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Traditionally, TCP was designed for generic purpose, regardless of the

nature and characteristics of the applications. However, there are practi-

cal needs for improving the performance of TCP to suit particular types

of traffic generated by different types of application. Unfortunately, all of

these algorithms work well only when the nature of the traffic is consistent.

However, in client/server applications, such as HTTP persistent connections

that involve multiple request/response in a single TCP connection, these al-

gorithms may not be able to function properly.

We have proposed Cocktail approach to improve the overall performance

of HTTP persistent connections. The changes only require modifications to

a TCP sender, and a TCP with these changes is interoperable with any ex-

isting TCP implementation. Cocktail is composed of several elements. Each

element is assigned to tackle a specific problem caused by the interactions

between HTTP persistent connections and existing TCP implementations.

A number of simulation experiments have been conducted to evaluate the

performance of SSR, RBP and CWV against that of Cocktail. The results

of the experiments show that Cocktail generally performs better than the

others in a low RTT environment do. Nevertheless, RBP works best in a

high RTT environment.
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Chapter 1

Introduction

1.1 Background

1.1.1 From HTTP/1.0 to HTTP/1.1

Since 1990s, the growing popularity of World Wide Web (WWW) has made

Hypertext Transfer Protocol (HTTP) dominated much Internet traffic and

its role has become more and more important. In fact, HTTP is an ap-

plication protocol running over Transport Control Protocol (TCP), which

provides a reliable end-to-end data transfer channel between the web server

and client’s web browser. Currently, there are two major releases of HTTP:

HTTP/1.0 and HTTP/1.1 [6]. Although both versions of HTTP use TCP

for data transport, the way they use is quite different.

HTTP/1.0 opens and closes a new TCP connection for each HTTP re-

quest. A typical web page contains a Hypertext Markup Language (HTML)

document and a number of embedded images. Since each of these images is

an independent object, it has to be retrieved separately by a single HTTP

request. As a result, many consecutive short-lived TCP connections are es-

tablished for retrieving just one web page. Since establishing and closing

TCP connections introduce many overheads and latencies, HTTP/1.0 is not
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efficient in handling web page retrievals.

HTTP/1.1, on the other hand, keeps the TCP connections open and

reuse for the transmission of multiple HTTP requests. This technique is

called persistent connections. Unlike HTTP/1.0, the use of persistent con-

nections in HTTP/1.1 can reduce many latencies and overhead from re-

establishing and closing a TCP connection for each HTTP request. This is

the key enhancement to HTTP/1.0.

1.1.2 Interaction of TCP and HTTP Persistent Connections

Traditionally, TCP was designed for the use of generic purpose, regardless

of the nature and characteristics of the applications [5]. However, there are

practical needs for improving the performance of TCP to suit particular

types of traffic generated by different type of applications, such as bulk

data transfer (e.g. FTP program) and interactive data transfer (e.g. telnet

program). So a number of algorithms have been developed to fulfill their

specific requirements.

For instance, the slow-start and congestion avoidance algorithms pro-

posed by Jacobson [12] have been designed to cater for bulk data transfer.

The algorithms are used to prevent the sender from injecting excess numbers

of segments into the network that may overflow the queue of intermediate

router, hence increasing the efficiency of bulk data transfer. Another exam-

ple is Nagle algorithm [16]. Nagle algorithm has been designed to cater for

interactive data transfer. The algorithm is used to minimize the overhead

of transmitting short data segments.

Unfortunately, all of these algorithms work well only when the nature

of the traffic is consistent, i.e. either pure bulk data or pure interactive

data transfer. However, in client/server applications, such as HTTP/1.1

that involves multiple request/response in a single TCP connection, these

algorithms may not be able to function properly [15]. Under certain circum-
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stance, using these algorithms can even degrade the overall performance.

Therefore, the purpose of this study is to investigate the impact on the per-

formance of HTTP when HTTP persistent connections interact with existing

TCP implementation.

1.2 Objectives

There are two main objectives for the study:

• to study the impact of TCP congestion avoidance and control algo-

rithms on HTTP persistent connections; and

• to propose modifications on existing TCP implementation to improve

the performance of HTTP persistent connections. The proposed mod-

ification should be able to work transparently without modifying any

existing applications and be compatible with existing TCP implemen-

tations.

1.3 Organization

The study consists of six chapters. Chapter 1 is an introductory part. Chap-

ter 2 contains an overview of TCP and outlines its basic operation, including

establishing and terminating of TCP connections. This chapter also out-

lines the existing TCP avoidance and control algorithms, the operation of

HTTP, and the key difference between HTTP/1.0 and HTTP/1.1. Chap-

ter 3 describes the problems of HTTP persistent connections running on

existing TCP implementation. Prior works in solving these problems are

also compared and evaluated in this chapter. Modifications to existing TCP

implementation to improve its performance of HTTP persistent connections

are proposed and explained in Chapter 4. Chapter 5 describes the details

and the findings of experiments on a simulation platform for evaluating the

3



proposed solutions. The final chapter, Chapter 6, concludes the whole study

and suggests areas for further study.
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Chapter 2

Overview

Before going into the details of the problems of HTTP persistent connec-

tions running on existing TCP implementation, we must understand the

basic operation mechanisms of TCP. The chapter is an overview of the basic

operation of TCP and HTTP. If you are familiar with the operations of TCP

and HTTP, you may skip this chapter and continue the reading from the

next chapter.

2.1 Basic Operation of TCP

2.1.1 Connection Establishment and Termination

Since TCP is connection-oriented, data exchange between two parties is

not possible unless a connection between two parties is established. TCP

adopts three-way handshake to establish a connection [21] and its details

are as follows.

The three-way handshake is always initiated on the client side. To estab-

lish a connection, as shown in Figure 2.1, client should send a SYN segment,

called Segment 1, to the server with an initial sequence number (ISN). When

the server receives the SYN Segment 1 from the client, it sends its feedback

with its own SYN segment containing the server’s initial sequence number.
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ServerClient

Time

SYN = x

ACK = y+1

SYN = y, ACK = x+1

Figure 2.1: TCP Connection Establishment

At the same time, it sends an acknowledgement to the client’s SYN by Seg-

ment 2, adding one to the client’s ISN. Then the client must respond to the

server’s SYN segment, Segment 2, by acknowledging the server’s ISN plus

one. This is named as Segment 3. The connection is completed by such

three-way handshake at this point.

ServerClient

Time

ACK = x+1

FIN = x, ACK = y+1

ACK = y+1

FIN = y, ACK = x

Figure 2.2: TCP Connection Termination

While establishment of TCP requires three segments, termination needs
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four. Individual connection has to be closed independently due to the full-

duplex nature of TCP. Either party can send a FIN segment when the data

transfer is completed. For instance, if the server wants to terminate the

connection, it should send a FIN segment to the client, as shown in Fig-

ure 2.2. The latter should then respond by sending an ACK segment of the

received sequence number plus one. Meanwhile, a FIN segment is sent by

the client. Finally, the server returns an ACK segment with the received

sequence number plus one and the TCP connection is closed.

2.1.2 TCP Transmission Policy

TCP transmission policy of TCP comprises error control procedures and

flow control mechanism. The former uses go-back-N and the latter uses

sliding window.

Go-Back-N

The idea of go-back-N is that if the segments are out-of-order, the client

will send acknowledgements for the same highest in-order sequence number.

In the other words, the client acknowledges the server the highest in-order

sequence number segment it receives.

In case of congestion between the network linking the client and the

server, there will be packet loss which will be signaled by a timeout and

receipt of duplicate ACKs. The server will assume the segment with the

sequence number immediately after the highest acknowledged by the dupli-

cate ACKs received is loss. It will then retransmit those missing segments

it assumes.

Sliding Window

The purpose of sliding window is to allow the server to send a number of

data segments simultaneously without having to wait for ACKs. The size

7



of the window constrains the maximum amount of data that can be sent at

one time. Basically, the sliding window mechanism works like this:

1. The server transmits all new segments in the window and wait for

acknowledgements.

2. When the acknowledgment arrives, the window slides and its size is

set to the value advertised in the acknowledgement.

3. The server retransmits the segments that have not been acknowledged

for some time. When the acknowledgment arrives, it causes the win-

dow slides and the transmission continues from the segment following

the one transmitted last.

Figure 2.3 is a diagrammatic illustration of the mechanism. We assume

that the web server gives response by transmitting six full-size segments

upon receiving a short HTTP request messages from a web browser. Suppose

the buffers for both client and server is 4096-byte and the size of the window

four segments. The server is therefore limited to send at most four segments

at the same time. The following will occur at different time:

1. At T0, the web server writes 4096-byte of data into the sender buffer.

2. At T1, TCP transmits the first four segments.

3. At T2, the segments are correctly received on the client side. The

client acknowledges the first two segments. Since the receiver buffer

is full, the advertised window is zero. The server must stop sending

data until the application process on the client side removes some data

from the buffer.

4. At T3, the client acknowledges the third and fourth segments. Since

the application process on client side read 1024-byte of data, it will

advertise a window of 1024 bytes starting at the next byte expected.

