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In this paper, we consider a highly recursive interconnection network
known as the fully connected cubic network (FCCN). By exploiting its recur-
sive properties, we thoroughly analyze the performance of a simple routing
algorithm for the FCCN. We show that at least 800 of the routes obtained
from this simple algorithm are shortest paths, and this percentage increases
further with the network size. Subsequently, we obtain the network diameter
and average internodal distance, taking into account the communication
locality that is exhibited in many parallel computations. The presence of the
communication locality significantly reduces the average internodal distance.
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1. INTRODUCTION

Packet routing is a critical component in the design of interconnection networks.
An ideal routing algorithm should be very efficient to execute and optimal in terms
of finding a shortest path. Indeed, it is well known that simple and shortest-path
routing algorithms exist in a class of interconnection networks, notably the hyper-
cube and mesh networks. The hypercube, however, is not a practical candidate for
scalable network design, due to its nonconstant nodal degree. Mesh networks, on
the other hand, suffer from a relatively large network diameter for a small nodal
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degree. As a result, a number of more scalable interconnection networks have been
proposed, e.g., [1�6]. These interconnection networks also possess simple routing
algorithms that require only the packet's destination address and the processing
node's address. However, unlike the hypercube and mesh networks, these simple
routing algorithms do not guarantee shortest paths. On the other hand, shortest-
path routing algorithms also exist for these interconnection networks, but each
node is required to obtain more topological information and the processing of the
algorithms is much more involved. Moreover, distributed mechanisms are needed
to make sure that the topological information kept in each node is up-to-date.

Because of the complexity involved in implementing shortest-path routing algo-
rithms, simple routing algorithms usually prevail in actual implementation. None-
theless, there is a lack of analysis and a failure to probe further into important
performance issues, such as ``how many routes computed by the simple routing
algorithms are indeed shortest paths?''; ``how does the percentage of shortest paths
change with network size?''; and ``how much longer are those nonshortest paths
when compared with shortest paths?'' Our main focus in this paper is to address
these issues for a simple routing algorithm in a recently proposed interconnection
network known as the fully connected cubic network (FCCN) [7]. Owing to its
recursive structure, we are able to obtain recurrence equations and recursive algo-
rithms to describe the routing algorithm's properties. The main result is a criterion
under which the routing algorithm guarantees shortest paths. We then apply the
results to obtain network diameter and average internodal distance, taking into
consideration the communication locality that is exhibited in parallel computations.
Our conclusion for the FCCN, after a detailed analysis, is that it is justified to
employ the simple routing algorithm although it does not guarantee shortest paths.
Numerical results show that no more than 200 of routes obtained from the algo-
rithm are nonshortest paths, and they are longer than the corresponding shortest
paths by no more than 300 on average. Furthermore, both percentages decrease
with network size. As a result, it does not seem to be worthwhile from a practical
point of view to obtain shortest paths just for at most 200 of routes by adding
significant complexity to the routing algorithm and to the processing nodes.

The rest of this paper is organized as follows. In Section 2, we briefly review the
definition of the FCCN. In Section 3, we describe a simple routing algorithm that
uses only a processing node's address and a packet's destination address to make
routing decisions. We then address the performance issues of the routing algorithm
in Section 4 and the effect of communication locality on the average internodal
distance in Section 5.

2. FULLY CONNECTED CUBIC NETWORK

The FCCN is a product of three design goals: using 3-cubes as basic building
blocks, maintaining a constant nodal degree, and balancing between nodal degree
and diameter. We choose 3-cubes as the building blocks for the FCCN, because
they also serve the same purpose for hypercube, which can effectively execute a
large class of parallel algorithms. Our approach to achieving the design goals is to
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FIG. 1. A 2-FCCN.

take advantage of the smallest diameter offered by a clique while keeping a small
and constant nodal degree. Informally, each node of the clique is substituted by a
3-cube, and the eight 3-cubes are fully interconnected according to Fig. 1; the
resulting network is referred to as a 2-level FCCN, or just 2-FCCN. A 3-FCCN,
shown in Fig. 2, is in turn constructed from eight 2-FCCNs in a similar fashion.

FIG. 2. A 3-FCCN (with partial links).
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Generally, an FCCN with m levels (m-FCCN) is constructed by fully connecting
eight (m&1)-FCCNs in the manner of an 8-node clique.

