
Geoinformatica manuscript No.
(will be inserted by the editor)

MobiFeed: A Location-Aware News Feed Framework for

Moving Users

Wenjian Xu · Chi-Yin Chow · Man Lung

Yiu · Qing Li · Chung Keung Poon

Received: date / Accepted: date

Abstract A location-aware news feed system enables mobile users to share geo-
tagged user-generated messages, e.g., a user can receive nearby messages that are
the most relevant to her. In this paper, we present MobiFeed that is a framework
designed for scheduling news feeds for mobile users. MobiFeed consists of three
key functions, location prediction, relevance measure, and news feed scheduler. The
location prediction function is designed to estimate a mobile user’s locations based
on a path prediction algorithm. The relevance measure function is implemented by
combining the vector space model with non-spatial and spatial factors to determine
the relevance of a message to a user. The news feed scheduler works with the other
two functions to generate news feeds for a mobile user at her current and predicted
locations with the best overall quality. We propose a heuristic algorithm as well as
an optimal algorithm for the location-aware news feed scheduler. The performance
of MobiFeed is evaluated through extensive experiments using a real road map
and a real social network data set. The scalability of MobiFeed is also investigated
using a synthetic data set. Experimental results show that MobiFeed obtains a
relevance score two times higher than the state-of-the-art approach, and it can
scale up to a large number of geo-tagged messages.

Wenjian Xu
Department of Computer Science, City University of Hong Kong, Hong Kong
E-mail: wenjianxu2-c@my.cityu.edu.hk

Chi-Yin Chow
Department of Computer Science, City University of Hong Kong, Hong Kong
E-mail: chiychow@cityu.edu.hk

Man Lung Yiu
Department of Computing, Hong Kong Polytechnic University, Hong Kong
E-mail: csmlyiu@comp.polyu.edu.hk

Qing Li
Department of Computer Science, City University of Hong Kong, Hong Kong
E-mail: itqli@cityu.edu.hk

Chung Keung Poon
School of Computing and Information Sciences, Caritas Institute of Higher Education, Hong
Kong
E-mail: ckpoon@cihe.edu.hk

2 Wenjian Xu et al.

Keywords Location-aware news feed · Location-aware social networks · User
mobility · Online scheduling · Optimization

1 Introduction

Social network systems, e.g., Facebook and Twitter, have become one of the major
Web-based applications. They provide platforms for users to share user-generated
multimedia messages and interact with their friends. With the advance in wire-
less communication and GPS-enabled mobile devices, social network systems have
recently become location-aware, e.g., Facebook [23] and FourSquare [25]. Such
applications provide new platforms for mobile users to share their locations and
geo-tagged user-generated messages with their friends at anytime, anywhere.

A news feed is a common functionality of existing location-aware social network
systems. It enables mobile users to post geo-tagged messages and receive nearby
user-generated messages, e.g., “Alice can receive 4 messages that are the most relevant

to her among the messages within 1 km from her location every 10 seconds”. Fig. 1
depicts an application scenario. A mobile user, Alice, can generate a message and
tag a point (e.g., m1), a spatial extent (e.g., m14 is associated with a circular
spatial area), or a venue (e.g., m6 and m7 are spatially associated with restaurant
R1) as its geo-location. Alice can also issue a location-aware news feed query to
retrieve the k most relevant messages within her specified range distance D from
her location.

The state-of-the-art research prototype of a location-aware news feed system is
GeoFeed [9]. GeoFeed focuses on optimizing static queries over a set of registered
locations (e.g., home and office) by deciding whether to pre-compute the k most
recent messages within a user-specified distance of a registered location for an offline
user. However, moving users have to keep issuing on-demand pull-based queries
to GeoFeed to retrieve new news feeds. In general, GeoFeed has three drawbacks:
(1) The moving user has to decide when she should update her location and send
a new query to the server. (2) GeoFeed does not consider user preferences (i.e.,
the relevance of a message to a user) during the process of generating news feeds.
(3) Even if GeoFeed takes user preferences into account by selecting k most relevant

Shopping Mall S1 (m2, m3, m4, m5)1.xxx
2.xxx
3.xxx
4.xxx

Alice at time t0 Hotel H2 (m12, m13)

Restaurant R1 (m6, m7)
Hotel H1 (m8, m9, m10, m11)

m1 with a
location
point m14 with a

spatial extent

D

A predicted
location for
Alice at
time

t2=t0+2×td

A predicted location for Alice at time t1=t0+td

Fig. 1: Location-aware news feed scheduling.