8



At t=T 1

At t=T 2

At t=T 3

At t=T 4

At t=T 5

At t=T 6

At t=T 0

������������������������������������������������������������������������

	�		�		�	
�

�

�
������������������������������������������������

������������������������������������������������������������������������

������������������ ������������������

������������������

��������� �  �  � 

!�!!�!"�""�"#�#$�$%�%%�%&�&&�&
Data segment

ACK segment

Unsent data

Sent but unacknowledged data

Received data

''(
(

))*
*

+�++�++�+,�,,�,,�,-�--�--�-.�..�..�./�//�//�/0�00�00�01�11�11�12�22�22�2

334
4
556
6

778
8

9�99�99�9:�::�::�: ;�;

Sending Buffer

WEB SERVER

SEQ 1SEQ 4 SEQ 3 SEQ 2

ACK 2, WIN=0

ACK 2, WIN=0

ACK 4, WIN=1024

ACK 5, WIN=2048

ACK 4, WIN=1024

Receiving Buffer

CLIENT BROWSER

SEQ 5

Application writes 2K of data Application reads 2K of data

Application reads 1K of data

Receiving buffer is full

Figure 2.3: TCP Transmission Policy

5. At T4, the first ACK segment is received by the server, then frees

up 2048 bytes of space in sender buffer. The web server writes 2048-

byte of data into the sender buffer. However, the ACK segment just

received specifies that the advertised window is zero. So the sender

TCP cannot transmit any data. Meanwhile, the application on client

side reads 2048-byte of data.

6. At T5, the server receives the second ACK segment. Then 2048 bytes

of space are free in the sender’s buffer. The ACK segment just received

specifies that the advertised window is 1024. Thus, the sender TCP is

able to transmit another 1024-byte of data.

7. At T6, upon receiving the data segment, the sender TCP acknowledges
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the data segment and advertise a window of 2048.

2.1.3 Slow-Start and Congestion Avoidance Algorithms

To understand more about the transmission policy, two important algo-

rithms should be discussed: Slow-Start and Congestion Avoidance [20]. The

purpose of these algorithms is to enable the TCP server to govern the amount

of outstanding data going into the network. It operates by three parame-

ters: congestion window (cwnd), receiver’s advertised window (rwnd) and

slow-start threshold (ssthresh).

Value of cwnd & ssthresh (segments)

Time (sec)
0.0000

5.0000

10.0000

15.0000

20.0000

25.0000

30.0000

35.0000

40.0000

0.0000 10.0000 20.0000 30.0000 40.0000

Figure 2.4: Slow-Start and Congestion Avoidance Algorithms

The minimum value of cwnd and rwnd limits the size of data transfer.

cwnd is the maximum amount of data the server can inject into the network

prior to receiving ACKs, while rwnd is the maximum amount of outstanding

data on the client side. On the other hand, ssthresh is a critical value of

cwnd to determine which algorithm, the slow-start or congestion avoidance

algorithm should be used as the data transmission controller. Slow-start

is used when cwnd < ssthresh, while congestion avoidance is used when
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cwnd > ssthresh. When cwnd and ssthresh are equal, either slow start or

congestion avoidance is adopted.

Slow-Start

To avoid network congestion, when the TCP starts to transmit the data into

the network, it should explore the uncertain network condition slowly and

find out the capacity available. Slow-start is then used at such initial data

transfer stage or after repairing loss detected by the retransmission timer

for this purpose.

When TCP connection is just established or packet loss is detected by

the retransmission timer, the initial value of cwnd is initialized to one, i.e.

the maximum of data segment that can be injected into network is limited

to one. When an ACK segment is received, TCP doubles the value of cwnd

to two. Now TCP can send at most two data segments into the network.

During slow-start, TCP increases the value of cwnd exponentially for each

incoming ACK until ssthresh is hit. When cwnd exceeds ssthresh, slow-start

ends and congestion avoidance algorithm takes over.

The minimum initial value of cwnd commonly adopted is one MSS. How-

ever, TCP can use a larger initial window in a non-standard and experimen-

tal TCP extension as defined in RFC 2414 [2]. In that case, as long as the

total size of the segments does not exceed 4380 bytes, a server may use a

three or four MSS as initial value of cwnd. Regarding the ssthresh, its initial

value can be arbitrarily high, probably as high as the advertised window.

In fact, a higher initial value of cwnd can affect the start up performance of

TCP. This issue will be further discussed in the later chapter.

Congestion Avoidance

During congestion avoidance phase, cwnd is incremented by one for each

incoming ACK [3]. One formula commonly used to update cwnd during
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congestion avoidance is in Equation 2.1:

cwndnew = cwndcurrent +
1

cwndcurrent
(2.1)

When segment loss is detected by receipt of duplicate ACK, ssthresh is

set to:

ssthresh = max(
cwnd

2
, 2MSS) (2.2)

Upon a timeout, cwnd will be set to one since it is well below ssthresh,

and slow-start will be clicked started again.

2.1.4 Fast Retransmit and Fast Recovery Algorithms

As discussed before, the client has to send duplicate ACK when an out-of-

order segment is arrives. However, the duplicate ACK does not tell whether

it comes from a lost segment, simply a reordering of segments, or replica-

tion of ACK or data segments by the network. However, if three or more

consecutive duplicate ACK are received, it is a piece of strong evidence that

the segment is lost. In this case, the server will immediately retransmit the

segment under fast retransmit, without having to wait for timeout.

If the server goes back to slow-start to retransmit the missing segment,

it will suspend the data flow (or the ACK-clock). To get rid of this, fast

recovery algorithms can help by turning to use congestion avoidance algo-

rithm to take over the retransmission. The operation of the fast retransmit

and fast recovery algorithms is as follows:

1. When the third duplicate ACK is received, the ssthresh is set to not

more than the value given in Equation 2.2.

2. The server then retransmits the lost segment and sets the cwnd to

ssthresh plus three MSS. The congestion window is intentionally en-

12



larged by the number of segments that have left in the network and

which the receiver has buffered.

3. The server increases cwnd by one MSS in each additional duplicate

ACK. This can inflate the congestion window in order to reflect the

additional segment that has left in the network.

4. Then the server transmits a segment, if permitted by the new value of

cwnd and the receiver’s advertised window, rwnd.

5. Upon receiving the next new data ACK, the server sets cwnd to

ssthresh as calculated in the first step. This is known as deflating

the window.

The new data ACK should be the induced by the retransmission in

the first step, one RTT after the retransmission. This ACK should also

acknowledge all the segments sent between the lost segment and the third

duplicate ACK

2.1.5 Modifications on TCP Fast Recovery

Unfortunately, in the same window, fast recovery is not efficient in recover-

ing from multiple segment losses [10]. To make TCP’s recovery from such

multiple losses more rapid, it needs some further modification algorithms

known as TCP NewReno [7]. The trick is that it operates by updating the

fast recovery algorithm to use information given by Partial ACK, which only

covers new data instead of all outstanding if there is segment loss, to trig-

ger retransmission of segments. It does not have to rely on the availability

of Selective Acknowledgments (SACK). The NewReno modification is very

similar to RFC 2581 [3] except that

• Another variable called recover is added; and

• Responses to partial or new ACK are different from that of RFC 2581.
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TCP NewReno defines a fast recovery procedure. It starts when three

consecutive ACKs are received. It ends under two circumstances: (1) when

there is a retransmission timeout; or (2) when an ACK that acknowledges

all the data up to and including the outstanding data when the fast recovery

procedure starts. The procedure is basically the same as in Section 2.1.4

except Step 1 and Step 5:

• Step 1: Upon receiving the third duplicate ACK but the sender is not

in the fast recovery procedure, the server sets ssthresh to no more than

the value computed by Equation 2.2. On the other hand, the highest

sequence number transmitted in the variable recover is then recorded.

• Step 5: When an ACK that acknowledges new data arrives, this ACK

could be the acknowledgement that the retransmission from Step 2, or

a later retransmission induces. Two cases will occur:

1. When the ACK acknowledges all data up to and including recover

(see Step 1), all the intermediate segments transmitted between

the original transmission of the lost segment and the receipt of the

third duplicate ACK are acknowledged. Then the TCP sets the

cwnd tomin(ssthresh, F lightSize+MSS) where the FlightSize

refers to the amount of data outstanding in this step when the fast

recovery is existed. Finally it exits the Fast Recovery procedure;

or

2. When the ACK DOES NOT acknowledge all the data up to and

including recover, the ACK is only partial and partial window de-

flation has to be done. The server retransmits the first segment

that is not acknowledged and deflates the congestion window by

the amount of new data acknowledged. One MSS is then added

back. If the new cwnd permits, the server sends a new segment.

This ensures approximately ssthresh amount of data remains out-
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standing when the fast recovery ends. Instead of exiting the fast

recovery procedure, the server will repeat Step 3 and Step 4 as

mentioned in Section 2.1.4.

2.1.6 Bandwidth-Delay Product

Bandwidth-Delay product is used to measure the capacity of a link [21]. A

link with bandwidth B (measured in bits/second) and delay D (measured in

seconds) has a bandwidth product of B×D. Comparing it with the number

of segments on a link, we can see how efficient the link is used.

For instance, a number of segments are acknowledged and transmitted

immediately without delay, it takes about 2D seconds for a round trip, i.e.

from putting a segment on the link and receiving the ACK. Thus approxi-

mately 2BD segments can be injected into the link in that period. These

approximately 2D seconds is known as the Round Trip Time (RTT). Sup-

pose the send window is smaller, the server is sending less than the full

capacity, resulting in inefficient use of the pipe. In practice, the bandwidth

is limited to window-size (in bits) and RTT (in bits/second).

