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In addition to throughput, fairness is another important performance criteria of TCP

protocols. Fairness is especially important for best effort service, which is still the

dominant type of service in the Internet and, predictably, in the years to come. However,

the TCP protocols prevailing in the Internet, including TCP Tahoe and TCP Reno, are

known to be unfair, especially to connections with larger round-trip delays. Using ns

simulator, I have examined the fairness of TCP Vegas with focus on 4 issues : 1) Is TCP

Vegas really fair to connections with larger propagation delays, 2) what is the impact of

the thresholds, α and β, used in TCP Vegas’ congestion avoidance algorithm on fairness,

3) how fair TCP Vegas is when there are many active flows, and 4) does the receiver

acknowledgement strategy, namely immediate and delayed acknowledgement, which

affects the estimation of the round-trip times, affect the fairness of TCP Vegas ?

For question 1, the simulation results support that, when α = 1 and β = 3, TCP Vegas is

still unfair to connections with larger propagation delays but, unlike TCP Reno, the delay

bias does not necessarily increase as the delay differences increases. However, if α = 1 and

β = 3, the fairness of TCP Vegas is not necessarily better than that of TCP Reno. The

unfairness problem can be resolved by Enhanced TCP Vegas that sets α = β = 2 or 3 but

NOT 1.
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For question 2, I find that, the fairness is consistently good when α = β = 2 or 3. When α

= β =1, the fairness is unstable and may be worse than that when α = 1 and β = 3.

Considering a trade-off among fairness, stability and aggressiveness, a value of 3 seems to

be an acceptably good choice.

For question 3, when there are many active flows, all of which are running either TCP

Reno or TCP Vegas, the fairness of TCP Reno is better and more stable than that of TCP

Vegas. The contrary occurs when the number of flows times the threshold of Enhanced

TCP Vegas is less than the RED minimum threshold. Intuitively, this suggests that the

fairness of TCP Vegas is better when there are few or no retransmissions or timeouts. The

result is obtained after amending the ns code to eliminate 2 causes of deadlock that occur

after a Reno-type timeout. Moreover, the fairness of TCP Vegas host-only configuration

improves when the RED thresholds are higher. The percentage improvement, however,

diminishes when the number of flows is large enough.

When there are many active flows with a mixture of TCP Vegas and TCP Reno, the

fairness tends to deteriorate as the number of active flows increases. When the RED

thresholds are low, TCP Vegas connections are able to capture higher goodput on

average. When the RED thresholds are high and the number of flows is low, TCP Reno is

the beneficiary. Intuitively, this suggests that TCP Reno performs better when the RED

thresholds allow a long enough queue. Moreover, the variance in goodputs within the

Vegas community is larger than that within the Reno community. Therefore, while the

difference in the average goodput between the Vegas community and the Reno

community contributes to unfairness, the difference in goodputs within the Vegas

community also contributes significantly. This is due to the record of an under-estimated

minimum round-trip time after a Reno-type timeout, causing some connections to run at
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very low throughputs throughout the rest of the simulation time. Hence, the variance of

goodputs within the Vegas community is poor. The findings suggest possible

incompatibility between the Reno-type timeout subroutine and the Vegas algorithms.

Besides, TCP Vegas may perform unnecessary re-transmission after a Reno-type timeout.

For question 4, I find that fairness does not deteriorate when all the receivers adopt the

delayed acknowledgement strategy rather than the immediate acknowledgement strategy.

In general, the delayed acknowledgment strategy delays the detection of a proper

minimum round-trip time. The first estimation of the minimum round-trip time is always

over-estimated. However, since 2 back-to-back TCP segments are sent when the

congestion window increases to 2, the receiver returns an acknowledgement nearly

immediately after the first of these 2 segments have been received. Therefore, TCP Vegas

can eventually capture a minimum round-trip time that is much closer to the true value.

Finally, when the receiver adopts the delayed acknowledgement strategy, the calculated

expected rate may even be smaller than the actual sending rate.
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C h a p t e r  1

INTRODUCTION

1. Introduction

In addition to throughput or goodput, fairness is another important criteria of TCP

protocols. Fairness is especially important for best effort service, which is still the

dominant type of service in the Internet and, predictably, in the years to come. However,

TCP protocols now prevailing in the Internet, including TCP Tahoe and TCP Reno, are

widely known to be unfair, especially to connections with larger round-trip delays [LM97,

FJ91].

Recently, Brakmo and Peterson [BP95] proposed TCP Vegas, a modified version of TCP

Reno. Based on their experiment results, Brakmo and Peterson reported that TCP Vegas

was able to achieve higher throughput and retransmit fewer packets than TCP Reno was.

Therefore, they implied that the improvement in performance was not based on an

aggressive retransmission strategy that stole the bandwidth from the competing TCP

flows. Instead, it was based on the modified algorithms that allowed better use of the

available bandwidth through reduced retransmission and packet losses. Subsequently, a

number of researches confirmed that TCP Vegas performed better in terms of

throughput and retransmission.

In this project, I look at the fairness of TCP Vegas, with focus on 4 issues: 1) is TCP

Vegas really fair to connections with larger propagation delays, 2) what is the impact of

the Vegas thresholds used in the congestion avoidance algorithm on the fairness, 3) how

fair is TCP Vegas when there are many active flows, and 4) does the receiver

acknowledgement strategy affect the fairness of TCP Vegas ?  Hasegawa [HMM99]
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proposed that a special configuration of TCP Vegas, which he called Enhanced TCP

Vegas, was able to achieve better fairness measure than Brakmo and Peterson’s TCP

Vegas. Hence, I also study the fairness of Enhanced TCP Vegas, where applicable, with

comparison to the configuration used in Brakmo and Peterson’s paper. The only

difference between Hasegawa’s Enhanced TCP Vegas and Brakmo’s TCP Vegas is that

Enhanced TCP Vegas sets α = β while Brakmo’s TCP Vegas sets α < β.

My analysis is based on the simulation results obtained with the ns simulator developed at

the UC Berkeley. To study the first 2 issues, I vary the propagation delay of the longer

connection in a network topology with 2 connections sharing a bottleneck link. To study

the next 2 issues, I run simulations with different number of many active flows, with

either TCP Reno only, TCP Vegas only or a mixture of TCP Reno and TCP Vegas.

The rest of this project report is organized as follows.  In the rest of this chapter, I review

the previous work on TCP Vegas. I begin with a discussion of the work on the

performance of TCP Vegas. Then, I continue with a discussion of those that focus on the

fairness of TCP Vegas. Then, I highlight the contribution of this project. In chapter 2, I

provide an overview of the TCP algorithms, including a review of the different algorithms

of TCP Vegas as well as the Enhanced TCP Vegas.  In chapter 3, I present my simulation

results and findings for each of the 4 issues I have mentioned. Finally, in chapter 4, I

conclude my findings and summarize possible future work.
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2. Previous work

2.1 Development of TCP Vegas

In 1994, Lawrence S. Brakmo and Larry L. Peterson [BP95] at the University of Arizona

proposed a new TCP algorithm called TCP Vegas. TCP Vegas was a modified version of

TCP Reno (TCP Reno is an implementation of TCP which incorporates the fast

retransmission and the fast recovery algorithms.). In their paper, Brakmo and Peterson

reported that TCP Vegas was able to achieve 37% to 71% better throughput than TCP

Reno on the Internet. It also retransmitted between 1/5 to ½ as much data as TCP Reno

did, both in simulations and in live wide-area Internet measurements. Therefore, Brakmo

and Peterson implied that the improvement in throughput was not achieved by an

aggressive retransmission strategy that stole bandwidth from the competing TCP

connections. Instead, the improvement in performance was achieved by a more efficient

use of the available bandwidth through reduced packet losses and reduced

retransmissions. At the end of the paper, the authors also argued that TCP Vegas was at

least as fair as TCP Reno was.

Since then, some researchers have studied TCP Vegas to evaluate Brakmo’s claims. In

1995, Ahn et al. [ADLY95] ported Vegas 0.8 to SunOS 4.1.3 and conducted experiments

on both an emulated wide-area network and on the live Internet to evaluate the

performance of TCP Vegas. (The original TCP Vegas was implemented in the x-kernel

protocol network version 3.1.) They were able to confirm claims of higher throughput

and reduced retransmission. In addition, they reported that TCP Vegas had shorter RTT

averages and variances than TCP Reno did because TCP Vegas kept less data in the

network
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Employing the x-Sim simulator developed at the University of Arizona, Raghavendra and

Kinicki [RK99] were the first to focus on TCP Vegas’ performance when it was used with

the RED gateway. Raghavendra and Kinicki conducted a series of simulation experiments

to study the performance of TCP Vegas when it was used with the RED gateway. (In all

their simulations, α =1 and β = 3 were used.)  Their simulation results illustrated that,

regardless of whether DropTail or RED gateway was used, TCP Vegas outperformed

TCP Reno in terms of effective utilization. Contrasting RED to DropTail gateway,

however, they reported that the RED router configurations provided only marginal

improvements (about 5% increase) in effective throughput.

TCP Vegas’ performance, however, had been under debate as some researchers argued

that not all TCP Vegas’ techniques were as effective as it was claimed. Recently,

Hengartner [HBG00] confirmed that TCP Vegas could achieve significantly higher

throughput than TCP Reno could, with improvements ranging from 40% to 120%. He

also reported that TCP Vegas retransmitted between 6% to 65% less data than TCP Reno

did. However, he further decomposed TCP Vegas’ techniques and drew the conclusion

that TCP Vegas’ techniques for slow-start and congestion recovery had most influence on

throughput as they were able to avoid timeouts due to multiple segment losses. TCP

Vegas’ congestion avoidance algorithm, however, had only minor or even negative effect

on throughput.

TCP Vegas has been implemented on Linux version 2.2 and 2.3 by Neal Cardwell and

Boris Bak. (The source code can be found at web site

http://www.cs.washington.edu/homes/cardwell/linux-vegas/.) The Linux

implementation on Linux differs from the original Arizona implementation in a number

of ways. According to Cardwell and Bak,
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1. Since Linux already recovers from losses reasonably well, using an RTO derived from

fine-grained RTT measurements and NewReno or FACK, the loss detection or

recovery mechanisms of Linux have not been changed to implement the Vegas

adjustment during loss recovery.

2. To avoid considerable performance penalty imposed by increasing the congestion

window only every other RTT during slow start, the Linux implementation increases

the congestion window every RTT during slow start, just like Reno.

3. Largely to allow continuous congestion window growth during slow start, the actual

sending rate is calculated using the rate at which acknowledgements arrive, rather than

the rate at which data is sent.

4. To filter out the noise caused by delayed acknowledgements, the Linux

implementation uses the minimum RTT sample observed during the last RTT to

calculate the actual rate. (According to Cardwell and Bak, this can delay the detection

of congestion by up to one RTT or so. However, the author claims that they have not

found a better way to filter out the huge RTT spikes caused by delayed

acknowledgements.)

5. This Linux implementation uses microsecond-resolution time stamps rather than the

millisecond-resolution timestamps used by the x-kernel or the 10ms-resolution

timestamps used by Linux/i386.

6. When the sender re-starts from idle, the Linux implementation waits until it has

received acknowledgements for an entire flight of new data before making a decision

on the adjustment of the congestion window. The original Vegas implementation

assumed that the senders never went idle.
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2.2 Fairness issue of TCP Vegas

It has long been known to researchers that TCP Reno biases against connections with

larger round-trip delays [LM97, FJ91]. For example, Lakshman and Madhow [LM97]

provided an intuitive explanation of TCP’s bias against connections with larger round-trip

delays in a network with high bandwidth-delay product (e.g. WAN where the buffering on

the bottleneck link is of the same order of magnitude as, or smaller than, the bandwidth-

delay product). They explained that TCP Reno’s unfairness was a fundamental

consequence of its own window dynamics. In particular, if the queuing delay was small

compared to the round-trip delay, then the growth in the window size during the

congestion avoidance phase was approximately inversely proportional to the round-trip

delay. Moreover, the average throughput was roughly inversely proportional to the square

of the round-trip delay. Therefore, the maximum window size was smaller for

connections with higher propagation delays so that, with TCP Reno, the initial window

size of the longer connection was also smaller after a packet loss. Consequently,

throughput suffered.

Floyd and Jacobson [FJ91] also suggested that TCP Reno’s bias against longer round-trip

time connections was a consequence of TCP’s own window increase algorithm.

Moreover, they showed that the bias was unrelated to the gateway dropping policy

because both the Drop Tail (FIFO) and the Random Drop gateways shared such bias. In

their simulations, the improvement was minor even when the RED gateways were used.

Since Brakmo et al. have proposed TCP Vegas, there have been some studies to show that

Vegas fairness is better than Reno fairness [CC00, MLAW99] and that TCP Vegas does

not suffer from such delay bias as TCP Reno does. Mo et al. [MLAW99] used a simple

fluid model to show that TCP Vegas did not suffer from delay bias as TCP Reno did and
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confirmed their analysis by simulations. By analyzing using a closed fluid model, Mo

argued that the congestion window of TCP Vegas converged after some time. Moreover,

if the system was quasi-static, the queue size did not depend on the propagation delay.

According to FIFO policy, which is adopted in both the DropTail and the RED gateway,

the queue occupancy in the router buffer reflects the ratio of bandwidth sharing. In other

words, the flow rate is proportional to the connection’s queue size in the intermediate

routers. Based on these arguments, Mo et al. concluded that if the router exercised FIFO

service discipline, the throughput of a connection should be independent of the

propagation delay. Hence, TCP Vegas should not suffer from bias in favor of connections

with smaller round-trip delay. Mo also ran simulations of a network topology that

consisted of 2 connections sharing a bottleneck link. Their result demonstrated that the

throughput ratio of TCP Vegas ranged from 1.09 to 1.33 whereas the throughput ratio of

TCP Reno ranged from 1.35 to 37.12. Moreover, the simulations showed that the

throughput ratio of TCP Reno increased with the increase in the difference of the

propagation delays of the 2 connections. In contrast, this phenomenon did not happen

with TCP Vegas.

2.2.1 Impact of gateway settings

Raghavendra and Kinicki [RK99] conducted a series of simulation experiments to study

the fairness of TCP Vegas when it was used with the RED gateway. TCP Vegas defines 2

thresholds, α and β, in its congestion avoidance mechanism. The original TCP Vegas

proposed by Brakmo [BP95] set α and β to 1 and 3 or 2 and 4 respectively. Raghavendra

and Kinicki’s set α =1 and β = 3 in all of their simulations. Their simulation results

illustrated that, independent of whether TCP Reno or TCP Vegas was used, RED

gateways provided better and less volatile fairness than DropTail gateway with equivalent
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configurations. Moreover, the settings of the minimum and maximum thresholds of the

RED gateway had little impact on fairness.

2.2.2 Impact of Vegas thresholds α and β

Other researchers pointed out that the difference in the values of α and β caused an

unfair bandwidth sharing when connections running TCP Vegas shared a bottleneck link

[CC00, HMM99]. They argued that if α and β equal 1 and 3, respectively, TCP Vegas

might occupy between 1 to 3 buffer sizes in the intermediate routers. Therefore, in the

worst-case scenario, one connection might occupy about 3 router buffer sizes while the

other might only occupy 1 router buffer. Consequently, one connection was able to

achieve 300% bandwidth of the other. This led to proposals that the values of α and β

should be the same.

For instance, Hasegawa et al. [HMM99], pursuant to their discovery of this unfairness

through analytical approach, proposed Enhanced TCP Vegas, which set α to be the same

as β. They called the control parameter δ and used a value of 3 in their example.

Hasegawa claimed that Enhanced TCP Vegas provided better fairness by removing the

condition that allowed the window size to stay fixed as long as the difference between the

expected sending rate and the actual sending rate lied between a narrow range of values.

In their paper, they argued that Enhanced TCP Vegas, instead of allowing the window

size to converge to a fixed value that could lie anywhere within a narrow range as with

TCP Vegas, forced the window size to oscillate around a central point of value which

become completely proportional to the propagation delay. Therefore, although Enhanced

TCP Vegas discarded the stability property of TCP Vegas, it could achieve better fairness

than TCP Vegas in terms of throughput defined as (window size) / (propagation delay).
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Besides, the oscillation range of the window size was small. In the paper, there were

examples to illustrate and support the analysis. However, I think there was a lack of

extensive simulation results to support the analytical result. In addition, the analysis only

focused on a simple steady state model that consisted of 2 TCP Vegas connections

sharing a bottleneck link. I am also not aware of any study to show that the best choice of

δ is 3.

There were other researchers who agreed that there should be 1 control parameter instead

of different values for α and β. For example, based on TCP Vegas, Chen et al. [CC00]

proposed a new congestion avoidance mechanism, which they called Vegas Plus. Vegas

Plus used a modified congestion avoidance algorithm, based on TCP Vegas. It calculates

the VQO (virtual queue occupancy) and compares it against one parameter, α’, to decide

the direction of window size adjustment. In their simulation to evaluate the fairness of

Vegas Plus, Chen et al. set α’ to 3. The authors argued that they chose 3 because it was

the mean of 2 and 4, the choice of α and β in the original TCP Vegas proposed by

Brakmo and Peterson.

2.2.3 Impact of the correctness of the estimated minimum round-trip time

There were proposals that the correctness of the minimum round-trip time also affected

fairness. The minimum round-trip time was taken as an estimate of the propagation delay

of the connection, i.e. the round-trip time of the connection when the router buffer was

empty. In their discussion on unfair treatment of “old” connection (i.e. when 1

connection starts later than the other), Hengartner et al. [HBG00] explained that when the

new connection was established, the network might have already been in a congested

state. Therefore, the estimate of the minimum round trip time of the new connection
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would over-estimate the actual value. This would lead to a bigger congestion window for

the new connection. Consequently, the new connection would keep more packets in the

network than it should. In other words, the new connection could benefit from an unfair

share of the bottleneck bandwidth.

Similarly, Hasegawa [HMM99] pointed out that the measured minimum round-trip time

of 2 connections might differ although the propagation delays of the 2 connections were

the same. Thereby, while the fairness of TCP Vegas was better than that of TCP Reno in

the heterogeneous case, its fairness might be worse than that of TCP Reno in the

homogenous case. They also claimed that their Enhanced TCP Vegas was able to provide

a good estimate of the minimum round-trip time because its modified congestion control

algorithm prevented the convergence of the window size. They argued that by forcing the

window size to oscillate, the number of segments at the router buffer also fluctuated, and

thus the minimum round-trip time of both connections become converged to the same

value in the homogenous case. Although not stated explicitly, based on the equation that

Hasegawa used to derive the converged window size, I believe Hasegawa did believe that

the oscillation enabled Enhanced TCP Vegas to correctly measure the propagation delay

in the heterogeneous case as well.

There were also concern that the minimum round-trip time could not be measured

accurately in situations with persistent congestion and change of routes. The problem was

discussed in [MLAW99].

In summary, I notice 2 causes of unfairness that have been identified in previous work,

assuming that there is only TCP Vegas in the network environment. These 2 causes are :

1. the difference in the values of α and β, and
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2. an incorrect measured minimum round-trip time.

Recently, Boutremans and Boudec [BB00] provided additional insights into the interaction

of the over-estimation of the propagation delay and the values of α and β. The paper

focuses on situations where 1 connection joined the network after the previous one has

joined for a while. The authors reported that when α = β, as in Enhanced TCP Vegas,

1. Contrary to what Hasegawa believed, the oscillations of the sending rate, which

increased with the value of the sending rate, did not allow TCP Vegas to measure the

propagation delay accurately.

2. Any over-estimation of the propagation delay of a given connection would increase its

rate and the increase became more pronounced with the over-estimation factor.

Therefore, late connections would get more bandwidth than the earlier connections.

3. In return, the different connection’s peaks in the oscillations were not synchronized in

time. Thus, there was no sub-optimal use of the bottleneck link capacity.

On the other hand, they reported that when α < β,

1. The sending rate of a connection converged to a stable value that depended on the

arrival order of all connections. Therefore, the first connection to be established

would be favored when the propagation delays were properly estimated. This can best

be explained by Fig. 6 in Boutremans and Boudec’s paper.

2. Yet, in later connections, the propagation delays were over-estimated, so their rates

were greater than what they should be.
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When discussing the interaction of an over-estimation of the propagation delay and the

value of α and β on fairness, Boutremans and Boudec argued that these 2 factors tend to

counterbalance each other but the effect of an over-estimation of the propagation delay

dominated.

2.2.4 Impact of a mixture of TCP Vegas and TCP Reno

Some previous work demonstrated that unfairness existed when TCP Vegas competed for

bandwidth with TCP Reno [ADLY95., MLAW99, and RK99]. Moreover, the unfairness

occurred because TCP Vegas used a more conservative congestion avoidance mechanism.

The explanation is as follows : when a TCP Vegas connection shares a link with a TCP

Reno connection, the TCP Reno connection uses most of the buffer space while the TCP

Vegas connection, interpreting this phenomenon as a sign of congestion, continues to

back off. Therefore, TCP Reno is able to capture higher throughput.

When the buffer is small, however, TCP Vegas outperforms TCP Reno. Mo et al.

[MLAW99] provided an intuitive explanation as follows : TCP Reno needs some room in

the router buffer for oscillations in order to estimate the available bandwidth. Without the

necessary room in the buffer, its performance degrades. TCP Vegas, on the other hand,

quickly adapts to the small buffer sizes since it requires buffer space for only a few

packets. Mo et al. simulated a network with 2 connections having the same propagation

delay and demonstrated that the throughput ratio of Reno to Vegas increased from 0.535

to 11.73 when the router buffer increased from 4 to 50.

Raghavendra and Kinicki [RK99] observed a similar phenomenon when DropTail

gateway was used with a mixture of TCP Reno and Vegas network hosts. They ran

simulations with 3 connections, either with 3 TCP Vegas only, 3 TCP Reno only, 1 TCP
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Vegas and 2 TCP Reno or 1 TCP Reno and 2 TCP Vegas. Based on the simulation

results, they argued that when the number of router buffer was small, TCP Vegas was able

to benefit from an unfair share of bandwidth. On the contrary, when the number of

router buffer was large, TCP Reno would dominate. In addition, they observed that unlike

DropTail gateway, RED gateway was able to offer consistent high value of fairness

(greater than 0.8).

3. Contribution of this project

In this project, I evaluate the fairness of TCP Vegas with focus on 4 issues: 1) Is TCP

Vegas really fair to connections with larger propagation delays, 2) What is the impact of

the Vegas thresholds, α and β, on fairness, 3) How fair is TCP Vegas when there are

many active flows passing through a bottleneck link, and 4) Does the receiver

acknowledgement strategy affect the fairness of TCP Vegas ?

IS TCP REALLY FAIR TO CONNECTIONS WITH LARGER

PROPAGATION DELAY

The simulation results that address the 1st question confirm that TCP Vegas is also unfair

to connections with larger propagation delays. My work adds to the previous work in the

following ways. Mo et. al. in [MLAW99] presents heuristic analysis and simulation results

to support that Brakmo and Peterson’s TCP Vegas does not suffer from delay bias as

TCP Reno does. Adding to Mo’s work, I also evaluate the fairness of Hasegawa’s

Enhanced TCP Vegas that sets α = β. In particular, I attempt to isolate the impact of an

incorrect minimum round-trip time, which is not mentioned in Mo’s paper.  My work can

also be seen as a continuation of Hasegawa’ work, which argues that Enhanced TCP
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Vegas can achieve better fairness than TCP Vegas. Instead of analyzing through analytical

approach, my work provides a complementary mean to evaluate the fairness of TCP

Vegas through an extensive simulation study. Here are my findings :

1. The original version of TCP Vegas [BP94] proposed by Brakmo and Peterson is still

unfair to connections with larger propagation delays, unless the difference in the

propagation delays of the connections is small. In some cases, the expected sending

rate of the longer connection is even less than the fair share of the available

bandwidth. Therefore, the actual sending rate is also less than the fair allocation.

2. Supporting Mo’s findings, my simulation results show that, unlike TCP Reno, the

degree of bias does not necessarily increase as the difference in propagation delays

increases. However, the simulation results in section 4.2.4 of Chapter 3 suggest that

the fairness of the original TCP Vegas may even be worse than that of TCP Reno.

3. The problem of unfairness can indeed be much resolved by a version of Hasegawa’s

Enhanced TCP Vegas that sets α = β = 2 or 3 but NOT 1.