MobiFeed: A Location-Aware News Feed Framework for Moving Users 3

messages as a news feed for each query region, the overall quality of news feeds is
not optimized. This is because the news feeds are only computed based on a user’s
location at the query time (i.e., it does not consider the user’s future locations).
For example, in Fig. 1, there are 14 messages (i.e., m1 to m14) with their geo-
location intersecting Alice’s query regions at time t0, t1, and/or t2. Assume mi is
more relevant to Alice than mj if i < j. GeoFeed returns (m1, m2, m3, m4) at t0,
(m5, m8, m9, m10) at t1, and (m11, m12,m13,m14) at t2. However, if we consider
all three query regions at the same time, a better solution returns (m1, m2, m6,
m7) at t0, (m3, m4, m5, m8) at t1, and (m9,m10,m11,m12) at t2 because m6 and
m7 are more relevant to Alice than m13 and m14.

In this paper, we present MobiFeed that is a location-aware news feed frame-
work designed for social network systems to schedule news feeds for mobile users.
MobiFeed consists of three key functions: location prediction, relevance measure, and
news feed scheduler. As shown in Fig. 1, given a user u’s location u.location at cur-
rent time t0, u’s required minimum message display time td, u’s specified range
distance D, u’s requested number of messages per news feed, and a look-ahead
step n, the location prediction function estimates n future locations for u at times
t1 = t0 + td, t2 = t0 + 2× td, . . . , and tn = t0 + n× td, the relevance measure func-
tion calculates the relevance score of each candidate message with a geo-location
intersecting any u’s query region (i.e., a circular area centered at u.location or a
predicted location with a radius D), and the news feed scheduler generates news
feeds from the candidate messages for u’s query regions at t0, t1, . . ., and tn with
the highest overall relevance score. The computed n + 1 news feeds are sent to
u. u’s mobile device immediately displays the first news feed, i.e., the one with
respect to the query region at t0, and then displays each of the remaining news
feeds one by one for every td. In contrast to GeoFeed, MobiFeed is equipped with
a location-aware news feed scheduler, which works with the location prediction and
relevance measure functions to provide high-quality news feeds for moving users.

Designing a scalable and effective news feed scheduler has several key challenges.
(1) A message has a lifetime with respect to a user’s movement. A message can
be a candidate message for several consecutive or non-consecutive news feeds. The
minimum display time periods of these news feeds constitute the message’s lifetime
(as shown in the timeline chart in Fig. 3). The scheduler should select at most k

candidate messages for a news feed within their lifetime intervals such that the
overall quality of a user’s news feeds is maximized. (2) The relevance of a message
to a user is highly dynamic. Since we consider the distance between a message and
a user as one of the factors in the relevance measure, the relevance of a message
could vary for a user at different locations. (3) A user prefers to have the most
relevant message at the top of a result list. The relevance of a message displayed
on a screen should be weighted by its position. For example, the highest weight is
given to the message displayed at the top on the screen. (4) The online scheduler
should be efficient such that it could scale up to a large number of messages.

The contributions of this paper are summarized as follows:

• We design the location prediction function based on the path prediction algo-
rithm [30], and combine the vector space model [42] with spatial and non-
spatial factors (e.g., message contents and categories) to define the relevance

measure function.

4 Wenjian Xu et al.

• We incorporate location prediction to the process of location-aware news feed
generation, thus formulating a novel n-look-ahead news feed scheduling frame-
work to improve the overall quality of multiple news feeds for moving users.

• We propose a heuristic n-look-ahead news feed scheduler for the sake of ef-
ficiency. Moreover, we present an optimal scheduler by finding the maximum
weight matching in a weighted bipartite graph; we also provide correctness
proof and complexity analysis for our optimal scheduler.

• We evaluate the performance of MobiFeed through extensive experiments based
on a real location-aware social network data set and a real road map. We also
study the scalability of MobiFeed using a synthetic data set. Experiment results
show that MobiFeed usually obtains a relevance score two times higher than
GeoFeed, and it can scale up to a large number of geo-tagged messages.

The rest of this paper is organized as follows. Section 2 highlights related work.
The MobiFeed framework is illustrated in Section 3. The location prediction and
relevance measure functions are described in Section 4. Sections 5 and 6 present our
heuristic and optimal news feed schedulers, respectively. We show the complexity
of two schedulers in Section 7. Section 8 analyzes experimental results. Finally,
Section 9 concludes this paper.