2.1.7 Delayed Acknowledgments

Delayed acknowledgments are very useful in frequent data exchange environ-

ment [4]. To minimize the number of segments injected into in the network,

the client can defer sending out ACKs at intervals. The delayed ACKs can

be piggy-backed on a data segment in the opposite direction. They can also

carry updated information, tell the server that the client has read the pre-

vious data and the server can send larger bulk of data. The server utilizes

the ACK from the client to control the number of segment injected into the

network. Unfortunately, it is contrary to the desire to minimize the number

of segments in the network. So the client should send a minimum one ACK

per two full-sized segments it receives.
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2.1.8 Nagle Algorithm

Nagle algorithm [16] attempts to minimize the number of segments in the

network, hence ease the traffic load and prevent overloading the routers and

switches. It is a very effective tool that most TCP implementations contain

this algorithm.

Basically, the problem is: in the early days of Internet, the links, routers

and servers were relatively slow. Much of the network traffic is terminal

traffic comprising short segments which carried only a single keystroke. The

network was congested by these small but frequent segments. So Nagle

has proposed the algorithm, which states that when a TCP connection has

outstanding data that has not yet been acknowledged, segment size less than

1 MSS cannot be sent until the outstanding data is acknowledged.

2.2 Basic Operation of HTTP

HTTP has been used in the World Wide Web since 1990. The first version

of HTTP, known as HTTP/0.9, was a simple protocol for Web documents

and raw data transfer. HTTP/1.0 as defined by RFC1945, improved the

protocol by allowing messages to be in the format of MIME-like messages,

containing meta-information about the data transferred and modifiers on

the request/response semantics. HTTP/1.0 is an application level protocol

and uses TCP for data transport. The client, typically a Web browser,

establishes a connection to the server and issues a request. The server then

processes the request, returns a response, and closes the connection.

Typical Web pages contain a Hypertext Markup Language (HTML) doc-

ument and a number of embedded images. Each of these images is an inde-

pendent object. The common behavior of a client is fetching the base HTML

document, and then immediately fetching the embedded objects referenced

in the document. As HTTP/1.0 uses a new TCP connection for each HTTP
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request, the transmission of a page with HTML content and embedded ob-

jects involves many short-lived TCP connections. For example, a request of

a typical HTML document that contains eight images will involve nine TCP

connections – one for the base HTML document, and eight for the images.

Clearly, this is not an efficient mechanism to retrieve Web documents.

As mentioned earlier, HTTP/1.0 opens and closes a new TCP connec-

tion for each operation. A TCP connection is established by a three-way

handshake. Since most Web objects are small, it induces significant over-

head in establishing and closing a TCP connection. Furthermore, when a

TCP connection is first opened, the server employs slow start as discussed

before. Slow-start uses the first several data segment to probe the network

condition to determine the optimal transmission rate. However, because

Web objects are usually small, most objects are transferred before their

TCP connections complete the slow start phase and therefore fail to ex-

ploit the available bandwidth. In order to reduce the number of connections

established which result in latencies and processing overheads, HTTP/1.1

introduces the use of persistent connections.

2.3 HTTP Persistent Connections

HTTP/1.0 establishes a new TCP connection for each HTTP request, result-

ing in many consecutive short-lived TCP connections. To resolve the prob-

lem, HTTP/1.1 introduces the persistent connection mechanism. HTTP/1.1

specifies that TCP connections should remain open until explicitly it is

closed by either party. It allows multiple request/response interactions to

take place before the connection is closed. Therefore, the latencies and

overhead from closing and re-establishing TCP connections can be reduced.
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Chapter 3

Problems with HTTP

Persistent Connections

In the previous chapter, we have explained the basic operation of TCP and

HTTP/1.0. We have also discussed the differences between HTTP/1.0 and

HTTP/1.1, as well as some of the rationale behind these changes. In this

chapter, we will discuss the problems with HTTP persistent connection, the

default feature of HTTP/1.1 and evaluate the previous attempts by other

studies to solve the problems.

3.1 Restart of Idle TCP Connection

As mentioned earlier, HTTP/1.1 uses persistent connections to reduce the

overhead from closing and re-establishing TCP connections by re-using a

single TCP connection across multiple request/response transactions. Since

HTTP/1.1 is an application protocol which makes use of TCP for end-to-

end data transmission, its performance is affected by the implementation of

TCP. In fact, TCP congestion avoidance mechanism works well for a single

burst of data. However, it does not match large but intermittent bursts of

traffic like HTTP/1.1.
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In a TCP connection, the congestion control scheme uses ACKs from the

client to dynamically calculate reasonable operating values for TCP param-

eters, which in turn determine when and how much the server can pump into

the network. In particular, when a TCP connection has outstanding data

that has not yet been acknowledged, another data segment cannot be sent

until the outstanding data is acknowledged. The beauty of this algorithm

is that it is self-clocking: the faster the ACKs return, the faster the data is

sent.

The problem is that: typically, there is a short idle period between two

consecutive HTTP requests. When the connection is idle, the flow of data

segments as well as ACKs suspends. Since TCP depends on ACK-clocking

for flow control, the idle periods also disturb the flow control mechanism.

When a burst of data is sent after an idle period, depending on the implemen-

tation, TCP may or may not enforce slow-start algorithm by re-initializing

the congestion parameters (cwnd and ssthresh).

If slow-start is enforced after the idle period, the server is conservative

towards the network but the optimal transmission rate cannot be maintained

since a new slow-start is performed. On the other hand, if the slow-start is

not enforced, the network condition throughout the idle period is unchanged.

The optimal transmission rate can be maintained for the coming HTTP

requests. However, if the network during that period unpredictably turns

very congested, the situation will be totally different. As the value of cwnd

originally maintained becomes too large rather than optimal, TCP will pump

excessive number segments into the network that the intermediate routers

cannot handle, network congestion arises. Therefore, the server will suffer

from an excessive number of retransmissions. Eventually the performance

will be substantially degraded.
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3.2 Related Work

The problem of restarting idle TCP connection was addressed by a number

of studies and a number of solutions have also been proposed.

3.2.1 Slow-Start Restart

Currently, slow-start restart (SSR) is the most popular method to handle

idle TCP connections. It was proposed by Jacobson [12] who stated that a

TCP should use slow-start to restart transmission after a relatively long idle

period. To be more specific, if a TCP connection is idle for more than one

RTT, cwnd is reduced to one before the next transmission commences. The

ultimate purpose of this mechanism is to restart the ACK clock. However,

problems arise when this interacts with HTTP/1.1.

As described, when the idle TCP connection is restarted, slow-start

restart cannot maintain the optimal transmission rate which established

before the connection became idle. In addition, very often, the pattern of

HTTP requests is unpredictable. Using timer to detect an idle TCP con-

nection and decide whether to decrease cwnd fails to deflate cwnd in HTTP

persistent connections since prior to the timeout, the user may have already

made another HTTP request [11]. This will reset the timer and it fails to

test for idle connections and leads to very large cwnd.

3.2.2 Rate-Based Pacing

When the TCP has been idle for a relatively long period, instead of sending

a large burst of back-to-back segments or restart the congestion control, the

rate-based pacing (RBP) tries to transmit a controlled number of evenly

spaced segments at a conservation rate [22]. Immediately after the first

ACK is received, RBP discontinues because the ACK-clock has been re-

established.
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3.2.3 Congestion Window Validation

With HTTP persistent connections, the TCP is sometimes idle or application-

limited. Under these circumstances, the invalidation of the congestion win-

dow will occur and the congestion window cannot truly reflect the status of

the network. Congestion Window Validation (CWV) [8] is a simple modifi-

cation to TCP congestion control algorithm to tackle this problem. By using

CWV, if the connection is idle, the TCP decays a portion of the congestion

window for every RTO.

In addition, during TCP’s slow-start or congestion avoidance phases, the

growth of the congestion window will make the congestion window inaccu-

rate in reflecting the network condition in application-limited period. This

is because the amount of data injected into the network is less than amount

allowed by the cwnd. CWV also caters for the problem: When the cwnd is

fully utilized, i.e. the congestion window is valid, cwnd will grow as usual.

When the cwnd is still sending data but the amount is less that allowed by

cwnd, its growth is prohibited.

3.3 Evaluation of Different Approaches

In the previous section, a number of proposed solutions to solve the problem

of restarting idle TCP connection have been explained. In this section, we

are going to evaluate and compare their performance based on the results

of the simulation experiments.

3.3.1 Methodology

The purpose of the experiment is to test how different proposed solutions

mentioned in the previous section affect the TCP’s performance when the

TCP connection is idle and then restarted.

The evaluation of the proposed solutions is conducted by a simulation
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tool. ns [1] has been chosen for this purpose as the experiment can be

done in a more controlled environment. The network topology is shown in

Figure 3.1.
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5 ms
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G1 G2
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Figure 3.1: Network configuration for the simulation

It is an attempt to simplify a complicated network topology for the sake

of analysis. It is a simulation of a typical Internet/Intranet environment. It

comprises two LAN environments. The first is composed of S1, S2, S3, S4

and G1 while the other is composed of R1, R2, R3, R4 and G2. G1 and G2

are the routers which link the LANs together. S1, S2, S3 and S4 are the

sending hosts with Nagle algorithm disabled. R1, R2, R3 and R4 are the

receiving hosts with delayed acknowledgment enabled. The buffer size of

each router is 15 packets. The segment size for transfer is 1460 bytes, and

the maximum window size of the connection is 22 segments.