Each node in an m-FCCN is uniquely identified by a vector of m octal numbers
;m : (;m;m &1 } } } ;1). To differentiate octal values from decimal values, we use
Greek (English) symbols to refer to octal (decimal) constants and variables that
take on octal (decimal) values. Moreover, we use ;m } } } k , 1<k�m, to refer to
(;m } } } ;k), the k th to m th element in ;m . Note that ;m } } } k uniquely identifies the
(k&1)-FCCN in which the node resides, and ;1 is the node's position on the first
level (3-cube).

Definition 2.1. An unconnected gateway node (UGN) in an m-FCCN is one
with an unused link, and its address is given by (" " } } } ") or ("m) in short. There-
fore, there are always eight UGNs in an m-FCCN.

Definition 2.2. A kth level connected gateway node in an m-FCCN, 1<k�m,
denoted by k-CGN, is one whose address is given by (k "m&1) for m-CGN, by
(;m } } } }+1 } "k&1) for other cases, and }{" for all cases. It is easy to show that a
FCCN node is either a UGN or a CGN.

Definition 2.3. Denote an m-FCCN by Fm#(Vm , Em), where Vm and Em are
the sets of nodes and links, respectively. A 1-FCCN is equivalent to a 3-cube. An
m-FCCN, m>1, consists of eight identical (m&1)-FCCNs; the } th (m&1)-FCCN
is denoted by Fm(})#(Vm(}), Em(})). Then

Vm= .
}=0, ..., 7

Vm(})

with the node addresses changed from ;m &1 to (} ;m &1) for nodes in Fm(}).
Besides the links �}=0, ..., 7 Em(}), a new intercubic link is set up between each pair
of m-CGNs: (" }m&1) and (} "m&1), "{}.

3. A SIMPLE ROUTING ALGORITHM

In Algorithm 3.1, we present a recursive routing function for a pair of source and
destination nodes, denoted by :m : (:m :m &1 } } } :1) and ;m : (;m ;m &1 } } } ;1), respec-
tively. Max� level�differ(:m , ;m) determines the number of the highest level that
their addresses differ; that is, Max� level�differ(:m , ;m)=k such that :k{;k and
:i=;i for all k<i�m. The entire routing path consists of a route from the source
node to a k-CGN node (labeled A.1), a one-hop route between two k-CGNs
(labeled A.2), and a route from a k-CGN node to the destination node (labeled
A.3). By recursively expanding R-Route( ) in (A.1) and (A.3), we obtain a nonrecur-
sive version of Algorithm 3.1, presented as Algorithm 3.2, with which a source node
or an intermediate node makes routing decisions based on its address and the
destination address. Note that the cubic routing in (B.1) and (B.3) incurs 1, 2, or
3 hops.
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Algorithm 3.1 (A recursive routing algorithm)

Procedure R-Route(:m , ;m)
begin

k � Max� level�differ(:m , ;m);
if k=1, route the packet to the destination using cubic routing;
else do

(A.1) R-Route(:m , (:m } } } k+1 :k ;k
k

&1));
(A.2) R-Route((:m } } } k+1 :k ;k&1

k ), (:m } } } k+1 ;k :k&1
k ));

(A.3) R-Route((:m } } } k+1;k :k&1
k ), ;m);

end;
end [R-Route]

Algorithm 3.2 (A nonrecursive routing algorithm)

Procedure S-Route(:m , ;m)
begin

if :m=;m , the packet is received by ;m ;
else do

k � Max� level�differ(:m , ;m);
(B.1) if k=1, route the packet from :m to ;m using cubic routing;

else do
(B.2) if :1=;k , route the packet to the k-CGN at the other end of the

intercubic link;
(B.3) else route the packet to (:m :m&1 } } } :2 ;k) using cubic routing;

end;
end;

end [S-Route]

The routing algorithm is very efficient, requiring only two comparison operations
and a function call of Max� level�differ() at each hop. The computational require-
ment for Max� level�differ( ) can be drastically reduced by having the source node
first execute the function fully, and then use a pointer to remember the returned
value of the function. The pointer value is sent together with the data. Therefore,
other nodes do not have to execute the function all over again, but they need to
decrement the pointer value if the condition for (B.2) is satisfied.

