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Managing Evolving Uncertainty in Trajectory
Databases

Hoyoung Jeung, Hua Lu, Saket Sathe, Man Lung Yiu

Abstract—Modern positioning technologies enable collecting trajectories from moving objects across different locations over
time, typically containing time-varying measurement errors of positioning systems. Unfortunately, current models on uncertain
trajectories are incapable of capturing dynamically changing uncertainty in trajectory data, as well as lacking the support of recent
progress made in improving localization accuracy. In order to tackle these problems, we address three important issues centric
to uncertain trajectory management. First, we propose a flexible trajectory modeling approach that takes into account model-
inferred actual positions, time-varying uncertainty, and nondeterministic uncertainty ranges. Second, we develop three estimators
that effectively infer evolving densities of trajectory data. Last, we present an efficient mechanism to evaluate probabilistic range
queries on those evolving-density trajectories. Empirical results on two large-scale real datasets demonstrate the quality and
efficiency of our approach.

Index Terms—H.2.4.h Query processing; H.2.8.o Spatial databases and GIS; G.3.h Probabilistic algorithms
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1 INTRODUCTION

Uncertainty management is a central issue in trajectory
databases. The research interests, optimization goals, and
methodologies in this domain are indeed rich and di-
verse [14], [34], [33], [12], [21], [39], [11], [10], [20].
Despite this diversity, these studies are generally established
upon a common principle—location uncertainty is captured
by a certain range centered on the position recorded in the
database. This principle was initially discussed by Pfoser
and Jensen [27] in the database literature, which is longer
than a decade ago.

This paper reconsiders this principle. As of today, GPS
is no longer the only primary means for positioning, yet
a wide spectrum of technologies [22] are being used to
produce trajectory data, including RFID sensors, location
estimation with 802.11, smart-phone sensors, infrared and
ultrasonic systems, GSM beacons, and even vision sensors.
These positioning systems typically yield different char-
acteristics of trajectory data, which also exhibit various
properties as well as degrees of uncertainty.

In this paper, we claim that the principle serving as the
basis for the uncertain trajectory modelings is incapable
of effectively capturing various types of uncertainty caused
from different positioning sources. Our claim is based on
three key observations:
1. A location reported from a positioning system already
bears some positional error. This implies that the exact
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position to which an object has actually been may not
be identical to the reported position. The actual location
is typically unobservable, but may be possible to infer a
near-actual position by employing various advanced mech-
anisms, such as filtering [35], smoothing [22], and sensor
fusion [13]. This suggests that the uncertainty range should
not be centered on the reported location but on the (inferred)
actual location.
2. Positional errors may vary over time, e.g., GPS accuracy
generally increases or decreases according to the presence
of obstacles, such as tunnels and tall buildings. The accu-
racy of WiFi-based location estimation is also subjective
to signal strengths available. As a result, the uncertainty of
trajectory data should also change along time.
3. Bounding an area of uncertainty may cause loss of
information. Gaussian distributions, for example, are com-
monly used to model the error distributions of positions,
e.g., GPS logs [27], RFID positions [35], WiFi-based
localization [22], and GSM-phone positioning [4], which
are essentially unbounded. Thus, it is inevitable to miss
out some information when data processing is performed
using a bounded range of uncertainty over unbounded
distributions.

Fig. 1: Different uncertain trajectory modelings.
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Turning to a popular uncertainty model for trajectories,
the cylinder model [33], [34] represents a trajectory as a
sequence of ‘buffered’ line segments. The buffered area
on each line segment, i.e., uncertainty range, captures all
possible locations where an object could visit between
two consecutive positions reported. Fig. 1(a) illustrates this
modeling in 2D space, where the uncertainty region of po-
sition pi is bounded by a circle ci with radius r, and the two
circles are linked by the outer lines that cover the union of
all possible circles between c1 and c2. p∗i represents the ac-
tual but unobservable location corresponding to the reported
position pi. Obviously, this modeling cannot address the
three concerns discussed beforehand. In contrast, Fig. 1(b)
shows another approach that models the uncertainty areas
centered on (inferred) near-actual positions µ1 and µ2,
corresponding to p1 and p2, respectively. The uncertainty
ranges also exhibit different sizes with blurred boundaries,
which represent different degrees of unbounded uncertainty
areas.

1.1 Contributions

The goal of this paper is to establish core foundations
for uncertain trajectory management, based on the new
modeling approach. This requires a wide variety of re-
innovations; particularly, we focus on three important prob-
lems, and make the following salient contributions:

1. Evolving-density trajectory model.
The first contribution of this paper is to introduce a new
uncertain trajectory model that represents a trajectory as
time-dependent Gaussian distributions. In each such dis-
tribution, the mean represents an actual location, while
the standard deviation reflects the degree of an uncertainty
range. The beauty of this modeling is to effectively capture
the dynamicity of location uncertainty without any unrealis-
tic assumption, while facilitating efficient query processing.
We also provide a flexible framework that allows various
approaches including domain-specific models to precisely
infer such evolving normal distributions.

2. Evolving density estimators.
As the second contribution, this paper proposes three evolv-
ing density estimators that infer time-varying densities of
location data. Computing evolving distributions is in fact a
difficult problem, in particular when given data is multivari-
ate, i.e., (t, x, y) coordinates. Existing work on uncertain
trajectory processing often assumes that probability density
functions are given [6], [7], [32], [33], [30]; however, we
go beyond this assumption and develop effective methods
for estimating time-dependent probability distributions of
multivariate positional data. Our estimators have various
advantages over existing motion estimators, e.g., they can
efficiently give an entire probability distribution at each
time instance, whilst Kalman filters [15] are capable only of
giving an expected actual position, and particle filters [18]
require significantly higher computation.

3. Efficient query processing.
Our third contribution is to present an effective mechanism

that indexes evolving-density trajectories, and efficiently
evaluates probabilistic range queries using the indexes. As
the uncertainty ranges of evolving-density trajectories are
unbounded, and vary over time (e.g., Fig. 1(b)), the prior
studies [6], [31], [32], [7] in this domain are limited to fully
support our uncertainty model. To address this problem, we
employ a temporal R-tree as well as a hash table for quickly
identifying a candidate set of uncertain trajectories, by
dynamically computing the minimum bound for each data
point (distribution) that can satisfy a given query condition.
This process does not require any deterministic uncertainty
ranges, leading to no information loss during probabilistic
query processing. Furthermore, we also offer a concrete
solution, including parameter settings, to precisely evaluate
a presence probability for each candidate based on a Monte
Carlo approach.

The remainder of the paper is organized as follows: Sec-
tion 2 reviews state-of-the-art uncertain trajectory models
and their pitfalls. We then introduce our uncertainty model
in Section 3, and offer the details for evolving density
estimators in Section 4. Section 5 presents the indexing
and query processing mechanisms for probabilistic range
queries. In Section 6, we provide experimental results using
two real datasets. Section 7 discusses relevant studies. We
then conclude in Section 8.