Rather than simulating the entire HTTP protocol, we have only consid-

ered the HTTP responses which consisted of a burst of data sent from the

server to the client. In the initial setting, S1 sends 1000 data segments to R1

in an environment free of other traffic. After finished sending the data, the

TCP connection is idled for a period which is equivalent to around 1.5 RTO.
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During the idle period, S2, S3 and S4 begin to generate traffic with the

rate of 512KB to R2, R3 and R4 which simulate the real world environ-

ment with other network traffic. Then S1 and R1 restart sending a certain

amount of data again. The network condition after the restart of S1 and R1

has changed. Such kind of change in network environment is intentionally

created to test how the proposed solutions handle this kind of unpredictable

change.

To test how S1 and R1 handle the situation when the traffic is rela-

tively busy, the time required for completing all transmission using different

proposed solutions mentioned before is recorded.

In this experiment, the testing will be conducted by studying the effect of

three factors on the performance of different proposed solutions in handling

restarted idle TCP. The three factor are (1) the propagation delay between

R1 and R2; (2) burst size; and (3) the queue management approaches.

To start experiment, the propagation delay is fixed at 10 ms. Burst

size is set to 100 segments and the size of each data segment is fixed. The

variable is the queue management approaches (i.e. drop-tail or RED). The

time required for completing all transmission when using different queue

management is recorded. Then the experiment is repeated for a propagation

delay from 10 ms to 300 ms and burst size from 100 to 1000 segments.

Similarly, for a given propagation delay and queue management ap-

proach, the burst size is varied and transmission time is recorded. Finally,

for a given burst size and queue management approach, the propagation

delay is varied and the transmission time is again recorded. Hence the ex-

periment results are a set of matrices when (1) propagation delay ranges

from 10 ms to 300 ms; (2) burst size ranges from 100 to 1000 segments; and

(3) using either drop-tail or RED queue management approach. The results

of the simulation experiments are as shown in Table 3.1 to Table 3.4.
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Delay SSR RBP CWV

10 2.498 (2.991) 3.895 (2.891) 4.112 (2.995)

20 4.238 (2.901) 4.390 (2.884) 4.045 (3.141)

30 2.699 (2.773) 3.932 (3.917) 3.322 (3.710)

50 3.534 (3.130) 4.301 (3.521) 3.678 (3.667)

100 3.330 (4.052) 4.398 (4.303) 5.123 (5.025)

150 5.998 (5.167) 5.480 (5.254) 6.590 (6.580)

200 7.219 (5.890) 5.912 (5.851) 8.262 (6.109)

300 10.596 (7.123) 2.888 (2.809) 12.187 (8.327)

Table 3.1: Time required for SSR, RBP, and CWV to transfer a burst of 100

segments when the idle TCP connection is restarted. Figures outside and in-

side the brackets are the results when drop-tail and RED queue management

is used respectively.

Delay SSR RBP CWV

10 4.843 (6.445) 7.430 (5.731) 7.587 (6.567)

20 6.987 (5.364) 8.430 (6.019) 7.937 (6.020)

30 5.435 (5.488) 7.023 (6.594) 6.548 (6.871)

50 6.186 (5.756) 7.765 (7.511) 7.891 (6.395)

100 5.762 (7.234) 6.768 (6.902) 7.653 (8.246)

150 10.542 (9.299) 8.765 (8.625) 10.301 (10.195)

200 12.987 (10.408) 11.399 (10.162) 13.114 (11.989)

300 18.436 (12.789) 5.801 (5.7111) 18.781 (15.041)

Table 3.2: Time required for SSR, RBP, and CWV to transfer a burst of 200

segments when the idle TCP connection is restarted. Figures outside and in-

side the brackets are the results when drop-tail and RED queue management

is used respectively.
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Delay SSR RBP CWV

10 13.844 (15.778) 19.219 (15.975) 18.999 (16.755)

20 18.240 (14.667) 19.581 (15.102) 19.267 (15.803)

30 13.802 (13.223) 16.693 (15.021) 16.023 (17.624)

50 15.167 (14.810) 19.431 (18.435) 19.087 (17.019)

100 14.627 (15.010) 17.223 (18.511) 19.355 (18.395)

150 19.994 (18.129) 17.151 (17.511) 20.792 (19.925)

200 21.414 (20.186) 19.944 (20.278) 21.101 (22.129)

300 30.851 (27.398) 14.551 (14.556) 30.295 (27.872)

Table 3.3: Time required for SSR, RBP, and CWV to transfer a burst of 500

segments when the idle TCP connection is restarted. Figures outside and in-

side the brackets are the results when drop-tail and RED queue management

is used respectively.

Delay SSR RBP CWV

10 23.548 (29.894) 38.215 (31.925) 39.614 (32.779)

20 39.104 (28.556) 40.248 (30.364) 41.112 (30.779)

30 27.530 (28.645) 33.275 (30.667) 32.987 (33.600)

50 28.521 (29.461) 37.997 (34.793) 37.669 (33.432)

100 29.995 (29.801) 32.651 (30.812) 30.889 (31.793)

150 33.925 (35.147) 32.831 (34.112) 33.127 (36.530)

200 41.173 (37.781) 38.912 (35.911) 42.194 (38.455)

300 55.916 (39.959) 30.123 (28.717) 55.319 (42.781)

Table 3.4: Time required for SSR, RBP, and CWV to transfer a burst of

1000 segments when the idle TCP connection is restarted. Figures out-

side and inside the brackets are the results when drop-tail and RED queue

management is used respectively.
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3.3.2 Experiment Results

At various propagation delay

Referring to Figure 3.2 to Figure 3.9, it is discovered that when SSR is used,

the transmission time is the shortest among the three proposed solutions

when the propagation delay between R1 and R2 is within 10 ms to 100 ms.

In other words, SSR works best in low RTT environment, irrespective of the

burst size and queue management approach adopted.

On the other hand, when the propagation delay is high (between 150 ms

and 300 ms) with any burst size and either queue management approach,

the transmission time is the shortest when RBP is used.

At various burst size

In the testing, the best performers (i.e. SSR or RBP depending on the

propagation delay) still work best even at different burst size. However,

this time, we should focus on the absolute difference in performance of the

proposed solutions. It is found that when the burst size is small, say at

around 100 to 200 segments, the difference in performance is insignificant. In

contrast, when the burst size is about 500 segments or above, the difference

is quite substantial.

At various queue management approaches

When RED is used, overall transmission time is reduced irrespective of which

proposed solution is used. So their relative performance remains the same:

SSR and RBP work best in low and high RTT delay environments respec-

tively.
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Figure 3.2: Performance comparison of SSR, RBP, and CWV at various

propagation delays when the burst size is 100 segments and the drop-tail

queue management approach is used.
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Figure 3.3: Performance comparison of SSR, RBP, and CWV at various

propagation delays when the burst size is 100 segments and the RED queue

management approach is used.
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Figure 3.4: Performance comparison of SSR, RBP, and CWV at various

propagation delays when the burst size is 200 segments and the drop-tail

queue management approach is used.
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Figure 3.5: Performance comparison of SSR, RBP, and CWV at various

propagation delays when the burst size is 200 segments and the RED queue

management approach is used.
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Figure 3.6: Performance comparison of SSR, RBP, and CWV at various

propagation delays when the burst size is 500 segments and the drop-tail

queue management approach is used.
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Figure 3.7: Performance comparison of SSR, RBP, and CWV at various

propagation delays when the burst size is 500 segments and the RED queue

management approach is used.

29



SSR

RBP

CWV

Transfer Time (sec)

Delay (msec)

25.0000

30.0000

35.0000

40.0000

45.0000

50.0000

55.0000

0.0000 50.0000 100.0000 150.0000 200.0000 250.0000 300.0000

Figure 3.8: Performance comparison of SSR, RBP, and CWV at various

propagation delays when the burst size is 1000 segments and the drop-tail

queue management approach is used.
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Figure 3.9: Performance comparison of SSR, RBP, and CWV at various

propagation delays when the burst size is 1000 segments and the RED queue

management approach is used.
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3.3.3 Implication of the Findings

TCP with Slow-Start Restart

It is observed that SSR works best at low RTT environment. At high RTT

environment, however, SSR performs similarly as CWV. Although, SSR is

the most conservative method among the three proposed solutions, it is the

best solution to handle the problem of restarting idle TCP connection.

TCP with Rate-Based Pacing

From the results of the simulation experiments, we can conclude that RBP

has superb performance at high RTT environment. At low RTT environ-

ment, its performance is just close to that of CWV but worse than that of

SSR. However, as the RTT increases, it begins to outperform other proposed

solutions.

TCP with Congestion Window Validation

It is observed that the performance of CWV is the worst at both high and

low RTT environments. At low RTT environment, the performance is about

the same as that of RBP but worse than SSR. At high RTT environment,

its performance is about the same as that of CWV, irrespective of the burst

size and queue management approach is used.