In my simulations, I monitor the estimation of the minimum round-trip time to identify

results with which the minimum round-trip time is not over-estimated. I note that in past

work, the simulator is usually configured to start one of the connections after the first

connection has been running for, say, 0.5 seconds. In such case, it is highly likely that the

minimum round-trip time of the later connection is over-estimated. Therefore, when the

interpreting these results, we need to take into consideration the impact of an over-

estimation of the minimum round-trip time. My simulation results, however, when stated,

is free from the impact of the over-estimation problem.
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WHAT IS THE IMPACT OF VARYING THE VEGAS THRESHOLD, αα AND

ββ, ON THE FAIRNESS OF TCP VEGAS

The simulation results that address the 2nd question help to evaluate if a single value can be

chosen for the Enhanced TCP Vegas thresholds, α and β, to ensure best fairness on the

Internet. While most research uses α = β = 3 with Enhanced TCP Vegas (and α = 1 and

β =3 with TCP Vegas), I am not aware of any critical evaluation in terms of fairness.

Being able to fix a single value while maximizing fairness is highly desirable for practical

reasons and simplify the protocol implementation.  Here are my findings :

1. The fairness of Vegas-1 is unstable but that of Vegas-2 and Vegas-3 are consistently

good, regardless of the correctness of the minimum round-trip times. It seems that

setting δ = 1 poses a limit on the actual sending rate and does not allow Vegas-1 to

compete fairly for bandwidth. The fairness of Vegas-4 (α = β = 4) and Vegas-10 (α =

β = 10) are consistently good as well.

2. On the other hand, the degree of oscillation decreases as the value of δ for Vegas-δ

increases. Therefore, it may be argued that the larger the δ, the better the stability.

3. However, there is a tradeoff : with a larger δ, TCP Vegas tries to force more packets

into the network. Therefore, the larger the δ, the more aggressive TCP Vegas is and

the more likely that it will cause congestion in case of limited available bandwidth.

4. From the simulation results I obtained in this project, a value of 3 for δ seems an

acceptably good value to use.
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HOW FAIR IS TCP VEGAS WHEN THERE ARE MANY ACTIVE FLOWS

PASS THROUGH THE BOTTLENECK LINK

The simulation results that address the 3rd question provide insight into the fairness of

TCP Vegas when there are many active flows. While many of the previous research run

simulations with a few connections, I am not aware of any research that study the fairness

of TCP Vegas when there are many active flows. On the other hand, I understand that it

is highly possible that an Internet router has to support many concurrent flows. However,

the behavior of TCP Vegas can be different when there are many flows than the

intermediate router buffer can support concurrently. When there are only a few

connections, congestion is unlikely and thus TCP Vegas can run smoothly with few

timeouts. Under this network condition, there may not be a need to trigger the Reno-type

timeout subroutine. When there are many flows, there will be many packet losses and thus

timeouts, regardless of whether TCP Vegas or TCP Reno is used. This means that the

Vegas timeout subroutine and especially the Reno-type timeout subroutine will be

triggered much more often. The simulation results in this project contribute to explore

whether Enhanced TCP Vegas is still fair when there are more active flows than the RED

thresholds can support.

In case when there is only TCP Vegas or TCP Reno in the network, the simulation results

suggest that :

1. In most cases, fairness of TCP Reno is better than that of TCP Vegas. The result is

obtained after having amended the ns code for TCP Vegas to eliminate 2 causes of

deadlock. In the first scenario, the deadlock occurs after a Reno-type timeout that sets

the variable storing the un-inflated window to zero, causing TCP Vegas to wrongly set

the congestion window to zero upon exit of the fast recovery phase. The second
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scenario occurs after a Reno-type timeout of the first segment sent, which wrongly

update the start time of the connection to the time that the first segment is re-

transmitted. The update wrongly overwrites the time that the first segment is first

sent, which represents the start time of the connection.

2. The fairness of the TCP Vegas host-only configuration improves when RED

thresholds are higher. The percentage improvement, however, diminishes when the

number of flows is large enough.

3. When analyzing results for the Vegas host-only configuration, I also identify scenario

in which TCP Vegas performs unnecessary retransmission. The incidence happens

after a Reno-type timeout.

In case when there is a mix of TCP Vegas and TCP Reno sender, the simulation results

suggest that :

1. Fairness improves when the RED thresholds are larger.

2. Regardless of the RED thresholds, fairness tends to deteriorate as the number of

active flows increases. When the RED thresholds are low and the percentage of TCP

Vegas is relatively high, there is large overlap of fairness and the difference seems to

diminish.

3. When RED router is used and a mixture of TCP Reno and TCP Vegas are present,

TCP Reno tends to be the winner of unfairness when the router thresholds are large

and the number of flows is low. In the contrary, TCP Vegas is the beneficiary when

the router thresholds are low. Intuitively, this suggests that TCP Vegas is the winner

when RED router thresholds allow a long enough queue.

4. The variance of throughputs in the TCP Vegas community is larger that that in the

TCP Reno community. Therefore, while the unequal allocation in bandwidth between
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the TCP Reno community and the TCP Vegas community contributes to the

unfairness, the variance in goodputs in the Vegas community also contributes

significantly to the unfairness. One possible cause is the incorrect measurement of the

minimum round-trip time after a Reno-type timeout, which results in a limitation of

the growth of the congestion window and the actual sending rate.

DOES THE RECEIVER ACKNOWLEDGEMENT STRATEGY AFFECT

THE FAIRNESS OF TCP VEGAS

The simulation results that address the 4th question help to evaluate the fairness of TCP

Vegas when the receiver adopts the delayed acknowledgement strategy. TCP Vegas

expects immediate acknowledgement strategy. On the other hand, delayed

acknowledgement is recommended by RFC1122 and is thus expected to be the prevalent

acknowledgement strategy in the Internet. In such case, the minimum round-trip time and

the actual round-trip time may be over-estimated. Therefore, it is more important to

understand the fairness and behavior of TCP Vegas when the receiver adopts the delayed

acknowledgement strategy. This project presents simulation results to help understand

impact of the delayed acknowledgement strategy on the fairness of TCP Vegas. After

analyzing the simulation results, I find that

1. The fairness does not deteriorate if all the receivers adopt the delayed

acknowledgement strategy rather than the immediate acknowledgement strategy. This

is possibly because the round-trip time tends to be over-estimated. Hence, the chance

of an incorrect minimum round-trip time reduces, leading to lower variance in

goodputs in the Vegas community. In particular, I observe that TCP Vegas does not
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behave detrimentally although the receivers employ the delayed acknowledgement

strategy.

2. On the other hand, delayed acknowledgment strategy does delay the detection of a

proper minimum round-trip time. By that time, a router queue may have already built

up and the minimum round-trip time may be over-estimated.

3. In contrary to the definition, I observe that the measured expected sending rate can be

less than the measured actual sending rate. The problem is a direct result of the

delayed acknowledgement because the receiver sends an acknowledgement for every 2

segments received. The problem can be resolved by removing the 2nd term in the

formula that is used to calculate the expected sending rate.
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C h a p t e r  2

AN OVERVIEW OF TCP ALGORIHTMS

In this section, I summarize the 3 major techniques used by TCP Vegas to increase

throughput and reduce retransmissions. My summarization is based on the original paper,

the original Arizona Vegas code and the simulation traces. In addition, I have inserted my

own diagrams, where applicable and appropriate, to help illustrates the techniques of TCP

Vegas. Before I discuss the Vegas strategies, I also summarize the algorithms of TCP

Tahoe and TCP Reno as I will be referring to these names.

1. TCP Tahoe

TCP Tahoe was released in 1998. The 4.3 TCP Tahoe (1989) release has the following

features : slow start, congestion avoidance and fast retransmit.

When a new connection is set up, the sender does :

cwnd = 1 segment = 1 MSS (in bytes)
ssthresh = maxwnd (65536 bytes)

When an acknowledgement is received before the retransmission timer
expires, the sender does :

if (cwnd < ssthresh)  cwnd += 1segment; Slow Start
else cwnd += 1/cwnd segment; Congestion Avoidance

When segment loss is detected by a timeout or fast retransmit, the sender
does (Slow Start) :

ssthresh = max (min (cwnd, wnd) /2, 2) segments;
cwnd = 1 segment

where

wnd = receiver’s advertised window
cwnd = congestion window
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The idea of TCP Tahoe is to start the congestion window at the size of a single segment

(the MSS) and send it when a connection is established. If the acknowledgement arrives

before the retransmission timer expires, add one segment to the congestion window. This

is a multiplicative increase algorithm and the window size increases exponentially. The

window continues to increase exponentially until it reaches the threshold that has been

set. This is the Slow Start Phase.

Once the congestion window reaches the threshold, TCP slows down and the congestion

avoidance algorithm takes over. Instead of adding a new segment to the congestion

window every time an acknowledgement arrives, TCP increases the congestion window by

one segment for each round trip time. This is an additive increase algorithm.

To estimate a round trip time, the TCP codes uses the time to send and receive

acknowledgements for the data in one window. TCP does not wait for an entire window

of data to be sent and acknowledged before increasing the congestion window. Instead, it

adds a small increment to the congestion window each time an acknowledgement arrives.

The small increment is chosen to make the increase averages approximately one segment

over an entire window.

When a segment loss is detected through timeouts, there is a strong indication of

congestion in the network. The slow start threshold is set to one-half of the current

window size (the minimum of the receiver’s advertised window and the sender’s

congestion window). Moreover, the congestion window is set to 1 segment, which forces

slow start.
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2. TCP Reno

TCP Reno was released in 1990 and incorporated the fast recovery mechanism as well.

When a new connection is set up, the sender does :

cwnd = 1 segment = 1 MSS (in bytes)
ssthresh = maxwnd (65536 bytes)

When an acknowledgement is received before retransmission timer
expires, the sender does :

If (cwnd < ssthresh) cwnd += 1segment; Slow Start
else cwnd += 1/cwnd segment; Congestion Avoidance

When segment loss is detected by timeout, the sender does (Slow Start) :

ssthresh = max (min (cwnd, wnd) /2, 2) segments;
cwnd = 1 segment

When a segment is detected by fast retransmit, the sender does (Fast
Recovery):

ssthresh = cwnd /2
cwnd = ssthresh + 3 segments

if a duplicate ACK is received,

 cwnd +=1;

if the non-duplicate ACK corresponding to the retransmitted segment is
received,

cwnd = ssthresh;

In TCP Reno, TCP source behaves in the same way as that in TCP Tahoe. However,

when the segment loss is detected by fast retransmission algorithm, the slow start

threshold is set to half the current size of the congestion window. The congestion window

size is then set to be the same as the slow start threshold plus 3 times the segment size.

This is the Fast Recovery Phase,, in which the window size is then increased by one

segment when a duplicate ACK is received. When the non-duplicate ACK corresponding



23

to the retransmitted segment is received, the congestion window is restored to the slow

start threshold.

3. TCP Vegas : An overview of Vegas strategies

TCP Vegas was proposed by Brakmo et al. in 1994. It was based on modifications to TCP

Reno. The 3 major modifications are summarized below. There are other minor

modifications, as discussed in [HBG00].

3.1 Extension to Reno fast retransmission algorithm

Initially, TCP Tahoe retransmits only when a timeout occurs. Having incorporated the

fast retransmission algorithm, TCP Tahoe and TCP Reno also retransmit on receipt of the

third duplicate acknowledgement. In addition, TCP Reno implements the fast recovery

algorithm. It was reported that the fast retransmission and the fast recovery mechanisms

prevented more than half of the coarse-grain timeouts that occurred in TCP

implementations without these mechanisms.

 TCP Vegas extends TCP Reno’s retransmission mechanism so that it also retransmits

under 2 additional conditions. The modification results in further reduction in the time to

detect lost packets and in the number of coarse-grain timeouts.

The first condition is met when TCP Vegas receives a duplicate acknowledgement and

detects expired segments. TCP Vegas records a more accurate RTT by reading the system

clock when it receives an acknowledgement for the segment being timed. It then reads the

recorded transmission time of the unacknowledged segment and checks if its RTT is

greater than the Vegas timeout value. If it is, then TCP Vegas retransmits the next

expected acknowledged segment.
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This modified retransmission algorithm allows TCP Vegas to retransmit without having to

wait for the 2nd or 3rd duplicate acknowledgement This, however, is only a small saving.

Under some specific conditions, e.g. when there are multiple losses in 1 RTT or window,

when the window size is very small, or in general, when there is insufficient data to trigger

the return of the 2nd or 3rd duplicate acknowledgement, TCP Reno must wait for

timeouts before it can retransmit. For instance, it has been reported that [ADLY95] when

TCP Reno faces 4 drops in a single RTT, i.e. when there are multiple losses, the 2nd or

3rd duplicate acknowledgement will never come through. Thereby, TCP Reno has to wait

for the coarse-grain timeouts before the retransmission can take place. Recall that the

coarse-grain retransmission timeout is set to the smoothed RTT plus 4 times its deviation.

Since the round-trip times are measured in a graunity of 500ms, a typical timeouts can fall

in the region of 2000ms. Therefore, reducing the time to wait for timeouts can

significantly help to improve throughputs. The scenario is diagrammatically displayed in

figures 2.1 and 2.2 below.



25

1st dup ACK

2nd dup ACK

3rd dup ACK

If ∃ expired
segment(s)

Reno Vegas

Retransmission

1st dupack

Figure 2.1 : TCP Vegas’ enhanced fast retransmission (Illustration 1)
TCP Vegas’ retransmission strategy is more aggressive but can result in a more timely decision

to retransmit a dropped segment.

1st dup ACK If ∃ expired
segment(s)

Reno Vegas

retransmission

1st dupack

Figure 2.2 : TCP Vegas’ enhanced fast retransmission (Illustration 2)
TCP Vegas’ retransmission strategy allows it to retransmit a dropped segment although there is

not enough data to trigger the return of the 2nd or 3rd duplicate ACK.
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The second condition is met when TCP Vegas receives the 1st or 2nd non-duplicate

acknowledgement after a retransmission and detects expired segments.  On receipt of the

1st or 2nd non-duplicate acknowledgement after a retransmission, TCP Vegas checks to

see if the time elapsed since the unacknowledged segment is last sent or retransmitted is

larger than the Vegas timeout value. If it is, then TCP Vegas assumes a segment has been

dropped. Hence, it retransmits the next expected acknowledged segment. This allows

TCP Vegas to catch any other segments that may have been lost prior to the

retransmission without having to wait for the duplicate acknowledgements. This is most

crucial when there are multiple losses so that TCP inevitably have to wait for timeouts.

This scenario is dynamically represented in figure 2.3 below.

If ∃ expired
segment(s)

Reno Vegas

If ∃ expired
segment(s)

1st dupack

retransmission

1st non-dupack

1st dupack

Figure 2.3 : TCP Vegas’ enhanced fast retransmission (Illustration 3)
TCP Vegas’s retransmission strategy allows it to retransmit a dropped segment after the receipt
of the 1st non-duplicate ACK. This results in a more timely decision in case of multiple losses.
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In addition, in order to avoid multiple reductions in the congestion window due to

multiple losses in 1 RTT, TCP Vegas only decreases the congestion window if the

retransmitted segment was previously sent after the last window decrease. This is to

ensure that the congestion window is reduced as a result of the losses that occur at the

current sending rate, and not due to the losses that happened at an earlier, higher sending

rate.

In summary, the major benefit of TCP Vegas’ aggressive retransmission strategy is that it

enables TCP Vegas to retransmit the dropped segment although there may be no 2nd or 3rd

duplicate acknowledgement. Otherwise, TCP will inevitably have to wait for timeouts

before the retransmission can take place. Brakmo reported that this mechanism further

reduced the number of coarse-grain timeouts in TCP Reno by more than half. Ahn

[ADLY95] observed that this strategy was most effective in reducing timeouts in the slow-

start phase. However, the retransmission strategy is more aggressive. Hence, it also

increases the possibility of unnecessary retransmissions.

3.2 Modified congestion avoidance algorithm

TCP Vegas modifies TCP Reno’s congestion avoidance and control mechanism that results in

TCP’s ability to anticipate congestion and adjusts its congestion window and sending rate

accordingly. Instead of increasing the congestion window size blindly until losses occur,

TCP Vegas tracks the changes in the throughput (or more specifically, changes in the

sending rates) and then adjusts the congestion window size. It observes changes in the

round-trip times of the segments that the connection has sent before. It then calculates

and compares the measured throughput against the expected throughput. If the expected

sending rate is higher than the actual sending rate by α or less, TCP Vegas fears that it is

not utilizing the bandwidth efficiently by occupying some router buffers and thus
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increases the congestion window by one. If the expected rate is higher than the actual rate

by β or more, TCP Vegas assumes that congestion starts to build up and thus decreases

the congestion window by one. Otherwise, the congestion window remains unchanged.

TCP Vegas makes this calculation and decision in window adjustment once per RTT. The

increment, however, is made on receipt of each acknowledgement, resulting in an increase

of about 1 per RTT. The new algorithm is summarized below :

During the congestion avoidance phase, TCP Vegas does :

cwnd = cwnd + 1 if diff < (α/baseRTT)

cwnd = cwnd if (α/baseRTT) ≤ diff ≤ (β/baseRTT)

cwnd = cwnd – 1 if (β / baseRTT) < diff

where 

diff = expected rate – actual rate ≥ 0 by definition

expected rate = data in transit/baseRTT

baseRTT = the minimum of all measured RTTs,

typically the RTT of a packet when the router

queue is empty or when the flow is not

congested (in seconds)

actual rate = (Next send sequence no. – segment

timed)/average rtt

rtt = observed or actual round trip time (in

seconds)

α, β = some constant thresholds
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begseq

t_seqno, ack

snd_una

Actual rate
= (t_seqno- begseq)/ave. rtt

Expected rate
= (t_seqno - snd_una)/baseRTT

(Normally, t_seqno – begseq = t_seqno – snd_una if there is no duplicate acks or timeouts)

As shown in the above diagram, TCP Vegas calculates the number of segments that it has

sent since it transmits the timed segment (begseq) by subtracting “begseq” from

“t_seqno” (the next send sequence number). It then divides the result by the average of

the sampled RTTs (ignoring retransmitted segments) to come up with a measured actual

rate. It also calculates the difference between “t_seqno” and the “snd_una” (the next

expected acknowledgement number) in order to measure the expected rate. However,

since the expected rate is calculated before the “snd_una” variable is updated, “snd_una”

refers to the “snd_una” after the previous acknowledgement has just been received.

Under normal circumstances (i.e. when there are no duplicate acknowledgements and

timeouts), “snd_una” is the same as “ack” (the sequence number being acknowledged).

Hence, the difference between “t_seqno” and “snd_una” is the same as that between

“t_seqno” and “ack”. In other words, it is the same as that between “t_seqno” and

“begseq”. By definition, “baseRTT” is the minimum of all the RTTs. Hence, the expected
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rate is normally larger than the actual rate. The above calculation ignores the retransmitted

segments.

The objective of TCP Vegas’ congestion avoidance mechanism is to measure and control

the amount of extra data in the network. These extra data inevitably has to be buffered in

the router. It can be proved that, in the absence of other connections, the congestion

window of TCP Vegas converges to a fixed value with between α to β extra bytes in the

network.

In comparison, TCP Tahoe and TCP Reno perform congestion control, i.e. they control

congestion once it happens. They treat packet losses as a signal of congestion. Therefore,

they consistently cause packet losses to themselves and to other connections, resulting in

under-utilization of the bottleneck link. TCP Vegas, on the other hand, performs

congestion avoidance from end nodes (i.e. no router involvement is expected). It

monitors changes in the sending rate (& RTTs) to predict congestion before losses occur.

Empirical results show that TCP Vegas achieves better utilization of the bottleneck link.

3.3 Modified slow-start

TCP Reno doubles its window size every RTT during the slow start phase. TCP Vegas, on

the other hand, doubles the window size only every other RTT during slow-start. In

between, the congestion window stays fixed so that a valid comparison can be made. TCP

Vegas modifies TCP Reno’s slow start mechanism to incorporate congestion detection

into slow-start. TCP Vegas estimates the available bandwidth by calculating the expected

sending rate during the initial slow start period. When the actual sending rate falls below

the expected sending rate by the equivalent of one router buffer, TCP Vegas reduces the

congestion window by 1/8 and switches from slow start to linear increase/decrease mode
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(congestion avoidance) immediately. The modified algorithm is very effective in

preventing losses and coarse-grain timeouts during the initial slow start phase [HBG00].

4. Enhanced TCP Vegas

In 1999, Hasegawa, Murata and Miyahara proposed Enhanced TCP Vegas as an

alternative TCP algorithm to solve the unfairness they observed in TCP Vegas. The major

difference between Enhanced TCP Vegas and TCP Vegas is that the control thresholds, α

and β, defined in TCP Vegas are set to the same value in Enhanced TCP Vegas.

Hasegawa et al. called this δ in their TCP congestion avoidance mechanism, which is

summarized below. Other than this, Enhanced TCP Vegas uses the same aggressive

retransmission strategy but conservative slow-start strategy as TCP Vegas.

During the congestion avoidance phase, Enhanced TCP Vegas does :

cwnd = cwnd + 1, if diff < (δ / base_rtt)

cwnd = cwnd –1 , if diff ≥ (δ / base_rtt)

5. Model of Vegas fairness

In their paper, Boutremans and Boudec [BB00] presented a simple analytical study of the

steady state congestion window and throughput. The model summarizes 2 causes of

unfairness in TCP Vegas and can be useful in explaining the unfairness of TCP Vegas.

Therefore, I will present it here but I use 1 set of equations to cover both cases, i.e. when

α < β and when α = β.
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The model assumes that the router adopts a FIFO discipline and the buffer size is infinite.

There is no assumption on the congestion control mechanism at the router. Therefore, I

assume that the model should be applicable to both DropTail and RED gateway.

We consider the model in which 2 users share a single bottleneck link. The propagation

delay of connection j  is dj. The bandwidth of the bottleneck link is c. The minimum

round-trip delay and the measured round-trip delay of connection j are baseRTTj and

RTTj respectively. I assume that the congestion window converges to a steady state value.

I denote the difference between the expected rate and the sending rate as αj (in packets),

i.e.

αj = (expected rate – actual rate) * baseRTT

Then, the minimum and the measured round-trip delay can be expressed as

BaseRTTj = dj + xj

where xj = over-estimation of the propagation delay

RTTj = dj + �j 

where �j  = queuing delay experienced by the connection j

At steady state,

cwndj – (baseRTTj / RTTj)  cwndj = αj 

where α ≤ αj ≤ β

or
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cwndj = αj ( dj + �j ) / (�j – xj)

Hence, the expression for actual throughput of connection j is :

ratej = cwndj / RTTj = αj / (�j – xj)

The above expression explains why TCP Vegas can be unfair. One of the causes is the

difference in values of αj of the 2 connections even when xj is zero, i.e. when there is no

over-estimation of the propagation delay. In particular, αj is allowed to converge to any

value between α and β. In addition, αj represents the number of packets queued at the

router buffer when the steady state is reached. According to the FIFO policy, the ratio of

buffer occupancy in the FIFO gateway reflects the ratio of the bandwidth sharing. If αj of

the 2 connections are different, then TCP will not achieve fairness. There is an open

question, though. What factors affect the converged value of αj  ?

Secondly, an over-estimation of the propagation delay of a particular connection (i.e.

when xj ≠ 0) also results in an increase of its rate. According to Boutremans and Boudec,

the effect is more pronounced when the queuing delay is close to the amplitude of the

over-estimation of the propagation delay. Therefore, the connections with a more

pronounced over-estimation of the propagation delay are favored.

However, this is only a simplified model. In reality, RTTj can fluctuate even though α < β.

Therefore, �j, αj  and ratej can also fluctuate.
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6. RED gateways

The RED Gateway was first presented by Sally Floyd and Van Jacobson in 1993 [FJ93].

The main goal of the RED gateway is to provide a congestion avoidance service at the

gateway so that throughput can be kept high while the delay kept low. RED gateway

achieves this by first detecting incipient congestion and then deciding which connections

to notify of the congestion. In deciding which connection to notify, the RED gateway also

aims to avoid 2 problems that can occur with the DropTail gateway : 1) a bias against

bursty traffic, and 2) the global synchronization that results from notifying all connections

to reduce their windows simultaneously. Another goal of the RED gateway is to control

the average queue size even in the presence of non-cooperating sources that do not

reduce throughput in response to congestion notification. The RED gateway achieves this

by dropping the arriving packets when the queue size exceeds a maximum threshold.

RED uses 2 separate algorithms to detect incipient congestion and to decide which

connections to notify in case of congestion.