2 UNCERTAIN TRAJECTORY MODELS

There are two major reasons why uncertainty occurs in
trajectory data [27]. One is known as measurement error
which is caused by limited accuracy of positioning tech-
nology, e.g., GPS error. The other is sampling error that
originates from discrete sampling of continuous movements
of an object—the locations of the object between two
sampled positions are unknown.

To deal with these uncertainty factors in trajectory data
management, a rich body of studies have proposed various
uncertainty models. These models commonly represent a
trajectory using a sequence of uncertainty areas, so-called
uncertain trajectory. Each of the uncertainty areas captures
the measurement and sampling errors. This section provides
an overview of these uncertain trajectory models.

The beads model [27], [14], [25], [21], [23] is estab-
lished upon the observation that an object’s movements are
generally restricted by its (maximum) speed. Specifically,
this model uses an ellipse for representing the uncertain
locations where an object can possibly travel within two
consecutive reported locations, where the two positions
form the foci of the ellipse and the thickness of the ellipse is
determined by the object’s velocity. In 3D x-y-t space, the
shape of the ellipse becomes a bead, which is an integrated
body of an upward and a downward pointing cones. This
geometry is also often called space-time prism [14], [21]
or pendant [23]. This model thus represents an uncertain
trajectory using a chain of beads. Note that the volume
of a bead can become very large when the sampling rate
of position is not frequent enough. Fig. 2(a) illustrates
an example of this model, which represents an uncertain



3

(a) beads (d) network-constrained(b) cylinder (c) grid 

x

y

t

uncertainty 
range

certain trajectory

uncertain 
trajectory

bead

ellipse

road 
network

Fig. 2: Graphical comparison of uncertain trajectory models.

trajectory as a sequence of such ellipses in 2D or beads in
3D.

The cylinder model [34], [33], [12] ‘buffers’ a line
segment—which models an object’s linear movement be-
tween two sampled positions—using a user-specified uncer-
tainty threshold. Thus, this model represents an uncertain
trajectory as a sequence of such buffered line segments.
In 3D x-y-t space, the uncertainty trajectory is illustrated
as a sequence of sheared cylindrical bodies, shown as
Fig. 2(b). A salient feature of this model is to offer well-
established query semantics that define a set of uncertain
movements of an object with respect to the cylindrical
uncertainty representation of trajectory (e.g., objects defi-
nitely/sometimes/always reside within a given query space).

The grid model [26], [38] first partitions a given data space
into a set of disjoint cells, and then represents an uncertain
trajectory as a sequence of such cells, each of which covers
some possible locations of the object in spatial or spa-
tiotemporal space (Fig. 2(c)). Whilst this model is simple
and facilitates efficient uncertain trajectory computing [38],
finding an appropriate cell size is a difficult problem [17],
since the size directly affects both the modeling power for
capturing the uncertainty of trajectory and the efficiency of
trajectory computing.

The network-constrained model [11], [10], [20], [39]
maps a coordinate-based location in a raw trajectory to a
linear range on a graph that models a road network. The
range captures the possible locations of an object on the
graph (map). Such a linear range is typically represented
by a line segment, or a sequence of line segments that cover
multiple edges in the graph (e.g., when a raw position is
around a junction in a road network). Thus, the shape of
an uncertain trajectory becomes a subgraph in x-y space
(shown as the dark parts of the road network in Fig. 2(d))
or a set of 2D planes in x-y-t space. As shown, this model
makes the uncertainty regions of a trajectory relatively tight,
meaning that the degree of trajectory uncertainty can be
reduced by using the additional information provided by
networks (maps).

2.1 Pitfalls of the Uncertainty Models
Despite the various modeling capabilities of the existing
uncertain trajectory models, they commonly neglect several

important aspects in modeling and managing uncertain
trajectories. We briefly discuss about their drawbacks:

First, the uncertain trajectory models generally regard a
location measured from positioning technology as a precise,
actual location of an object, while modeling an uncertainty
range based on the reported position as center. Such a
raw position, however, typically bears some measurement
error [22], [27], thus the position may not be the exact
location where the objet actually resided. This renders the
uncertainty range center-shifted from the corresponding
actual position that is generally unobservable. When the
degree of measurement error is large, this ‘shift effect’
also becomes significant, which can cause false dismissals
or false positives in uncertainty-aware query processing.
Unfortunately, none of the uncertain trajectory models takes
this into account.

Second, some of the uncertain trajectory models assume
that the degree of uncertainty is constant regardless of the
change of location or time. This assumption, however, may
not always hold in reality. For example, GPS accuracy
generally increases or decreases according to the presence
of obstacles (e.g., tunnels and tall buildings) and the avail-
ability of a sufficient number of satellites for positioning.
The accuracy of location estimation with 802.11 is also
subjective to signal strengths available [22], which varies
as the object moves over time. Therefore, the constant
range used in the current uncertain trajectory models is
not effective to capture the dynamic property of location
uncertainty.

Third, the uncertain trajectory models bound the area of
location uncertainty, typically using a circle with a user-
specified radius. This approach works well with uniform
distributions, however, positioning errors in practice rarely
obey uniform distributions [22], [35]. In general, non-
uniform distributions are unbounded. Therefore, it is in-
evitable to miss out some information when data processing
is performed over any bounded uncertainty areas on such
unbounded distributions.

Forth, most of the models assume that the probability
density function (PDF) of a location is given. It is, however,
a non-trivial problem to compute the parameters of a
PDF (e.g., mean and standard deviation for a Gaussian
distribution), in particular when each location of a trajectory
requires different parameter values for PDF.
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Last, some models require additional data beyond lo-
cation coordinates: the beads model uses maximum speed
of an object to determine the thickness of the ellipse
(beads), while the network-constrained model needs map
data encompassing the coverage of trajectories. As a result,
these models may not be useful for some applications
in which such additional information is unavailable; for
example, the network-constrained model is unapplicable for
freely moving objects’ trajectories, e.g., trajectories of non-
commercial airplanes and ships.

3 EVOLVING–DENSITY TRAJECTORY

Covering the pitfalls of the existing uncertain trajectory
models, we propose a new model for capturing and rep-
resenting the uncertainty of trajectory, termed evolving-
density trajectory. In the sequel, we introduce a set of
key principles that establish the new uncertainty model,
and then describe our system framework that supports the
model.

3.1 Key Principles

Actual position: A wide range of applications employ
various approaches for processing noise-contaminated raw
location data obtained from positioning technologies. Ex-
amples include Kalman filtering for GPS data [22], particle
filtering for mobile RFID readings [35], map matching for
network-constrained objects’ locations [3], cross/auto cor-
relation between multiple locations, and sensor fusion [13].
These approaches provide means that can infer more reli-
able positions where an object was actually located. The
evolving-density trajectory model supports such an inferred
location as an actual location of the object, which serves
as the center point of an uncertainty range.