We illustrate the routing algorithm with a simple example below, in which we
depict the route sequence in the form of a binary tree. Specifically, the route
sequence from the source node to the destination node is given by an inorder
traversal of the tree nodes. The interior tree nodes correspond to the one-hop
routes between two k-CGNs (B.2). The three leftmost leaf nodes correspond to
(B.3), and the rightmost leaf node corresponds to (B.1). Note that the routing
pattern involves alternating between intra- (leaf nodes) and intercubic routing (interior
nodes). Relating it to Algorithm 3.1, the bigger dashed box on the left subtree
corresponds to (A.1) and the one on the right subtree, (A.3). The smaller dash
boxes, on the other hand, correspond to the cases of k=1 that end the recursive
calls of R-Route( ).
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Example: (2 7 2) � (3 5 0)

It is clear that the routing algorithm guarantees that a packet will always be
delivered to the destination, but the resulting path is not necessarily a shortest
path. A nonshortest route for a 2-FCCN, for example, is given by (0 7) � (3 7), for
which the routing algorithm gives a distance of 5; however, the route (0 7) �
(7 0) � (7 1) � (7 3) � (3 7), which passes through F1 (7) before reaching F1 (3), is
one hop shorter.

Definition 3.1. Denote an internodal distance matrix for an m-FCCN, of
dimension 8m_8m, by Hm . The entry specified by a :m-row and a ;m-column gives
the internodal distance for :m � ;m . A :m -row vector is denoted by hr

m (:m)#
[c:m , 1 c:m , 2 } } } c:m , 8m], and a ;m -column vector is denoted by hc

m (;m)#
[d1, ;m

d2, ;m
} } } d8m, ;m

]T. H1 is the well-known internodal distance matrix for a
3-cube. Another way to write Hm , m>1 is based on its recursive structure

Hm=[Hm&1 (}, ")]}, "=0, ..., 7=_
Hm&1 (0, 0)
Hm&1 (1, 0)

b
Hm&1 (7, 0)

Hm&1 (0, 1)
Hm&1 (1, 1)

b
Hm&1 (7, 1)

} } }
} } }

} } }

Hm&1 (0, 7)
Hm&1 (1, 7)

b
Hm&1 (7, 7)

& ,

where Hm&1(}, ") is an 8m&1_8m&1 dimensional matrix giving internodal dis-
tances for source nodes in Fm&1 (}) and destination nodes in Fm&1(").

Definition 3.2. Define an operator 3 for two vectors hc
m (;m) and hr

m (:m), such
that hc

m (;m) 3 hc
m (:m)=[zi, j] i, j=1, ..., 8m , a matrix of dimension 8m_8m, where

zi, j=di, ;m
+c:m , j .

Theorem 3.1. Given Hm , m�1, Hm+1=[Hm (}, ")]}, "=0, ..., 7 , where

Hm (}, ")={Hm

hc
m ("m) 3 hr

m (}m)+1
if }="
if }{",

(3.1)

and 1 is an 8m_8m dimensional identity matrix.

Proof. Both source and destination nodes belong to the same m-FCCN for
}="; thus, Hm (}, })=Hm . If }{", the route from a source node :m+1 # Fm (}) to
a destination node ;m+1 # Fm ("), as obtained from Algorithm 3.1, consists of
R-Route(:m+1 , (} "m)), R-Route((} "m), (" }m)), and R-Route((" }m), ;m+1). Since
both :m+1#(} :m } } } 1) and (} "m) reside in Fm (}), R-Route(:m+1, (} "m)) is identical
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to R-Route(:m } } } 1 , ("m)), and its length is given in Hm . Furthermore, because ("m)
is a common destination for any source nodes in Fm (}), the internodal distances
from all source nodes in Fm (}) to ("m) are given by a column vector hc

m (("m)).
Similar arguments apply also to R-Route ((" }m), ;m+1); thus, the internodal dis-
tances from (}m) to all nodes in Fm (") are given by a row vector hr

m ((}m)). As a
result, the internodal distance is given by the sum of the two and one hop for the
intercubic link. K

Corollary 3.1. The internodal distance for a given source-destination pair
(:m , ;m), where :m{;m , is given by

{
|:1�;1 | if m=1

D(:m , ;m)= |:1�;m|+ :
m&1

k=2

2k&2[ |:k�;m|]++1 (3.2)

+ :
m&1

k=2

2k&2[|:m�;k|]++|:m �;1| if m>1,

where |:�;| gives the distance of bitwise exclusive OR (�) of : and ; in binary
representations, i.e., the number of 1s in :�;. Moreover, [ |:�;|]+ is equal to 0 for
:=;, and |:�;|+1, otherwise.