Chapter Conclusion

In short, according to the findings above, SSR is the most effective solution

in handling restarting an idle TCP when the network turns extremely busy

during the idle period when RTT is at medium to low level, which is close

to the real Internet/Intranet environment. At a high RTT environment like

satellite links, RBP is better.
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3.4 Other Problems

As mentioned, restarting an idle TCP connection in HTTP persistent con-

nections without considering the fluctuation of network condition during

the idle period may result in TCP injecting too many data segments into

the network and eventually downgrading the performance. In the previous

section, we have evaluated the performance of different approaches to solve

this problem.

Apart from the problems of restarting an idle TCP connection, there are

a number of generic TCP problems that may also degrade the overall perfor-

mance of HTTP persistent connections. They are (1) initial TCP window

size; (2) interaction of Nagle algorithm and delayed acknowledgment; (3)

initial value of ssthresh; and (4) validation of congestion window. We will

discuss these issues one by one.

3.4.1 Initial TCP Window Size

A simplistic implementation of delayed ACK can cause unnecessary idle time

during the initial data transfer phase in a client-server network environment.

Figure 3.10 illustrates the scenario as follows.

Upon receiving a HTTP request from a client’s browser, since the re-

sponse message cannot fit in one TCP segment, TCP will break it up into

multiple segments. During the initial slow-start phase, the server TCP is

allowed to send only one segment. Therefore, only a partial server response

is sent. The browser, upon receiving the first segment, is not able to respond

because the data is incomplete.

In the mean time, the client TCP holds back the acknowledgment of the

first segment while the browser is waiting for the rest of the response data

from the server before it can issue the next HTTP request. But server is

waiting for the browser to acknowledge before it can send the rest of the

response data. Then a temporary deadlock is formed. Eventually, the client
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Figure 3.10: Delayed acknowledgments.

TCP will give up the waiting after a delayed acknowledgment interval, and

send back an ACK. Note that the effect of delayed acknowledgment is to

delay segment transmission. As the delay is much shorter than the initial

retransmission delay, this does not cause retransmissions by the server or

client.

Figure 3.11 shows the simulation performance of TCP with and without

delayed acknowledgment enabled on the client side. The dotted line and solid

line represent the sequence number of the data segments against the send

time when the delayed acknowledgment is enabled and disabled respectively.
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Figure 3.11: Performance of TCP with and without delayed acknowledg-

ments.

The simulation is conducted by sending 20 data segments from the server

to the client and check the time required for the transmission.

In the situation where the delayed acknowledgment is disabled, we can

see from Figure 3.11 that the server sends the first segment at 0.1 second.

Upon the client’s receipt of the first segment sent by the server, it would

immediately send the acknowledgment back to the server so that the server

can continue with sending other segment at 0.32 second. In contrast, when

the delayed acknowledgment is enabled, the client will wait for about 200 ms

before sending the acknowledgment to the server, instead of doing it imme-

diately after receiving the first segment. As a result, the server has to wait

until 0.52 second before it can send out the outstanding segments.

We can see that the total time required by TCP with and without de-

layed acknowledgment for sending 20 segments is 1.44 seconds and 1.01

seconds respectively. Thus when the delayed acknowledgment is enabled,

the transmission is 42.57% slower than when it is disabled.
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3.4.2 Interaction of Nagle Algorithm and Delayed Acknowl-

edgment

As discussed in Section 2.1.8, Nagle algorithm was designed for terminal I/O

traffic to avoid small amount of data, instead of full-size segments, being

exchanged across the connection. By default, Nagle algorithm is enabled.

However, it is not suitable for the traffic of HTTP persistent connection

when delayed acknowledgment is enabled on the client’s browser [9].
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Figure 3.12: Interaction of Nagle algorithm and delayed acknowledgment.

Figure 3.12 illustrates the problem. Assume the web server writes 5KB

of data at the application-layer. TCP breaks the data into three full-sized

segments of 1460 bytes each plus one segment of 740 bytes. At the beginning,
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Nagle algorithm is not invoked because the sending buffer does not have any

outstanding unacknowledged data. TCP will send the first three full-sized

segments. However, since the delayed acknowledgment is enabled on client’s

browser, the acknowledgment of the third segment will be delayed as it is

not a pair. On the other hand, the outstanding unacknowledged data and

the absence of a full-sized segment triggers the Nagle algorithm. As a result,

the client will delay sending the final non full-sized segment and eventually

a temporary deadlock appears.

Nagle algorithm is off

Nagle algorithm is on
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0.0000
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2.0000
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Figure 3.13: Performance of TCP with Nagle algorithm is on and off.

Figure 3.13 shows the performance comparison of TCP with Nagle al-

gorithm on and off on the server side. The dotted line and the solid line

represent situations when the Nagle algorithm is enabled and disabled re-

spectively. In both cases, the delayed acknowledgment is enabled on the

client side. The simulation this time is carried out by sending 11 data seg-

ments from the server to the client and checks the time required for the

transmission. We can see from Figure 3.13 that in the period between 0.00

second to 1.11 seconds, the two lines overlap. However, beyond 1.11 seconds,
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when Nagle algorithm is enabled, there will be a temporary deadlock. The

deadlock will last for about 200 ms. Nevertheless, no deadlock will appear

when the Nagle algorithm is disabled.

The ultimate cause of the deadlock is that Nagle algorithm prohibits web

server from sending any non full-sized segment, while delayed acknowledg-

ments prohibit client’s browser from acknowledging any segment received

which is not in pair. In fact, Nagle algorithm is intended for small-packet

and two-way traffic, while TCP is used by HTTP persistent connection for

a series of requests and responses.

3.4.3 Initial Value of ssthresh

As mentioned before, the slow-start threshold, ssthresh, is a critical point

to trigger either slow-start and congestion avoidance algorithm to control

data transmission. Default values for the parameters will be adopted when

the server TCP starts up in the absence of any details of the client and

network capacity. There is possibility that the initial value of ssthresh is

arbitrarily high, say the size of the advertised window or simply 64KB. But

the value will reduce automatically when congestion occurs. Nevertheless,

under this mechanism, the server will send excessive segments too rapidly

and thus unnecessary loss of some multiple segments in the same window,

which often takes much time to recover, may occur.

Figure 3.14 and Figure 3.15 illustrate the situations at different level of

initial threshold. In Figure 3.14, the initial threshold is set to a relatively

high level, equivalent to 22-segment size. In Figure 3.15, the initial threshold

is set to a relatively low level, equivalent to 10-segment size. Under the

same traffic condition, TCP with high level of initial threshold results in

multiple segment loss. Eventually, there will be retransmission timeout and

the transmission returns to slow-start. On the contrary, in relatively low

threshold, the degree of segments loss is relatively less serious such that no
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Figure 3.14: TCP with large initial ssthresh.

retransmission timeout will be induced and fast recovery is good enough to

handle the loss.

Figure 3.16 is the results of a simulation for comparing the performance

of TCP with a relatively large and small initial threshold. Total 200 seg-

ments are sent by the server for testing purpose. The finding is: in the

large-threshold case, it takes 7.74 seconds for the transmission; in the small-

threshold case, it takes 6.67 seconds.

3.4.4 Validation of Congestion Window

It is common in current TCP implementations that it does not attempt to

find out whether the previous value of the cwnd has been fully utilized be-

fore the congestion window is enlarged upon receiving ACKs, as long as the

advertised window of the client and the slow-start or congestion avoidance

permit. Since the amount of data transmitted is less than the amount al-

lowed by cwnd, cwnd will be inaccurate in showing the network condition

in the application-limited period.
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Figure 3.15: TCP with small initial ssthresh.
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Figure 3.16: Performance of TCP with large and small initial ssthresh.

39



Figure 3.17 illustrates how congestion window fails to reflect the net-

work condition accurately during application-limited period. The dotted

line and solid line represent the size of congestion window and sequence

number respectively. From 2.2 seconds to 2.5 seconds, the server sends one

data segment to the client for every 0.1 second. Like most of the current im-

plementations, TCP increases the value of congestion window for each ACK

it receives. Since the amount of data transmitted is far below the amount

allowed by the congestion window, it does not reflect the amount of data

segments that the network can actually afford.

However, when the server tries to send 30 more data segments to the

client at 2.6 seconds, this burst of data segments overflow the intermediate

routers. As this amount of data segments exceeds the congestion window

limit, TCP will only transmit that maximum amount. Unfortunately, the

value of cwnd is misleading during the application-limited period (between

2.2 seconds to 2.5 seconds) since TCP does not check whether the previous

value of cwnd has been fully utilized before the congestion window is inflated

whenever an ACK is received. As a result, transmitting a large burst of data

allowed by cwnd after application-limited period may lead to data segment

loss and eventually the overall performance deterioration.
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Figure 3.17: Validation of Congestion Window.
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Chapter 4

Proposed Solution

In previous chapter, we have evaluated some related works proposed by other

researchers to resolve the problem of restarting idle TCP connections. In

addition, we have also discussed a number of problems with HTTP persistent

connections running over existing TCP implementations. In this chapter,

we propose a Cocktail approach to resolve the problems and describe the

rationales behind.

4.1 A Cocktail Approach

The problem of restarting idle TCP connections frequently happens in HTTP

persistent connections. In the previous chapter, a number of simulation ex-

periments have been conducted and it reveals that SSR is the best solution

in restarting an idle TCP connection when the network is extremely busy

during the idle period when RTT is at medium to low level. Since this level

range is close to the real Internet/Intranet environment, it is proposed that

SSR can be used to handle the problem.