Gaussian distribution: Measurement errors in positioning
typically obey Gaussian distributions, e.g., RFID posi-
tions [35], WiFi-based localization [22], and GPS loca-
tions [27]. Therefore, our approach models that an object’s
location follows Gaussian distributions. Fig. 3(a) illustrates
an uncertain position that is a basic unit to form an
evolving-density trajectory. The uncertain position models
the object’s actual location as the mean µ, corresponding to
the raw position p. This is a key difference from the GPS
error model [27] where the mean of an error distribution is
a raw GPS position p. In addition, the standard deviation
σ reflects the degree of uncertainty with respect to µ.

σ-driven, nondeterministic uncertainty range: A Gaus-
sian distribution is essentially unbounded. There exists no
finite radius r for bounding un uncertain region over the
distribution. Obviously, a small r (e.g., r = 1 · σ) leads
to missing significant information. Even a large r (e.g.,
r = 3 · σ) causes some missing information. Therefore,
we do not represent an uncertainty range in a deterministic
manner. Instead, we keep only the information of deviation
σ, and then dynamically compute the minimum bound for
each data point (distribution) that can satisfy a given query

Fig. 3: Evolving-density trajectory model.

condition. This approach does not incur any information
loss. We will offer more details in Section 5.3.1.

Time-dependent uncertainty: In order to reflect the time-
varying errors caused from positioning systems, we model
each uncertain position in an evolving-density trajectory
differs from another, meaning that each uncertain position
has different values for µ and σ. In our modeling, we do
not consider a particular method but various well-known as
well as domain-specific models to estimate the values for
µ and σ. As default estimators, we will also present three
methods in Section 4.

Linear evolution of distribution: In-between two consecu-
tive uncertain positions, we assume that the distributions of
actual positions evolve linearly. This assumption is reason-
able, since an object’s movements between two positions
are commonly modeled as linear in certain trajectories.
One key advantage of this property is that the linear
evolution of probability distribution can facilitate efficient
computation of probabilistic queries, as any intermediate
position between two consecutive uncertain positions is
easily computed by linear algebra. We will offer more
details of this processing at Algorithm 2 in Section 5.3.2.

Fig. 3(b) shows an example of evolving-density trajec-
tory, which is built on the key principles described above.
The shape of an evolving-density trajectory is similar to
that represented by the cylinder model shown in Fig. 2(b);
however, our model exhibits an irregular, blurred cylindri-
cal body in order to capture the nondeterministic, time-
dependent uncertainty of the trajectory. Table 1 compares
the key features of the evolving-density trajectory model
with the state-of-the-art uncertain trajectory models.

3.2 Framework Overview

Fig. 4 illustrates our system framework for managing
evolving-density trajectories, consisting of the following
key components:

Evolving Density Estimator computes the probability
distribution of an object’s position at each time. Specif-
ically, this component takes a certain number of recent
positions in a trajectory, and infers a Gaussian distribution
(i.e. a mean value µ and a standard deviation σ) at a
current time. This process can be performed in an online
manner; whenever a new position is streamed to the system,
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uncertain trajectory model actual varying trajectory segment shape index requirement
position distribution 2D 3D support except pdf

evolving-density [this paper] X X blurred line blurred cylinder X ×
beads [27], [14], [25], [21], [23] × X ellipse up/downward cones × max. speed
cylinder [34], [33], [12] × × buffered line sheared cylinder × ×
grid [17], [26], [38] × × square cube X cell size
network-constrained [11], [39], [10], [20] X X line plane X map data

TABLE 1: Comparison of uncertain trajectory models.

the estimator computes and populates the corresponding
probability distribution. The framework also supports any
user-given estimator to infer evolving distributions based
on domain-specific knowledge.

Trajectory Database manages not only the raw posi-
tions reported from moving objects, but also the corre-
sponding probability distributions derived from an evolving
density estimator. To this end, we take the approach of
model-based views [8], in order to preserve the original
position data, while facilitating complex data processing
over the probability distributions. This approach brings two
key benefits to our system: One is to allow users to rerun
the estimation process of evolving densities, when they
find an incorrect setting for model parameters, or when
they develop a new estimator. The other benefit is to en-
able various post-process of data. For example, integrating
different error distributions obtained from heterogeneous
positioning systems can substantially increase accuracy and
precision, beyond what is possible using an individual
location-sensing system [22].

Query Processor supports efficient processing of prob-
abilistic range queries on the evolving-density trajectories
managed in the system. In particular, the processor imple-
ments the well-known filter-and-refinement paradigm. At
the filter step, both a temporal R-tree and a hash table
are used to quickly prune those trajectory records whose
time or position attributes are irrelevant to a given query
condition. At the refinement step, the query processor eval-
uates whether each candidate resulted from the filtering step
actually satisfies the given query (probability) condition.
This process is performed by calling probability compu-
tation functions that are built-on Monte Carlo approaches,
simulating Gaussian densities in a precise manner.

Fig. 4: Architecture of the framework.

4 EVOLVING DENSITY ESTIMATORS
In this section, we propose to implement three es-
timators, which are used as evolving density estima-

tor in our framework (Fig. 4). These estimators ex-
tend the GARCH (Generalized AutoRegressive Conditional
Heteroskedasticity) model [29] for handling multi-
dimensional location data. The GARCH model is a well-
established stochastic volatility model that is generally used
to assess an investment risk in finance, since volatility
represents the degree of deviation from what the data is
supposed to be, reflecting a measure of risk for investing.
This motivates us to consider using the GARCH model
for trajectory data processing—theoretically, the model can
assess the deviation of a raw position from where the
corresponding actual position is supposed to reside on.

In order to capture time-varying properties of location
data, the estimators employ a sliding window that takes a
H number of consecutive positions for the estimation, and
then repeat the same estimation process using the next H
positions. Specifically, given a sliding window of positions
SHt−1 ∈ RH×2, the estimators infer two quantities: (i) the
expected true position p̂t = (x̂t, ŷt) at time t, and (ii) a
standard deviation σ̂t.

Our estimators, C2-Est, R-Est, and AR-Est, have different
trade-offs between accuracy and efficiency. In the sequel,
we offer details for each estimator, and then compare their
characteristics in Section 4.4. We also describe a generic
method that can measure the accuracy of a given evolving
density estimator in the last subsection.

4.1 Conditional Correlation Estimator

We first propose the Conditional Correlation estimator (C2-
Est). C2-Est uses a multivariate mean inference model for
estimating the expected true position p̂t = (x̂t, ŷt), where
x̂t and ŷt are the x- and y-coordinate, respectively. We
employ the VAR (Vector AutoRegressive) model, VAR(k),
where k represents the model order. The VAR model is
a statistical model used to capture the linear interdepen-
dencies among multiple time series, contributing to the
2011 Nobel Prize in Economics in applying VAR models
to macroeconomic analysis.