DETECTING INCIPIENT CONGESTION

The RED gateway infers incipient congestion by updating the average queue size and

comparing it against 2 thresholds : a minimum and a maximum threshold. The rule is as

follow :

• When the average queue size is less than the minimum threshold, it infers that there is

no congestion and thus no packets are marked (or dropped).
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• When the average queue size is greater than the maximum threshold, the RED

gateway infers heavy congestion and thus every arriving packet is marked (or

dropped). As such, the maximum threshold can be interpreted as the gateway buffer

size.

• When the average queue size is between the minimum and the maximum thresholds,

each arriving packet is marked with a probability that is a function of the average

queue size. Each time a packet is marked, the probability that a packet is marked from

a particular connection is roughly proportional to that connection’s share of the

bandwidth at the gateway.

The RED gateway calculates the average queue size using a low-pass filter with an

exponential weighted moving average  :

ave_ = (1 – q_weight_) * ave_ + q_weight_ * curq_

where

ave_ = average queue size

curq_ = current queue size

q_weight_ = queue weight

By this equation, a short-term increase in the actual queue size that results from bursty

traffic or from transient congestion will not lead to a significant increase in the average

queue size.  As such, the queue weight affects the size and duration of bursts (the degree

of burstiness) that are allowed in the gateway.

The settings of the minimum and maximum thresholds are determined by the desired

average queue size. In turn, the desired average queue size reflects the tradeoff between

maximizing throughput and minimizing delay. However, the optimal average queue size is
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dependent on a number of factors, including the network characteristics and the traffic

patterns. Therefore, the authors had left the optimal queue size as a question for further

research.

In the paper, the authors provided some suggestions on the values of the parameters : the

queue weight, the minimum threshold and the maximum threshold.

The queue weight affects the degree of burstiness that is allowed at the gateway. If it is set

too large, then the averaging procedure will not filter out transient congestion at the

gateway. On the other hand, if it is set too low, then the calculated average queue size will

respond too slowly to changes in the actual queue size. In such case, the gateway is unable

to detect the initial stages of congestion. In most of the simulations within the paper, the

authors used a queue weight of 0.002. The default queue weight in the ns simulator is also

0.002.

The optimal values for the minimum and maximum thresholds depend on the desired

average queue size. If the typical traffic is fairly bursty, then the minimum threshold must

be sufficiently large in order to maintain the link utilization at an acceptably high level.

The optimal maximum threshold depends, in part, on the maximum average delay that

can be allowed by the gateway. The authors suggested that the RED gateway functions

most effectively when the difference between the minimum and the maximum threshold

was larger than the typical increase in the calculated average queue size in 1 round-trip

time. Accordingly, they suggested that, as a useful rule of thumb, the maximum threshold

be set to at least twice the minimum threshold. The default minimum and maximum

thresholds in the ns simulator are 5 and 15 respectively.
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PACKET-MARKING PROBABILITY

The algorithm for calculating the packet-marking probability determines how frequently

the gateway marks or drops packets, given the current level of congestion. The goal is for

the RED gateway to mark packets at fairly evenly spaced intervals, in order to avoid biases

against bursty traffic and global synchronization, and to mark packets sufficiently

frequently to control the average queue size.

The RED gateway uses randomization to choose which arriving packets to mark or drop.

With this method, the probability of marking an arriving packet from a particular

connection is roughly proportional to that connection’s share of the bandwidth through

the gateway.

The initial packet-marking probability, prob1_, is calculated as a linear function of the

average queue size.

prob1_ = 1/linterm_ (ave_ - thresh_) / (maxthresh_ - thresh_)

where 

prob1  = initial packet-marking probability

thresh_ = minimum threshold

maxthresh_ = maximum threshold

1/linterm_ = packet-marking probability

when ave_ = maxthresh_

= an upper bound on the packet-marking probability
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The final packet-marking probability is best calculated under the assumption that the

number of arriving packets between marked packets is a uniform random variable. In

such case, the final-marking probability is

prob2 = prob1 / ( 1 – count * prob1)

where

count = number of unmarked packets that have arrived

since the last marked packet

According to the original paper, the parameter “linterm_” can be chosen from a fairly

wide range because it is only an upper bound on the actual marking probability. If the

congestion is so heavy that the gateway cannot control the average queue size by marking

at most 1/linterm_ of the packets, then the average queue size will exceed the maximum

threshold. Consequently, the gateway will mark every packet until congestion is controlled.

For most of the simulations in the paper, the author set linterm_ to 50. The authors also

suggested that 1/linterm_ should never be greater than 0.1. The ns default of linterm_ is

10.

Having considered the suggestions in the paper, I use the ns default of the queue weight.

Therefore, I will leave the value of the queue weight unchanged in my simulation runs. I

set linterm_ to the value of 50, which is adopted in most of the simulations in the original

paper of RED. Based on the suggestion in this same paper, I set the maximum threshold

to 3 times the minimum threshold. Here is a summary of the RED configuration that I

use in my simulations :
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q_weight_ 0.002

thresh_ different from ns default, max. threshold = 3 x min. threshold

maxthresh_ different from ns default, max. threshold = 3 x min. threshold

linterm_ 50

drop_tail_ true (i.e. packet at the tail of the queue will be dropped when the

queue overflow
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C h a p t e r  3

SIMULATION RESULTS

In this chapter, I illustrate the fairness of TCP Vegas and Enhanced TCP Vegas using the

simulation results that I have obtained. Using a network model with 2 TCP Vegas

connections, I note that, when α < β, there is no guarantee that the Vegas fairness is

better than the Reno fairness. Previous researchers have reported that the unfairness of

TCP Vegas is result of the difference in the values of α and β. When α < β, TCP Vegas

allows α to β extra packets to be buffered in the router. Therefore, if 2 connections share

a bottleneck link, then in the worst case, it is possible that one TCP Vegas agent is

buffering α extra packets in the router while the other TCP Vegas agent is buffering β

extra packets in the router. With a FIFO router such as DropTail and RED, the ratio of

throughputs will be β/α. For example, if α = 1 and β = 3, then the ratio of throughputs

can be as worst as 3, indicating a higher degree of unfairness. Besides, I also note from the

simulation results that when this unfairness happens, there is a bias against connections

with larger propagation delays. Luckily, the bias can be resolved by Enhanced TCP Vegas,

except when α = β = 1.

Hasegawa [HMM99] reported that, by setting α = β, the fairness of TCP Vegas will be

improved. He renamed this parameter as δ.  I shall call this version of TCP Vegas Vegas-

δ. However, I do not notice any study that evaluates the impact of the value of δ on the

fairness of Enhanced TCP Vegas. Using a model with 2 Enhanced TCP Vegas

connections, I run simulations to evaluate the fairness of Vegas-δ when δ=1, 2 or 3. I

discover that the fairness of Vegas-1 is unstable. When the difference in propagation

delays is large, the fairness of Vegas-1 is even worse than that of Vegas-1_3 (i.e. when α =
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1 and β = 3). On the other hand, the fairness of Vegas-2 and Vegas-3 are stable and

consistently good. In fact, the fairness of Vegas-2 and Vegas-3 is always better than that of

Vegas1_3. The result seems to support that the fairness of Vegas-2 and Vegas-3 is

independent of the propagation delay.

Most of the research work evaluates the fairness of TCP Vegas when there are just a few

TCP Vegas connections. In this chapter, I present simulation results that reveal the

fairness of TCP Vegas when many active flows share a bottleneck link. When there are

many active flows with either TCP Reno or TCP Vegas only, the fairness of TCP Reno is

better and more stable than that of TCP Vegas. Moreover, the fairness of Vegas-3 is

better when the RED thresholds are higher. The results are obtained after having

modified the ns implementation of the Reno-type timeout subroutine and some other

parts of the ns code that may cause the TCP Vegas connections to be shut down. One

implication is that a slightly different implementation can cause very different

performance.

When there are many active flows with a mixture of TCP Vegas and TCP Reno

connections, the fairness tend to deteriorate as the number of active flows increases.

When the RED thresholds are low, TCP Vegas connections are able to capture higher

goodput. When the RED thresholds are high and the number of flows is low, TCP Reno

is the winner. Intuitively, this suggests that TCP Reno performs better when the RED

thresholds are high enough to support a long enough queue. In such case, TCP Reno is

able to open a larger window until packet losses. Besides, the variance of goodputs in the

Vegas community is larger than that in the Reno community. Therefore, while the

difference in the average goodput between the Vegas community and the Reno

community contributes to the unfairness, the difference in goodputs in the Vegas
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community also contributes significantly to the unfairness. On closer inspection of the ns

traces, I find that an incorrect minimum round-trip time recorded after a Reno type

timeout causes some of the connections to run at very low throughput in comparison to

other TCP Vegas connections. Hence, the variance of the goodput in the Vegas

community can be poor. The findings point to possible incomparability between the

Reno-type timeout subroutine and the Vegas algorithms. Moreover, I identify that TCP

Vegas may perform unnecessary re-transmission.

With regard to the receiver acknowledgement strategy on fairness, I find that the fairness

is no worse when all the receivers adopt the delayed acknowledgement strategy. In fact,

the fairness is better, except when the RED thresholds are high and the number of flows

is low. One possible explanation is that when the receivers adopt the delayed

acknowledgement strategy, the minimum round-trip time and the actual round-trip time

tend to be over-estimated. Therefore, the chance of an incorrect minimum round-trip

time reduces, leading to lower variance of goodputs in the Vegas community and hence

better fairness. Looking into the impact of the delayed acknowledgement on the

estimation of the minimum round-trip time, I find that the first estimation is always over-

estimated. However, since 2 back-to-back TCP segments are transmitted when the

congestion window increases to 2, the receiver sends the acknowledgement nearly

immediately after the first of these 2 segments have been received. Hence, TCP Vegas can

eventually capture a minimum round-trip time that is much closer to the true value for

calculation of the expected sending rate. Finally, when the receiver adopts the delayed

acknowledgement strategy, the calculated “v_delta_” can be negative. The problem can be

corrected by removing the 2nd term used in the calculation of the expected sending rate,

similar to what has been mentioned in Hengartner’s paper [HBG00].
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In summary, the rest of this chapter includes :

1. a description of the network topology used in the simulation study

2. cases to illustrate the dynamics of TCP Vegas when there is only 1 connection

3. cases to illustrate the dynamics of TCP Vegas when 2 connections compete for the

bottleneck bandwidth. The bias against connections with larger propagation delays

will be mentioned.

4. a more detailed discussion of the unfairness of Vegas-1_3 (i.e. when α = 1 and β = 3)

against connections with larger propagation delays

5. a comparison of the fairness of TCP Reno and TCP Vegas

6. a comparison of the fairness of Vegas-1_3 (when α = 1 and β = 3), Vegas-1 (when δ

= 1), Vegas-2 (when δ = 2) and Vegas-3 (when δ = 3) and the best choice of δ

7. a discussion  of the fairness of TCP Vegas when many active flows share the

bottleneck link

8. a brief discussion of the fairness of TCP Vegas when the receiver adopts the delayed

acknowledgement strategy

1. Network model

The network topology I use consists of 2 sources (S1 & S2), 2 destinations (D1 & D2),

and 2 routers (R1 & R2) as shown in Figure 3.1. Connection 1 starts from S1 to D1 and

connection 2 starts from S2 to D2. Both connections are established via R1 and R2. The

link between R1 and R2 is shared between the 2 connections. The bandwidth of the

shared link is 1.5Mbps. The buffer size of router R1 is 100 packets. The propagation delay

between S1 and D1, the shorter link (connection 1), is 6ms by setting x1 = 1ms. Thus, the

minimum round-trip time of the shorter link, including processing delay of the packets in
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the intermediate routers, is 0.013211s. The propagation delay between S2 and D2, the

longer link (connection 2), is varied by changing the value of x2. For example, if x2 =

30ms, the propagation delay of connection 2 is 64ms. Therefore, the minimum round-trip

time of the longer path, including the transmission delay at the intermediate routers along

the path, is 0.071211s.

The behavior and performance of TCP Vegas when the RED router is used is

investigated. The RED minimum and maximum thresholds are 15 and 45, respectively.

Larger thresholds (instead of the typical values of 5 and 15, respectively) are chosen to

ensure that the limit on the average queue length cannot affect the performance of the

TCP senders.

 Figure 3.1 : The simulation network model

The maximum window size that a TCP connection can reach will have an impact on its

performance. If the maximum window size is too small relative to the available bandwidth

of the network path, TCP connection will not be able to fully utilize the available capacity.

Alternatively, if the maximum window size is too large for the network to handle, the

congestion window will eventually grow to a point where TCP will overwhelm the

network with too many segments, some of which will be discarded before reaching the
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receiver. Fortunately, if the transfer is long enough and if the maximum window size is

large enough to overwhelm the network, the TCP congestion control algorithm will find a

congestion window that is appropriate for the network path. In my simulation, I set the

window size to 30. Moreover, I limit the maximum value of the minimum round-trip time

(including the processing delay) to ensure that the window size does not pose a limit on

the performance of TCP. For TCP Vegas, α and β are set to 1 and 3, respectively. I shall

call this version of TCP Vegas Vegas1_3.

Both connections start their own FTP transfer simultaneously. The sources are greedy

sources such that they always have data to send. The packet size is 1000 bytes. Hence, the

minimum round-trip time of connection 1, the shorter link, is equivalent to 2.48 packets

(0.013211 seconds x 1.5Mbps / 8000 bits). When x2 = 30ms, then the minimum round-

trip time of connection 2 is equivalent to 13.35 packets (0.071211 seconds x 1.5Mbps /

8000 bits). If the bandwidth is equally shared among both connections and the bandwidth

is fully utilized, then connection 1 should maintain on average about 2.24 to 4.24 packets

in the network while connection 2 should maintain on average about 7.67 to 9.67 packets

in the network.

Each simulation lasts for 60 seconds. I use the ns simulator developed at the UC Berkeley

to run the simulations. 60 seconds is considered an adequate length of time because TCP

Vegas congestion window normally converges in less than 5 seconds.

The average throughputs (or average sending rate of the source) of both connections are

observed after the simulation has started for 10 ms. I also track the congestion window

against time. In case of TCP Vegas, the minimum round-trip time, the actual round-trip

time, the actual sending rate, the expected sending rate and the estimated queue backlog

(v_delta_) against time are also recorded.
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In the second simulation setting, I set x1 to 50ms. Therefore, the propagation delay of

connection 1 is 104ms. With this configuration, the propagation delay of connection 2 is

smaller than that of connection 1 with some values of x2 but larger than that of

connection 1 with other values of x2. This allows me to evaluate the fairness of TCP

Vegas with a different configuration.

For easy reference, the following table gives a list of the settings of x1 and x2, together

with the corresponding propagation delay and the minimum round-tip times.

x2 Round-trip propagation
delay

Minimum round-trip time

110ms 224ms 0.231211 seconds

100ms 204ms 0.211211 seconds

90ms 184ms 0.191211 seconds

80ms 164ms 0.171211 seconds

70ms 144ms 0.151211 seconds

60ms 124ms 0.131211 seconds

50ms 104ms 0.111211 seconds

40ms 84ms 0.091211 seconds

30ms 64ms 0.071211 seconds

20ms 44ms 0.051211 seconds

10ms 24ms 0.031211 seconds

5ms 14ms 0.021211 seconds

1ms 6ms 0.013211 seconds
Table 3.1 : Table of round-trip propagation delay &  minimum RTT vs. x2
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2. Performance metrics

2.1 Fairness measure

Jain’s fairness index [J91], a very common fairness index, is used to evaluate the fairness

among senders with different round-trip times. Given a set of flow throughputs (b1, b2,

….., bn), the fairness index is defined as :

bi denotes an allocation metric that may be throughput, throughput times hops or response time.

Since the throughputs are nonnegative, the fairness index is always between 0 and 1. A

lower value implies poorer fairness. If all throughputs are the same, the fairness index is 1.

If the link is shared equally among any k of the n senders (others zero), the Jain’s fairness

index is equal to k/n.  If the bottleneck link is shared by 2 users and the Jain’s index is 0.5,

then one of them is effectively shut out. If the fairness index is 0.9, then one of the

connections is getting 2/3 of the bandwidth. Therefore, a fairness index of less than 0.9

should not be considered a good value.

Figure 3.2 below plots the fairness against the proportion of bandwidth obtained by the

connection with lower throughput. The network model is the same as that I have

described in section 1 of this chapter. There are only 2 connections in the network model.
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Here is a summary of some data points with their approximate fairness measure read from

the graph.

Proportion of Fairness
available bandwidth                  Index
0.50 1.00
0.45 0.99
0.40 0.96
0.35 0.92
0.30 0.84
0.00 0.50

Figure 3.2 : The fairness curve
A plot of the fairness against proportion of bandwidth obtained by the connection

with lower throughput

It can be noted that although the proportion of the available bandwidth obtained by the

connection with lower throughput drops from 0.5 to 0.4, the fairness index drops only

slightly by 0.04, from 1.00 to 0.96. However, when the proportion drops by another 0.1

from 0.4 to 0.3, the fairness index drops by 0.12. The rate of change in the value of the

fairness index increases as the proportion of the bandwidth reduces. 
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The implication is that a relatively high value of the fairness measure, say 0.92, is not a

good fairness measure. From figure 3.2, it can be seen that, when the fairness index is

0.92, one of the connections gets only 35% of the available bandwidth.

2.2 Goodput

Throughout the study, I use the average “goodput” instead of the average throughput to

calculate the fairness index and to compare the performance. Goodput, also called

effective throughput, is defined as the throughput of successfully transmitted packets,

excluding the retransmissions of the lost or the corrupted packets. It is determined by the

number of bits successfully forwarded to the receiver of the TCP connection and the

round-trip time.

I use goodput instead of throughput because I believe the inefficient use of the bandwidth

should be discouraged. Goodput is considered as a better measure because it ignores the

wasteful bits and thus lead to lower measure when the connection uses the bandwidth

ineffectively.

3. Simulation Tool

I use the ns simulator developed at the UC Berkeley to run the simulations. It is available

at the web site http://www.isi.edu/ns/nam or http://www-mash.cs.berkeley.edu. The ns

simulator is an object-oriented simulator, written in C++, and uses the Otcl interpreter as

the command and configuration interface. The ns simulator does not incorporate the real

world TCP protocol implementation. For example, there is no SYN/FIN connection

establishment or teardown. Moreover, no data is ever transferred, e.g. there is no

processing of TCP checksum and urgent data. However, it has the major advantages of
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having readily available coding for running simulations with TCP Vegas and has been

used in research work on TCP Vegas [MLAW99].

For easy reference, I summarize some of the variables used in the ns code of TCP Vegas

here.

• v_baseRTT_..............................................minimum round-trip time

• v_actual_.................................................................actual sending rate

• v_expect_ ......................................................... expected sending rate

• v_delta_ ...................................(v_expect_ - v_actual_) * baseRTT_

• cwnd_ ...................................................................congestion window

• ssthresh_............................................................ congestion threshold

• v_rtt_ .........................................Vegas measured RTT of a segment

I have compared it against University of Arizona’s x-Kernel-Vegas. Based on observations

in the comparison of program codes and the initial set of simulation traces, I have made 2

modifications to the ns simulator.

1. The original ns code set v_baseRTT_ to the average of the measured v_rtt_  either if

1) average v_rtt_ is less than the current value of v_baseRTT_ or 2) if there is only 1

packet in transit in the last RTT. The Arizona code uses only the 2nd checking, not

the first. However, according to the simulation traces, I notice that the 2nd condition

is normally satisfied at the beginning of the simulation and thus set the v_baseRTT_

to a value that is normally greater than the true minimum value. Therefore, I have

removed the 2nd checking from the IF statement.
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2. In ns, the original data type of v_delta_ is “integer”. I have changed it to “double”.

When the data type is “integer”, the simulation traces of Enhanced TCP Vegas shows

that the congestion window converges to a fixed value. This is different from the

behavior of Enhanced TCP Vegas that is described in Hasegawa et al.’s paper. After I

have changed the data type of “v_delta” to “double”, the dynamics of the congestion

window resembles to that described in Hasegawa et. al.’s paper, i.e. the congestion

window oscillates instead of converging to a fixed value as with Brakmo and

Peterson’s TCP Vegas. Moreover, it gives a more timely entry from the slow start

phase into the congestion avoidance phase and may avoid bandwidth shooting during

the slow start phase.

4. Simulation Results

In this section, I use the simulation results to illustrate the dynamics and the characteristics

of TCP Vegas. Instead of just focusing on the steady state behavior, I illustrate what

happens from the start of the transmission.

I first go through what happens when the propagation delay is 6ms or 64ms. These two

simulations serve as the baseline for comparison to the simulations in which 2

connections compete for the bottleneck bandwidth.
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4.1 A case with a single connection

In this section, I present the dynamics and the behavior of TCP Vegas when there is only

1 connection, using the simulation data. I hope the pictorial graphs and figures can

provide a deeper understanding into the dynamics of TCP Vegas. In addition, the results

will serve as the baseline reference in later sections.

4.1.1 A case with a single TCP Vegas connection (when α = 1 and β = 3)

In this section, I present the simulation data obtained when there is only 1 Vegas1_3

connection. The following result is obtained by setting the propagation delay of

connection 1 to 6ms. Including the transmission delay, the minimum round-trip time is

0.013211 seconds. Figure 3.3 shows the dynamics of the congestion window (cwnd_), the

difference between the expected sending rate and the actual sending rate (v_delta_) and

the actual queue against time. Figure 3.4 shows the actual round-trip time measured by the

Vegas algorithms against time. Figure 3.5 shows the expected sending rate and the actual

sending rate against time. The data points are connected by lines to merely present the

data series more clearly. The congestion window only changes at certain point in time

represented by the data point. It does not change continuously as the time moves forward.
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Figure 3.3: Single Vegas1_3 (Propagation delay = 6ms) - cwnd_, v_delta_ & actual
queue against time

The slow-start behavior of TCP Vegas can be observed from figure 3.3 above. The

congestion window of TCP Vegas grows from 1 to 2 and then from 2 to 4 every other

round-trip time (i.e. about 2 x 0.013211 seconds). This is TCP Vegas’ modified slow-start

phase. When the congestion window reaches 4, TCP Vegas discovers that there is more

than 1 extra packets in the intermediate router, which it interprets as a bandwidth

overshoot. Therefore, it decreases its congestion window by 1/8 to 3.5. This triggers the

congestion avoidance phase.

During the congestion avoidance phase, since α= 1, TCP Vegas increases its congestion

window by 1/cwnd_ upon the receipt of an acknowledgement as long as v_delta_ is

greater than 1. TCP Vegas decides only once per RTT by how much the congestion

window should be increased. When the congestion window is 3.5, it detects that it should

increase the congestion window by 1/3.5. Hence, the congestion window increases from

3.5 to 4.357, in step of 1/3.5 in the next RTT. Then, at 0.13539 seconds, when it receives
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an acknowledgement for a Vegas-timed segment, TCP Vegas checks the value of v_delta_

again to decide the direction of window adjustment. Since v_delta_ is still greater than 1

but less than 3, it decides that it should keep on increasing its congestion window.

Therefore, it increases its congestion window in step of 1/4.357 from 4.357 to 5.275 in

the following RTT. Then, TCP Vegas receives another acknowledgement for a Vegas-

timed segment, so it checks the value of v_delta_ again. This time, it finds that v_delta_ is

2.5. Hence, TCP Vegas stops increasing its congestion window because v_delta now lies

between 1 and 3. Therefore, the congestion window finally settles at 5.275. Since TCP

cannot transmit part of a packet, this means that TCP Vegas keeps on transmitting about

5 packets every round-trip time after the steady state has been attained.

Figure 3.4 : Single Vegas1_3 (Propagation delay = 6ms) - Measured RTT against time

At steady state, the packet’s round-trip time is 0.026667 seconds. The queuing delay is

thus 0.013456 (0.026667 – 0.013211) seconds. Since the bandwidth of the bottleneck link

is 1.5Mbps and the packet size is 1000 bytes, it takes about 0.005333 (8000 / 1.5M)
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seconds for the router to transmit a packet. Hence, a queuing delay of 0.013456 seconds

corresponds to about 2.523 (0.013456 / 0.005333) packets, which is equal to the steady

state v_delta_. This should be expected because v_delta_ measures the number of extra

packets that TCP Vegas keeps in the network. These extra packets have to be buffered in

the intermediate routers.