2 Related Work

News feed systems. Most existing news feed systems only provide pub-
lish/subscribe services that simply forward a message to subscribed users or
friends, e.g., [13, 14, 51, 65]. However, such systems are not applicable to location-
aware news feeds because they ignore the spatial relevance of messages, and they
simply push all new messages to their subscribers without taking the subscriber’s
capacity or preferences into account, and they only consider stationary users.

Location-aware social networks. Table 1 compares the features of MobiFeed
with existing commercial products and research prototypes. There are two major
categories for existing commercial products. Facebook [23], Renren [49], and Sina
Weibo [52] belong to the first category, where a message is tagged with its issuer’s
location, but users may receive the same geo-tagged news feeds regardless of their
location. Loopt [40], Google Buzz Mobile [27], Foursquare [25], and Twinkle [54]
belong to the second category, where each message has location tags and a user

Table 1: The key features of MobiFeed.

Location-Aware Location Range Spatial Location News Feed
Social Network Tags QueriesMessages Prediction Scheduling

& Relevance
Measure

Facebook [23]
√

Renren [49]
√

Sina Weibo [52]
√

Loopt [40]
√ √

Google Buzz [27]
√ √

Foursquare [25]
√ √

Twinkle [54]
√ √

GeoFeed [9]
√ √ √

MobiFeed
√ √ √ √ √

MobiFeed: A Location-Aware News Feed Framework for Moving Users 5

can issue a range query to view messages within a certain distance from her loca-
tion. GeoFeed [9] is the state-of-the-art research prototype that further enables a
message to be associated with a spatial extent to control where users can receive it.
However, GeoFeed supports mobile users in a very limited extent because it only
optimizes the system performance for users with a set of registered locations (e.g.,
home and office). We can distinguish MobiFeed from these systems as it employs
location prediction and relevance measure functions as well as heuristic and optimal
news feed schedulers to schedule location-aware news feeds for moving users.

Related research work in location-aware social network systems have focused
on three major directions. (a) Message sharing. Some systems enable mobile users
to broadcast or receive public geo-tagged messages, but they do not consider any
non-spatial aspects (e.g., user preferences) or schedule messages for mobile users
based on their movements [2,8,11]. (b) Privacy-preserving location sharing. Users can
share their locations with friends without revealing any location information to the
social network system or other unauthorized users [26, 35, 50]. (c) Location-aware

recommendation. In existing location-aware recommender systems, mobile users
receive suggestions for new places/activities [8, 37, 38, 58, 60, 62, 63], friends [5, 64]
or articles [9,53] based on user preferences, spatial-temporal proximity, and social
influence, etc. Although their recommendation techniques can be used to suggest
news feeds for users, the overall quality of news feeds is not optimized if we just
apply these techniques to our problem. This is because the news feeds are only
computed based on a user’s location at the query time (i.e., it does not consider the
user’s future locations). To this end, we incorporate the location prediction function
to the process of location-aware news feed recommendation, thus formulating a
novel n-look-ahead framework to improve the overall quality of generated news
feeds for moving users. Experiment results in Section 8 show that our framework
generates news feeds with higher quality than a state-of-the-art location-aware
recommender system (i.e., [9]).

Spatial-textual query processing. As the geo-tagged messages in our frame-
work are spatially and textually relevant to the querying users (see Section 4.2), we
consider spatial-textual (or spatial keyword) query processing [12,19,21,61] as our
related work. Spatial-textual queries utilize some efficient index structures (e.g.,
IR-tree and its variants [19, 39, 56]) to retrieve a ranked list of objects according
to their joint spatial and textual relevance to the query. However, their objective
is to efficiently compute exact top-k results for individual query points; in contrast,
our news feed scheduling framework aims at maximizing the overall quality of
multiple news feeds for moving users. Similarly, the safe-zone methods proposed for
continuous spatial-textual queries [57] are also not applicable to our scenario be-
cause of their limitation to top-k semantics. Furthermore, we argue that the index
structures of above-mentioned spatial-textual query processing techniques cannot

be applied to our n-look-ahead schedulers. The reason is that, given a news feed
query, our schedulers require n+1 complete sets of candidate messages along with
their relevance scores, rendering the pruning effect of those indexing techniques
useless.