In the context of trajectory data, the VAR model can
exploit the interdependencies of x̂t and ŷt for inferring the
actual position p̂t. Specifically, the VAR(k) models pi =
p̂i + ai where t − H ≤ i ≤ t − 1, and ai are a series of
uncorrelated random vectors with zero mean and covariance
matrix Σa. Using a VAR(k) model, we infer the expected
true position p̂t as:

p̂t = φ0 +

k∑
j=1

φjpt−j , (1)
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possible options for estimation estimation actual uncertainty multi
evolving density estimator accuracy efficiency position range dimensional
C2-, R-, AR-Est [this paper] high high X X X
dynamic density metrics [28] high high X X ×
particle filters [1], [18], [35] very high low X X X
Kalman filters [15], [22] high medium X × X
map matching [3] very high medium X × X

TABLE 2: Comparison of alternatives for evolving density estimators.

where φ1, . . . , φk are autoregressive coefficients of each
size 2 × 2, φ0 is a 2-dimensional vector, and t > k.
By default, the model parameter k is fixed to 2. The
value for k, however, may vary according to applications;
Finding appropriate values for the parameters of VAR
models including the choice of k is well guided in Chapter
5 of [29].

For inferring the deviation σ̂t, C2-Est uses the constant
conditional correlation (CCC) model [2]. The CCC model
is one of the most popular GARCH models, which is
relatively simple to estimate. The CCC model adopts the
conditional variance matrix of pi for inferring a multivariate
Gaussian distribution at each time step. The 2-by-2 condi-
tional variance matrix of pi, denoted as Λi, is defined as:

Λi = V ar(pi − p̂i|Fi−1), Λi = V ar(ai|Fi−1), (2)

where V ar(ai|Fi−1) is the variance matrix of ai, given
all the information Fi−1 available until time i − 1. The
CCC model uses the errors ai from the VAR(k) model to
represent the conditional variance matrix Λi in Equation (2)
as follows:

ai = Λ
1/2
i εi, Λnm,i = ρnm

√
λnn,iλmm,i, (3)

where Λnm,i is the value on row n and column m of
matrix Λi, λnn,i and λmm,i are defined using an univariate
GARCH(1,1) model, ρnm are the constant conditional
correlations with ρnn = 1,∀n. The matrix formed by ρnm
is symmetric and positive definite.

Given the constant conditional correlations ρnm and
the univariate GARCH(1,1) models for λnn,i and λmm,i,
C2-Est first infers λnn,t and λmm,t using the univariate
GARCH models [28]. It then infers Λ̂t as:

Λ̂t = (ρnm
√
λnn,tλmm,t) (4)

In summary, the C2-Est estimator infers a two-
dimensional Gaussian distribution at each time as
N (p̂t, Λ̂t).

4.2 Radial Estimator
Next, we present the Radial estimator (R-Est). Like the C2-
Est estimator, R-Est also uses the VAR model for inferring
the expected true position p̂t. R-Est, however, differs in how
to estimate deviation. The CCC model used in C2-Est incurs
relatively high computation on inferring the deviation σ̂t.
To improve the inefficiency of the inference process, the R-
Est estimator employs a more efficient model, i.e., Radial
GARCH model, for inferring σ̂t. To this end, we convert a
2-dimensional variance matrix inference problem (i.e., dealt

with by the CCC model) into an one-dimensional variance
inference problem.

Specifically, the R-Est estimator starts by computing the
Euclidean norms of the errors ai given by the VAR(k)
model, denoted at γi. Intuitively, the Euclidean norm of the
errors ai are the possible variations, such that positions pi
are derived from the expected true positions p̂i. This means
that γi for each i gives the uncertainty, where each position
pi manifests with respect to p̂i. Taking this process, R-Est
uses γi for inferring the deviation σ̂t.

In short, the R-Est estimator uses a GARCH(1,1) model
for inferring the variance of radial errors γi.

4.3 AutoRegressive Radial Estimator
This subsection introduces a variant of the R-Est estimator,
called AutoRegressive Radial estimator (AR-Est). For in-
ferring the deviation σ̂t, this new estimator takes the same
RGARCH model used in R-Est.

However, AR-Est takes a different approach for the infer-
ence of an actual position. It decomposes the multivariate
inference into two separate one-dimensional inferences.
While the other two estimators use a multivariate VAR(k)
model for inferring p̂i, the AR-Est estimator uses univariate
AR (AutoRegressive) models for inferring the x̂t and ŷt
separately. Since the procedure for inferring ŷt is exactly
the same as estimating x̂t, in the following we describe
only the procedure for inferring x̂t.

Given a sliding window SHt−1, the AR(l) model models
xi = x̂i + ax,i, where t −H ≤ i ≤ t − 1, and ax,i are a
series of uncorrelated random vectors with zero mean and
variance matrix σ2

ax. Given an AR(l) model, we infer the
expected true position x̂t as:

x̂t = φx0 +

l∑
j=1

φxjpt−j , (5)

where l is a non-negative integer denoting the model
order, φx1, . . . , φxl are autoregressive coefficients, φx0 is a
constant, and t > l. More details regarding the estimation
and choice of model parameter l are described in Chapter
3 in [29].

4.4 Comparison of Estimators

Comparison of C2-Est, R-Est, AR-Est.
In general, a multivariate model requires a considerably
higher number of parameters to estimate than a univariate
model. Once all the parameters are set by appropriate
values, the multivariate model would perform very well.
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On the other hand, a large number of parameters also incur
more computation for parameter determination, rendering
the estimators based on multivariate models inefficient.

We expect that C2-Est achieves the most accurate infer-
ence for actual position, R-Est offers a low running time,
and AR-Est enables a good tradeoff between accuracy and
running time. In Section 6.1, we will analyze the accuracy
and efficiency of each estimator based experimental results.
TABLE 3 summaries the core components of the estimators.

Comparison with Alternatives.
Estimating evolving densities is a non-trivial problem, since
it requires to infer the probability distribution of each
location in a trajectory, while considering the temporal
dependency information of data. Some recent studies [28],
[35], [18] have addressed this problem, however, they
mainly focused on one-dimensional data (univariate time
series).

Kalman filters [15] or particle filters [18] could also be
used to implement the evolving density estimator. However,
Kalman filters are capable of estimating an expected actual
position only, whereas our estimators can give an entire
probability distribution at each time instance. In terms of
efficiency, our estimators perform significantly faster than
particle filters that have a time complexity of O(N2 ·H) for
its smoothing [18], where N is the number of samples to
generate at each time in a window H . Table 2 compares the
key features of our estimators with several representative
alternatives available for evolving density estimators.

Accuracy Measure of Estimation.
The effectiveness of our uncertain trajectory model depends
on the estimator being used. Therefore, measuring the
accuracy of a given estimator is important. However, it is
very difficult to measure the accuracy of an estimator, since
actual distributions are unobservable, meaning that there are
no ground truths to compare.

Fortunately, the literature suggests a solid mathematical
means, so-called density distance [28]. This distance em-
ploys the probability integral transform [9] for measuring
the distance between the probability density obtained from
an evolving density estimator and its corresponding real
(ideal) density. When a ground truth is unavailable, the
density distance can serve as an useful measure to assess
the effectiveness of an evolving density estimator. We will
use the density distance in Section 6.1 to compare the
accuracies of our evolving density estimators.

inferred point deviation time
p̂t = (x̂t, ŷt) σ̂t complexity

C2-Est VAR(2) CCC GARCH(1,1) O(14 ·H)
R-Est VAR(2) radial GARCH(1,1) O(9 ·H)

AR-Est AR(2) radial GARCH(1,1) O(3 ·H)

TABLE 3: Summary of evolving density estimators.