To further enhance the solution by tackling other generic problems dis-

cussed in Section 3.4, some more elements can be added to supplement SSR.

1. Increasing the size of initial window from one to two
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2. Using TCP NewReno with Initial ssthresh Estimation

3. Limiting the growth of congestion window

4. Disabling Nagle algorithm

As the set of solution is a mix, we can call it Cocktail Approach.

4.2 Slow-Start Restart of Idle Connections

In Section 3.2, approaches to handle the restarting of idle TCP connections,

namely SSR, RBP, and CWV, have been explored. The basic idea of RBP

is attempting to maintain the transmission rate to pre-idle rate even after

the idle period. CWV, on the other hand, is an attempt to decay the cwnd

for every RTO. However, these two solutions have their hidden problems be-

cause they are assumed that the network traffic condition fluctuates mildly

rather than drastically. So theoretically, RBP and CWV can improve trans-

mission performance if there is no drastic change in the network condition

during the idle period.

Unfortunately, in reality, traffic in the Internet is dynamic and unpre-

dictable. There is no guarantee that the traffic condition in this moment

is the same as the next moment, especially in a highly congested environ-

ment. If the network turns very congested during the idle period, RBP and

CWV may inject too many segments into the network, exceeding its han-

dling capacity. Eventually, this is lead to retransmission timeout at the early

stage when the connection is restarted. Hence transmission performance is

degraded.

Compared with SSR, RBP and CWV are more aggressive solutions. If

the number of aggressive senders is few, they will be better off. However, if

more and more clients adopt the two approaches to handle idle connections,

the network as a whole may end up with more congestion. Thus it may be

more prudent to adopt SSR to avoid this potential drawback.
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4.3 Other Enhancements

4.3.1 Increasing the Size of Initial Window

One of the easiest ways to improve the performance of slow-start is to in-

crease the size of initial window from one to two. Suppose the initial window

is of one segment, a client who adopts delayed acknowledgment cannot cre-

ate an acknowledgment until there is a timeout. If the initial window is of

two segments or more, however, the client will generate an acknowledgment

after the second segment arrives. The unnecessary waiting for the timeout

can be eliminated.

Figure 4.1 illustrates the situation when the size of the initial window

is increased from one to two. When the initial window is two, the server is

able to send out two segments at the initial stage. Upon receiving these two

segments, the client can immediately send out the acknowledgment and the

200 ms timeout can be eliminated, even if the delayed acknowledgment is

enabled.

One of the potential tradeoffs of the change is that the network can

tolerate more congestion, provided that more and more clients use two seg-

ments as the initial window size. Internet Engineering Task Force (IETF)

has conducted a study on the effectiveness of the modification [18]. The

study eventually found no evidence that the modification resulted in more

congestion.

On the other hand, RFC 2414 [2] proposed to increase TCP’s initial

window size from one segment to between two and four segments according

to the following equation:

min(4MSS,max(2MSS, 4380bytes) (4.1)

Apart from eliminating the need to wait for the timeout due to the

delayed acknowledgment at the start-up stage, there are several other ad-
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Figure 4.1: Increasing the size of initial window from one to two.

vantages of using initial window sized larger than one. Firstly, it minimizes

the transmission time for connections transmitting a small amount of data.

Secondly, it eliminates up to three RTTs and a delayed a delayed acknowl-

edgment timeout in slow-start for connections which can use large windows.

For high-bandwidth large-propagation-delay TCP connections, for instance,

those in satellite links, it will become particularly useful.

In contrast, when the environment is highly congested, large initial win-

dows will result in retransmission timeout at the early stage of slow-start.

Though it can recover in the absence of a retransmission timeout, the tran-

sition from slow-start to the congestion avoidance phase of the window in-

crease algorithm will occur too early.

Therefore, choosing two as the TCP’s initial window size, rather than

three or four, is more appropriate as it is a way to compromise the pros

and cons of the modification. TCP’s initial window two-segment size is
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large enough to eliminate the temporary deadlock caused by the delayed

acknowledgment at the initial slow-start phase. In addition, this size can

highly reduce the chance of retransmission timeout occurring at the early

stage of slow-start that a large initial window may introduce.

4.3.2 Using TCP NewReno with Initial ssthresh Estimation

Apart from estimating a reasonable value of ssthresh, as discussed in Sec-

tion 2.1.5, TCP NewReno can efficiently recover from multiple segment

losses in the start-up period. Therefore, TCP NewReno with initial ssthresh

estimation is an essential element for our Cocktail approach to improve the

performance of HTTP persistent connections.

Slow-start threshold, ssthresh, is the critical point to decide whether to

use slow-start or congestion avoidance algorithm to control data transmis-

sion. For most TCP implementations, initial ssthresh value is arbitrary.

Some use the size of the advertised window. Some may simply take 64KB

as the initial value. In fact, if the initial ssthresh is too low, cwnd will rise

exponentially and reach ssthresh, hence switching to the additive increase

mode, too early. The transmission will be very slow, downgrading the per-

formance. So ideally, it will be preferable to estimate the value of ssthresh

to a level close to the full capacity of the link so that the growth of the

congestion window can slow down once the full capacity is achieved.

Hoe [10] proposed a simple way to estimate the ssthresh. Closely packed

segments are sent to the client at the rate of the bottleneck link bandwidth.

Provided that the ACKs are roughly equally spaced, an estimation of the

bandwidth can be estimated using the ACKs and the time at which they

arrive. To roughly estimate the round-trip delay, record the timestamp

when sending the segment and do it again when the corresponding ACK

arrives. Hence the bandwidth-delay product can then be computed. The

mechanism is basically like this. The ssthresh is initialized to 64 segments.
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Then the SYNC segment’s round-trip time is recorded. Then the bandwidth

is estimated by least-square method with figures from three closely spaced

ACKs.

It is important that the value of ssthresh chosen by such estimation is

better than choosing arbitrarily, say 64KB. Whether the ssthresh chosen by

estimation is absolutely reliable is not important. If the estimated value

is higher than the true value, it still makes sense to estimate rather than

choosing arbitrarily. For example, if the arbitrarily chosen value is 64KB,

the window will be opened too aggressively, resulting in much loss in seg-

ments. In contrast, if the value estimate is too low, the server may be to

conservative. The result may even be worse than losing multiple segments

and waiting for a retransmit timeout to recover. For the network perfor-

mance as a whole, a more conservative server is more desirable than an

aggressive one.

4.3.3 Limiting the Growth of Congestion Window

The next element in the cocktail approach is limiting the growth of the

congestion window. Recapping the discussion from previous sections, when

the congestion window is increased during the application-limited periods

and the previous value of window has not been fully utilized, there will be an

invalid congestion window. However, if the client’s advertised window and

either the slow-start or congestion window algorithm permits, all the existing

TCP implementations automatically enlarges the congestion window upon

receiving the ACKs without checking to ensure the previous value of the

window has not been used.

RFC 2861 [8] proposes that the window increase algorithm should not

be invoked during application-limited periods. The server should not in-

crease the congestion window when the server is application-limited (in other

words, not fully utilizing the current window). It aims at limiting the growth
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of the window so that it will not be arbitrarily large without ensuring that

the network can support that large window size.

4.3.4 Disabling Nagle Algorithm

Referring back to Section 3.4.2, when Nagle algorithm is enabled on the

server side while delayed acknowledgment are also enabled on the client

side, temporary deadlock will occur. From the server’s point of view, it

does not know whether the delayed acknowledgment is enabled. Thus the

simplest way to solve the deadlock problem is to completely disable the

Nagle algorithm [17].

Figure 4.2 demonstrates the situation when the Nagle algorithm is dis-

abled. We can see that the server is still able to send the last non full-

sized segment when the acknowledgment segment (ACK 2) is received, even

though some unacknowledged data exists.
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Figure 4.2: Disabling Nagle Algorithm
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Minshall [14] proposed a modified version of Nagle algorithm that can

avoid the deadlock problem even when it is enabled. The idea of the solution

is that the ACK will be delayed only if the unacknowledged data is smaller

than one full-sized segment. Transmitting short segments when there is any

unacknowledged data will not happen. The advantage is that it prevents

flooding the network with many small segments, which is the original pur-

pose of the algorithm, and without increasing delay to the transmission of

responses which requires segments in pairs.

Unfortunately, the pitfall of the modified Nagle algorithm is that if the

amount of data sent fluctuates much, one large segment, followed by a small

one and then a large one again, the original Nagle algorithm will give better

performance than the modified version. The original version will send at

most one segment, delaying the middle small amount of data and give way

to the following large segment. Hence the algorithm will send out two small

segments, the middle and the last ones.

Because of the pitfall, the modified solution cannot completely solve the

problem. Under HTTP persistent connection, disabling the Nagle algorithm

will not significantly affect the performance of the web server. This is be-

cause most of the segments exchanged are full-sized. Thus, simply disabling

the Nagle algorithm is more preferable to adopting the modified version

to solve the problem. To do this, the web server can simply turn on the

TCP NODELAY socket option [23]. No modification to the existing TCP im-

plementation is necessary.
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Chapter 5

Simulation Experiment

In the previous chapter, we have proposed a Cocktail approach to improve

the performance of HTTP persistent connections over the existing TCP im-

plementations. In this chapter, we are going to evaluate the performance

of the approach by conducting a series of simulation experiments at micro-

scopic and macroscopic levels.