Figure 3.5 : Single Vegas1_3 (Propagation delay = 6ms) - Expected & actual sending
rates against time

Figure 3.5 above shows that the expected sending rate and actual sending rate converges

to 378.48 packets per second and 187.5 packets per second, respectively. As I have

mentioned before, TCP Vegas sends about 5 packets per RTT after the steady state has

been reached. With a minimum round-trip time of 0.013211 seconds, the expected rate is

indeed 5 / 0.013211 = 378.48 packets per second. Since the round-trip time converges to

0.026667 as shown in figure 3.4, the actual sending rate was indeed 5 / 0.026667 = 187.5
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v_delta_ = (378.48 – 187.5) x 0.013211 = 2.523. Since v_delta_ is now between α = 1 and

β=3, there is no more adjustment of the congestion window.

I have calculated previously that with a minimum round-trip time of 0.013211 seconds

and a bottleneck bandwidth of 1.5Mbps, TCP Vegas can keep 2.477 packets in the

network without having to occupy any router buffers. With a steady state congestion

window of 5, TCP Vegas needs to keep about 3 (5 – 2) packets in the intermediate router.

It can be seen from figure 3.3 that the actual queue in the steady state is also fixed at 2.

Including the packet being transmitted by the router, there are about 3 packets in the

router buffer.

The following result is obtained by setting the propagation delay of connection 1 to 64ms

(i.e. x1 = 30ms) instead of 6ms as in the previous case. Again, only connection 1 transmits

packets. The minimum round-trip time is 0.071211 seconds. Accordingly, when the pipe

is full, TCP Vegas should be keeping about 13.35 packets in the network without having

to occupy any router buffers.

Figures 3.6 shows the dynamics of the congestion window (cwnd_), the difference

between the expected sending rate and the actual sending rate (v_delta_) and the actual

queue against time. Figure 3.7 shows the actual round-trip time measured by the Vegas

algorithms against time. Figure 3.8 shows the expected sending rate and the actual sending

rate against time.
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Figure 3.6 : Single Vegas1_3 (Propagation delay = 64ms) – cwnd_, v_delta_ & actual
queue against time

It can be observed that the congestion window converges to 16 in this simulation setting.
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trip time is 0.085333 seconds. Accordingly, the actual sending rate is 16/0.085333 or 187.5

packets per seconds. Hence, the converged v_delta_ is (224.68 – 187.5) * 0.071211 or

2.648 packets, which is consistent with that shown in the plot of v_delta_ in figure 3.6

above. Similar to the previous setting, TCP Vegas needs to keep about 3 (16 – 13.35 or

2.65) extra packets in the router buffer.
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Figure 3.7 : Single Vegas1_3 (Propagation delay = 64ms) - Measured RTT against
time

Figure 3.8 : Single Vegas1_3 (Propagation delay = 64ms) - Expected & actual
sending rates against time
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eventually converge to a fixed value. The actual number of packets queued at the router

also converges and is the same in both cases.

From figure 3.8, it can be noticed that the actual rate matches closely with the expected

rate at the beginning. Eventually, the actual sending rate starts to decrease. The change in

the congestion window and the sending rate stops when the v_delta_ reaches about 2.5 to

2.6 as it now lies between 1 and 3. In both cases, the congestion window settles at the

maximum value that is allowed by the bandwidth-delay product and the parameters of the

Vegas agent, i.e. the bandwidth-delay product plus β. The bottleneck link is fully utilized.

Comparing to the case when the propagation delay of the shorter connection is 6ms, I

notice that although the expected sending rates converges to different values at steady

state, the actual sending rates are the same in both cases. However, the gap between the

expected sending rate and the actual sending rate is wider when the propagation delay is

smaller. This is understandable because v_delta_, which reflects the difference between

the expected rate and the actual rate and hence the number of extra packets that are

allowed in the network, is measured in packets. Since the number of extra packets that is

allowed in the network are the same in both cases, the difference between the expected

sending rate and the actual sending rate will be larger for the shorter connection.

4.1.2 A case with a single Enhanced TCP Vegas connection

In this section, I present the dynamics of Vegas-δ (α = β = δ) when there is only one

Vegas-δ connection in the network. Again, the simulations use the same network model

described before in section 1 of this chapter. However, this time, I set α = β = δ and δ to

1, 2, 3, 4, 5 or 10. The propagation delay is 64ms.
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As an example, figures 3.9, 3.10 and 3.11 show the sending rates, the congestion window,

v_delta_  and the actual queue when α = β = 3, respectively. They are all measured after

the simulation has started for 20 seconds.

Figure 3.9a : Single Vegas-3 - Expected & actual sending rates against time (whole
simulation)
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Figure 3.9b : Single Vegas-3 - Expected & actual sending rates against time (first 10
seconds of simulation time)

Vegas-δ Min. actual
sending rate

Max.  actual
sending rate

(Max. – Min.)
actual  rate

Min. expected
sending rate

Max. expected
sending rate

(Max. – Min.)
expected rate

Vegas-1 174.11 213.27 39.16 182.56 238.73 56.17

Vegas-2 175.00 213.27 38.27 196.60 252.77 56.17

Vegas-3 175.78 211.62 35.84 210.64 252.77 42.13

Vegas-4 176.47 210.16 33.69 224.68 266.81 42.13

Vegas-5 177.08 208.88 31.80 238.73 280.86 42.13

Vegas-10 179.35 204.14 24.79 308.94 351.07 42.13
Table 3.2 : Maximum / minimum expected & actual sending rates vs. Vegas-δ

Figure 3.9a and 3.9b show that the expected and the actual sending rates no longer

converge to fixed values. Instead, they fluctuate. From table 3.2 above, it can be observed

that the range of the fluctuation of the actual sending rate becomes narrower as δ

increases.
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Figure 3.10a : Single Vegas-3 - Congestion window against time (whole simulation)

Figure 3.10b : Single Vegas-3 - Congestion window against time (simulation time
from 50 to 60 [seconds])
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Min. congestion
window

Max. congestion
window

Range Average

Vegas-1 13 17 4 15

Vegas-2 14 18 4 16

Vegas-3 15 18 3 16.5

Vegas-4 16 19 3 17.5

Vegas-5 17 20 3 18.5

Vegas-10 22 25 3 23.5
Table 3.3 : Maximum &  minimum congestion window vs. Vegas-δ

It is obvious from figure 3.10a that the congestion window also fluctuates. From figure

3.10b, which shows the movement of the congestion window in the last 10 seconds

simulation time, it can be seen that the congestion window increases from 15 to 18 during

a RTT. Then, since v_delta_ becomes greater than 3, the congestion window is then

decreased by 1 until it reaches 15. The cycle repeats.

Table 3.3 shows that the fluctuation of the congestion window is smaller when δ is greater

than or equal 3 than when δ is 1 or 2. Therefore, based on the stability of the congestion

window, a value of 3 is more suitable for δ than a value of 2.
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Figure 3.11a : Single Vegas-3 - v_delta_ against time

Figure 3.11b : Single Vegas-3 - Average & actual queue against time
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Vegas-δ Min. v_delta_ Max. v_delta_ Range Average

Vegas-1 0 2.697 2.697 1.27

Vegas-2 0.694 3.691 2.997 2.20

Vegas-3 1.758 3.691 1.933 2.73

Vegas-4 2.814 4.687 1.873 3.75

Vegas-5 3.863 5.683 1.820 4.77

Vegas-10 9.041 10.670 1.629 9.85
Table 3.4 : Maximum &  minimum v_delta vs. Vegas-δ

From figure 3.11a and 3.11b, it can be observed that v_delta_ and the actual router queue

also fluctuate. It can be observed from table 3.4 that, except with Vegas-1, the range of

fluctuation of v_delta_ becomes narrower as δ increases.

I have mentioned that that the stability of Vegas-δ improves as δ increase. Therefore, it

can be argued that larger δ should be preferred. However, there is a trade-off : larger δ

causes congestion more easily, especially when many TCP connections compete for

bandwidth.

4.2 Is TCP Vegas really fair to connections with larger propagation delays

4.2.1 A case with 2 TCP Vegas connections competing for bandwidth

In this section, I discuss the fairness of Vegas-1_3 when 2 of them with different

propagation delays share a bottleneck bandwidth. Using the same network model, I set x1

to 1ms and x2 to 30ms. Accordingly, the propagation delay of the shorter connection

(connection 1) is 6ms and that of the longer connection (connection 2) is 64ms. The

minimum round-trip time of the shorter connection is 0.013211 seconds and that of the

longer connection (connection 2) is 0.071211 seconds.
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 Figure 3.12 : 2 Vegas1_3 (Propagation delay of connection 1 = 6ms, Propagation
delay of connection 2 = 64ms) - Congestion window against time

Figure 3.12 shows that the congestion windows of both connections converge quickly in

less than 1 second. There is no drop of packets during the whole simulation for both

connections.

The dynamics of both TCP Vegas connections is similar to the case when there is only 1

TCP Vegas connection in the network. During the slow-start phase, the congestion

window of the shorter connection doubles every other RTT, i.e. for connection 1, from 1

to 2 at 0.026420 seconds, and then from 2 to 4 at 0.058180 seconds. Then, the modified

congestion avoidance phase is triggered by a detection of bandwidth over-shoot. When

the size of the congestion window reaches 4, TCP Vegas detects a bandwidth over-shoot

(i.e. the expected sending rate is greater than the actual sending rate by more than an

equivalent of 1 router buffer). Hence, TCP Vegas reduces the congestion window by 1/8

to 3.5 and then enters the congestion avoidance phase. During the congestion avoidance

phase, the congestion window keeps on increasing until it reaches 5.275 because the
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difference between the expected sending rate and the actual sending rate continues to

differ by less than α = 1.

Contrary to the one-connection scenario, however, when the congestion window reaches

5.275, connection 1 discovers that the difference between the expected sending rate and

the actual sending rate differs by more than β = 3. Therefore, its congestion avoidance

algorithm reduces the congestion window by 1 to 4.275.

Finally, the congestion window of the shorter connection converges to about 4 at

0.295390 second and the congestion window of connection 2 converges to 7 at 0.652050

second. The simulation data in section 4.1.1 shows that, when there is only 1 TCP Vegas

connection, the congestion window converges to 5 and 16 if the propagation delay is 6ms

and 64ms, respectively. Hence, at steady state, the congestion window of connection 1 is

only slightly less than that when there is only 1 TCP Vegas connection. However, the

congestion window of connection 2 is less than half of that can be attained when there is

only 1 TCP Vegas connection with the same propagation delay. The size of the

congestion window suggests possible bias against connections with larger round-trip

times.
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Figure 3.13 : 2 Vegas1_3 (Propagation delay of connection 1= 6ms, Propagation
delay of connection 2 = 64ms.) - v_delta_ against time

The converged value of v_delta_ also suggests a bias in throughput against connection 2,

which has a larger propagation delay. Figure 3.13 shows the value of v_delta_ against time.

The v_delta_ value of connection 1 converges to 2.5 to 2.6 while the v_delta_ value of

connection 2 converges to 1.1. This means that connection 1 keeps on average 2.5 to 2.6

packets in the router buffer while connection 2 keeps on average 1.1 packets in the router

buffer. This suggests that the throughput of connection 1, the shorter connection, is

higher. Therefore, there is an unfair share of the bandwidth.
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Figure 3.14 : 2 Vegas1_3 case (Propagation delay of connection 1 = 6ms, Propagation delay of
connection 2 = 64ms) - Expected & actual sending rates against time

In line with the observation on v_delta_, figure 3.14 shows that the shorter connection

also captures a higher throughput. In the simulation, the measured average goodput of the

shorter connection is 882,415.16 bps and the measured average goodput of the longer

connection is 617,610.61 bps. The fairness index is 0.969.

Under this simulation setting, the longer TCP Vegas connection records a minimum

round-trip time of 0.076544 seconds although the true minimum round-trip time is only

0.071211 seconds. Therefore, it calculates its bandwidth-delay product as 1.5 Mbps *

0.076544s (expected sending rate is 7/0.076544) instead of 1.5Mbps * 0.071211s

(expected sending rate is 7/0.071211). Accordingly, connection 2 should have pumped

more packets into the network pipe because it over-estimates the bandwidth-delay

product. However, connection 2 still achieves lower throughput than connection 1.
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Even worse, when x2 = 10ms, the fairness index is only 0.9. This means that the shorter

connection is transferring at twice the rate of the longer connection. The simulation

results suggest a possible unfair treatment against connections with larger RTTs.

Figure 3.15 : 2 Vegas1_3 (Propagation delay of connection 1 = 6ms, Propagation delay of
connection 2 = 64ms) - Measured RTT against time

As a side note, I observe that the actual sending rate does not necessarily converge to a

fixed value. Figure 3.14 shows the expected and the actual sending rates of both

connections. It can be seen that, while the actual sending rate of the longer connection

converges to a fixed value, the actual sending rate of the shorter connection fluctuates

within a narrow range. This is due to the fluctuation in the measured round-trip time of

the shorter connection. Figure 3.15 shows the measured round-trip times of both

connections. It can be seen that the measured round-trip time of the shorter connection is

either 0.032 seconds or 0.037333 seconds.

Measured RTT against time (Propagation delay of connection 1 = 6ms, Propagation delay of 
connection 2 = 64ms, Vegas1_3, RED gateway)
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4.2.2 Unfairness of TCP Vegas (when α ≠ β)

To further explore whether there is really a bias against connections with larger

propagation delays, I run simulations with 2 connections and set the propagation delay of

the shorter connection (connection 1) to 6ms. I vary the propagation delay of the longer

connection (connection 2) by changing x2 from 1ms to 110ms (in step of 10ms) in order

to investigate the effect of the difference in the  propagation delays on the fairness of TCP

Vegas. Accordingly, the propagation delays of the longer connections range from 6ms to

224ms. There are no packet losses in all the simulations.

αα =1
ββ = 3

Vegas 1 : Propagation delay=6ms,
Minimum round-trip time

= 0.013211 seconds

Vegas 2 : Propagation delay
= 2 * (x2 + 2)

Ratio of
sending

rates
(Vegas1/
Vegas2)

Fairness

x2 Converged
expected

sending rate

Converged
actual

sending rate

Converged
v_delta

Converged
expected

sending rate

Converged
actual

sending rate

Converged
v_delta_

110ms 2422285.02 928571.43 2.4666 642586.58 606382.98 1.0705 1.53 0.965

100ms 2422285.02 925824.17 2.4712 591103.89 545454.54 1.2356 1.70 0.931

90ms 2422285.02 936107.45 2.4542 610550.31 562500.00 1.1805 1.66 0.941

80ms 2422285.02 926507.94 2.4700 636363.64 583333.34 1.1667 1.59 0.953

70ms 2422285.02 857142.86 2.5846 724137.93 642623.72 1.5759 1.33 0.980

60ms 2422285.02 934407.81 2.4570 644480.90 568965.52 1.2889 1.64 0.945

50ms 2422285.02 903420.68 2.5082 686436.02 600000.00 1.2592 1.51 0.962

40ms 2422285.02 928996.34 2.4659 670091.58 571428.57 1.1779 1.63 0.946

30ms 2422285.02 881562.88 2.5442 731605.35 617647.06 1.0904 1.43 0.970

20ms 2422285.02 800000.00 2.6789 990379.18 700000.00 2.0524 1.14 0.996

10ms 2422285.02 1000000.00 2.3487 755794.42 500000.00 1.0153 2.00 0.900

5ms 1816713.77 750000.00 1.7615 1340183.16 750000.00 1.7615 1.00 1.000

1ms 1816713.77 750000.00 1.7615 1816713.77 750000.00 1.7615 1.00 1.000
Table 3.5 : 2 Vegas1_3 – Fairness vs. propagation delay of longer connection, connection 1

starts first (Min. RTT of shorter connection = 0.013211s)

The simulation results in table 3.5 suggest that, when α = 1 and β = 3, there is a bias

against connections with larger propagation delays. The converged actual sending rate of

the shorter connection is always higher than that of the longer connection, unless the
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difference in propagation delays between the shorter and the longer connection is close

(i.e. when x2 = 1ms or 5ms). When the propagation delays of both connections are close,

the fairness is perfect. In other settings, the fairness varies from 0.90 to 0.996 and the

converged actual sending rate of the shorter connection is always higher.

However, the degree of bias does not necessarily increase as the propagation delay of the

longer connection increases. For instance, the fairness is worst when x2 =10ms, with the

shorter connection transmitting at twice the rate of the longer connection.

In line with the bias on sending rate and goodput, the converged v_delta_ of the shorter

connection is also larger than that of the longer connection. From table 3.5, it can be

found that the average v_delta of connection 1 is about 2.5 while that of the longer

connection is normally around 1. Since v_delta_ refers to the number of packets in the

router buffer, this implies that, at steady state, the shorter connection is keeping about 2

packets in the intermediate router buffer while the longer connection is keeping about

only 1 packet in the router buffer (except when x2 = 1ms, 5ms and 20ms).
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X2 True minimum round-
trip time (in seconds)

Measured minimum
round-trip time (in

seconds)

Over-estimation of
minimum round-trip

time (in seconds)

110ms 0.231211 0.236544 0.005333

100ms 0.211211 0.216544 0.005333

90ms 0.191211 0.196544 0.005333

80ms 0.171211 0.176000 0.004789

70ms 0.151211 0.154667 0.003456

60ms 0.131211 0.136544 0.005333

50ms 0.111211 0.116544 0.005333

40ms 0.091211 0.095509 0.004298

30ms 0.071211 0.076544 0.005333

20ms 0.051211 0.056544 0.005333

10ms 0.031211 0.031755 0.000544

5ms 0.021211 0.023877 0.002666

1ms 0.013211 0.013211 0.000000
Table 3.6 : Over-estimation of minimum RTTs vs. x2

I also observe that, under this simulation setting, the minimum round-trip time of the

longer connection is always over-estimated. Exceptions occur when the propagation

delays of both connections are the same (i.e. both x1 & x2 = 1ms). Therefore, there is no

guarantee that TCP Vegas is able to detect the true minimum round trip. In fact, when the

packets belonging to the longer connection arrives at the router, it is likely that some

packets belonging to the shorter connection has already occupied the queue at the router.

Consequently, the packets belonging to the longer connection has to wait after the packets

that are queuing at the router have been transmitted before they can be served. Hence, its

estimation of the minimum round-trip time includes the transmission delay and the

queuing delay due to packets of the shorter connection queuing at the router. In case

when the propagation delays of both connections are the same, the first estimation of the

minimum round-trip time of connection 2 is over-estimated as 0.018544 seconds

(including the transmission delay of the packet of connection 1). Fortunately, the TCP

Vegas agent is able to detect the correct minimum round-trip time at a later stage, i.e. after

another RTT.
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There is also a bias in the expected sending rate of the TCP Vegas connection. It is

obvious from table 3.5 that the expected sending rate of the shorter connection is much

higher than that of the longer connection. Since the shorter connection opens its

congestion window faster than that of the longer connection, its expected sending rate

and actual sending also increase faster than those of the longer connection. Therefore, the

rate at which the expected sending rate of the shorter connection increases, relative to the

rate at which the expected sending rate of the longer connection increases, seems to affect

the steady state equivalent point. In many of the simulations I have done with different

value of x2, the expected sending rate of the longer connection is even less than the fair

share of its bandwidth, especially when the difference in propagation delays is large. Since

the actual sending rate is always lower than the expected sending rate, the actual sending

rate of the longer connection will be less that its fair allocation. Therefore, there will be an

unfair allocation of the bottleneck bandwidth.

To confirm my observation of the bias against connections with larger round-trip times, I

reverse the sequence that the 2 connections are scheduled and thus started in the

simulation. This allows me to get a set of simulation data with which the minimum round

trip time is correctly estimated. The results, summarized in the table 3.7, show that there is

still a bias in bandwidth allocation against connections with larger propagation delays.

Again, there are no packet losses in all the simulations.
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αα =1
ββ = 3

Vegas 1 : Propagation delay=6ms,
Minimum round-trip time

= 0.013211 seconds

Vegas 2 : Propagation delay
= 2 * (x2 + 2)

Ratio of
sending

rate
(Vegas1/
Vegas2)

Fairness

x2 Converged
expected

sending rate

Converged
average

sending rate

Converged
v_delta

Converged
expected

sending rate

Converged
average

sending rate

Converged
v_delta_

110ms 2422285.02 989283.80 2.396937 553607.68 510721.96 1.241872 1.94 0.908

100ms 2422285.02 1011523.88 2.283397 530276.25 488481.88 1.106325 2.07 0.892

90ms 2422285.02 975043.74 2.431845 585741.38 525122.02 1.451800 1.86 0.917

80ms 2422285.02 916667.13 2.483704 654164.85 583537.27 1.515889 1.57 0.953

70ms 2422285.02 984496.91 2.396937 581969.53 515528.86 1.254000 1.91 0.911

60ms 2422285.02 1017923.91 2.283397 548735.87 482241.85 1.092214 2.11 0.887

50ms 2422285.02 1000003.84 2.348667 575484.37 500001.92 1.049333 2.00 0.900

40ms 2422285.02 1000019.58 2.348667 613963.28 500009.79 1.299333 2.00 0.900

30ms 2422285.02 882403.39 2.544246 786399.04 617762.37 1.502118 1.43 0.970

20ms 2422285.02 964164.53 2.404558 781087.27 535842.52 1.570714 1.80 0.925

10ms 1816713.77 833281.12 1.624445 1025290.50 666720.89 1.399111 1.25 0.988

5ms 1816713.77 857124.03 1.560244 1131506.16 642883.02 1.295571 1.33 0.980

1ms 1816713.77 750094.69 1.761500 1816713.77 749934.68 1.761500 1.00 1.000
Table 3.7 : 2 Vegas1_3 - Fairness vs. propagation delay of longer connection, connection 2

starts first (Min. RTT of shorter connection = 0.013211s)

I also run another set of simulations but set the propagation delay of the shorter

connection to 104ms (x1 = 50ms) while varying the value of x2 from 1 ms to 110ms.

Under this simulation setting, the minimum round-trip time of both connections are

correctly estimated. Moreover, the propagation delay of connection 2 is higher than that

of connection 1 in some cases while it is lower than that of connection 1 in other cases.

However, the difference in propagation delays is smaller.

Table 3.8 below shows the result with this set of simulation setting. The simulation results

also support that there is a bias against connections with larger round-trip delays, except

when x2 = 40ms and x2 = 60ms. Therefore, this pattern of bias may not apply when the

propagation delays of the 2 connections are close, e.g. when x2 = 40ms to 60ms.
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Vegas 1 : Propagation delay
=0.111211 seconds

Vegas 2 : Propagation delay
= 2 * (X2 + 2)

Ratio of
sending

rates

(Vegas1

/Vegas2)

Fairness

x2

Converged
expected

sending rate

Converged
actual

sending rate

Converged
v_delta

Converged
expected

sending rate

Converged
actual

sending rate

Converged
v_delta_

110ms 1150968.74 989441.68 2.2483 553607.68 510720.87 1.2419 1.94 0.908

100ms 1079033.18 906883.77 2.3920 643906.87 592962.47 1.3434 1.53 0.958

90ms 1079033.18 900013.68 2.4888 669418.72 600009.12 1.6592 1.50 0.962

80ms 1007097.64 900003.89 1.4880 654164.85 600002.59 1.1592 1.50 0.962

70ms 1150968.74 954588.10 2.7187 634875.85 545456.06 1.6902 1.75 0.931

60ms 863226.55 692485.28 2.3760 975530.45 807526.15 2.7547 0.86 0.994

50ms 1079033.18 864652.36 2.9700 791291.00 635369.09 2.1780 1.36 0.977

40ms 1007097.64 857134.54 2.0845 789381.36 643050.91 1.6706 1.33 0.980

30ms 647419.91 540004.98 1.4933 1235769.92 960008.85 2.4582 0.56 0.927

20ms 647419.91 562423.54 1.1805 1249739.64 937639.25 1.9997 0.60 0.941

10ms 647419.91 540002.07 1.4933 1537935.75 960003.69 2.2470 0.56 0.927

5ms 647419.91 562562.52 1.1805 1885843.60 937604.20 2.5144 0.60 0.941

1ms 575484.37 500000.00 1.0493 2422285.02 1000000.00 2.3487 0.50 0.900
Table 3.8 : 2 Vegas1_3 - Fairness vs. propagation delay of longer connection (Min. RTT of

shorter connection = 0.111211s)

4.2.3 Fairness of Enhanced TCP Vegas (when α = β)

The simulation results presented in the previous section supports that Vegas1_3 biases

against connections with larger propagation delays. In this section, I explore whether the

bias still exists with Enhanced TCP Vegas.

The simulation setting is similar to that described in the network model. The RED

gateway is adopted. Its minimum threshold is 15 and the maximum threshold is 45. The

buffer size is 100 packets. The α and β values of the 2 TCP Vegas agents are equal and

are set to 1, 2 or 3. The minimum round-trip time of the shorter connection is 0.013211

seconds (including processing delay at the router). However, I vary the propagation delay

of the longer connection (i.e. by modifying the value of x2) in an attempt to evaluate the

effect of different propagation delays on the fairness. Each of the simulations lasts for 60
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seconds. There are no packet losses in all the simulations. The tables and figures below

display the result.