Proof. The derivation is based on a recursive computation of (3.1) and the well-
known H1 . The first two terms in (3.2) give the length of the (A.1)-route; the third
term gives the (A.2)-route; and the last two terms give the (A.3)-route. K

4. AN ANALYSIS OF ROUTING PERFORMANCE

The main result in this section, given in Theorem 4.1, is a criterion under which
Algorithm 3.1 guarantees shortest paths. The proof for the theorem is based on
Lemmas 4.1�4.3. Lemma 4.1 first gives the internodal distance of a route that goes
through one or two intermediate (m&1)-FCCNs before reaching the destination
(m&1)-FCCN. Without loss of generality, we again assume :m{;m in this section.
Because of the network's structure, it is important to note that any routing algo-
rithms employed for FCCN must first route packets to an m-CGN, but the
methods of routing packets to the m-CGN and the choices of this m-CGN may differ.

Lemma 4.1. For a given source-destination pair (:m , ;m), consider Algorithm 3.1
with a modified (A.2)-route: at the end of (A.1)-route, packets will be routed to one
or two intermediate (m&1)-FCCNs before reaching Fm&1 (;m). The internodal dis-
tance for the case of traversing one intermediate (m&1)-FCCN, say Fm&1 (#),
#{:m , ;m , is given by

D# (:m , ;m)=|:1�#|+ :
m&1

k=2

2k&2[|:k�#|]++1

+2m&2( |:m�;m|+1)+ :
m&1

k=2

2k&2[ |;k�#| ]+

+|;1�#|, m>1. (4.1)
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The internodal distance for the case of traversing two intermediate (m&1)-FCCNs,
say Fm&1 (#) first and then Fm &1 (`), where #, `{:m , ;m and #{`, is given by

D#, ` (:m , ;m)=|:1�#|+ :
m&1

k=2

2k&2[|:k �#|]+

+2m&2( |:m�`|+1)+1+2m&2( |#�;m|+1)

+ :
m&1

k=2

2k&2[|;k �`|]++|;1�`|, m>1. (4.2)

Proof. For D# (:m , ;m), (A.1), (A.2), and (A.3) become R-Route(:m , (:m# m&1)),
R-Route((:m# m&1), (;m# m&1)), and R-Route((;m# m&1), ;m), respectively. Unlike
the previous case, the (A.2)-route now consists of multiple hops. The derivation for
D#, ` (:m , ;m) can be performed similarly. K

Lemma 4.2. D(:m , ;m)<D#, ` (:m , ;m), m>1, and a similar inequality holds for
the case of traversing more than two intermediate (m&1)-FCCNs.

Proof. Let 4:m
(#) be a set of indices, such that k # 4:m

(#) if :k=#, k=2, ...,
m&1. 4� :m

(#) is the complement of 4:m
(#). Thus, [ |:k �#|]+=0 for k # 4:m

(#)

and [|:k+#|]+=|:k �#|+1 for k # 4� :m
(#). Define similar sets for ;m : 4;m

(`) and
4� ;m

(`). As a result, D#, ` (:m , ;m), m>1, can be written as

D#, ` (:m , ;m)=|:1 �#|+ :
k # 4� :m (#)

2k&2( |:k �#|+1)+1

+2m&2( |:m�`|+1)+2m&2( |#�;m|+1)

+ :
k # 4� ;m (`)

2k&2( |;k�`|+1)+|;l �`|.

� |:1�;m|+1+ :
k # 4� :m (#)

2k&2( |:k�;m|+1)

+ :
k # 4:m(#)

2k&2( |#�;m|+1)+1

+ :
k # 4� ;m (`)

2k&2( |;k�:m|+1)

+ :
k # 4;m (`)

2k&2( |`�:m|+1)+|;1�:m|+1. (4.3)

The inequality in (4.3) is derived primarily based on triangular inequalities, such as
|:1 �#|+|#�;m|�|:1�;m| for both :1=;m and :1{;m . Based on the earlier
assumptions, we also have
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D(:m , ;m)�|:1�;m|+ :
k # 4� :m (#)

2k&2( |:k�;m|+1)

+ :
k # 4:m(#)

2k&2( |#�;m|+1)+1

+ :
k # 4� ;m(`)

2k&2( |;k�:m|+1)

+ :
k # 4;m(`)

2k&2( |`�:m|+1)+|;1�:m| . (4.4)

A lower bound for D#, ` (:m , ;m)&D(:m , ;m), given by (4.3)�(4.4), is positive, thus
completing the proof. It should be clear that this result also applies to the case of
passing through more than two intermediate (m&1)-FCCNs. K

Lemma 4.3. If either :m or ;m in a given source-destination pair (:m , ;m) is a
UGN, where :m{;m , the route computed by Algorithm 3.1 is a shortest path.

