1 < 0.1099 A1 < 0.1099
q2,4-12 q3 )»1 < 0.1542 )»1 < 0.1528
q2.4-11 q3.12 M < 01244 M < 0.1242
q2,4-10 431112 )»1 < 0.1095 )»1 < 0.1094
qa-12 423 A1 < 0.1388 A1 < 0.1383
qa-11 42,312 A1 < 0.1203 M < 0.1202
q4-10 q2,311,12 )»1 < 0.1092 }»1 < 0.1092
Ga—9 42.3.10-12 A1 < 0.1018 A1 < 0.1018
qda—sg 42,3,9-12 M1 < 0.0965 M1 < 0.0965
qa-7 q2,38-12 }»1 < 0.0926 }»1 < 0.0926
446 q2.37-12 A1 < 0.0895 A1 < 0.0895
qas 42,36-12 M1 < 0.0870 M1 < 0.0870
qa q235-12 A1 < 0.0850« A1 < 0.0850
q2-12 A< 0.0833« A< 0.0833

7?(1‘0) —vacation model (labeled #gpproximation and computer simulation (labeled &snulatior).

We also mark those cases, in which we can obtain exact results, fwyhien there are no more than two
stable queues in the system). All the numerical results indicate that the stability conditions obtained from
Eqg. (5.1) and the vacation model are very accurate.

6. Conclusions and future work

We proposed in this paper a novel approach to the queue stability problem for a fairly general polling
model, and we obtained a number of interesting results for the polling model. First, provided with identical
arrival processes, service processes, and service limits, the GSA policy is as stable as the GSD policy
in the sense that the stability condition for a GSA queue remains the same if the queue switches to the
GSD policy. Moreover, we conjecture that the GSA policy gives a smaller average delay than the GSD
policy because reservation incurs additional delay; however, when approaching the stability boundary, the
difference in the delay performance for the two policies quickly diminishes. Second, as noted from Eq.
(5.1) and (5.8), the state-dependent set-up time and walkrtonknearizethe stability conditions; for

example, the unknown quantip_y?(l“'o) summarizeshese nonlinear interactions for the pipeline polling
system. On the other hand, the stability conditions are analytically computable if the set-up time and
walk time are independent. Third, the stability conditions for unlimited policies are independent of the
state-dependent set-up time and walk time. The set of unlimited quéugshiehave essentially like a
single queue from the perspective of stability. Moreover, in a system mixed with limited and unlimited
policies, the maximum normalized utilization of the server available to the queu2sirQ, is given
by 1-— Zqiepr,-, provided that the queues D, are stable.

More importantly, the contribution of this paper goes beyond the polling models considered here. We
believe that our approach to the queue stability problem can be applied to analyze other service policies,



R.K.C. Chang, S. Lam/Performance Evaluation 40 (2000) 27-46 45

variants of polling models, and even general single-resource contention systems, such as buffered Aloha;
these results will be forthcoming. In addition, this work can be extended in various directions. We are
currently devising a general method to compute queue stability ordering, thus eliminating constructed
proofs for different polling models. We are also investigating how other nonPoisson traffic models, such as
the self-similar process, affect the system and queue stability conditions. Another important areais to apply
these newly obtained queue stability results to the design and analysis of computer and communications
systems; potential areas are capacity estimation and a schedulability study of ATM and wireless networks,
and formulation of internet pricing models.
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