αα =1
ββ = 1

Connection 1 :
Propagation delay=6ms,

Minimum round-trip
time=0.013211 seconds

Connection 2 :
Propagation delay

= 2 * (x2 + 2)

x2 Converged actual sending rate Converged actual sending rate

Ratio of
sending

rates
(Vegas1/
Vegas2)

Fairness

110ms 932815.32 526888.65 1.77 0.928

100ms 975849.15 482884.53 2.02 0.898

90ms 977153.15 469455.92 2.08 0.890

80ms 1051843.60 394881.35 2.66 0.829

70ms 847532.29 636169.22 1.33 0.980

60ms 869942.36 622095.99 1.40 0.973

50ms 793147.33 706904.36 1.12 0.997

40ms 750087.04 750087.04 1.00 1.000

30ms 706249.49 793450.66 0.89 0.997

20ms 846240.27 653120.21 1.30 0.984

10ms 833441.12 666720.89 1.25 0.988

5ms 807363.79 692003.25 1.17 0.994

1ms 750246.53 749926.52 1.00 1.000
Table 3.9 : Fairness of Vegas-1 vs. propagation delay of the longer connection

αα =2
ββ = 2

Connection 1 :
Propagation delay=6ms,

Minimum round-trip
time=0.013211 seconds

Connection 2 :
Propagation delay

= 2 * (x2 + 2)

x2 Converged actual sending rate Converged actual sending rate

Ratio of
sending

rates
(Vegas1/
Vegas2)

Fairness

110ms 712482.17 787362.39 0.90 0.998

100ms 764657.94 735377.25 1.04 1.000

90ms 776482.53 723522.36 1.07 0.999

80ms 734889.88 765450.29 0.96 1.000

70ms 723526.32 776486.79 0.93 0.999

60ms 760662.52 739541.89 1.03 1.000

50ms 780643.00 719522.76 1.08 0.998

40ms 742247.13 757287.27 0.98 1.000

30ms 739052.70 761453.08 0.97 1.000

20ms 772803.63 727363.42 1.06 0.999

10ms 768359.46 731877.59 1.05 0.999

5ms 768323.61 731683.44 1.05 0.999

1ms 750254.69 749934.68 1.00 1.000
Table 3.10 : Fairness of Vegas-2 vs. propagation delay of the longer connection
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αα =3
ββ = 3

Connection 1 :
Propagation delay=6ms,

Minimum round-trip
time=0.013211 seconds

Connection 2 :
Propagation delay

= 2 * (x2 + 2)

x2 Converged actual sending rate Converged actual sending rate

Ratio of
sending

rates
(Vegas1/
Vegas2)

Fairness

110ms 725602.79 774402.97 0.94 0.999

100ms 758422.45 741461.95 1.02 1.000

90ms 762887.32 737287.08 1.03 1.000

80ms 733461.71 766742.70 0.96 1.000

70ms 736652.66 763373.11 0.96 1.000

60ms 759042.91 740962.85 1.02 1.000

50ms 758402.91 741442.85 1.02 1.000

40ms 743842.86 756002.90 0.98 1.000

30ms 729602.80 770242.96 0.95 0.999

20ms 770083.62 730243.43 1.05 0.999

10ms 772641.04 727360.97 1.06 0.999

5ms 755363.55 744803.50 1.01 1.000

1ms 750094.69 749934.68 1.00 1.000
Table 3.11 : Fairness of Vegas-3 vs. propagation delay of the longer connection

The simulation results in table 3.9 suggest that TCP Vegas’ bias against connections with

larger round-trip delays is still not eliminated with Vegas-1. In some cases, the fairness

index is even less than 0.90.

However, the fairness is much improved with Vegas-2 and Vegas-3. It can be found from

table 3.10 and 3.11 that the fairness index of Vegas-2 and Vegas-3 is always greater than or

equal to 0.998. When Vegas-3 is used, 9 out of the 13 simulations give a fairness index of

1.000 !

4.2.4 Comparison of Vegas fairness and Reno fairness

It has been reported that the fairness of TCP Vegas is better than that of TCP Reno. In

addition, the fairness of TCP Vegas does not show the same bias pattern as that of TCP

Reno [CC00, MLAW99]. My simulation results in table 3.12 confirm that Reno fairness
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indeed becomes worse as the difference in propagation delays between the 2 connections

increases. However, Vegas fairness can be worse than Reno fairness as well (e.g. when

propagation delay of the longer connection is 24ms or 84ms). Therefore, there is no

guarantee that the fairness of Vegas1_3 is better than the fairness of TCP Reno.

The simulation setting is similar to that described in the network model. The RED

gateway is adopted. Its minimum threshold is 15 and the maximum threshold is 45. The

buffer size is 100 packets. The minimum round-trip time of the shorter connection is

0.013211 seconds (including the processing delay at the router). However, I vary the

propagation delay of the longer connection (i.e. by modifying the value of x2) in an

attempt to evaluate the effect of the difference in propagation delays on fairness. Each of

the simulations lasts for 60 seconds. The tables and figures below display the result.

x2 Propagation delay of
the longer connection

Reno
Fairness

Vegas1_3
Fairness

(connection 1
starts first)

Vegas1_3
Fairness

(connection 2
starts first)

Vegas-3
Fairness

(connection 2
starts first)

100ms 204ms 0.817 0.931 0.892 1.000

80ms 164ms 0.855 0.953 0.953 1.000

60ms 124ms 0.917 0.945 0.887 1.000

40ms 84ms 0.982 0.946 0.900 1.000

20ms 44ms 0.974 0.996 0.925 0.999

10ms 24ms 0.994 0.900 0.988 0.999

1ms 6ms 0.994 1.000 1.000 1.000
Table 3.12 :  Comparison of Reno & Vegas fairness
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X2 Reno1 Reno2 Ratio of sending
rates

(Reno1/Reno2)

Reno Fairness

100ms 1102901.59 394727.73 2.79 0.817

80ms 1060041.96 441137.46 2.40 0.855

60ms 975859.11 525130.28 1.86 0.917

40ms 848803.99 647203.04 1.31 0.982

20ms 872164.10 626882.95 1.39 0.974

10ms 809440.39 690560.33 1.17 0.994

1ms 808815.84 691533.54 1.17 0.994
Table 3.13 : Summary of Reno goodputs

Connection 1
(Propagation delay = 0.013211 seconds)

Connection 2
(Propagation delay = 2 x (x2 + 2)

x2 Expected
sending

rate

Measured
average
goodput

Converged
congestion

window

Expected
sending

rate

Measured
average
goodput

Converged
congestion

window

Vegas
Fairness

100ms 2422320 954588.26 4.146 591104 545456.15 16.875 0.931

80ms 2422320 916667.13 4.191 636364 583537.27 14.000 0.953

60ms 2422320 931055.14 4.275 686400 568969.25 11.817 0.945

40ms 2422320 928483.57 4.357 670080 571522.19 8.000 0.946

20ms 2422320 800013.01 4.357 990400 700011.38 7.000 0.996

10ms 2422320 1000002.02 4.357 755794 500001.01 3.500 0.900

1ms 2422320 749934.68 3.500 1816714 750094.69 3.500 1.000
Table 3.15 : Summary of Vegas1_3 goodputs

From the simulation results given in table 3.12, it is obvious that, in some cases, the

fairness of TCP Vegas is better than the fairness of TCP Reno. However, this is not a

guarantee. For example, when x2 is 10ms or 40ms, Reno fairness is much better than that

of Vegas1_3. The fairness of Vegas-3, on the other hand, is consistently better than that

of TCP Reno.

As expected, the fairness of TCP Reno gets worse as the propagation delay of the longer

connection increases. Vegas-1_3 and Vegas-3, on the other hand, does not show the same

delay pattern as that of TCP Reno. That is, the degree of bias does not necessarily

increases with the increase in the difference in the propagation delays.
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In summary, I observe that the original version of TCP Vegas [BP94] is still unfair to

connections with larger propagation delays, unless the difference in the propagation delays

of the connections is small. In some cases, the expected sending rate of the longer

connection is even less than the fair share of the available bandwidth. Therefore, the

actual sending rate and average goodput is also less than if the bandwidth is shared

equally. However, unlike TCP Reno, the degree of bias does not necessarily increase as the

difference in propagation delays increases. The simulation results also confirm that the

fairness of TCP Vegas may be worse than that of TCP Reno so that improvement is not a

guarantee. The problem of unfairness, however, can be much resolved by setting α = β =

2 or 3.

4.3 Impact of the Vegas threshold, αα and ββ, on fairness

Hasegawa proposed that by setting α = β, the fairness of TCP Vegas should be improved.

Hasegawa called the control parameter δ. Hasegawa claimed that the improvement was

achieved by allowing the window size to fluctuate around a central value that is

proportional to the round-trip delay. By doing so, there will be fairness in terms of

window size / propagation delay. In addition, the fluctuation allows the minimum round-

trip time to be measured accurately.

In this section, I present the simulation results that explore the most appropriate value for

δ in terms of fairness. I shall call the corresponding version of Enhanced TCP Vegas,

Vegas-δ. For example, Vegas-2 has δ = 2. I also compare their performance against the

configuration when α is set to 1 and β is set to 3, which I call Vegas-1_3.
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The setting is similar to that stated in our network model. The minimum round trip time

of the shorter connection is 0.013211 seconds. The router buffer is 100 packets. The

RED gateway is used and the minimum and the maximum thresholds are 15 and 45,

respectively. The window sizes of both TCP agents are 30. The simulation is run for 60

seconds. Average goodputs are measured after the simulation has started for 10 seconds.

The table and graph below shows the fairness measures of Enhanced TCP Vegas with

different value of δ and x2.

Table 3.16 : Fairness of Vegas-1, Vegas-2, Vegas-3 & Vegas1_3, connection 1 starts
first (Min. RTT of connections 1 = 0.013211s)

Min. rtt of longer connection Vegas-1 Vegas-2 Vegas-3 Vegas-1_3
0.231211 seconds (x2=110ms) 0.928 0.995 0.992 0.965
0.211211 seconds (x2=100ms) 0.898 1.000 0.997 0.931
0.191211 seconds (x2=90ms) 0.890 1.000 0.996 0.941
0.171211 seconds (x2=80ms) 0.858 0.999 0.995 0.953
0.151211 seconds (x2=70ms) 0.988 0.982 0.989 0.980
0.131211 seconds (x2=60ms) 0.998 0.997 0.997 0.945
0.111211 seconds (x2=50ms) 0.997 0.986 0.996 0.962
0.091211 seconds (x2=40ms) 1.000 0.994 0.995 0.946
0.071211 seconds (x2=30ms) 0.997 0.968 0.991 0.970
0.051211 seconds (x2=20ms) 0.998 0.998 0.998 0.996
0.031211 seconds (x2=10ms) 0.988 0.999 1.000 0.900
0.021211 seconds (x2=5ms) 0.994 0.999 0.999 1.000
0.013211 seconds (x2=1ms) 1.000 1.000 1.000 1.000
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Figure 3.16a : Comparison of the fairness of Vegas-1_3, Vegas-1, Vegas-2 & Vegas-3,
connection 1 starts first (Min. RTT of connection 1 = 0.013211s)

Min. rtt of longer connection Vegas-1 Vegas-2 Vegas-3 Vegas-1_3
0.231211 seconds (x2=110ms) 0.928 0.998 0.999 0.908
0.211211 seconds (x2=100ms) 0.898 1.000 1.000 0.892
0.191211 seconds (x2=90ms) 0.890 0.999 1.000 0.917
0.171211 seconds (x2=80ms) 0.829 1.000 1.000 0.953
0.151211 seconds (x2=70ms) 0.980 0.999 1.000 0.911
0.131211 seconds (x2=60ms) 0.973 1.000 1.000 0.887
0.111211 seconds (x2=50ms) 0.997 0.998 1.000 0.900
0.091211 seconds (x2=40ms) 1.000 1.000 1.000 0.900
0.071211 seconds (x2=30ms) 0.997 1.000 0.999 0.970
0.051211 seconds (x2=20ms) 0.984 0.999 0.999 0.925
0.031211 seconds (x2=10ms) 0.988 0.999 0.999 0.988
0.021211 seconds (x2=5ms) 0.994 0.999 1.000 0.980
0.013211 seconds (x2=1ms) 1.000 1.000 1.000 1.000

Table 3.17 : Fairness of Vegas-1, Vegas-2, Vegas-3 & Vegas1_3, connection 2 starts first (Min.
RTT of connection 1 = 0.013211s)
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Figure 3.16b : Comparison of the fairness of Vegas-1, Vegas-2, Vegas-3 & Vegas1_3,
connection 2 starts first (Min. RTT of connection 1= 0.013211s)

First, I observe from tables 3.16, 3.17 and graphs 3.16a and 3.16b above that, the fairness

of Vegas-1 is unstable. When the propagation delay of connection 2, i.e. the longer
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Vegas1_3. For example, when the value of x2 is 80ms (corresponding to a round-trip

propagation delay of 164ms), the fairness index of Vegas-1 is far worse that that of Vegas-

1_3. It is even less than 0.9.

Comparatively, the fairness of Vegas-2 and Vegas-3 are more stable. In this simulation

setting, the fairness index is always greater than 0.98 and, in many cases, very close to 1.
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running simulations with Vegas-4 and Vegas-10. Their fairness is equally good.

Previously, I mention that the fairness of Vegas-1 is unstable. In general, there is a bias

against connections with larger propagation delays (except when x2 = 30ms or 40ms),

especially when the delay difference is large. Therefore, I would like to explore why the

fairness of Vegas-1 is far worse when the difference in propagation delays is larger. I focus

on the case when x2 = 90ms (i.e. when the round-trip propagation delay of the longer

connection is 184ms) to illustrate the difference.

Figure 3.17 : Actual sending rate of Vegas-1 when x2 = 90ms
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Figure 3.18 : Actual sending rate of Vegas-2 when x2 = 90ms

Figure 3.19 : Actual sending rate of Vegas-3 when x2 = 90ms
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Figure 3.20 : Expected sending rate of Vegas-1, Vegas-2 & Vegas-3 when x2= 90ms (Min. RTT
of shorter connection = 0.013211s)

Figure 3.21 : Vegas-1 - v_delta_ against time when x2=90ms
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Figure 3.22 : Vegas 2 - v_delta_ against time when x2=90ms

Figure 3.23 : Vegas-3 - v_delta_ against time when x2=90ms
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around the lowest edge of the fluctuation region of the actual sending rate of the shorter

connection. In addition, the range of the actual sending rate of the longer connection is

very small. Contrary, the actual sending rate of the shorter connection fluctuates within a

very wide range from about 60 packets per second to 288 packets per seconds. Hence, the

shorter connection is sometimes able to capture much higher goodput. Therefore, the

average goodput of the shorter connection is also higher. In comparison, figures 3.18 and

3.19 show that the actual sending rate of the shorter connection fluctuates between much

narrower range with Vegas-2 (90 – 125 packets per second) and Vegas-3 (78 – 117 packets

per second), leading to an improvement in fairness.

As can be seen from figure 3.20, the expected sending rate of the longer connection of

Vegas-1 fluctuates around 60 packets per second (or about 480,000 bps), a value that is

even less than its fair share. This means that the actual sending rate of the longer

connection of Vegas-1 will be less than the fair share because the actual sending rate is less

than the expected sending rate. The problem is much relieved with Vegas-2 and Vegas-3.

The simulation results suggest that δ = 1 is may not be large enough for a connection with

large propagation delay to compete for a fair share of the available bandwidth. Of course,

there is another limiting factor, i.e. the advertised window. The advertised window will

limit the throughput that the longer connection can achieve.
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S1ms Vegas-1 Vegas-2 Vegas-3 Vegas-1,3

110ms 0.000000 0.000000 0.003456 0.005333

100ms 0.000000 0.002122 0.005333 0.005333

90ms 0.000298 0.000789 0.005333 0.005333

80ms 0.001754 0.000000 0.004789 0.004789

70ms 0.000000 0.003456 0.005333 0.003456

60ms 0.002122 0.005333 0.005333 0.005333

50ms 0.000000 0.005333 0.005333 0.005333

40ms 0.000000 0.004298 0.004298 0.004298

30ms 0.000000 0.003456 0.005333 0.005333

20ms 0.001877 0.005333 0.005333 0.005333

10ms 0.000544 0.000544 0.000544 0.000544

5ms 0.002666 0.002666 0.002666 0.002666

1ms 0.000000 0.000000 0.000000 0.000000
Table 3.17 : Over-estimation of minimum RTT (Propagation delay of shorter connection =

6ms)

In the next simulation setting, I set the minimum round-trip time of the shorter

connection to 0.11211 seconds. With this setting, I get a correct estimation of the

minimum round-trip time for all values of x2. The table and graph show the fairness index

with this simulation setting.

s50ms Vegas-1 Vegas-2 Vegas-3 Vegas-1,3
110ms 0.998 0.999 1.000 0.910
100ms 1.000 0.999 1.000 0.960
90ms 0.975 0.999 0.998 0.960
80ms 0.995 0.999 0.999 0.960
70ms 0.997 0.999 1.000 0.930
60ms 0.993 1.000 1.000 0.994
50ms 0.998 0.994 1.000 0.977
40ms 0.965 1.000 1.000 0.980
30ms 1.000 1.000 1.000 0.927
20ms 0.976 0.998 0.999 0.941
10ms 0.941 0.994 0.996 0.927
5ms 0.998 1.000 0.999 0.941
1ms 0.997 0.998 0.996 0.900

Table 3.18 :  Fairness of Vegas-1, Vegas-2, Vegas-3 & Vegas1_3 (Min. RTT of connection 1  =
0.013211s)
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Figure 3.24 : Comparison of fairness of Vegas1_3, Vegas-1, Vegas-2 & Vegas-3 (Min.
RTT of the shorter connection=0.0111211s)

I observe from the table and graph shown above that the result is in consistent with what
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seems that a value of 1 for δ poses a limit on the expected and the actual sending rate and
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section 4.1.2 that the degree of oscillation reduces as the value of δ for Vegas-δ increases.

Therefore, it may be argued that the larger the δ, the better. However, there is a tradeoff :

with a larger δ, TCP Vegas tries to force more extra packets into the network. Therefore,

the larger the δ, the more aggressive TCP Vegas is and thus raises the chance of causing

congestion in case of limited available bandwidth. From the simulation results I obtained

in this project, a value of 3 for δ seems to be an acceptably good value to use.

4.4 Multiple active flows

In this section, I study the fairness of TCP Vegas when a large number of active TCP

Vegas flows compete for the bandwidth over the bottleneck link. 2 scenarios are studied,

i.e., 1) when there are many active TCP Vegas flows (but no TCP Reno flows); and 2)

when TCP Reno flows compete for bandwidth with TCP Vegas flows.

The first scenario is important in understanding the behavior of TCP Vegas when it is

fully deployed in the Internet. Analysis reveals that normally many flows pass through an

Internet router simultaneously [M97]. Therefore, it is important that TCP Vegas does not

exhibit extraneous behavior when there are many flows. The second scenario is important

when TCP Vegas is started to be deployed in the Internet but TCP Reno is still the

dominant TCP algorithm. In the next section, I will also explore the differences in fairness

between 2 receiver acknowledgement strategies : when the TCP receivers employ the

immediate acknowledgement strategy or the delayed acknowledgement strategy.

It has been reported that TCP has scaling limit [M97]. Based on simulations with TCP

Tahoe, Morris reported that the limit started to appear when the number of active flows

exceeded the network’s bandwidth-delay product as measured in packets. The symptoms

are high utilization coupled with high packet losses and high variation in delay as seen by
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the users. Sufficiently high packet losses also cause low efficiency in bandwidth utilization

and goodput.

My study differs from Morris’ study in a number of ways. Firstly, the TCP version used in

Morris’ study is TCP Tahoe, a version of TCP that incorporates the fast retransmit

algorithm only (TCP Tahoe is described in section 1 of Chapter 2 of this project report.).

In this project, I focus on TCP Vegas, with comparison to TCP Reno. Two scenarios are

considered, i.e., 1) when the TCP algorithm used by all the connections is TCP Vegas and

2) when there is a mixture of TCP Vegas and TCP Reno. I adopt most of the simulation

parameters used in Morris’ paper except the value of the maximum window, the router

buffer and the RED thresholds.  Instead of setting the maximum window to 64 kilobytes,

I assume infinite window size so that it will not impose a limit on throughputs.

Accordingly, it is set to approximately three times the maximum bandwidth-delay product.

With a maximum one-way propagation delay of 50ms, a bottleneck bandwidth of 10

megabits per second, and a packet size of 576, the bandwidth-delay product is equal to an

equivalent of 217 (10Mbps x 2 x 50 / 1000 / 8 / 576) packets. Therefore, 3 times the

bandwidth-delay product is roughly equal to 650 packets. 2 settings of RED thresholds

are used to represent small and large average queue size in the Internet router. When the

minimum threshold is 5 and the maximum threshold is 15, the average queue length can

be kept between 5 and 15 packets, or roughly (5+15)/2 = 10 packets. This is like a

DropTail router with small buffer size. I call this setting of the RED router “RED-5-15”.

In comparison, when the minimum and maximum thresholds is 54 and 108, the average

queue length can be kept between 54 to 108 packets.. This is like a router with relatively

large tolerance on average queue size. I call this setting of the RED router “RED-54-108”.

The router buffer is set to 100 packets for the 1st setting and 217 packets for the 2nd

setting. With a router buffer of 100 packets, a maximum of 317 (217 + 100) active flows
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can co-exist if all of them use the minimum window size of one. With a router buffer of

217 (217 + 217), a maximum of 434 active flows can be supported simultaneously.

Raghavendra and Kinicki also studied the performance of TCP Vegas with RED.

Raghavendra and Kinicki ran simulations with 3 sources sending to the same destination

node. In their paper, several configurations were studied :  1) a TCP Vegas host

dominated configuration (3 connections with TCP Vegas only),  2) a TCP Reno host

dominated configuration (3 connections with TCP Reno only) and 3) a mixed

configuration (3 connections with either 1 TCP Reno or 1 TCP Vegas connection). They

reported that RED fairness was generally higher than the fairness for the equivalent first-

come-first-served (FCFS) configuration. They also implied that the RED minimum and

maximum thresholds had little effect on the fairness among the TCP Vegas and the TCP

Reno sources. Moreover, FCFS routers displayed more volatile fairness behavior while the

RED combinations offered consistent higher values of fairness. In particular, when FCFS

routers were used with a mixture of TCP Reno and TCP Vegas network hosts, the

number of router buffers were critical. If too few buffers were available, the TCP Vegas

hosts captured most bandwidth and thus there was an unfair treatment to TCP Reno.

When too many router buffers were available, the TCP Reno hosts would dominate and

the TCP Vegas hosts received an unfair treatment.

My study differs from Raghavendra and Kinicki’s study again in a number of ways. Firstly,

I run simulations with many more active flows, i.e. 30, 100 and 200.  The focus is on the

fairness that can be achieved when TCP Vegas encounters the RED routers. Secondly,

Raghavendra and Kinicki set α = 1 and β = 3. As it has been suggested that the fairness

can improve when α = β, I use α = β = 1 or 2 or 3, with comparison to the setting where

α = 1 and β = 3. Previously, I demonstrated that in a 2-connection scenario, the fairness
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of TCP Vegas could be improved by setting α = β. As it is highly likely that an Internet

router needs to support many active flows, it is important to know whether the fairness of

TCP Vegas is still as good when there are many active flows and α = β. In addition,

Raghavendra and Kinicki compared the fairness of TCP Vegas when it worked with

different router configurations. Here, my focus is on the fairness of TCP Vegas when

there are many flows passing through the bottleneck.

Since TCP Vegas’ mechanism relies on the accurate measurement of the minimum round-

trip time and the actual round-trip time, it expects a receiver that immediately

acknowledges the received TCP segment. On the other hand, according to RFC1122

(Requirements for Internet Hosts -- Communication Layers dated October 1989), TCP

SHOULD implement the delayed acknowledgement strategy. Therefore, I expect that the

delayed acknowledgement strategy is widely adopted in the Internet TCP algorithm. On

the other hand, the estimation of the minimum round trip times and the actual round-trip

times may be incorrect if the receiver adopts a delayed acknowledgement strategy. In case

of TCP Vegas, this may affect the calculation of the expected and the actual sending rate

and thus the adjustment of the congestion window. As such, it is important that TCP

Vegas is able to co-operate with a receiver that adopts the delayed acknowledgement

strategy without exhibiting any extraneous behavior.