Online scheduling algorithms. Our problem of scheduling location-based news
feeds for moving users can be formulated as an online scheduling problem as fol-
lows [20]. Each position of a news feed result list is modeled as a processor, and
each message corresponds to a job weighted according to its relevance to the user

6 Wenjian Xu et al.

and has arrival time and deadline determined by its location information and the
moving user’s trajectory. Further, as shown in our running example (Figure 3), it
is possible that a job is unavailable for a certain period and a job has different
weights to the same user at different locations. Since all messages are to be dis-
played for the same user-specified minimum display time, the corresponding jobs
have the same processing time. By proper scaling, the jobs have unit processing
times and integral arrival times and deadlines. When a job is processed, we gain
a profit that is equal to the product of the weight of the job and the weight of the
assigned processor. Our objective is to maximize the total gain of the processed
jobs. Note that our problem has an on-line flavor because we do not know of a job
(message) until it arrives. Once we receive a job, we can predict its deadline and
unavailable periods by predicting the moving user’s trajectory. There are other
similar but different problems studied in literature. For example, Chin et al. [16]
presented an on-line algorithm for the special case when all the processors are iden-
tical and there is no job unavailable period. Chen et al. [15] gave approximation
algorithms for maximizing the number of completed jobs with multiple feasible
intervals but they considered unweighted jobs on a single processor. To our best
knowledge, none of the existing work studied the problem we formulated here. We
aim at developing efficient heuristic and optimal news feed scheduling algorithms.
Moreover, we evaluate its effectiveness by extensive experiments using a real road
map and a large-scale social network data set.

Bipartite matching. Our problem of scheduling location-based news feeds for
moving users is related to bipartite matching problems [33,36,41]. We first review
offline bipartite matching algorithms. Then we discuss their online counterparts.
Finally, we explain the reason why we apply offline algorithms to solve our news
feed scheduling problem.

Given a bipartite graph G(V,E,W), where V is a vertex set, E is an edge set,
and W is the maximum weight of the edges in E, a maximum weight matching is de-
fined as a matching where the sum of the values of the edges in the matching have
a maximal value [55]. Finding such a matching offline is also known as the assign-

ment problem. The remarkable Hungarian algorithm [36] solves the offline bipartite
matching problem, which uses a modified shortest path search in the augmenting
path algorithm [55]. Its time complexity is O(|V |4). Kao et al. [31, 32] present a

decomposition theorem and use it to design an O(
√

|V | · |E| ·W · log|V |(
|V |2
|E|))-time

algorithm for computing a maximum weight matching. In practice, the Hungar-
ian algorithm can be improved to O(|V |3) [55], which outperforms the algorithms
in [31, 32] when |V | is much smaller than |E| and W ; thus, we use the improved
Hungarian algorithm for our bipartite matching problem.

Next, we discuss the online bipartite matching algorithm, which was first stud-
ied by Karp et al. [33]. Given a bipartite graph G(U, V,E) in this problem, one
side U is known to us in advance and the vertices of the other V arrive online, one
vertex at a time. Whenever a vertex v ∈ V arrives, its adjacent edges connecting to
U are revealed. The online algorithm has to decide which of these edges should be
included in the matching. A match once made cannot be revoked. The objective
is to maximize the size of the matching obtained after all vertices in V arrive.
In [43], Mehta provides a classification of main generalizations of online bipartite
matching problems and their applications:

MobiFeed: A Location-Aware News Feed Framework for Moving Users 7

• Online vertex-weighted bipartite matching: In this problem, each vertex
u ∈ U has a non-negative weight wu, and the goal is to maximize the sum of
weight of vertices in U which are matched. This problem was introduced by
Aggarwal et al. [4], and its typical application is online budgeted allocations [44]
in the case when an agent makes the same bid for any desired item.

• Online edge-weighted bipartite matching: In this problem, each vertex u ∈

U has a capacity cu, which is an upper bound on how many vertices v ∈ V

can be matched to u. Each edge (u, v) ∈ E has a weight wuv . The goal is to
maximize the total weight of edges matched. Its application includes assigning
ad impressions to advertisers online [24] and matching applicants to possible
positions in a company (i.e., secretary matching problem) [34].

• AdWords: This problem formulated by Mehta et al. [45] is closely related to
google’s online advertising product AdWords [3]. Each vertex u ∈ U has a
budget Bu, and each edge (u, v) ∈ E has bids biduv . By matching an arriving
vertex v to a neighbour u, u consumes biduv amount of its budget. After u uses
up its entire budget, it becomes unavailable. The objective is to maximize the
total budget consumed.

Although we design an online location-based news feed scheduler for MobiFeed,
its bipartite matching uses an offline algorithm (see Section 6.1). This is because
online bipartite matching algorithm assumes that vertices come in an unpredicted
way, but in our bipartite matching problem, all vertices (a querying user’s reported
location and n predicted locations) are already known before the bipartite match-
ing algorithm starts. In MobiFeed, we employ the state-of-the-art implementation
of the Hungarian algorithm (i.e., [55]) to solve our news feed scheduling problem.