5 PROBABILISTIC RANGE QUERY ON
EVOLVING-DENSITY TRAJECTORIES
Probabilistic range queries are perhaps the most common
query type on uncertain trajectories, as they can effec-

tively retrieve uncertain objects or trajectories using solid
mathematical foundations in probability theory. In this
section, we introduce an efficient mechanism for evaluating
probabilistic range queries on evolving-density trajectory
databases. To this end, we first extend the definition of
probabilistic range queries on evolving-density trajectories.
We then present access methods to index evolving-density
trajectories, as well as an algorithm for evaluating the
queries based the indexes. Note that other probabilistic
query types (e.g., probabilistic nearest neighbor queries)
can also be evaluated over evolving-density trajectories
using existing query-processing methods, as our uncertain
trajectory model offers full information in terms of prob-
ability distribution at each position, which is sufcient for
the probabilistic distance measures used in previous works.

5.1 Definitions
Definition 1: Presence Probability.

Given an uncertain object u, a circular query range �(q, rq)
centerted at q with radius rq , the presence probability of u
in the range �(q, rq) is defined as:

Pr(u,�(q, rq)) =

∫
u∩�(q,rq)

pdf(u, p) dp (6)

where pdf(u, p) denotes the probability density of object u
at point p.

Definition 2: Snapshot Object.
Given an uncertain trajectory o and a timestamp tq , we
define o(tq) as the uncertain object of o at time tq .

We proceed to define the probabilistic range query on an
evolving-density trajectory database as follows.

Definition 3: Probabilistic Range Query.
Given a query range �(q, rq), a timestamp tq , and a
probability threshold ρ, a probabilistic range query R
on an evolving-density trajectory database D returns all
trajectories that have presence probabilities in �(q, rq)
above ρ.

RD(�(q, rq), tq) = {o ∈ D : Pr(o(tq),�(q, rq)) > ρ}.
(7)

Here, we present how to compute the uncertain object
o(tq) for the trajectory o at time tq . Let o.t1, o.t2, · · · , o.tm
be an increasing sequence of sampling timestamps for the
trajectory o, i.e, we have: o.t1 ≤ o.t2 ≤ · · · ≤ o.tm.
In addition, let o.µi and o.σi be the mean and standard
deviation of o at time o.ti.

There are two cases of the temporal relationship between
tq and the sampling timestamps of o.

Case 1: tq = o.ti for some i ∈ [1,m]: In this case, o(tq) is
an uncertain object with the mean o.µi and deviation o.σi.

o(tq).µ = o.µi, o(tq).σ = o.σi

Case 2: o.ti < tq < o.ti+1 for some i ∈ [1,m): By the
linear evolution principle in Section 3.1, we define o(tq) as
an uncertain object with the mean:

o(tq).µ = o.µi + (o.µi+1 − o.µi) ·
tq − o.ti

o.ti+1 − o.ti
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and the deviation:

o(tq).σ = o.σi + (o.σi+1 − o.σi) ·
tq − o.ti

o.ti+1 − o.ti

Fig. 5: Different cases in temporal relationship.

Figure 5 illustrates these two temporal relationship cases.
For Case 1, as shown in Figure 5(a), we consider only a
single record at timestamp tq . For Case 2, we need to take
into account two consecutive records at timestamps o.ti and
o.ti+1. This is illustrated in Figure 5(b).

5.2 Indexing Evolving-Density Trajectories
The literature suggests various access methods for effi-
ciently querying uncertain objects. In particular, the U-
tree [32] supports multi-dimensional arbitrary densities of
objects, which is a desirable property for indexing evolving-
density trajectories. Nevertheless, the method cannot be
easily adopted for our study, since it does not take temporal
information into account. To address this problem, we
propose to index evolving-density trajectories with two
complementary components: (i) a temporal R-tree [24] on
the timestamp of records, and (ii) a hash table that supports
efficient record retrieval using id.

A1R-tree: In the two cases discussed in the previous
subsection, temporal information plays an important role
in computing o(tq).µ and o(tq).σ. For example, given a
trajectory, we need to determine the relevant sampling
timestamps of the trajectory o with respect to the query
timestamp tq . Motivated by this, we employ a recent
proposal, the A1R-tree [24] (Augmented 1-dimensional
R-tree), for indexing the records of all evolving-density
trajectories.

Specifically, each evolving-density trajectory record
is captured in a leaf node entry in the form of
(traj id, loc id, t`, ta). Here, traj id identifies a trajec-
tory o, loc id identifies the location within the trajectory
o. Moreover, ta is the record’s time attribute, t` is the
previous sampling timestamp on the trajectory, i.e., t` is
the time attribute of o’s previous record.

A non-leaf node entry is in the form of (t`, ta, cp), where
cp is a pointer to a child node and [t`, ta] is the minimum
bounding interval that contains all time intervals in that
child node.

TrajHash: In addition to the A1R-tree, we also build
a hash table TrajHash. While the A1R-tree is used for
quickly identifying whether an uncertain trajectory satisfies

the spatial and temporal conditions in a given proba-
bilistic range query, TrajHash facilitates efficiently retriev-
ing trajectory records from the evolving-density trajec-
tory database. More precisely, given a trajectory identifier
traj id and a location identifier loc id on that trajec-
tory, TrajHash[traj id, loc id] returns the corresponding
evolving-density trajectory record.

5.3 Query Processing
We apply the well-known filtering-and-refinement approach
to process the probabilistic range query stated in Defini-
tion 3. At the filtering phase, the A1R-tree is used to prune
the trajectory records whose spatiotemporal attributes are
irrelevant to a given query. At the refinement phase, we
verify whether each candidate reported from the filtering
phase meets the probability threshold ρ, by evaluating the
concrete presence probability of the candidate. The follow-
ing subsections discuss more details about these phases.

5.3.1 Filtering Phase
We first present two important lemmas for pruning irrele-
vant entries in the A1R-tree.

Lemma 1: Temporal pruning.
Let e be an entry in the temporal R-tree. If e.t` ≥ tq or
e.ta < tq , then the subtree of e cannot contain any result
of the query.

Lemma 2: Spatial pruning.
Let ερ be a value such that the probability of Gaussian
distribution within µ±ερ ·σ equals to ρ. Given an uncertain
snapshot object rec with mean rec.µ and deviation rec.σ,
if ‖rec.µ, q‖ > rq + ερ · rec.σ, then rec does not qualify
as a result of the query.

Fig. 6(a) depicts the spatial pruning mechanism. Given
ρ as query input, we can quickly compute ερ by finding
the closest value to ρ in a lookup table for z-scores, e.g.,
Fig. 6(b), which can determine the percentile rank (or
prediction interval) with known mean and variance.