Proof. We prove this lemma by induction. It is clearly true for m=1. For m=2,
it turns out that we can obtain a more general result: Algorithm 3.1 gives shortest
paths for any pair of nodes in a 2-FCCN with ;2{:2 if |:1�;2|+|:2�;1|&
|:2 �;2|&|:1�;1|&1�0. To prove this result, we have to prove three things: (1)
the corresponding (A.1)-route computed by the algorithm is a shortest path; (2) the
corresponding (A.3)-route computed by the algorithm is a shortest path; (3) the
length of the overall path is shortest. Note that both (1) and (2) are true because
of the cubic routing. Based on the result of Lemma 4.2, (3) is also true for a given
source�destination pair if Algorithm 3.1 gives a shorter path than the modified
algorithm that is required to traverse one intermediate 1-FCCN. By comparing
(3.2) and (4.1) for m=2, and using |:1+#|+|#�;1|� |:1�;1| , we obtain the suf-
ficient condition stated earlier. As a result, the lemma is true also for m=2.

In the induction step, we consider a k-FCCN, 2<k�m, and assume that the
lemma is true for a (k&1)-FCCN. In this case, both (1) and (3) are also true due
to the assumption for (k&1)-FCCN. Therefore, once again the shortest path is
given either by Algorithm 3.1 or by the modified algorithm that is required to
traverse one intermediate (k&1)-FCCN. By applying an approach similar to the
proof of Lemma 4.2, one can show that D# (:m , ;m)&D(:m , ;m)>0, thus complet-
ing the proof. K

Theorem 4.1. Algorithm 3.1 guarantees shortest paths for any given source-
destination pair (:m , ;m), where :m{;m , if and only if D(:m , ;m)�min#{:m , ;m

D# (:m , ;m).

Proof. The cases where either :m or ;m is a UGN have been handled in Lemma
4.3. For other cases, note that Algorithm 3.1 yields shortest paths for both (A.1)-
and (A.3)-routes, because each route involves a UGN in either the source or
destination (m&1)-FCCNs. As for the length of the overall path, Lemma 4.1 states
that going through another immediate (m&1)-FCCN is the only possibility of giv-
ing a shorter path than the one generated from Algorithm 3.1. K
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TABLE I

Performance of Algorithm 3.1

Average internodal distance for
Percentages of routes that those paths that do not Average internodal distance for

m satisfy Theorem 4.1 satisfy Theorem 4.1 the corresponding shortest paths

2 81.550 5.3 (+28.8 0) 4.1
3 84.120 11.0 (+20.8 0) 9.1
4 91.760 22.9 (+15.8 0) 19.8
5 93.160 46.4 (+13.4 0) 40.9

Based on the result in Theorem 4.1, one could devise a shortest-path routing
algorithm for the FCCN, but every node needs to store additional information and
more computation is required. To evaluate the trade-off between routing com-
plexity and routing performance in terms of the path's length, we present numerical
results for Theorem 4.1 and average internodal distances in Table 1. In the second
column, we show the percentages of routes computed by Algorithm 3.1 that are
shortest paths. In the third and fourth columns, we show the average internodal
distance for the nonshortest paths computed by Algorithm 3.1, as well as the
average for the corresponding shortest paths, respectively. The differences between
the two in percentages are recorded within parentheses in the third column.

According to Table I, the case of m=2 represents the worst performance for the
simple routing algorithm: almost 200 of the routes are not shortest paths and, on
average, are one hop longer than the shortest paths. However, the performance in
both columns improves as the network size increases. As a result, using a simple
routing algorithm that does not always guarantee shortest paths is quite justified
for the FCCN. In other words, using a more complex routing algorithm to guaran-
tee shortest paths for the remaining 7�180 of the routes may not be worthwhile.