According to RFC1122, a delayed acknowledgment allows TCP to send an ACK for every

other TCP segment received. On the other hand, it is understandable that the delay

should not be too long because excessive delays on sending acknowledgements can

disturb the round-trip timing and packet “clocking” algorithms. Therefore, RFC1122 also

points out that an acknowledgement should not be excessively delayed. In particular, the

delay must be less than 0.5 seconds, and in a stream of full-sized segments, there should
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be an acknowledgement for at least every second segment. According to the specification,

the maximum distortion to round-trip delay can be expected to be within 0.5 seconds.

While it is important to make sure that the delay will not cause TCP Vegas to exhibit

extraneous or damaging behavior while communicating with a receiver that adopts the

delayed acknowledgement strategy, it is desirable to understand the impact of the delayed

acknowledgement strategy on the fairness.

The network model used is similar to that described previously in section 1 of this

chapter. Instead of 2 senders, however, there are now N TCP senders transmitting

through the bottleneck link to the N receivers. To introduce randomness, each sender

starts at a randomly chosen time in the first 5% of the simulation time. With a simulation

time of 60 seconds, the TCP senders start within the first 3 seconds. All goodput

measurements are taken after the simulation has started for 20 seconds.

All TCP senders are greedy senders using the FTP application protocol. However, to

avoid deterministic behavior and phase effects in the case of TCP Reno only situation, 3

low-bandwidth telnet sessions are run to compete with the main TCP Reno and TCP

Vegas flows. Typically, the Telnet links represents less than 0.2% of the bottleneck

bandwidth. Fairness index is calculated without the goodput measurements of the telnet

sessions. Table 3.19 below gives a summary of the simulation parameters.
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4.4.1 Simulation parameters

Bottleneck bandwidth 10 megabits per second

Bottleneck delay 25ms

Bottleneck router congestion control mechanism RED – Random early detection gateway

Router configuration RED-5-15 RED-54-108

Bottleneck router buffer 100 packets 217 packets

RED minimum threshold 5 packets 54 packets

RED maximum threshold 15 packets 108 packets

RED maximum packet-marking / dropping
probability

1/50 = 2%

RED queue weight 0.002

Bandwidth of connection from source node to
router

10 megabits per second * 10 / N

Propagation delay from source to destination
node

Random, Uniform from 45ms to 50ms

TCP packet size 576 packets

Maximum window size Very large, about 3 x maximum
bandwidth-delay product, i.e., 650 packets

Vegas-δ δ = 1 or 2 or 3

TCP timeout granularity 0.5 seconds (Default in ns is 0.1 seconds)

Simulation time 60 seconds

Number of active flows 30, 100 or 200

Start time of each connection Random, within the first 5% of the whole
simulation time (or 3 seconds)

Table 3.19 : Summary of the simulation parameters for many active flows

4.4.2 Simulation results - Vegas Only

RED-5-15 (VEGAS OR RENO ONLY)

TCP version 30 active flows 100 active flows 200 active flows

Reno 0.981 0.981 0.959
Vegas-1 0.899 (1 shut down) 0.672 (12 shut down) 0.610 (39 shut down)
Vegas-2 0.862 (0 shut down) 0.642 (14 shut down) 0.685 (23 shut down)
Vegas-3 0.923 (0 shut down) 0.660 (18 shut down) 0.668 (33 shut down)

Table 3.20a : Fairness of many active TCP Vegas or TCP Reno flows, using RED-5-15 router
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RED 54-108 (VEGAS OR RENO HOSTS ONLY)
TCP version 30 active flows 100 active flows 200 active flows
Reno 0.983 0.971 0.952
Vegas-1 0.998 0.834 0.708
Vegas-2 0.970 0.818 0.639
Vegas-3 0.967 0.863 0.673

Table 3.20b : Fairness of many active TCP Vegas or TCP Reno flows, using RED-54-108
router

Contrast to the findings with only 2 Vegas connections, disappointingly, the initial set of

simulation results reveal that, the fairness of TCP Reno host-only configuration is

generally better than that of the TCP Vegas host-only configuration. Exception occurs

when the number of active flows is 30, the RED minimum threshold is 54, the RED

maximum threshold is 108, and the Vegas thresholds, α and β, are both 1.

The number of active flows has a significant impact on the fairness of the TCP Vegas

host-only configuration. In contrast, the TCP Reno host-only configuration shows more

stable fairness measure as the number of flows increases. For instance, it can be observed

that the fairness of TCP Vegas drops significantly when the number of active flows

increases from 30 to 100. With a RED-5-15 router, when the number of active flow is 30,

the fairness of TCP Vegas is 0.86 to 0.92 while the fairness of TCP Reno is 0.98. When

the number of flows increases to 100 or 200, the fairness of TCP Vegas drops significantly

to 0.61 to 0.69 while the fairness of TCP Reno remains fairly stable at 0.96 to 0.98.

The difference between the fairness of a TCP Vegas host-only configuration and a TCP

Reno host-only configuration is largest when the RED thresholds are low and the number

of TCP active flows is high (e.g. in the range of 100 to 200). For instance, with a RED-5-

15 router, when the number of flows is 30, the fairness of the TCP Reno host-only

configuration is only 6% to 12% better than that of the TCP Vegas host-only

configuration. When the number of active flows is 100, the fairness of the TCP Reno
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host-only configuration is 31% to 35% better than that of the TCP Vegas host-only

configuration. When the number of active flows is 200, the fairness of the TCP Reno

host-only configuration is 29% to 36% better than that of the TCP Vegas host-only

configuration. On the other hand, the difference between the fairness of a TCP Vegas

host-only configuration and that of a TCP Reno host-only configuration is smaller when

the RED thresholds are higher. For instance, with a RED-54-108 router, when the

number of active flows is 100, the fairness of the TCP Reno host-only configuration is

only 11% to 16% better than that of the TCP Vegas host-only configuration.

When the number of active flows is 200, the RED thresholds have little impact on the

difference in fairness between the TCP Reno and TCP Vegas host-only configuration. For

example, with a RED-54-108 router, the fairness of the TCP Reno host-only

configuration is 26% to 33% better than that of the TCP Vegas host-only configuration.

With a RED-5-15 router, the fairness of the TCP Reno host-only configuration is 29% to

36% better than that of the TCP Vegas host-only configuration. The magnitudes of

difference are about the same.

There seems to be no particular pattern to indicate that a particular choice of α and β (or

δ) can give better fairness measure than other settings in all cases.

4.4.2.1 Why some connections are shut down

In order to find out why there is a substantial drop in the fairness of the TCP Vegas host-

only configuration, I write Unix awk scripts to analyze the distribution of goodputs and

enhance the ns program to produce additional variable traces. Unexpectedly, on a closer

investigation into the bandwidth allocation to the TCP connections, I find that some of

the TCP Vegas connections are shut down even before the 20 seconds from the start of
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the simulation. This causes extreme low measure of fairness in case of the TCP Vegas-

host-only configuration.

On a closer investigation into the TCP agent traces, I identify that the ns code itself causes

2 problems. With regard to the first cause, the problem arises when a Vegas-type timeout

is followed by a Reno-type timeout, which causes TCP Vegas to eventually set the

congestion window to zero and thus reach a deadlock status. Unfortunately, this event can

occur as the number of losses increase. This explains why the fairness of the TCP Vegas

host-only configuration is poorest when the RED threshold is low and the number of

active flows are high. When the RED thresholds are too low to support the large number

of active flows, many TCP flows will face multiple packet drops. Hence, there is a higher

probability that these connections encounter timeouts. It can be noted from table 3.20a

that more connections are shut down as the number of active flows increases.

Consequently, the fairness measures drop.

Vegas-type timeout : According to the original Vegas code, TCP Vegas checks whether

any segments has been timed out on receipt of the first duplicate acknowledgement. If

expired segments exist, TCP Vegas triggers fast retransmission followed by fast recovery

immediately. The idea is to improve the loss recovery process and shorten the time to

recover.

TCP Vegas does this by comparing the time elapsed since the unacknowledged segment is

last sent to the timeout value kept by TCP Vegas’ congestion avoidance mechanism. If

any segment has been timed out, it retransmits the expired segment immediately without

waiting until the 3rd acknowledgement comes back.
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It also adjusts the congestion window. If the existing window is less than or equal to 3, a

window size of 2 will be stored in “v_newcwnd_”. Otherwise, if the expired segment has

been transmitted only once, ¾ of the current congestion window is stored in

“v_newcwnd_”. Otherwise, half the current value is stored in “v_newcwnd_”. The

congestion window is inflated by the number of duplicate acknowledgements, dupacks_,

i.e. 1. That means the un-inflated value of the congestion window is stored in the variable

“v_newcwnd_” while the inflated value of the congestion window is kept in the variable

“cwnd_”.

Afterwards,. TCP Vegas sets the number of duplicate acknowledgements directly to 3.

Since the number of duplicate acknowledgements is now set to 3, TCP Vegas then

continues with the fast recovery phase. That is, on receipt of another duplicate

acknowledgements, TCP Vegas increases the number of duplicate acknowledgements by 1

and checks again if there are any expired segments. Suppose there is no expired segment,

TCP Vegas will inflate the congestion window by the number of duplicate

acknowledgements and transmit a new TCP segment if the congestion window allows.

Finally, on receipt of a non-duplicate acknowledgement, TCP Vegas resets the congestion

window to the latest stored value of the variable “v_newcwnd_”. That is, TCP Vegas

checks if the number of duplicate acknowledgements “dupack_” is greater than 3 and the

congestion window “cwnd_” is greater than the un-inflated window “v_newcnwd_”. If

the conditions are satisfied, TCP Vegas resets the congestion window “cwnd_” to

“v_newcwnd_”. Normally, “v_newcwnd_” should store the non-inflated window size

calculated just before the last fast recovery.
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However, in the ns simulator, this is not the case if the Reno-type timeout occurs before

the receipt of the non-duplicate acknowledgment. If a Reno-type timeout occurs before a

non-duplicate acknowledgement has been received, the ns code of TCP Vegas sets the

value of “v_newcwnd_” to zero and retransmits the first unacknowledged segment.

Therefore, the variable “v_newcwnd_” no longer stores the non-inflated window but

zero.

Unfortunately, the condition of checking, i.e. cwnd_ > v_newcwnd_ = 0 and dupacks_ >

3, is still satisfied. Consequently, upon the receipt of the non-duplicate acknowledgment,

the congestion window is wrongly set to zero.

At this stage, TCP Vegas should transmit and start to time a new segment. In addition, the

congestion window “cwnd_” (=0) is now less than the threshold value “ssthresh_” of 2.

Therefore, TCP Vegas should enter the slow-start phase. However, accordingly to TCP

Vegas’ modified slow-start mechanism, the congestion window is increased only once in

every other RTT. If it does not increase the congestion window in the current RTT of the

slow-start phase, the congestion window will not be increased to a value that is greater

than zero. As a result, the segment, v_begseq_, that should be timed cannot be

transmitted, which means that an acknowledgement that acknowledges this v_begseq_

will not be received. Without an acknowledgement for a Vegas timed segment, v_begseq_,

there will be no adjustment of the congestion window that results in an increase of the

congestion window. Consequently, TCP Vegas comes to a deadlock status.

In order to decide whether this is a bug in ns, I next check the Arizona TCP Vegas code.

It is found that the original Arizona code uses the original Reno timeout code without any

modifications. Hence, it does not reset or change the value of “v_newcwnd_” in the

timeout subroutine (v_newcwnd_ is a variable that is used only by the Vegas congestion
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avoidance mechanism). Therefore, after the receipt of the new acknowledgment, TCP

Vegas resets the congestion window to the value of the “v_newcwnd_” stored by the

previous Reno-type fast retransmission or Vegas-type fast retransmission algorithm,

instead of zero by the ns Reno-type timeout subroutine. Accordingly, I do not expect a

deadlock to occur with the original code.

There is a second cause of the deadlock, which also occurs after a Reno-type timeout. In

this case, the Reno-type timeout occurs after the first segment has been transmitted,

causing TCP Vegas to record a wrong time at which it starts transmitting.

The ns code for TCP Vegas detects the transmission of the first segment by checking the

next send sequence number, t_seqno_. If t_seqno_ is zero, it records the send time of the

segment in the “firstsent_” variable. . Effectively, the value of “firstsent_” can be treated

as time 0 for the connection. Subsequently, the “firstsent_” variable is referred to in a

number of calculations to determine the time elapsed since the start time of the TCP

connection. Here are a few examples. For instance, whenever a segment is sent, TCP

Vegas records its send time by reading the system clock and then calculating the time

elapsed since the value of “firstsent_”. Within the congestion avoidance algorithm, TCP

Vegas calculates the current time by reading the system clock and then subtracting

“firstsent_” from the system time. The resulting figure is then used to update the actual

round-trip time, the time that the Vegas-timed segment is sent and the time that the

congestion window is reduced because of a Vegas-type fast retransmission or Reno-type

fast retransmission algorithm.  To determine whether a segment has expired, TCP Vegas

calculates the time elapsed since the segment is last sent by subtracting “firstsent_” from

the system time and then subtracting the time the segment is last sent from the resultant

figure. Within the ns Reno-type timeout subroutine for TCP Vegas, “firstsent_” is used in
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calculating the time the congestion window is adjusted due to a Reno-type timeout.

Therefore, the correctness of “firstsent_” affects the TCP Vegas code extensively.

I illustrate the second cause of deadlock by an example as shown in the agent trace in

figure 3.27. The first segment of the connection is sent at time 2.19958 seconds because

the ns simulator has scheduled this connection to start sending packets at this time.

Before the first segment is sent, t_seqno is initialized to zero. Therefore, the time that the

first segment is sent is correctly recorded in “firstsent_” as 2.19958. Then, at 8.19958

seconds, a Reno-type timeout occurs and the congestion window is adjusted. Hence,

“t_cwnd_changed_”, which records the time the congestion window is last reduced due

to a timeout, Vegas-type fast re-transmission or Reno-type fast-retransmission, is recorded

as 6 (8.19958 – 2.19958). Since no acknowledgement has ever been received for this

connection, the TCP Vegas sender re-transmits the first segments. However, before the

re-transmission of the first segment, t_seqno is reset to the last unacknowledged sequence

number, which is zero. This triggers TCP Vegas to wrongly record the send time of the

re-transmission, i.e. 8.19958, in “firstsent_”. As a result, TCP Vegas wrongly records that

the connection starts transmission at time 8.19958 seconds.

From now on, all the calculations that directly or indirectly use “firstsent_” are distorted.

For instance, at time 9.51557 seconds, TCP Vegas detects that segment 21 has expired

and thus re-transmits it. Normally, TCP Vegas then compares “t_cwnd_changed_”

against the time the re-transmitted segment is last sent. If “t_cwnd_changed_” is less than

the time the re-transmitted segment is last sent, TCP Vegas updates “v_newcwnd_” in the

same way as I have mentioned previously in the discussion of the first cause of deadlock.

It also inflates the congestion window and then updates the value of “t_cwnd_changed_”

to the current time. Otherwise, “v_newcwnd_”, “cwnd_” and “t_cwnd_changed_” are

left unchanged. However, the time the re-transmitted segment is last transmitted is



105

calculated with reference to “firstsent_”, i.e. the start time of the connection. Since the

value of “firstsent_” is wrongly set to 8.19958, the time the segment is last re-transmitted

is also incorrectly calculated as 9.21605 – 8.19958 = 1.01647, instead of 9.21605 – 2.19958

= 7.01647. Unfortunately, the value of “t_cwnd_changed_” is still 6. Therefore, the time

the re-transmitted segment is last sent becomes less than “t_cwnd_changed_”.

Consequently, “cwnd_”, “v_newcwnd_” and “t_cwnd_changed_” are not adjusted. In

particular, “v_newcwnd_” remains at the initial value of 0 instead of the true un-inflated

window.

Afterwards, another duplicate acknowledgement is received at 9.52386 seconds.

Therefore, TCP Vegas increases the number of duplicate acknowledgement by 1 to 4. It

also inflates the congestion window by 1 to 5.676 because the number of duplicate

acknowledgement has now increased by 1.

The problem then occurs. At time 9.64505 seconds, TCP Vegas receives a non-duplicate

acknowledgement. Now, same as what happens in the first cause of deadlock, since

cwnd_ > v_newcwnd_ = 0 and dupacks_ > 3, TCP Vegas resets the congestion window

to the value of “v_newcwnd_”, which is zero. Again, TCP Vegas comes to a deadlock.

This demonstrates how differences in the implementation can cause very different

performance. I remove the ns code that set the value of the “v_newcwnd_” to zero. As I

have mentioned before, the original Arizona code does not change the Reno-type timeout

subroutine in any way. Therefore, I also remove the line of code that updates the

“t_cwnd_changed_” due to the occurrence of a Reno-type timeout. More importantly, I

modify the ns code so that it does not update the “firstsent_” variable again on re-

transmission of the first segment after a Reno-type timeout. The simulation results show
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much improved performance in fairness, especially when the number of active flows is

large. In addition, no TCP Vegas connections are now shut down.

Tables 3.21a and 3.21b give a comparison of the fairness before and after the modification

of the ns code. Each of the fairness measure obtained after the modification of the ns

code is the average fairness of 7 simulations. Figures 3.25a and 3.25b present the

distribution of the fairness index for each simulation configuration.

RED-5-15 (ONLY VEGAS OR RENO HOSTS)
30 active flows 100 active flows 200 active flowsTCP

Version Before After Before After Before After
Reno 0.981 0.981 0.959

Vegas-1 0.899 0.912 0.672 0.822 0.610 0.914
Vegas-2 0.862 0.879 0.642 0.833 0.685 0.892
Vegas-3 0.923 0.900 0.660 0.911 0.668 0.904

Table 3.21a : Fairness of many active flows, before &  after modification of the ns code, using
RED-5-15 router

RED 54-108 (ONLY VEGAS OR RENO HOSTS)
30 active flows 100 active flows 200 active flowsTCP

Version Before After Before After Before After
Reno 0.983 0.971 0.952

Vegas-1 0.998 0.996 0.834 0.897 0.708 0.910
Vegas-2 0.970 0.963 0.818 0.893 0.639 0.886
Vegas-3 0.967 0.971 0.863 0.930 0.673 0.918

Table 3.21b : Fairness of many active flows,  before & after modification of the ns code, using
RED-54-108 router

It can be noted that, after the change in the ns code has been applied, TCP Reno still gives

better fairness measure than TCP Vegas in my simulation setting.  Again, exception

occurs when the number of active flow is 30, the minimum threshold is 54, the maximum

threshold is 108 and α = β =1. I notice that this is the only setting in which the number

of flows times δ=1 is less than the minimum thresholds. Therefore, there are no or few

retransmissions and timeouts. Intuitively, this suggests that the fairness of TCP Vegas is

better when there are no or few retransmissions and timeouts. In section 4.4.3.1, I discuss
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that the record of an incorrect minimum round-trip time causes a larger variance of

goodputs among the TCP Vegas connections. The chances that this happen is higher

when there are more timeouts. Therefore, this problem helps to explain why the fairness

of TCP Vegas is better when there are no or few retransmissions and timeouts.

Moreover, I observe that the fairness of TCP Vegas is better when the RED thresholds

are larger. The percentage improvement in fairness, however, reduces as the number of

flows increases and finally diminishes as the number of flows reaches 200. This

phenomenon is reasonable because there are fewer transmissions and timeouts when the

RED thresholds are higher. Consequently, the fairness of TCP Vegas is also better.

30 flows 100 flows 200 flows

Vegas-1 9.2% 9.1% -0.4%

Vegas-2 9.6% 7.2% -0.7%

Vegas-3 7.9% 2.1% 1.5%
Table 3.21c : Percentage improvement in fairness of RED-54-108 over RED-5-15

(TCP Vegas or Reno only)
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Figure 3.25a : Fairness of Vegas host-only configuration, after modification of the ns
code, using RED-54-108 router

Figure 3.25b : Fairness of Vegas host-only configuration, after modification of the ns
code, using RED-5-15 router
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Figure 3.26 below gives an example of a TCP agent trace obtained with one of the ns

simulations. It demonstrates the first cause of deadlock. Figure 3.27 gives an example of

the TCP agent trace that demonstrates the second cause of the deadlock.



Receive new ack at 17.22847s
ack = 239
v_delta_ = 1.863830
cwnd_ = 1 = --cwnd_
cwnd_ = 2 cwnd_< 1 => cwnd_ = 2
v_incr_ = 0
v_begseq_ = 241 Vegas timed segment 241
v_begtime = 16.687378 = 17.228472-0.541094
v_timeout_ = 0.147511
ndatapack_ = 272 Send_much (241,0)
maxseq_ = 241
t_seqno = 242

Receive duplicate ack at 17.334s
ack = 239
dupacks_ = 1
expired = 240 Vegas-type timeout of segment 240
v_worried = 2
v_timeout_  = 0.165950 = 0.147511 + 0.147511/8
v_newcwnd_ = 2
cwnd_ = 3 = v_newcwnd_ + dupacks_
t_cwnd_changed_ = 16.792901 = 17.334 – 0.5410934
reset_rtx_timer(1,0) reset rtx timer without backoff
ndatapack_ = 273 Output (240, TCP_REASON_DUPACK)
mrexmitpack_ = 31
dupack_ = 3
ndatapack_ = 274 Send_much (242, 0)
maxseq_ = 242
rtt_seq_ = 242 Reno timed segment 242
rtt_ts_ = 17.3340
t_seqno = 243

Reno-type timeout at 17.734s (0.4s after segment 242 is sent)
dupacks_ = 0 Reno-type timeout of segment 242
recover_ = 242
reset_rtx_timer(0,1) reset rtx timer with backoff
cwnd_ = 1
ssthresh = 2
cwnd = 2 Vegas initializes to 2 after Reno-type timeout
v_newcwnd = 0 THIS LINE CAUSES DEADLOCK PROBLEM.
t_cwnd_changed_ = 17.192901 17.734 – 0.54109434
ndatapack_ = 275 Send_much (240, TCP_REASON_TIMEOUT)
nrexmitpack_ = 32
t_seqno = 241
ndatapack_ = 276 Send_much (241, TCP_REASON_TIMEOUT)
nrexmitpack_ = 33
t_seqno = 242

Receive new ack at 17.84010s
ack = 241
v_delta_ = 0.934156
v_incr_ = 0.5
v_begseq_ = 242 Vegas timed segment 242
v_begtime_ = 17.299004 = 17.84010 – 0.54109434
cwnd_ = 2.5
transmits = 2 Segment 241 has been transmitted twice.
v_worried_ = 2
v_worried_ = 1
expired = 242 Vegas-type timeout for segment 242 (17.84010 – 17.334 = 0.5061)
dupacks_ = 3
ndatapack_ = 277 Output ( 242, TCP_REASON_DUPACK)
nrexmitpack_ = 34
ndatapack_ = 278 Send_much (242 , 0) since 242 < 241 + 2.5 so output (242)
nrexmitpack_ = 35
t_seqno = 243
ndatapack_ = 279 Send_much (243 , 0) since 243 < 241 + 2.5 so output (243)
maxseq_ = 243
rtt_active_ = 1 Start Reno re-transmission timer ...
rtt_seq_ = 243 Reno timed segment 243
rtt_ts = 17.8401
t_seqno = 244

Receive duplicate ack at 17.84517s
ack = 241
dupacks_ =  4
expired = -1
cwnd_ = 3.5 since dupack_ > 3
ndatapack_ = 280 Send_much (244 , 0) since 244 < 241 + 3.5 so output (244)
maxseq_ = 244
t_seqno = 245

Receive new ack at 17.95207s
ack = 242
cwnd_ = 0 since dupack_ > 3 & cwnd > v_newcwnd_ = 0 => cwnd_ = v_newcwnd_
ssthresh_ = 2 cause slow start phase
dupacks_ = 0
v_delta_ = 2.802469
slow_start_phase_ = 1
v_incr_flag_ = 0 During slow-start phase, congestion window increase every other RTT.
v_incr_ = 0
v_begseq_ = 245 Vegas timed segment 245
v_begtime_ = 17.410978
Since congestion window is zero, segment 245 cannot be sent, so Vegas congestion avoidance mechanism is broken.