Fig. 6: Illustration of spatial pruning.

In addition to enabling the spatial pruning in query
processing, Lemma 2 entitles an important feature to our
system. Since ερ in Lemma 2 can be dynamically computed
during query processing, the framework (Fig. 4) does not
need to store any pre-computed uncertainty ranges. In
Section 3.1, we described that such pre-computed ranges
essentially incur information loss while processing queries
over Gaussian distributions. Therefore, Lemma 2 embodies
the principle of our uncertain trajectory model, “σ-driven,
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Algorithm 1 RangeQuery (query point q with radius rq
at time tq , probability threshold ρ, A1R-tree node node)

1: ερ ← ZScoreLookUp(ρ)
2: results← ∅
3: if node is a non-leaf node then
4: for each node entry e ∈ node do
5: if e.t` < tq ≤ e.ta then . temporal filtering
6: RangeQuery(q, rq, tq, e.cp)
7: else
8: for each node entry e ∈ node do
9: if tq = e.ta then . get a single record

10: rec← TrajHash[e.traj id, e.loc id]
11: else . get two consecutive records
12: rec1 ← TrajHash[e.traj id, e.loc id− 1]
13: rec2 ← TrajHash[e.traj id, e.loc id]
14: rec← GetMidPoint(rec1, rec2)
15: if ‖rec.µ, q‖ < rq + ερ · rec.σ then . spatial filtering
16: if PresenceProb(rec, q, rq, ρ)> ρ then
17: add rec to results

nondeterministic uncertainty range”, without losing any
information.

Algorithm 1 presents the overall mechanism for process-
ing probabilistic range queries, consisting of the filtering
phase in Lines 1, 3–15 and the refinement phase in Lines
16–17.

The filtering phase has two primary steps. In the first
step, the A1R-tree is used to find all relevant evolving-
density trajectory records with respect to the given query
timestamp tq . This is processed by an extended point query
that fetches all leaf node entries that satisfy t` < tq ≤ ta

(Lines 3–6). For each leaf node, we use the hash table
TraHash for efficiently retrieving the records whose times
are relevant to tq . For Case 1 where a single trajectory
record rec exactly matches the query time, we obtain the
record directly via TrajHash (Lines 9–10). For Case 2 where
the query time involves two consecutive trajectory records
rec1 and rec2, we apply Algorithm 2 to compute a snapshot
object rec at tq on the link between rec1.µ and rec2.µ
(Lines 12–14).

Fig. 7(a) shows such a snapshot position rec.µ. Note
that the evolving-density trajectory model assumes a linear
evolution of probability distribution between two uncertain
positions, described in Section 3.1. This allows Algorithm 2
to compute the deviation rec.σ, based on the linear growth
of distribution (Line 7).

In the second step of the filtering phase (Algorithm 1),
the record rec obtained from either Case 1 or Case 2

Algorithm 2 GetMidPoint (evolving-density trajectory
record rec1, next record rec2)

1: rec← new record . snapshot point between rec1 and rec2
2: t1 ← time of rec1
3: t2 ← time of rec2
4: f ← tq−t1

t2−t1
5: rec.µ.x← rec1.µ.x+ f × (rec2.µ.x− rec1.µ.x)
6: rec.µ.y ← rec1.µ.y + f × (rec2.µ.y − rec1.µ.y)
7: rec.σ ← rec1.σ + f × (rec2.σ − rec1.σ)
8: return rec

Fig. 7: Illustrations of Algorithms 2 and 3.

is passed for spatial filtering and probability evaluation
(Lines 15–17). The spatial pruning of Lemma 2 rules out
those trajectory locations that are too far away from the
query location q (Line 15). In Line 1, the algorithm already
computed the value ερ, such that the probability of Gaussian
distribution within µ ± ερ · σ equals to ρ. As described in
Fig. 6(b), this computation is performed by simply looking
up the z-score table.

5.3.2 Refinement Phase
In the refinement phase, the presence probability (Defini-
tion 1) is computed for each trajectory that passes the whole
filtering phase (Line 16). The query result includes only
those trajectories whose presence probabilities are greater
than the given threshold ρ (Line 17). We elaborate on how
to compute the presence probability �(q, rq) of a trajectory.

Given an evolving-density trajectory record rec, Algo-
rithm 3 computes the presence probability of rec in the
query region �(q, rq) by taking a Monte Carlo approach,
illustrated in Fig. 7(b). Specifically, the algorithm first
generates N samples using N = 2 ln(1/δ)φ2ρ (Line 1),
which allows to compute a presence probability no less
than (1− φ)ρ in the query range �(q, rq) with confidence
no less than 1 − δ. This computation for N is suggested
and proved by [38]. In general, we believe that setting N
to approximately 500 is reasonable, while considering both
precision and efficiency of probability computation—e.g.,
Kanagal et al. [18] show that the inference precision starts
to become reliable from when N = 100.

For each of N runs, the algorithm generates a random
sample point around rec.µ obeying the deviation rec.σ
(Line 4). This can be computed by using a Gaussian
distribution generator available in various programming
libraries for numerical computation. In our implementation,
we modified the polar method [19] to generate bivariate
(x, y) positions. We omit the details as the modification is
straightforward.

Algorithm 3 PresenceProb (evolving-density trajectory
record rec, query point q with radius rq , prob. threshold ρ)

1: N ← 2 ln(1/δ)φ2ρ . suggested by Lemma 4.2 in [38]
2: hit← 0 . hitting count
3: for counter i from 1 to N do . random point generation
4: point s← GaussianGenerator(rec.µ, rec.σ)
5: if ‖s, q‖ ≤ rq then
6: hit← hit+ 1
7: return hit/N
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In Lines 5–6, the generated point is verified whether it
falls into the query region �(q, rq). Finally, the presence
probability is computed and returned in Line 7.

6 EXPERIMENTS

In this section, we evaluate the effectiveness and efficiency
of the core components in our framework. First, we in-
vestigate the performance insights of the evolving density
estimators proposed in this paper (Section 4), while com-
paring with a particle filter as an existing alternative density
estimator (TABLE 2). We then compare the effectiveness
as well as query-processing performance of our evolving-
density trajectory model with the cylinder model (described
in Section 2) as a counterpart in the literature.

We implemented the estimators using MATLAB, and
tested their performances on an Intel Dual Core 2 GHz
machine having 3 GB of main memory. In addition, we
used the Java language to implement the query processor
including the A1R-tree [24] and TrajHash [Section 5.2],
and measured their performances using an Intel Core i7
2.93 GHz system with 12 GB of main memory.

We used two large-scale real datasets in the experiments:
(i) people [40] consists of large number of trajectories
obtained from GPS-enabled devices carried by 155 people
over two years. (ii) car [16] contains GPS logs collected
from 20 cars over several months, as part of a project that
investigated driver response to speeding alerts issued by in-
car devices. The following table offers a brief summary of
the datasets.

dataset name people car
average sampling interval 2 sec. 1 sec.

number of entities 155 people 20 cars
number of trajectories 56,254 3,190
number of positions 22,591,688 1,778,773

TABLE 4: Summary of datasets.