5. NETWORK DIAMETER AND AVERAGE INTERNODAL DISTANCE

In this section, we apply the results in the last section to obtain network diameter
and average internodal distance for an FCCN. When computing the latter, we also
take into consideration the communication locality that is exhibited in many
parallel computations.

Theorem 5.1. The diameter of the m-FCCN is given by Wm=2m+1&1, m�1.

Proof. Wm=2m+1&1 is obviously true for m=1. For m>1, we claim that the
diameter is given by 2_Wm&1+1; that is, the diameter is given by a path that
incurs maximal shortest paths in both (A.1)- and (A.3)-routes. To prove this claim,
we first note that such a path exists, for example, between two UGNs in different
(m&1)-FCCNs, and we know from Lemma 4.3 that these paths are shortest paths.
Second, it is clear that all shortest paths between any two nodes are not longer than
2_Wm&1+1. Finally, it is straightforward to show that Wm=2m+1&1 is a solu-
tion of Wm=2Wm&1+1, m>1. K
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Next, we derive the average internodal distance for the FCCN, taking into con-
sideration the communication locality. Let pk , k=2, ..., m, be the probability that
both source and destination nodes belong to the same (k&1)-FCCN and
pm#( pm } } } p2). Thus, the probability of incurring intercubic communication at the
kth level is given by (1&pk). These events at different levels are assumed to be
independent of one another. We further assume the following:

v For intracubic communication, a packet is equally likely to be destined to
any nodes inside the FCCN.

v For intercubic communication, a packet is equally likely to be destined to
the other seven FCCNs.

Let Dm (pm) be the average internodal distance for the m-FCCN with com-
munication locality characterized by pm , and Dm be the average internodal distance
with uniform message distribution, i.e., pi=1�8, i=2, ..., m. Note that

(1&pm)+pm (1&pm&1)+ } } } +pm pm&1 } } } p4 p3 (1&p2)+pm pm&1 } } } p4 p3 p2=1.

(5.1)

Theorem 5.2. D1=1.5 and

Dm (pm)=2Dm&1&2 :
m&2

i=1

`
i

j=1

pm&j+1 (Dm&i&Dm&i&1)+1

+0.5 `
m

i=2

pi # O( 3
- |Vm| ) for m>1, (5.2)

where |Vm|=8m is the number of nodes in an m-FCCN; and

Dm=Dm&1+ 55
64_2m&2_(D1+1)+ 1

64 # O( 3
- |Vm| ). (5.3)

Proof. The proof is straightforward, therefore it is omitted. K

Although the presence of communication locality does not improve the order of
increase in the average internodal distance, the numerical results in Table II show

TABLE II

Effect of Communication Locality on the Average Internodal Distance

m ai =0.125 \i ai =0.5 \i ai =0.6 \i ai =0.7 \i ai =0.8 \i ai =0.9 \i

2 3.66 2.75 2.50 2.25 2.00 1.75
3 7.98 5.24 4.59 3.89 3.14 2.35
4 16.59 9.98 8.64 7.14 5.46 3.58
5 33.79 19.13 16.50 13.48 10.02 6.05
6 68.18 37.05 31.89 25.93 19.01 10.95
7 136.95 72.48 62.29 50.52 36.79 20.64
8 274.46 142.91 122.71 99.37 72.10 39.91

848 CHANG AND WANG



that its presence reduces the average internodal distance significantly. For example,
the case of :i =0.5 \i improves the average internodal distance in the uniform case
(:i=0.125 \i ) by 25, 34, and 400 for m=2, 3, 4, respectively. This improvement
increases with m, and it reaches 480 for m=8. Moreover, the improvement
increases with :i ; for example, the case of :i = 0.9 \i and m=8 improves the
average internodal distance in the uniform case by 850.

6. CONCLUSIONS

In this paper, we have analyzed several important routing properties for the
FCCN. The most important property is the condition under which the simple rout-
ing algorithm guarantees shortest paths. The proof for this condition is based on a
recursive algorithm for computing internodal distance for a source�destination pair,
triangular inequalities, and other routing properties. Numerical results computed
from the condition confirm that using the simple routing algorithm is well justified,
because over 800 of the routes computed by the algorithm are indeed shortest
paths. Moreover, this percentage increases with the network size. We then apply the
routing properties to obtain the network diameter and average internodal distance.
When computing the latter, we take account of the communication locality that is
exhibited in many parallel computations. Numerical results show that the presence
of the communication locality significantly reduces the average internodal distance
in the network.
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