Figure 3.26 : Agent trace showing how TCP Vegas is shut down after a Reno-type timeout that
resets v_newcwnd_ to 0
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First segment sent at time 2.19958 seconds
maxseq_ = 0
firstsent_ = 2.19958

Reno-type timeout at 8.19958 seconds
nrexmit_  = 1
cwnd_ = 2
t_cwnd_changed_ = 6.000000 = 8.19958 –  firstsent_
nrexmitpack_ = 1 re-transmit segment with sequence number 0
firstsent_ = 8.19958 upon re-sending segment with sequence number 0, t_seqno is reset to 0, so TCP Vegas assumes

this is the 1st segment of the connection and re-initialize firstsent_ variable
maxseq_ = 1

.

.
Transmit segment 21 at 9.21605 seconds
maxseq_ = 21 sendTime of segment 21 = 9.21605 – 8.19958 = 1.01647 instead of 9.21605 – 2.19958 =
7.01647
.
.
.

Detect and re-transmit an expired segment at 9.51557 seconds
dupack_ = 2
expired = 21
nrexmitpack_ = 4 re-transmit expired segment 21 but since sendTime of segment 21 < t_cwnd_changed_ of 6,

cwnd_ is not reduced. Also, since sendTime < t_cwnd_changed of 6, v_newcwnd_ is not
updated and so remains as the initial value of 0

dupacks_ = 3 since sendTime < t_cwnd_changed_ of 6, cwnd_ is not inflated by dupacks_ of 3.

Receive another duplicate acknowledgement at 9.52386 seconds
dupacks_ = 4
expired = -1
cwnd_ = 5.676 inflate congestion window by 1 since 1 more duplicate acknowledgement has been received
maxseq_ = 25

Receive a non-duplicate acknowledgement at 9.64505 seconds
cwnd_ = 0 since dupacks_ > 3 and cwnd_ of 5.676 > v_newcwnd_ of 0, cwnd_ is wrongly set to 0
dupacks_ = 0

Figure 3.27 : Agent trace showing how TCP Vegas is shut down, due to a Reno-type timeout
that occurs only after the 1st TCP segment has been sent.

4.4.2.2 Unnecessary retransmission

After analyzing the ns agent traces, I discover that the ns version of the TCP Vegas

sometimes performs unnecessary re-transmission. Again, the problem occurs after a

Reno-type timeout. I illustrate the phenomenon by an example.

An example is shown with the ns trace in figure 3.28. It can be seen from figure 3.28 that

TCP segment with sequence number 241 is transmitted at 17.22847 seconds. At 17.334

seconds, TCP Vegas detects that the segment 240 has been timed out. Thus, it re-

transmitted this expired segment. In addition, it transmits a new segment with sequence

number 242 because the congestion window is now inflated by 1 duplicate

acknowledgement. At 17.734 seconds, however, a Reno-type timeout occurs. Since the

last unacknowledged segment is segment 240, it re-transmits segment 240. In addition,
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since TCP Vegas reduces the congestion window to 2 instead of 1 after a Reno-type

timeout, TCP Vegas is able to send another TCP segment with sequence number 241.

The next send sequence number is changed to 242 accordingly. Then at time 17.84517

seconds, TCP Vegas sender receives a non-duplicate acknowledgement for segment 241.

According to TCP Vegas’ modified recovery strategy, it needs to check whether any

segment has been timed out. However, upon checking, it detects that segment 242 has

expired. Therefore, it re-transmits segment 242. Following the retransmission, the output

subroutine needs to check if the congestion window allows the transmission of more new

segments (i.e. segments that have not been transmitted before). However, since the next

send sequence number is now 242, the expired segment is transmitted again at the same

timing, causing unnecessary re-transmission and a waste of the bandwidth.
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Receive new ack at 17.22847s
ack 239
v_delta_ 1.863830
cwnd_ 2
v_begseq_ 241
ndatapack_ 272 transmit new segment 241
maxseq_ 241
t_seqno_ 242

Receive duplicate ack at 17.33400s
dupacks_ 1
expired 240
cwnd_ 3
ndatapack_ 273 re-transmit expired segment 240
dupacks_ 3
ndatapack_ 274 transmit new segment 242
maxseq_ 242
t_seqno_ 243

Reno-type timeout at 17.73400s
dupacks_ 0
ssthresh_ 2
cwnd_ 2
v_newcwnd_ 0
ndatapack_ 275 re-transmit 240, since last unacknowledged segment is
240
t_seqno_ 241
ndatapack_ 276 re-transmit 241
t_seqno_ 242 next send sequence number is updated to 242

Receive new ack at 17.84010s
ack_ 241
v_delta_ 0.934156
v_begseq_ 242
cwnd_ 2.5
expired 242
dupacks_ 3
ndatapack_ 277 re-transmit  expired segment 242
ndatapack_ 278 unnecessary re-transmission <= send_much (242,0)

since t_seqno is 242, TCP Vegas assumes segment
242 is the next new segment

t_seqno_ 243
ndatapack_ 279 transmit new segment 243
maxseq_ 243
t_seqno_ 244

Figure 3.28 : Agent trace showing that TCP Vegas performs unnecessary retransmission

Obviously, one solution is to change the TCP Vegas code so that it will check the next

send sequence number against the sequence number of the expired segment sent. If the

next send sequence number is less than or equal to the sequence number of the expired

segment sent, the TCP Vegas should increment the next send sequence number to the

sequence number of the expired segment that has already re-transmitted plus 1.
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4.4.3 Simulation results - A mixture of Vegas and Reno connections

Next, I consider cases where there is a mixture of TCP Vegas and TCP Reno connections.

I try different mixes of TCP Reno and TCP Vegas connections, i.e. 10%, 30%, 50%, 70%

and 90% of the connections run TCP Vegas. Two Vegas configurations are compared : 1)

α = β = 3 and 2) α = 1 & β = 3. Tables 3.22a and 3.22b below give the fairness with 2

settings of RED thresholds :. 1) RED-5-15 : when the RED minimum threshold is 5 and

the maximum threshold is 15, or 2) RED-54-108 : when the RED minimum threshold is

54 and the maximum threshold is 108. The fairness measures are obtained by calculating

the average fairness each from 7 simulation runs.
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0% Vegas 10% Vegas 30% Vegas 50 % Vegas 70% Vegas 90% Vegas 100% VegasRED-5-15
NO. OF ACTIVE
FLOWS

α=3
β=3

α=1
β=3

α=3
β=3

α=1
β=3

α=3
β=3

α=1
β=3

α=3
β=3

α=1
β=3

α=3
β=3

α=1
β=3

α=3
β=3

α=1
β=3

α=3
β=3

α=1
β=3

30 0.984 0.974 0.956 0.941 0.945 0.933 0.930 0.907 0.907 0.917 0.879 0.900 0.873

100 0.975 0.958 0.961 0.936 0.920 0.925 0.896 0.913 0.872 0.912 0.852 0.911 0.845

200 0.955 0.912 0.927 0.891 0.886 0.881 0.895 0.891 0.892 0.900 0.896 0.904 0.900
Table 3.22a : Average fairness of different mixes of TCP Vegas & TCP Reno, using RED-5-15 router

0% Vegas 10% Vegas 30% Vegas 50 % Vegas 70% Vegas 90% Vegas 100% VegasRED-54-108
NO. OF ACTIVE
FLOWS

α=3
β=3

α=1
β=3

α=3
β=3

α=1
β=3

α=3
β=3

α=1
β=3

α=3
β=3

α=1
β=3

α=3
β=3

α=1
β=3

α=3
β=3

α=1
β=3

α=3
β=3

α=1
β=3

30 0.976 0.981 0.969 0.976 0.909 0.979 0.852 0.972 0.786 0.980 0.739 0.971 0.778

100 0968 0.960 0.951 0.947 0.945 0.939 0.928 0.929 0.908 0.926 0.884 0.930 0.872

200 0.954 0.929 0.947 0.912 0.919 0.903 0.905 0.899 0.898 0.909 0.890 0.918 0.891
Table 3.22b : Average fairness of different mixes of TCP Vegas & TCP Reno, using RED-54-108 router
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Figure 3.29a : Fairness of different mixes of Vegas-3 &  Reno, using RED-5-15 router

Figure 3.29b : Fairness of different mixes of Vegas-3 &  Reno, using RED-54-108 router
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Figure 3.29c : Fairness of different mixes of  Vegas1_3 &  Reno, using RED-5-15 router

Figure 3.29d : Fairness of different mixes of  Vegas1_3 & Reno, using RED-54-108 router
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Impact of RED thresholds :  When α = β = 3, the average fairness is higher when the

RED thresholds are higher, regardless of the simulation setting (excluding the case in

which there are only TCP Reno connections in the network). The difference is larger

when the number of active flows is low and the percentage of Vegas-3 is high. Table 3.23

below shows the percentage improvements in fairness of RED-54-108 over RED-5-15.

NO. OF

ACTIVE FLOWS

(α = β = 3 )

0%
Vegas

10%
Vegas

30%
Vegas

50 %
Vegas

70%
Vegas

90%
Vegas

100%
Vegas

30 -0.8% 0.7% 3.7% 4.9% 7.2% 6.9% 7.9%
100 -0.7% 0.2% 1.2% 1.5% 1.8% 1.5% 2.1%
200 -0.1% 1.9% 2.4% 2.5% 0.9% 1.0% 1.5%

Table 3.23 : Percentage improvement in average fairness of RED-54-108 over RED-
5-15, when there is a mixture of many Vegas-3 & Reno flows

Impact of the number of active flows : When α = β =3, the fairness tends to

deteriorate as the number of active flows increases, regardless of the setting of the router

thresholds. However, when the RED threshold is low and the percentage of Vegas-3 is

relatively high (e.g. ƒ 70%), there is a large overlap in the fairness index and the difference

seems to diminish. In these cases, the variance of the fairness measure is larger when there

are 30 flows than when there are 100 or 200 flows. In particular, the fairness gets worse if

more connections get into the problem of an under-estimated minimum round-trip time

(This problem will be discussed in section 4.4.3.1.). On the other hand, when α = 1 and β

= 3, this relationship may not hold. For example, when the router buffer is high (e.g. using

RED-54-108), the fairness with 30 active flows is worse than that with 100 active flows,

unless the percentage of TCP Vegas1_3 connections is low (e.g. 10%).
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0% Vegas 10% Vegas 30% Vegas 50 % Vegas 70% Vegas 90% Vegas 100% VegasRED-5-15

NO. OF ACTIVE
FLOWS

α=3
β=3

α=1
β=3

α=3
β=3

α=1
β=3

α=3
β=3

α=1
β=3

α=3
β=3

α=1
β=3

α=3
β=3

α=1
β=3

α=3
β=3

α=1
β=3

α=3
β=3

α=1
β=3

100 over 30 -0.9% -1.6% 0.5% -0.5% -2.6% -0.9% -3.7% 0.7% -3.9% -0.5% -3.1% 1.2% -3.2%

200 over 100 -2.1% -4.8% -3.5% -4.8% -3.7% -4.8% -0.1% -2.4% 2.3% -1.3% 5.2% -0.8% 6.5%
Table 3.24a : Percentage change in average fairness vs. number of flows, using RED-5-15 router

0% Vegas 10% Vegas 30% Vegas 50 % Vegas 70% Vegas 90% Vegas 100% VegasRED-54-108

NO. OF ACTIVE
FLOWS

α=3
β=3

α=1
β=3

α=3
β=3

α=1
β=3

α=3
β=3

α=1
β=3

α=3
β=3

α=1
β=3

α=3
β=3

α=1
β=3

α=3
β=3

α=1
β=3

α=3
β=3

α=1
β=3

100 over 30 -0.8% -2.1% -1.9% -3.0% 4.0% -4.1% 8.9% -4.4% 15.5% -5.5% 19.6% -4.2% 12.1%

200 over 100 -1.4% -3.2% -0.4% -3.7% -2.8% -3.8% -2.5% -3.2% -1.1% -1.8% 0.7% -1.3% 2.2%
Table 3.24b : Percentage change in average fairness vs. number of flows, using RED-54-108 router
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Impact of the percentage of TCP Vegas : Although there are large overlaps in the

fairness measures, it can be said that the fairness tends to deteriorate as the percentage of

TCP Vegas-3 connections increases. In case when the RED thresholds are high and 30

flows are present, the decrease is not significant. When there are 200 active flows, the

result is a bit mixed.

When the RED thresholds are low and 30 or 100 flows are present, or when the RED

thresholds are high and 100 flows are present, the fairness index decreases as the

percentage of TCP Vegas-3 increases from 0% to 50%. This is probably because the

variance of the goodputs in the Vegas community is larger than that in the Reno

community. Therefore, as the percentage of TCP Vegas-3 connections increases, the

fairness as a whole also deteriorates. However, the fairness index then levels off as the

percentage of TCP Vegas-3 continues to increase. Thereby, a further increase in the

percentage of TCP Vegas-3 connections has minimal impact on the fairness measure of

the whole network.

When the number of flows is 200, the fairness of TCP Vegas-3 also deteriorates as the

percentage of TCP Vegas increases. The decrease continues until the percentage of TCP

Vegas-3 reaches about 50-70% but then tends turn upwards as the percentage of TCP

Vegas-3 continues to increase. One observation is that the difference between the

goodputs of the TCP Vegas-3 connections and that of the TCP Reno connections is

larger when there are 200 flows than when there are 100 flows. Therefore, in the case of

200 flows, the difference in goodputs between the TCP Vegas-3 community and the TCP

Reno community is possibly so larger that the fairness becomes better as the percentage

of the TCP Reno flows reduces.
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Impact of αα and ββ : Comparatively, the drop in fairness is more significant when α =1

and β =3. Thus, it seems that the fairness measure is more stable when α = β = 3 than

when α = 1 and β = 3.

RED-54-108

α= β = 3 30% Vegas 50 % Vegas 70% Vegas

30 active flows 0.977 (234163/343386) 0.969 (293599/371919) 0.964 (323614/416524)

100 active flows 0.972 (114486/97053) 0.945 (107171/90024) 0.922 (99236/93750)

200 active flows 0.919 (67306/47123) 0.910 (56724/40596) 0.900 (49539/35516)

Table 3.25a : Simulation results when there is a mixture of Vegas-3 & TCP Reno,
using RED-54-108 router

RED-54-108

α= 1, β = 3 30% Vegas 50 % Vegas 70% Vegas

30 active flows 0.960 (189427/347960) 0.844 (210509/454940) 0.759 (271019/888998)

100 active flows 0.964 (73244/101549) 0.920 (90460/106675) 0.883 (96956/116536)

200 active flows 0.949 (50734/48863) 0.916 (51865/45755) 0.891 (49217/41432)

Table 3.25b : Simulation results when there is a mixture of Vegas1_3 & TCP Reno,
using RED-54-108 router

RED-5-15

α= β = 3 30% Vegas 50 % Vegas 70% Vegas

30 active flows 0.962 (354355/297238) 0.937 (301939/320963) 0.926 (320042/308864)

v100 active flows 0.949 (110335/89808) 0.920 (110986/81527) 0.931 (103800/79588)

200 active flows 0895 (60808/41305) 0.888 (57531/36773) 0.901 (50991/35585)

Table 3.25c : Simulation results when there is a mixture of Vegas-3 & TCP Reno,
using RED-5-15 router

RED-5-15

α= 1, β = 3 30% Vegas 50 % Vegas 70% Vegas

30 active flows 0.913 (237901/339379) 0.949 (312307/316247) 0.842 (290288/352538)

100 active flows 0.923 (113476/88255) 0.891 (101272/91257) 0.889 (97329/94748)

200 active flows 0.890 (58963/42945) 0.886 (54818/40014) 0.900 (51134/38425)

Table 3.25d : Simulation results when there is a mixture of Vegas1_3 & TCP Reno,
using RED-5-15 router
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The fairness measures in the above 4 tables are quoted from one set of the simulation

runs. The figures next to the fairness measure give the average goodput of all the TCP

Vegas connections and that of all the TCP Reno connections, respectively. For instance,

with RED-54-108, α = β = 3 and when 10% of the 200 connections are Vegas

connections, the fairness index is 0.919. The corresponding average goodput of all the

Vegas connections is 67,306 bps while the average goodput of all the Reno connections is

47,123 bps.

The simulation results show that, when RED thresholds are high and the number of

active flows is low (30 when α = β =3, and 30 or 100 when α = 1 & β = 3), TCP Reno is

the winner. However, when the number of active flows is large (100 or 200 when α = β

=3. and 200 when α = 1 & β =3), TCP Vegas becomes the beneficiary of the unfairness

problem.

When the RED thresholds are low and the number of active flows is relatively low (e.g. 30

when α = β =3, and 100 when α = 1 & β = 3), even each TCP Vegas connection may

capture higher goodput than the TCP Reno connections on average. Intuitively, this

suggests that when the RED thresholds are high enough, TCP Reno is able to benefit

from a larger window and thus becomes the winner in the unfairness problem.

Due to the setting of the thresholds, the RED-5-15 gateway starts to drop packets when

its queue is longer than 5 packets and drops all arrived packets when its queue is longer

than 15 packets. When there are 100 connections, it is highly likely that these queue

lengths are met and thus there will be a large number of packet drops. The retransmission

of dropped packets is unavoidable. When there are too many losses, timeouts are also

inevitable.
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Figure 3.30 : Distribution of goodput when there is a mixture of Vegas-3 & Reno
Connection 0 – 49 : TCP Vegas, Connection 50 – 99 : TCP Reno
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Figure 3.31 : Distribution of retransmission counts when there is a mixture of Vegas-3 &  Reno
Connection 0 – 49 : TCP Vegas, Connection 50 – 99 : TCP Reno

Figure 3.32 : Distribution of timeouts counts when there is a mixture of Vegas-3 & Reno
Connection 0 – 49 : TCP Vegas, Connection 50 – 99 : TCP Reno
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Figures 3.30, 3.31 and 3.32 above show the distribution of the goodput, the

retransmissions and the timeouts obtained from one of the simulation runs. Connections

0 to 49 are TCP Vegas connections while the rest are TCP Reno connections.

The figures reveal that TCP Vegas retransmits more aggressively but has less timeouts. By

re-transmitting before timeouts occur, TCP Vegas is able to save time in waiting and thus

transmit more bytes. Therefore, it is reasonable that TCP Vegas is able to capture more

bandwidth. However, it can also be observed that the variance of the goodputs in the

Vegas community is larger than that in the Reno community. Therefore, while the unequal

allocation of bandwidth between the Vegas community and the Reno community

contributes to the unfairness, the unequal allocation of the bandwidth in the Vegas

community also contributes significantly to the unfairness

Interestingly, all of the TCP Vegas connections with low goodputs also re-transmit less.

TCP Reno connections still have more timeouts than the TCP Vegas connections on

average.
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4.4.3.1 Under-estimated baseRTT_ after a Reno-type timeout

Time Event t_seqno ack_ v_baseRTT_ v_actual v_expect_ v_delta_ v_begseq_ cwnd_ v_sumRTT_/
v_cntRTT

t_seqno

0.095726 1056 3.672 0.210125/2 1058
20.87894 new 1058 1055 - - - - - 4.004 0.31703/3 1060
21.27894 Timeout 1060 - - - - - - 2 - 1058
21.38648 new 1058 1056 - (1058 – 1056) /

(0.31703 / 3)
= 18.92563

(1058 – 1056) /
0.095726
=20.89300

0.188329 1058 2.5 not recorded
for
retransmitted
packets

1059

21.38830 new 1059 1059 21.38830 –
21.38648
= 0.001822

(1060 – 1058) /
0.001822
= 1097.902

(1060 – 1059) /
0.001822
= 548.9511

-1.000188 1060 2.9 0.509364/1 1062

21.48934 new 1062 1060 - (1062 – 1060) /
0.509364
= 3.926463

(1062 – 1060) /
0.001822
= 1097.902

1.992847 1062 3.245 0.101033/1 1064

21.49164 new 1064 1061 - - - - - 3.59 0.204371/2 1065
21.59442 new 1065 1062 - (1065 – 1062) /

(0.204371 / 2) =
29.35838

(1065 – 1062) /
0.001822
= 1646.853

2.946519 1065 3.868 0.105084/1 1066

Figure 3.33 : An example of under-estimated minimum RTT after a Reno-type timeout
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During the simulation, I notice that the goodput of some of the Vegas connections can be

as low as one fifth of the maximum goodput even within the Vegas community. On a

closer investigation into the ns traces, I discover that the unfairness is due to an incorrect

measurement of the minimum round-trip time that occurs after a Reno-type timeout. The

impact is a limitation in the growth of the congestion window size. Figure 3.33 above

shows an example from one of the simulation runs. The phenomenon shows the

incompatibility between the Vegas mechanisms and the Reno-type timeouts.

The example shows that TCP segments with sequence number up to 1059 has been

transmitted. Then, at time 21.27894 seconds, a Reno-type timeout occurs. Before the

occurrence of the timeout, the next send sequence number t_seqno_ is 1060. Due to a

timeout, the next send sequence number is initially reset back to 1056 because the highest

acknowledged sequence number is 1055. At the same time, the congestion window is reset

to 2. Then 2 TCP segments 1056 and 1057 are sent. Therefore, the next send sequence

number is increased to 1058 but is still less than the highest sequence number sent, i.e.

1059.

Problem then arises. When a new acknowledgement is received later at 21.38648 seconds

for a segment v_begseq_ that is currently being timed by the Vegas fined-grained timer,

TCP Vegas updates both the actual and expected sending rate and then re-transmits

segment 1058. It also starts to time segment 1058. Note that under normal circumstances,

TCP Vegas should start to time a new segment, not a re-transmitted one. At time

21.38830 seconds, an acknowledgement that acknowledges all previously sent segment,

including the segment 1058, arrives. Upon receipt of an acknowledgement that

acknowledged the segment being timed, TCP Vegas needs to update the minimum round-

trip time, and then the actual and the expected sending rate. Segment 1058 is first

transmitted at time 20.87894, i.e. 0.50936 seconds earlier. However, since TCP Vegas
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starts to time the retransmission of segment 1058 at 21.38648 seconds, it calculates the

minimum round-trip time as 21.38830 seconds – 21.38648 seconds = 0.00182 seconds.

Hence, although the actual round-trip propagation delay of the connection is 0.084552

seconds, TCP Vegas records a much lower minimum round-trip time measurement of

0.01822 seconds.

The sequence of variable update causes a large distortion in the measured minimum

round-trip delay and the subsequent update of the sending rates. At time 21.59442

seconds, another acknowledgement for the segment (v_begseq_ = 1062) being timed by

TCP Vegas arrives. Therefore, the actual sending rate is updated to 29.35838 packets per

seconds and the expected rate is updated to 1646.853 packets per second. The congestion

window is only about 3.6. However, the value of v_delta_ has already reached 2.946

packets. Therefore, although the size of the congestion window is only 3, TCP Vegas

assumes that it already has about 3 extra packets in the network. The problem is caused by

an under-estimated minimum round-trip time, causing TCP Vegas to assume a much

lower bandwidth-delay product.

The ns trace of the congestion window shows that the size of the congestion window of

the problematic connection never gets larger than 5 after the incident has occurred.

Therefore, the unreasonably small value of the minimum round-trip time has resulted in a

limitation in the growth of the congestion window.

Figures 3.34 and 3.35 below show the sending rate and the congestion window of the

problematic connection and one of the other TCP Vegas connections in the same

simulation run. The fair share of throughput should be 333,333 bits per second (72

packets per second). The average goodput of the problematic connection is only 131,904

bit per second (28.6 packets per second) while the average goodput of the other
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connection is 593,856 bits per second (128.875 packets per second). The other connection

is able to achieve 4.5 times the goodput of the problematic connection. It can clearly be

seen from the figures that both its actual sending rate and the size of the congestion

window are limited. 

In figure 3.34, which shows the actual sending rate against time, there are 2 exceptionally

high sending rates. These 2 data points are caused by a wrong estimation of the round-trip

time, as what I have just mentioned. At that time, TCP Vegas receives an

acknowledgement for a single segment, the retransmitted segment that is being timed by

TCP Vegas’ congestion avoidance mechanism. Therefore, the estimated actual round-trip

time becomes the time elapsed since the time the timed segment is re-transmitted, not the

time the timed segment is first sent. The estimated actual round-trip time is also distorted

to a very small value.
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Figure 3.34 : Actual sending rate of connection 1 (with under-estimated min. RTT) &
connection 5 (with maximum goodput within the Vegas community)

Figure 3.35 : Congestion window of connection 1 (with under-estimated min. RTT) &
connection 5 (with maximum goodput within the Vegas community)
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In comparison, the minimum goodput within the Reno community is 224,755 bits per

second and the maximum goodput within the Reno community is 395,481 bits per

second. Therefore, the fairness within the Reno community is better. The phenomenon

demonstrates the incompatibility of the Reno-type timeout mechanism and the Vegas

mechanisms.