6.1 Comparing Evolving Density Estimators
This subsection compares the performances of our evolving
density estimators (C2-Est, R-Est and AR-Est) proposed in
Section 4 with one of those alternative density estimators
listed in TABLE 2. We chose the particle filter as an alter-
native density estimator, since the other options are limited
for apple-to-apple comparison in our experiment. Specif-
ically, dynamic density metircs [28] are unable to handle
multi-dimensional location data, Kalman filters [15], [22]
cannot estimate uncertainty ranges, while map-matching
methods [3] require additional map data. We offered a
theoretical comparison among these methods in Section 4.4.
For the particle filter implementation, we referred to the
well-known tutorial for nonlinear tracking based on particle
filters [1]. We set the number of particles to 256 in our
experiments, which is suggested in [37].

We first study the estimation accuracies of the evolving
density estimators. As mentioned in Section 4.4, we use the
density distance [28] for measuring the accuracies, which
represents the difference between a probability distribution

inferred by an estimator and its corresponding actual (ideal)
probability distribution.

Fig. 8: Accuracy comparison of the estimators (the lower, the
more accurate).

Fig. 8 compares the density distances reported from each
estimators inference, while increasing the window size. The
density distances are computed as averages over the results
using all the trajectories in each dataset. Surprisingly, the
estimation accuracies of AR-Est and C2-Est are not worse
than the particle filter (PF), which is known as one of
the most accurate probabilistic estimation methods. These
results imply that the evolving density estimators proposed
in this paper are suitable for time-dependent density esti-
mation.

Another observation found from the results is that AR-
Est outperform R-Est–the average improvement of AR-Est
over R-Est is ranging from a 35% (people) to a 40% (car).
Recalling TABLE 3, the only difference between these two
estimators is what underlying model is used for inferring
an actual position. Therefore, the results suggest that using
two separate AR models for inferring the x̂t and ŷt is more
effective than using one multivariate VAR (2) model for
inferring p̂i.

Fig. 9: Efficiency comparison of the estimators with a Particle
Filter (PF).

Interestingly, both C2-Est and R-Est exhibit increasing
density distances, as the window size used for inference
grows; whilst AR-Est shows a relatively consistent per-
formance regardless of the window size used. The main
reason is that the estimation performance of VAR models
used in C2-Est and R-Est is largely affected by the window
size, while the performance of autoregressive model used
in AREst is robust against the change of window size.

Next, we compare the inference efficiencies of the esti-
mators. Fig. 9 shows the average computing times required
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to perform one iteration of the evolving-density inference.
The results clearly demonstrate the advantages of our evolv-
ing density estimators over the particle filter (PF). While
the computing times of the particle filter grow linearly as
the window size increases, our evolving density estimators
show very slight increases in computing time, compared
with the particle filter.

To have a closer look to compare the efficiencies among
AR-Est, R-Est, and C2-Est, we excluded the results of PF
in Fig. 10. AR-Est is a clear winner in this experiment
set; it achieves a factor of 1.5 times speed-up over C2-Est
when H = 180. For small window sizes, R-Est also shows
as high efficiency as AR-Est. However, recall that R-Est
reported low inference accuracies using small windows in
the previous experiments (Fig. 8). Turning to the results
from C2-Est, it shows significantly poor efficiency, com-
pared with the others. The main reason is that C2-Est uses
the CCC model for inferring an uncertainty range, which
incurs higher computation than radial GARCH models used
in the other estimators.

Fig. 10: Efficiency comparison of the evolving density estimators.

To sum up, taking into account both accuracy and effi-
ciency of the estimation process, we conclude that both AR-
Est and C2-Est would be the best choices to infer evolving
densities of moving objects. In particular, we recommend
AR-Est for applications that manage a large number of
objects where density estimation is heavily performed,
while we do C2-Est for applications where the accuracy
of density estimation is the first priority.

6.2 Analysis of Evolving-Density Trajectories
Driven by AR-Est
This subsection analyzes the characteristics of the evolving-
density trajectories estimated by AR-Est that was one of the
two winners in the previous experiments. We omit the result
from C2-Est due to the similarity. Fig. 11 demonstrates
a part of the trajectories, where empty/dark dots denote
raw/inferred positions, and circles represent 1σ ranges. The
texts next to the circles show the exact distances in meters
of 1σ from each inferred position. The figure clearly shows
that our estimator is able to derive time-varying distribu-
tions from a given trajectory data. In order to analyze the
quality of the estimations by AR-Est, we conducted the
following further experiments on studying the inference
powers of actual positions as well as uncertainty ranges.

Fig. 11: Uncertain positions estimated by AR-Est.

Actual Positions: As we do not have ground truths, we
attempt to compare the accuracies of the actual positions
inferred by AR-Est in an indirect manner.

Fig. 12(a) presents Euclidean distances in meters
across different positions: ‖map-matched positions, GPS
positions‖ and ‖map-matched positions, inferred positions
by AR-Est‖. These results were obtained from car. In the
results, the average distances of map-matched locations
from GPS positions is about 3.8 meters, while that from the
inferred positions by AR-Est is around 4.8 meters. If we
assume that the map-matched locations are ground truths1,
these results reflect the overall error of AR-Est’s inference
is higher than that of raw GPS positions. This was in fact
unexpected results for us. We then looked inside the dataset,
and found out a large number of trajectories in car showed
sudden changes, such as turning to the left or right at
junctions. When such a big change of direction occurred
in a trajectory, the estimation of an actual position by AR-
Est yielded a large error.

Fig. 12: Comparing map-matched positions with raw GPS posi-
tions and inferred positions.

In order to closely look at the effect of sudden changes
in AR-Est estimation, we applied cut-off thresholds to the
inference results. Note that sudden changes of direction
in objects’ movements are natural, thus analyzing the
effect in AR-Est estimation can offer an important insight
into understanding and improving the performance of our

1. Note that the map-matched locations include errors, and thus cannot
serve as ground truths; however, they are useful to show the relative
differences from GPS positions and from AR-Est-inferred locations,
respectively.
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density estimator. Fig. 12(b) shows the recomputed average
distances along with increasing threshold values. As the
threshold value grows, the average distance between the
map-matched locations and the inferred positions increases
dramatically at first, and then slightly later. Even for 44-
meter threshold, the average distance is still smaller than
that of “Map—AR-Est” in Fig. 12(a). These results indicate
that a small number of large errors, which are caused by
the sudden change effect, increase the average distance.
Therefore, we expect that the inference error of AR-Est can
be substantially reduced, if subsequent research improves
the estimator on handling sudden changes of objects’ move-
ments.