5.1 Microscopic Comparison

Cocktail approach comprises several elements and each element addresses

a specific problem that degrades the performance of HTTP persistent con-

nections. The purpose of this section is to illustrate how individual element

resolves the problem one by one.

Since comparison of SSR with other solution has been discussed in de-

tail the chapters before, this section will concentrate on other elements in

Cocktail.

5.1.1 Increasing the Size of Initial Window

In our Cocktail approach, we propose to increase the size of initial window

from one to two. This simple modification can eliminate the unnecessary
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Figure 5.1: Performance comparison of TCP before and after increasing the

initial window size from one to two. Delayed acknowledgment is enable on

client side.

waiting time for the timeout due to the delayed acknowledgment at the early

stage of slow-start. It aims at improving the performance of slow-start.

A simple simulation experiment is set up to show the performance of

TCP before or after the modification. The server sends 20 data segments to

the client at 0.1 second. Figure 5.1 shows the result of the simulation that

assumes delayed acknowledgment is enabled on the client side. The dotted

line and solid line represent the sequence number of the data segments when

the initial window is one and two respectively against the send time.

In the situation where the initial window is one, the server takes 1.34

seconds to send 20 data segments. On the other hand, when the initial

window is two, the server takes 0.93 second to send 20 data segments. The

improvement is 43.8%, quite substantial, especially when the burst size is

small.

Apart from eliminating the temporary deadlock at the early stage of
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Figure 5.2: Performance comparison of TCP before and after increasing the

initial window size from one to two. Delayed acknowledgment is disable on

client side.

slow-start caused by enabling delayed acknowledgment on the client side, in-

creasing the size of initial window can improve the performance of TCP even

if delayed acknowledgment is disabled on the client side. Figure 5.2 shows

the result of simulation experiments that assumes delayed acknowledgment

is disabled on the client side. When the initial window is one, the server

takes 0.91 second to send 20 data segments. On the other hand, when the

initial window is two, the server takes 0.68 second to send 20 data segments.

The improvement is 24.6%. It is a remarkable improvement, although this

figure is not as significant as that when the delayed acknowledgment is en-

abled on client side. Therefore, we can conclude that increasing the size of

initial window from one to two can eliminate the unnecessary waiting time

for the timeout due to the delayed acknowledgment at the early stage of

slow-start.
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5.1.2 Using TCP NewReno with Initial ssthresh Estimation

As discussed in the previous chapter, TCP NewReno with initial ssthresh

estimation is able to improve the startup performance of TCP. Now we set

up a simple simulation experiment to illustrate its effect on the performance

of TCP.

In the simulation experiments, the server is trying to send a total of

100 data segments to the client in three different ways: (1) TCP NewReno

with initial ssthresh estimation; (2) TCP NewReno without initial ssthresh

estimation; and (3) TCP Reno. The experiments are performed under both

congested and less congested environments as well.

Figure 5.3 shows the results of the simulation experiments under a con-

gested environment and compares the time required for different approaches

to complete the transfer of the 100 data segments. It is found that the

server takes 6.10 seconds, 6.52 seconds and 7.33 seconds for TCP NewReno

with initial ssthresh estimation, TCP NewReno without initial ssthresh es-

timation and TCP Reno respectively to transfer 100 data segments to the

client. The result shows that TCP NewReno with initial ssthresh estima-

tion can improve the TCP performance efficiently under a highly congested

environment.

However, as shown in Figure 5.4, under a less congested environment, the

transmission time is 3.88 seconds, 2.06 seconds and 2.46 seconds for TCP

NewReno with initial ssthresh estimation, TCP NewReno without initial

ssthresh estimation and TCP Reno respectively.

5.1.3 Limiting the Growth of Congestion Window

We repeat the simulation experiment that has been performed in Section 3.4.4.

The procedures and configurations are exactly the same except CWV is used.

Figure 5.5 shows the results. The dotted line and solid line represent the size

of congestion window and sequence number respectively. From 2.2 seconds
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Figure 5.3: Performance comparison of different TCP implementations

working under a congested environment: (1) TCP NewReno with ssthresh

estimation; (2) TCP NewReno without ssthresh estimation; and (3) TCP

Reno.

to 2.5 seconds, the server sends one data segment to the client for every 0.1

second. For most of the current implementations, TCP increases the value

of congestion window for each ACK it receives. In our case, as CWV is

used, TCP inhibits the growth of congestion window for each ACK received

as the previous value of the cwnd has not been fully utilized. At 2.6 seconds,

the server tries to send 30 more data segments to the client. As TCP limits

the growth of congestion window during the application-limited period, it

prohibits TCP from injecting ”too many” data segments into the network

that may overflow the network.

Figure 5.6 is the performance comparison of TCP with CWV enabled

and disabled. When CWV is disabled, the server completes sending the last

data segment at 4.90 seconds whereas it takes 3.10 seconds when CWV is

enabled.
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Figure 5.4: Performance comparison of different TCP implementations

working under a less congested environment: (1) TCP NewReno with

ssthresh estimation; (2) TCP NewReno without ssthresh estimation; and

(3) TCP Reno.

5.1.4 Disabling Nagle Algorithm

Disabling Nagle algorithm is the last element of our Cocktail approach.

This modification intends to eliminate the temporary deadlock caused by

the interaction of Nagle algorithm and delayed acknowledgment.

A simple simulation experiment is set up to compare the performance of

TCP with Nagle algorithm on and off on the server side. The dotted line

and the solid line represent situations when the Nagle algorithm is enabled

and disabled respectively. In both cases, the delayed acknowledgment is

enabled on the client side. The simulation is carried out by sending 11 data

segments from the server to the client and checking the time required for the

transmission. Figure 5.7 shows the results of the simulation experiments.

When the Nagle algorithm is on, the server takes 1.29 seconds to send 11

data segments. On the other hand, when the Nagle algorithm is disabled, it
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Figure 5.5: Effect of TCP Congestion Window Validation.

takes only 0.69 seconds. The 46.5% improvement is significant. As a result,

it proves that disabling Nagle algorithm is able to eliminate the problem

caused by the interaction of Nagle algorithm and delayed acknowledgment.

5.2 Macroscopic Comparison

In the previous section, we have shown how individual element works for

in the Cocktail at the microscopic level. As the Cocktail is a mixture of

individual elements, we also have to evaluate they work as a whole. In this

section, we are going to do this evaluation and compare it with other existing

proposed solutions. The procedures and configurations are exactly the same

as those for evaluating SSR, RBP, and CWV in Section 3.3. The simulation

experiments are shown in Table 5.1 to Table 5.4.
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Figure 5.6: Performance comparison of TCP with CWV is enabled and

disabled.

At various propagation delay

Referring to Figure 5.8 to Figure 5.15, it is discovered that when Cocktail

is used, the transmission time is the shortest among the proposed solutions

at low RTT. In other words, Cocktail works best in low RTT environment,

regardless of the burst size and the queue management approach adopted.

However, as shown in Figure 5.12 and Figure 5.14, when Cocktail is used

in a high RTT environment, the transmission time is significantly higher

than that required by the other proposed solutions when the burst size is

as large as 500 or 1000 segments and drop-tail queue is used. On the hand,

the transmission time is the shortest when RBP is adopted in a high RTT

environment with any burst size and any queue management approach.

At various burst size

From the figures, it is observed that the transmission time required for

Cocktail is the shortest at low RTT environment. In other words, the per-
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Figure 5.7: Performance comparison of TCP before and after disabling Nagle

Algorithm. Delayed acknowledgment is enabled on client side.

formance of Cocktail is the best at low RTT environment. The burst size

does not affect its performance.

However, by comparing the transmission time required for SSR, RBP

and CWV, it is found that the transmission time required for Cocktail in a

high RTT environment is relatively high when the burst size is as large as

500 or 1000 segments and drop-tail queue management approach is used.

At various queue management approaches

By comparing the results of the simulation experiments, we found that the

transmission time is significantly reduced when RED queue is used in high

RTT environment. However, we observed that RED queue does not help to

reduce the transmission time when Cocktail is used in low RTT environment.
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Delay SSR RBP CWV Cocktail

10 2.498 (2.991) 3.895 (2.891) 4.112 (2.995) 2.610 (2.817)

20 4.238 (2.901) 4.390 (2.884) 4.045 (3.141) 2.597 (3.427)

30 2.699 (2.773) 3.932 (3.917) 3.322 (3.710) 2.813 (2.637)

50 3.534 (3.130) 4.301 (3.521) 3.678 (3.667) 2.701 (2.693)

100 3.330 (4.052) 4.398 (4.303) 5.123 (5.025) 3.390 (3.336)

150 5.998 (5.167) 5.480 (5.254) 6.590 (6.580) 4.816 (4.219)

200 7.219 (5.890) 5.912 (5.851) 8.262 (6.109) 7.531 (5.069)

300 10.596 (7.123) 2.888 (2.809) 12.187 (8.327) 11.410 (8.164)

Table 5.1: Time required for Cocktail, SSR, RBP, and CWV to transfer a

burst of 100 segments when the idle TCP connection is restarted. Figures

outside and inside the brackets are the results when drop-tail and RED

queue management is used respectively.

5.3 Discussion

After examining the results of the simulation experiments, it is found that

Cocktail can generally improve the performance of HTTP persistent con-

nections in a low RTT environment. However, in a high RTT environment,

RBP works best among the other proposed solutions.