Figure 3.36 gives an ns traces which shows how TCP Vegas eventually records a wrong

minimum round-trip time.



Receipt of new ack at 20.87894 seconds
ack_ 1055
cwnd_ 4.004
v_sumRTT_ 0.31703
v_cntRTT 3
maxseq_ 1058 new segment with sequence number 1058 sent
t_seqno_ 1059 next send sequence number 1059
maxseq_ 1059 new segment with sequence number 1059 sent
t_seqno_ 1060 next send sequence number 1060

Receipt of 1st duplicate ack at 20.97571 seconds
dupacks_ 1

Receipt of 2nd duplicate ack at 20.9755 seconds
dupacks_ 2

Timeouts at 21.27894 seconds
dupacks_ 0
t_seqno_ 1056
cwnd_ 2
nrexmitpack_ 71 retransmit 1056
t_seqno_ 1057
nrexmitpack_ 72 retransmit 1057
t_seqno_ 1058

Receipt of new ack at 21.38648 seconds
ack_ 1056 Receipt of new ack for v_begseq_ 1056
v_sumRTT_ 0
v_cntRTT_ 0
v_baseRTT_ 0.095726
v_actual_ 18.92563 (1058 – 1056) / (0.31703 / 3)
v_expect_ 20.89300 (1058 – 1056) / 0.095726
v_delta_ 0.188329
v_begseq_ 1058
v_begtime_ 20.08923 (Start at 1.297254)
cwnd_ 2.5
nrexmitpack_ 73 re-transmit 1058
t_seqno_ 1059

Receipt of new ack at 21.38830 seconds
ack_ 1059
t_seqno_ 1060
v_rtt_ 0.001822
v_baseRTT_ 0.001822 21.38830 – 21.38648, first transmit at 20.87894s
v_actual_ 1097.902 (1060 – 1058) / 0.001822
v_expect_ 548.9511 (1060 – 1059) / 0.001822
v_delta_ -1.000188
v_begseq_ 1060
cwnd_ 2.9
v_sumRTT_ 0.509364 21.38830 – 20.87894
v_cntRTT_ 1
maxseq_ 1060
t_seqno_ 1061
maxseq_ 1061
t_seqno_ 1062

Receipt of new ack 21.48934 seconds
ack_ 1060
v_sumRTT_ 0
v_cntRTT_ 0
v_actual_ 3.926463 (1062 – 1060) / 0.509364
v_expect_ 1097.902 (1062 – 1060) / 0.001822
v_delta_ 1.992847
v_begseq_ 1062
cwnd_ 3.245
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v_sumRTT_ 0.101033
v_cntRTT_ 1
maxseq_ 1062
t_seqno_ 1063
maxseq_ 1063
t_seqno_ 1064

Receipt of new ack at 21.49164 seconds
ack_ 1061
cwnd_ 3.59
v_sumRTT_ 0.204371
v_cntRTT_ 2
maxseq_ 1064
t_seqno_ 1065

Receipt of new ack at 21.59442 seconds
ack_ 1062 Receipt of ack for v_begseq
v_sumRTT_ 0
v_cntRTT_ 0
v_actual_ 29.35838 (1065 – 1062) / (0.204371 / 2) = (1065 – 1062) /
0.1021855
v_expect_ 1646.853 (1065 – 1062) / 0.001822
v_delta_ 2.946519
v_begseq_ 1065
cwnd_ 3.868
v_sumRTT_ 0.105084
v_cntRTT_ 1
maxseq_ 1065
t_seqno_ 1066

Figure 3.36 : Agent trace showing how TCP Vegas records an under-estimated minimum RTT

4.5 Impact of delayed acknowledgement strategy on fairness

4.5.1 Simulation results

In this section, I explore whether there is any impact on the fairness if the TCP receiver

adopts the delayed acknowledgement strategy instead of the immediate acknowledgement

strategy. If the receiver adopts the delayed acknowledgement strategy, then the minimum

round-trip time (baseRTT_) and the actual round-trip time may be larger than the actual

value. Therefore, it is beneficial to understand if there is any significant impact. Tables

3.26a and 3.26b summarize the average fairness index. Each average is obtained from 7

simulation runs.
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10% Vegas 30% Vegas 50 % Vegas 70% Vegas 90% Vegas 100% VegasRED-5-15
NO. OF ACTIVE

FLOWS

(α=β=3)

IA DA IA DA IA DA IA DA IA DA IA DA

30 0.974 0.958 0.941 0.950 0.933 0.940 0.907 0.950 0.917 0.957 0.900 0.967
100 0.958 0.936 0.936 0.904 0.925 0.908 0.913 0.930 0.912 0.949 0.911 0.960
200 0.912 0.925 0.891 0.894 0.881 0.894 0.891 0.907 0.900 0.914 0.904 0.931

Table 3.26a : Average fairness vs. receiver ACK strategy, using RED-5-15 router
IA=Immediate Acknowledgement, DA=Delayed Acknowledgement

10% Vegas 30% Vegas 50 % Vegas 70% Vegas 90% Vegas 100% VegasRED-54-108
NO. OF ACTIVE

FLOWS

(α=β=3)

IA DA IA DA IA DA IA DA IA DA IA DA

30 0.981 0.977 0.976 0.985 0.979 0.986 0.972 0.984 0.980 0.985 0.971 0.970
100 0.960 0.959 0.947 0.944 0.939 0.941 0.929 0.945 0.926 0.962 0.930 0.971
200 0.929 0.936 0.912 0.904 0.903 0.911 0.899 0.915 0.909 0.931 0.918 0.939

Table 3.26b : Average fairness vs. receiver ACK strategy, using RED-54-108 router
IA=Immediate Acknowledgement, DA=Delayed Acknowledgement

To explore the impact of the receiver acknowledgement strategy on the fairness of TCP

Vegas, I focus on the case when all the connections run Vegas-3. Interestingly, from table

3.26a and 3.26b, the fairness is better when the receiver adopts the delayed

acknowledgement strategy instead of the immediate acknowledgement strategy. In

addition, the difference seems to be larger when the RED thresholds are low. When the

RED thresholds are high and the number of active TCP Vegas flows is only 30, there

seems to be no significant difference.

One possible explanation is that, when the receiver adopts the delayed acknowledgement

strategy, the round-trip times tend to be over-estimated. Therefore, the probability of an

under-estimated minimum round-trip time reduces, resulting in lower variance of

goodputs within the Vegas community. Consequently, the fairness is also better.
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4.5.2 Impact on the estimation of the minimum RTT

The following table shows the recorded minimum round-trip times and the goodput of 10

of the 15 connections in one of the simulation runs, in which 50% of the connections run

TCP Vegas. It can be seen that while the initial value of the recorded minimum round-trip

time is large, TCP Vegas eventually detects a value that is much closer to the true

propagation delay. Therefore, although the receiver adopts the delay acknowledgement

strategy, the value of the estimated minimum round-trip time is not adversely affected.

Connection
number

1st recorded
baseRTT

last recorded
baseRTT

Propagation
delay

Difference Goodput

8 0.599058 0.100396 0.09561 0.00479 335116.80

1 0.601500 0.095294 0.09184 0.00345 339264.00

5 0.597561 0.097561 0.09411 0.00345 341222.40

9 0.597671 0.097671 0.09422 0.00345 345024.00

6 0.601617 0.101617 0.09817 0.00345 347212.80

7 0.601262 0.101262 0.09781 0.00345 347212.80

3 0.603339 0.103339 0.09989 0.00345 354355.20

0 0.595219 0.095219 0.09177 0.00345 355968.00

4 0.602864 0.102864 0.09941 0.00345 358387.20

2 0.630239 0.112818 0.09105 0.02177 485107.20
Table 3.27 : Recorded minimum RTT when receivers use delayed ACK strategy

Figure 3.37 shows the agent trace of one of the TCP Vegas connections. It can be seen

that TCP Vegas sends 1 segment and waits for the return of its acknowledgement.

However, since the receiver adopts the delayed acknowledgement strategy, it must wait

until the delay timer expires before it can transmit the acknowledgement for the 1st

segment. Therefore, the first record of the minimum round-trip time is estimated to be in

the range of 0.6 seconds (the delay timer is set to expire in 0.5 seconds). However,

eventually, the congestion window increases to 2 and thus 2 back-to-back TCP segments

are transmitted. Hence, the acknowledgement is transmitted nearly immediately after the

first of these 2 back-to-back segments has reached the receiver. Therefore, the next record
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of the minimum round-trip time is much closer to the true minimum round-trip time. In

this configuration, it seems that the delayed acknowledgement strategy does not have

much impact on the estimation of the minimum round-trip time. In fact, table 3.27 shows

that 8 of the 10 connections measure the minimum round-trip time accurately. The

transmission delay of the data segment and the acknowledgement is 0.00345 seconds.

To further explore the impact of the receiver acknowledgement strategy on fairness, I

next run 2 more sets of simulations, using the simple network model described in the

section 1 of this chapter. In the first simulation, both receivers adopt the delayed

acknowledgement strategy. In the second simulation, one of the receivers adopts the

delayed acknowledgement strategy while the other adopts the immediate

acknowledgement strategy. The propagation delays of both connections are the same and

are set to 6ms (i.e. x1 = x2 = 1ms).

In the first simulation, there is unfairness in bandwidth allocation. In the second

simulation, the fairness is better as the goodput of both connections are comparable. The

unfairness is caused by an over-estimation of the minimum round-trip time. In the first

simulation, the minimum round-trip time of the connection that sends to a receiver that

adopts the immediate acknowledgment strategy is correct. On the other hand, the

minimum round-trip time of the connection that sends to a receiver that adopts the

delayed acknowledgement strategy is much over-estimated. Consequently, the goodput of

this connection is much higher. When both connections send to receivers that adopt the

delayed acknowledgement strategy, the fairness is much better. However, the minimum

round-trip times of both connections are still over-estimated. Fortunately, their difference

is so small that the bandwidth is still fairly shared.
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Average goodput 1st estimation of
the min. RTT

Final estimation
of the min. RTT

1st connection : IA

2nd connection : IA

750094.69 bps

749934.68 bps

0.013211 seconds

0.013211 seconds

1st connection : DA

2nd connection : IA

993133.51 bps

507366.90 bps

0.518544 seconds

0.013211 seconds

0.032000 seconds

0.013211 seconds

1st connection : DA

2nd connection : DA

749921.68 bps

749921.68 bps

0.518544 seconds

0.513211 seconds

0.021333 seconds

0.018544 seconds
Table 3.28 : Impact of delayed acknowledgement strategy on goodput & minimum

RTT

Based on the simulation results, I tend to believe that the delayed acknowledgement

strategy delays the proper record of the minimum round-trip time by at least 2 RTTs. In

my simulation setting, the first estimation of the minimum round-trip time and actual

round-trip are over-estimated if the receiver adopts the delayed acknowledgement

strategy. Thereafter, TCP Vegas is able to detect a better minimum RTT that is much

closer to the true value. However, it is hard to tell whether TCP Vegas is able to detect the

true minimum round-trip time. The interaction of different network topologies and

configurations cannot be ignored because they, as a whole, can affect whether the TCP

sender is able to detect the correct minimum round-trip time.

4.5.3 Impact on the calculation of queue backlog

By definition, the expected sending rate is always higher than the actual sending rate.

During the analysis, I discover that the value of v_delta_ can be negative, implying that

the expected sending rate is less than the actual sending rate. This is caused by the delayed

acknowledgement strategy. Again, I use an example to illustrate the phenomenon. The

agent trace in figure 3.37 shows how this can happen.
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1.35390  8  0  43 0  maxseq_ 0
1.35390  8  0  43 0  t_seqno_ 1

1.95295  8  0  43 0  v_baseRTT_ 0.599057633638
1.95295  8  0  43 0  ack_ 0
1.95295  8  0  43 0  v_actual_ 1.669288468835
1.95295  8  0  43 0  v_expect_ 1.669288468835
1.95295  8  0  43 0  v_inc_flag_ 0
1.95295  8  0  43 0  v_begseq_ 1
1.95295  8  0  43 0  v_begtime_ 0.599058
1.95295  8  0  43 0  maxseq_ 1
1.95295  8  0  43 0  t_seqno_ 2

2.55453  8  0  43 0  ack_ 1
2.55453  8  0  43 0  v_actual_ 1.662310638531
2.55453  8  0  43 0  v_delta_ 0.004180
2.55453  8  0  43 0  v_inc_flag_ 1
2.55453  8  0  43 0  v_begseq_ 2
2.55453  8  0  43 0  v_begtime_ 1.200630
2.55453  8  0  43 0  cwnd_ 2.000
2.55453  8  0  43 0  v_sumRTT_ 0.601572279465
2.55453  8  0  43 0  v_cntRTT_ 1
2.55453  8  0  43 0  maxseq_ 2
2.55453  8  0  43 0  t_seqno_ 3
2.55453  8  0  43 0  maxseq_ 3
2.55453  8  0  43 0  t_seqno_ 4

2.65497  8  0  43 0  ack_ 3
2.65497  8  0  43 0  v_sumRTT_ 0.000000000000
2.65497  8  0  43 0  v_cntRTT_ 0
2.65497  8  0  43 0  v_actual_ 3.324621277061
2.65497  8  0  43 0  v_delta_ -0.991640
2.65497  8  0  43 0  v_inc_flag_ 0
2.65497  8  0  43 0  v_begseq_ 4
2.65497  8  0  43 0  v_begtime_ 1.301070
2.65497  8  0  43 0  v_sumRTT_ 0.100440033638
2.65497  8  0  43 0  v_cntRTT_ 1
2.65497  8  0  43 0  v_baseRTT_ 0.100440033638
2.65497  8  0  43 0  maxseq_ 4
2.65497  8  0  43 0  t_seqno_ 5
2.65497  8  0  43 0  maxseq_ 5
2.65497  8  0  43 0  t_seqno_ 6

Figure 3.37 : Agent trace showing negative v_delta_

From figure 3.37, it can be observed that, at time 2.65497 seconds, the value of v_delta_ is

negative, implying that the expected sending rate is lower than the actual sending rate. In

the ns simulator, TCP Vegas calculates the expected and the actual sending rate using the

following formulae :

Expected sending rate = (t_seqno_ - last_ack_) / v_baseRTT_

Actual sending rate = (t_seqno_ - v_begseq_) / average rtt_

According to the above traces, the sending rates are thus :
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Expected sending rate = (4 – 3) / v_baseRTT_  = 1 /  v_baseRTT_

Actual sending rate = (4 – 2) / v_rtt_ = 2 / v_rtt_

Next, I analyze the Arizona code and find that the same problem can occur. According to

the Arizona code, the expected sending rate is calculated using the following formula :

pred_rate = (tp->snd_nxt - tp->snd_una + MIN(tp->t_maxseg - acked, 0))*10
/ tp->v_cong_detect_baseRTT;

where

pred_rate = expected sending rate  = v_expect_ in ns

snd_nxt = next send sequence number = t_seqno_ in ns

snd_una = next expected acknowledgement sequence number

immediately after the last ACK has been received

t_maxseq = 1

acked = number of segments acknowledged by this ACK

v_cong_detect_baseRTT = v_baseRTT_ in ns

If this formula is used, the expected sending rate will be :

pred_rate = (4 –  2 + MIN((1 – 2), 0)) / v_baseRTT_ or 1 / v_baseRTT_

However, if I remove the 2nd term in the numerator in the Arizona’s formula, the equation

becomes :

pred_rate = (tp->snd_nxt - tp->snd_una) *10 / tp->v_cong_detect_baseRtt;
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Then, the expected sending rate will be correct :

pred_rate = (4 – 2) / v_baseRTT_ or 2 / v_baseRTT_

In ns, to correct the problem, the formula can be changed to :

Expected sending rate = (t_seqno_ -  (last_ack_ - acked + 1)) / v_baseRTT_

where acked = last_ack_ - oldack

or

Expected sending rate = (4 – (3 – 2 + 1)) / v_baseRTT_
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C h a p t e r  4

CONCLUSION AND FUTURE WORK

1. Conclusion

The purpose of this project is to address 4 specific issues of the fairness of TCP Vegas : 1)

Is TCP Vegas really fair to connections with larger propagation delays, 2) what is the

impact of the thresholds, α and β, used in TCP Vegas’ congestion avoidance algorithm on

fairness, 3) how fair is TCP Vegas when there are many active flows, and 4) does the

receiver acknowledgement strategy, namely the immediate and the delayed

acknowledgement strategy, which affects the calculation of the round-trip times, also

affects the fairness of TCP Vegas ?

My observations on the fairness index obtained from the simulation data yield the

conclusion that, when α = 1 and β = 3, TCP Vegas is unfair to connections with larger

propagation delays, unless the propagation delays of the 2 connections are close. In a

more general context, I believe this applies to cases in which α < β and only TCP Vegas is

present. While previous literature has already pointed out that unfairness may arise when

α < β, my conclusion additionally suggests that the bias is in favor of connections with

shorter propagation delay. Unlike TCP Reno, the bias does not necessarily increase as the

difference in propagation delays between the connections increases. However, I also

notice that the fairness of TCP Vegas can be worse than that of TCP Reno so that an

improvement in the fairness over that of TCP Reno is not a guarantee. In my simulation

setting, the problem of unfairness is resolved with Vegas-2 or Vegas-3.
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My assessment of the impact of the Vegas thresholds on fairness yields the conclusion

that fairness is stable and good when α = β = 2 or 3. When α = β = 1, fairness is

unstable and may even be worse that when α = 1 and β = 3. Also, my simulation results

support previous researcher’s observations that the stability of TCP Vegas is better when

the values of α and β are larger. Of course, there is a tradeoff : when the available

bandwidth per connection is low, larger thresholds will cause TCP Vegas to be more

aggressive, adding additional load to the network and thus making congestion a more

likely event. Considering a balance among stability, fairness and aggressiveness, α = β = 3

seems to be an acceptably good choice should a single value be required.

While analyzing the fairness of many TCP flows, I discover that some TCP Vegas

connections are shut down. As one reason, it is caused by an implementation of the ns

Reno-type timeout subroutine, which wrongly set the variable that stores the un-inflated

window to zero, causing TCP Vegas to eventually reach a deadlock status. As a second

reason, it is caused by the part of the ns code that incorrectly updates the start

transmission time of the TCP connection to the re-transmission time of the first segment.

Consequently, the fairness measure is very poor. This demonstrates how differences in the

TCP implementation can cause substantial differences in TCP performance.

After amending the ns code to eliminate the causes of deadlock, I discover from the

simulation results that, when there are many active flows passing through the bottleneck

link, the fairness of the TCP Reno host-only configuration is better than that of the TCP

Vegas host-only configuration. An exception occurs when the RED thresholds are high,

the number of flows is low and Vegas-1 is used. This is the only setting with which the

number of flows times δ (i.e. 1) is less than the RED minimum threshold. Intuitively, this

suggests that the fairness of TCP Vegas is better when there is few or no timeouts.
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Moreover, I observe from the ns agent traces that TCP Vegas may perform unnecessary

retransmission after a Reno-type timeout. One possible solution is to change the TCP

Vegas code so that it will check the next send sequence number against the sequence

number of the expired segment sent. If the next send sequence number is less than or

equal to the sequence number of the expired segment that has just been sent, TCP Vegas

should increment the next send sequence number to the sequence number of the expired

segment that has already re-transmitted plus 1.

With regard to the impact of the RED thresholds on fairness when there are many active

flows, fairness improves when the RED thresholds are higher. In addition, the fairness

measure is more stable when α = β = 3 than when α = 1 and β = 3.

The simulation results also suggest that, when there is a mixture of TCP Vegas and TCP

Reno connections, the RED thresholds are high and the number of active flows is low,

TCP Reno is the winner. However, when the number of active flows is large, TCP Vegas

is the winner. Intuitively, this suggests that, if the RED router thresholds are large enough

to support a large enough congestion window, TCP Reno is able to benefit from an unfair

share of the bottleneck bandwidth.

While the difference in bandwidth allocation between TCP Vegas and TCP Reno

contributes to unfairness, I discover that the variance in goodputs within the Vegas

community is also larger than that within the Reno community. Therefore, while the

difference in goodputs between TCP Reno and TCP Vegas contributes to unfairness, the

variance in goodputs within the TCP Vegas community also contributes significantly to

the unfairness. On a closer investigation into the ns traces, I then discover that an

incorrect measurement of the minimum round-trip time that occurred after a Reno-type

timeout contributes to the unfairness. In such case, the minimum round-trip time under-
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estimated. The impact is a limitation in the growth of the congestion window. The

phenomenon suggests possible incompatibility between the Vegas mechanisms and the

Reno-type timeouts.

My assessment of the receiver acknowledgement strategy on fairness yields the conclusion

that fairness does not deteriorates when all the receivers adopts the delayed

acknowledgement strategy. In particular, I observe that TCP Vegas does not behave

detrimentally although the receiver employs the delayed acknowledgement strategy. In

general, the first estimation of the minimum round-trip time is always over-estimated.

However, since 2 back-to-back segments are eventually transmitted when the congestion

window increases to 2, the receiver sends the acknowledgement nearly immediately after

the first of these 2 segments has been received. Therefore, TCP Vegas is eventually able to

detect a minimum round-trip time that is much closer to the true value. However, in

contrary to the definition, I also observe that the measured expected sending rate can be

less than the measured actual sending rate. The problem is a direct result of the delayed

acknowledgement strategy because the receiver sends an acknowledgement for every 2

segments received. The problem can be resolved by removing the 2nd term in the formula

that is used to calculate the expected sending rate.

2. Future work

In summary, I observe that the fairness of Vegas-3 is consistently good. Moreover, setting

δ to 3 is acceptably good after considering a balance among the criteria of fairness,

stability and aggressiveness. Therefore, I suggest Vegas-3 be used as the baseline version

of TCP Vegas in future work.
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Besides, I suggest that future work be pursued to improve the protocol implementation of

Enhanced TCP Vegas and, in general, TCP Vegas, especially if it is eventually to be

deployed in the Internet. This is very important because different implementation can

cause very different performance. For example, I have observed that the original ns

implementation may cause TCP Vegas connections to be shut down. After amending the

ns code to correct the problem, the fairness of TCP Vegas improves substantially.

More importantly, there are areas for improvement in the implementation of TCP Vegas.

Firstly, I observe that TCP Vegas may perform unnecessary re-transmissions after a Reno-

type timeout. In particular, this is not caused by a pre-mature timeouts but by a reset of

the next send sequence number. To improve the protocol implementation, there may be a

need to evaluate its impact and to eliminate the unnecessary retransmission in the real-

world protocol implementation.

Secondly, I identify that the minimum round-trip time may be under-estimated after a

Reno-type timeout, which I believe, after a review of the original Arizona code, is a

problem in the original TCP Vegas implementation as well. I expect an effective

correction will substantially improve fairness because it shall reduce the variability of

goodputs within the Vegas community. Besides, a number of factors can cause an

incorrect measurement of the minimum round-trip time, either over-estimated or under-

estimated, and thus give rise to unfairness problem. To improve fairness, I think it would

be beneficial to identify how the estimation of the minimum round-trip time can be

improved.

Thirdly, I notice that the estimated queue backlog may be negative when the receiver

adopts the delayed acknowledgement strategy. This is in contradiction to the definition,

i.e. the estimated queue backlog should be positive because the expected sending rate is
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larger than the actual sending rate. Accordingly, future work may be required to further

evaluate the appropriateness of the Vegas formulae, especially in scenarios that have not

been studied before.

In fact, the first and second issues I have just mentioned are related to the Reno-type

timeout subroutine. This points to possible incompatibility between the Vegas algorithms

and the Reno-type timeout subroutine. In particular, I notice that 2 sets of timer are

maintained for the purpose of retransmission, including the original Reno retransmission

timer and the new Vegas finer-grain timer. To save processing overhead and improve the

protocol implementation, it would be beneficial to combine the 2 sets of timer, potentially

using the timestamp option.

In addition, I think future work should be pursued to further investigate the performance

of Enhanced TCP Vegas when there are many flows, when the router buffer is

insufficient or, in general, in situations when there are many timeouts. Normally, only a

few flows are present in past analysis. However, the behavior of TCP Vegas can be very

different when there are many flows. In particular, I observe that the minimum round-trip

times of Enhanced TCP Vegas may be under-estimated when there are many flows and

timeouts. The problem needs to be corrected because an improvement in fairness and

performance is expected. After the correction of the problem, the fairness and the

performance of Enhanced TCP Vegas in situation where there are many active flows can

be re-visited.
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