Uncertainty Ranges: Fig. 13 shows the histograms of
3σ ranges of the distributions estimated by AR-Est. Since
3σ captures a 99.7 % of a Gaussian distribution, it can
reflect the practical bound of an uncertainty range in an
evolving-density trajectory. Clearly, overall sizes of 3σ–
ranges are very small; the peaks of the histograms reside
within about 1.2 meters (people) and 3.2 meters (car).
When we consider the fact that horizontal one-sigma errors
of GPS positions are about 10.6 meters (refer to Figure 2.9
in [22]), the sizes of uncertainty ranges derived from AR-
Est are significantly smaller. This is an important feature of
our evolving-density trajectory model as well as AR-Est,
since tight uncertainty bounds imply reduced uncertainty
in trajectory data management. For example, the cylinder
model takes a fixed-size radius to determine the degree of
positional uncertainty, which is typically set to the size
of GPS errors. Therefore, our uncertain trajectory model
can have various benefits in data processing with smaller
uncertainty bounds.

Fig. 13: Histograms of 3σ ranges.

Another key finding from this experiment set is that
different movements of objects (e.g., people vs. cars) can
result in different sizes of uncertainty ranges, although their
positions are reported from the same type of positioning
device, i.e., GPS. This dymanicity of uncertainty range can
be captured by only our uncertainty model, as our approach
is data-driven, while the current uncertain trajectory models
use pre-specified uncertainty ranges.

6.3 Comparing Uncertain Trajectory Models in
Query Processing
Next, we compare our evolving-density trajectory model
with and the cylinder model [33] as an existing uncertaintra-
jectory model, in terms of query processing. In Section 3.2,

we explained that our uncertain trajectory model can accept
an arbitrary density estimator. To embody the evolving-
density trajectory model, we used two different applications
of evolving-density estimator, which are AR-Est and the
particle filter. For the implementation of cylinder model, we
set the uncertainty range (radius) of each position to 10.6
meters, which is the size of horizontal one-sigma errors
in GPS positioning [22]. Note that the uncertainty range
of our evolving-density trajectory model is not fixed but
time-dependent, described in Section 3.1.

We issued 50 arbitrary probabilistic range queries defined
in Section 5.1 on each dataset, and averaged the results. To
this end, we built the A1R-tree as well as the TrajHash
introduced in Section 5.2 for each dataset. We loaded the
indexes into the main memory before processing queries,
while the two datasets were kept on disk. We set page
size to 4K, and did not buffer data pages. For each query,
we randomly picked a query point q and a query time tq
within the spatial and temporal domains of each dataset,
respectively. In addition, we specified a query range rq
as a ratio to the average standard deviation σ across all
uncertain positions computed by AR-Est in each dataset.
For example, we set rq = 1000 · σ, 2000 · σ, ..., 5000 · σ,
which define query ranges with radii of approximately
from one to ten kilometers. We then measured the number
of results as well as elapsed times in each test, while
varying query positions, size of query ranges, and minimum
probability threshold ρ.

Fig. 14: Numbers of query results.

Figure 14 demonstrates the number of trajectory records
returned as query results, along with different applications
of query ranges. We set different ratio values to rq for the
two datasets, as each dataset shows a very different data
distribution from each other.

Clearly, more numbers of trajectory records are returned
when large values are set to rq , since a wide query range
is likely to overlap more trajectories. On both datasets,
the numbers of query results precessed over the uncertain
trajectories of the cylinder model are much lower than those
from our uncertain trajectory model including both AE-Est
and particle filter (PF) applications. The main reason is the
irregular sampling ratios of data. Our uncertain trajectory
model takes the principle of linear evolution of distribution
described in Section 3.1, and generates uncertain positions
at every time point when no data reported from device. In
contrast, the cylinder model considers uncertain positions
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only for the time when position was reported. Therefore,
query processing on our uncertain trajectory model is likely
to capture more information, given a query range with time.

Fig. 15: Query processing times.

We also measured the average elapsed times of query
processing, plotted in Fig. 15. Interestingly, the differences
of the elapsed times between the cylinder model and our
models are not significant, when considering the differences
in number of query results in Fig. 14. This is because the
cylinder model produces many candidates after the filtering
step in query processing, which turn out to be unqualified
in the refinement phase, due to the probability threshold.
These results indicate that the query processing mechanisms
for evolving-density trajectories introduced in Section 5 are
effective.

7 RELATED WORK

Uncertain models and density estimators: As discussed
in Section 2, existing models [27], [14], [34], [33], [12],
[21], [39], [11], [10], [20] for uncertain trajectories suffer
from several drawbacks. First, they set the center of un-
certain range of an object as its measured position, which
may deviate considerably from its actual position. Second,
they assume a fixed size for the uncertain range, which
may not hold in reality as measurement accuracy varies
dynamically. Third, they use a bounded uncertain range,
causing information loss and missing query results. To
avoid these drawbacks, we propose the evolving density
model to represent uncertain trajectories in Section 3.

Our evolving density model applies a density estimator
to infer the actual location and the uncertain range of an
object. We have compared various estimators (including our
estimators) in Section 4.4 and summarized their features
in Table 2. All of them can infer the actual position of
an object. Kalman filters [15], [22] and map matching [3]
cannot infer the uncertain range of an object. While par-
ticle filters [18], [35] can infer the uncertain range, they
incur much higher running time than our estimators. Both
dynamic density metrics [28] and our proposed density esti-
mators apply an auto-regression model [29], [28]. However,
the models in [29], [28] are designed for one-dimensional
times series (xt). Our proposed estimators (C2-Est, R-Est,
AR-Est) are developed specifically for multi-dimensional
(xt, yt) time series (i.e., trajectories), and they have not
been studied in [29], [28] either.

Xue et al. [36] studied how to predict the destination of
a query user by matching it with historical sub-trajectories
obtained from other users. With such additional knowledge,
we may refine the Gaussian distribution of the uncertainty
range (in Figure 3a) towards the predicted destination, i.e.,
locations closer to the destination have higher density.

Query processing on uncertain trajectories: Querying on
uncertain trajectories have been extensively studied in the
last decade. Cheng et al. [5], [6] highlighted the importance
of probabilistic approaches to querying uncertain moving
objects, and presented efficient processing mechanisms for
range [6] as well as nearest neighbor queries [5]. Tao
et al. [31], [32] developed the U-tree that utilizes pre-
computed presence probabilities of objects for processing
probabilistic range queries efficiently. Others dealt with
probabilistic range queries on uncertain trajectories in dif-
ferent spaces, such as road-network spaces [10], [39], and
near-future spaces [38]. However, all the works above only
consider objects with bounded uncertainty range. In con-
trast, our proposed indexes and query processing techniques
are designed for unbounded uncertainty ranges.

8 CONCLUSIONS

This paper revisits state-of-the-art approaches to modeling
the uncertainty of trajectories, as their modeling powers are
insufficient to capture several important properties of trajec-
tory data. To complement this, we proposed the evolving-
density trajectory model that represents a trajectory as
time-dependent Gaussian distributions. We then introduced
three evolving density estimators that effectively infer time-
varying densities of location data. We also presented an
efficient mechanism to process probabilistic range queries
on indexed evolving-density trajectories. We believe that
this work can serve as an important basis in further studies
on managing uncertain trajectory databases.
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