In a low RTT environment, the total data transmission time is dominated

by the unnecessary retransmission timeouts. Hence, Cocktail works best in

a low RTT environment since it efficiently eliminates the factors that may

lead to unnecessary retransmission timeouts.

On the other hand, as delay of the network increases, the total capacity

of the network also gets larger. TCP therefore takes more RTTs to ramp up

to the maximum window than for a low-delay connection. In fact, several

researchers have noted that the TCP implementations now in use are not

suitable for high delay-bandwidth networks, such as satellite links. RBP is
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Delay SSR RBP CWV Cocktail

10 4.843 (6.445) 7.430 (5.731) 7.587 (6.567) 5.236 (5.770)

20 6.987 (5.364) 8.430 (6.019) 7.937 (6.020) 4.751 (6.095)

30 5.435 (5.488) 7.023 (6.594) 6.548 (6.871) 5.269 (5.113)

50 6.186 (5.756) 7.765 (7.511) 7.891 (6.395) 5.326 (5.233)

100 5.762 (7.234) 6.768 (6.902) 7.653 (8.246) 5.921 (5.938)

150 10.542 (9.299) 8.765 (8.625) 10.301 (10.195) 9.104 (8.445)

200 12.987 (10.408) 11.399 (10.162) 13.114 (11.989) 12.529 (10.699)

300 18.436 (12.789) 5.801 (5.7111) 18.781 (15.041) 16.826 (12.773)

Table 5.2: Time required for Cocktail, SSR, RBP, and CWV to transfer a

burst of 200 segments when the idle TCP connection is restarted. Figures

outside and inside the brackets are the results when drop-tail and RED

queue management is used respectively.

one of the possible solutions to the problem. As mentioned, instead of send-

ing the entire window of segments in a single burst when the transmission

is resumed after the connection becomes idle, the TCP sender sends out

the segments in a steady stream over the entire course of a round-trip time.

Therefore, RBP works best in high RTT environment.
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Delay SSR RBP CWV Cocktail

10 13.844 (15.778) 19.219 (15.975) 18.999 (16.755) 14.561 (13.234)

20 18.240 (14.667) 19.581 (15.102) 19.267 (15.803) 12.842 (11.703)

30 13.802 (13.223) 16.693 (15.021) 16.023 (17.624) 13.010 (12.067)

50 15.167 (14.810) 19.431 (18.435) 19.087 (17.019) 13.018 (12.193)

100 14.627 (15.010) 17.223 (18.511) 19.355 (18.395) 15.338 (14.824)

150 19.994 (18.129) 17.151 (17.511) 20.792 (19.925) 19.024 (17.451)

200 21.414 (20.186) 19.944 (20.278) 21.101 (22.129) 21.827 (20.195)

300 30.851 (27.398) 14.551 (14.556) 30.295 (27.872) 28.653 (28.016)

Table 5.3: Time required for Cocktail, SSR, RBP, and CWV to transfer a

burst of 500 segments when the idle TCP connection is restarted. Figures

outside and inside the brackets are the results when drop-tail and RED

queue management is used respectively.

Delay SSR RBP CWV Cocktail

10 23.548 (29.894) 38.215 (31.925) 39.614 (32.779) 26.973 (27.307)

20 39.104 (28.556) 40.248 (30.364) 41.112 (30.779) 29.957 (28.497)

30 27.530 (28.645) 33.275 (30.667) 32.987 (33.600) 25.955 (25.085)

50 28.521 (29.461) 37.997 (34.793) 37.669 (33.432) 25.445 (25.489)

100 29.995 (29.801) 32.651 (30.812) 30.889 (31.793) 28.523 (28.260)

150 33.925 (35.147) 32.831 (34.112) 33.127 (36.530) 32.900 (32.894)

200 41.173 (37.781) 38.912 (35.911) 42.194 (38.455) 40.275 (37.782)

300 55.916 (39.959) 30.123 (28.717) 55.319 (42.781) 53.736 (43.270)

Table 5.4: Time required for Cocktail, SSR, RBP, and CWV to transfer a

burst of 1000 segments when the idle TCP connection is restarted. Figures

outside and inside the brackets are the results when drop-tail and RED

queue management is used respectively.
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Figure 5.8: Performance comparison of Cocktail, SSR, RBP, and CWV at

various propagation delays when the burst size is 100 segments and the

drop-tail queue management approach is used.
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Figure 5.9: Performance comparison of Cocktail, SSR, RBP, and CWV at

various propagation delays when the burst size is 100 segments and the RED

queue management approach is used.
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Figure 5.10: Performance comparison of Cocktail, SSR, RBP, and CWV

at various propagation delays when the burst size is 200 segments and the

drop-tail queue management approach is used.
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Figure 5.11: Performance comparison of Cocktail, SSR, RBP, and CWV at

various propagation delays when the burst size is 200 segments and the RED

queue management approach is used.
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Figure 5.12: Performance comparison of Cocktail, SSR, RBP, and CWV

at various propagation delay when the burst size is 500 segments and the

drop-tail queue management approach is used.
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Figure 5.13: Performance comparison of Cocktail, SSR, RBP, and CWV at

various propagation delay when the burst size is 500 segments and the RED

queue management approach is used.
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Figure 5.14: Performance comparison of Cocktail, SSR, RBP, and CWV

at various propagation delay when the burst size is 1000 segments and the

drop-tail queue management approach is used.
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Figure 5.15: Performance comparison of Cocktail, SSR, RBP, and CWV

at various propagation delay when the burst size is 1000 segments and the

RED queue management approach is used.

65



Chapter 6

Conclusions

6.1 Conclusions

Cocktail approach is proposed to improve the overall performance of HTTP

persistent connections. The changes only require modifications to a TCP

sender, and a TCP with these changes is interoperable with any existing

TCP implementation. Cocktail is composed of several elements. Each el-

ement is assigned to tackle a specific problem caused by the interactions

between HTTP persistent connections and existing TCP implementations.

A number of simulation experiments have been conducted to evaluate the

performance of SSR, RBP and CWV against that of Cocktail. The results

of the experiments show that Cocktail generally performs better than the

others in a low RTT environment do. On the other hand, RBP works best

in a high RTT environment.

6.2 Recommendations and Further Studies

6.2.1 A True Cocktail Approach

This study concludes that Cocktail is able to improve the overall perfor-

mance of HTTP persistent connections in low RTT environment. However,
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in a high RTT environment, it is definitely not the rival of RBP and it is the

weakest point of Cocktail. One possible way to deal with this shortcoming

is to combine their strengths. That is, replacing the first element of Cocktail

in this way: when RTT is lower than a certain level, use slow-start restart;

otherwise, use RBP. The threshold value which determines whether Cocktail

or RBP should be used should be tunable (manually or automatically) to

optimize the overall TCP performance. Future studies can explore this issue

in more detail.

6.2.2 Recent Developments in TCP Congestion Control

Recently, researchers have suggested two mechanisms to further improve the

performance of TCP. The two mechanisms are: selective acknowledgement

(SACK) [13] and explicit congestion notification (ECN) [19].

Selective Acknowledgment

Traditionally, TCP congestion control lies in cumulative acknowledgment

scheme. By this, this client does not acknowledge any segments arrived that

are not at the left edge of the receive window. There are two consequences:

1. The server, in order to find out each missing segment, has to wait for

a roundtrip time; and

2. The server will retransmit those properly-received segments.

Both of these consequences are very inefficient in the sense that TCP will

lose the ACK-based clock and hence the overall throughput will be dragged

down due to the missing segments. Therefore, SACK is proposed. It works

by having the client notifying the server about all the successfully-arrived

segments. Then the server only has to retransmit the missing ones. However,

the disadvantage of SACK is that it requires modifications to TCP on both

the senders and receivers.
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Explicit Congestion Notification

Another attempt to further enhance TCP’s performance is adopting ECN.

However, there are special conditions for running this mechanism.

First, it requires an ECN field with 2 bits. The server will specify the

ECT bit to show that the end nodes of the transport protocol are able to

handle ECN. In addition, the router will specify the CE bit to notify the end

nodes about any congestion. Second, it requires support from the transport

layer. To ensure all end nodes are ECN-capable, a negotiation procedure

is necessary. It also requires the transport protocol to react properly upon

receiving a CE segment. The client would notify the server about the seg-

ment. Under the above conditions, the TCP ECN works under the following

mechanisms:

1. To ensure the end nodes are ECN capable, there will be negotiation

among them at the setup stage;

2. To ensure the client notify the server upon receipt of a CE packet,

there will be an ECN-echo flag in the TCP header; and

3. To enable the server to inform the client that the congestion win-

dow has been reduced, there will be a congestion window reduced flag

(CWR) in the TCP header.

The disadvantage of ECN is that it only works under the above special

conditions. In the other words, adopting ECN is impossible unless all the

end nodes (i.e. senders and receivers) and intermediate routers are ECN-

enabled. Hence, it increases the difficulties during the deployment.

6.3 Final Remarks

Although the above two methods to further enhance the performance of TCP

are quite effective, they are, unfortunately, not readily available because
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extensive support and special conditions are necessary for the mechanisms

to work. Instinctively, they are good ideas for improving the performance

of TCP if they can work under less additional conditions. Therefore, there

are rooms for further studies on enhancing the performance of TCP using

SACK or ECN under less restricted environment.
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