3 System Overview

Fig. 2 depicts an overview of the MobiFeed framework. MobiFeed stores geo-tagged
user-generated messages in a database. It is equipped with a news feed scheduler

which interacts with the location prediction and relevance measure functions to select
a collection of messages from the database as a news feed for a moving user at a
particular location.

Geo-tagged messages. A geo-tagged user-generated message is defined as a tuple
(MessageID, SenderID, Content, Timestamp, Category, Spatial), where MessageID is
its identifier, SenderID is its sender’s identifier, Content is its content, Timestamp is

Geo-tagged
Messages

M

Query

News Feed

1.xxx
2.xxx
3.xxx
4.xxx

Mobile User

Location-Aware News

Feed Scheduler

Location
Prediction

Relevance
Measure

Server

User
Profile

Fig. 2: MobiFeed framework.

8 Wenjian Xu et al.

its submission time, and Spatial specifies its spatial extent. As depicted in Fig. 1,
the spatial extent of a message can be a point location (e.g., m1), a user-specified
spatial region (e.g., m14), or the spatial region of a venue (e.g., the spatial extent
of m2 is the shopping mall S1). For the Category attribute, we group messages
into categories based on their geo-tagged locations or keywords. For example, in
FourSquare [25], each message is categorized by its associated venue, e.g., restau-
rant and museum.

System users and news feed queries. In MobiFeed, a mobile user u is able
to (a) post a new message with a spatial extent, and (b) receive at most u.k

messages within u’s specified range distance u.D (i.e., the query region of a news
feed) at a particular time as a news feed through a GPS-enabled mobile device.
Specifically, u issues news feed queries by specifying the news feed size (u.k),
the range distance (u.D), and the minimum message display time (u.td). Then,
MobiFeed computes news feeds for u by selecting messages based on their relevance
to u and u’s movement. Each selected message must be displayed on u’s mobile
device without any interruption for at least u’s specified minimum display time
u.td. Assume the look-ahead step is n (system parameter), u reports its location to
the server at every time period (n+1)× u.td. After receiving u’s location update,
n+ 1 news feeds are computed for u. u’s mobile device immediately displays the
first news feed, and then displays each of the remaining news feeds one by one for
every u.td. It is important to notice that location-based services usually support
the user-specified range distance u.D because users would be more interested in
nearby messages or events and u.D can be used to prune the entire message set
into a much smaller candidate message set for query processing (i.e., significantly
improve the query processing performance).

Quality measure. Given a user ui and a message mj, the relevance measure func-
tion returns a relevance score relevanceScore(ui,mj). This function considers ui’s
preferences with regard to categories and keywords maintained in the user profile

(Fig. 2), as well as the geographical proximity between ui and mj to define their
relevance (details will be illustrated in Section 4.2). In information retrieval, query-
relevance ranking algorithms usually display a document that is more relevant to
a user’s query at a higher position in a result list [7]. To this end, MobiFeed sup-
ports different weights for different positions in a news feed result list, i.e., a higher
weight is given to a message displayed at a higher position because it would be
easier to draw a user’s attention. In this paper, we use a simple weighting scheme.
Given a result list with k positions, the weight of the first position is k, the weight
of the second position is k − 1, and so on. In general, the weight of a message
mj at the j-th position (1 ≤ j ≤ k) is displayWeight(j, k) = k − (j − 1). Thus, the
relevance score of a news feed fi with k messages m1,m2, . . . ,mk displayed at the
j-th position in a result list for a user ui is calculated as:

relevanceScore(fi) =
k
∑

j=1

relevanceScore(ui,mj)× displayWeight(j, k) (1)

Problem definition. Our scheduling problem can be formulated as follows: Given
a user u’s location-aware news feed query at the current time t0 and a look-ahead
step n, MobiFeed predicts u’s locations at each of the next n minimum display
times (i.e., t0 + 1× u.td, t0 + 2× u.td, . . . , t0 + n× u.td), and schedules at most k

MobiFeed: A Location-Aware News Feed Framework for Moving Users 9

User u
at time t0

u at
t1=t0+td

m5

m4

{m1, m2, m3}

{m6, m7, m8, m9}

{m10, m11}

Venue C

Venue A

Venue B

u at
t2=t0+2×td

MessageCategories
Message content
relevance to u

m1 Restaurant 0.6

m2 Restaurant 0.6

m3 Restaurant 0.1

m4 Stadium 0.2

m5 Stadium 0.9

m6 Shopping 0.2

m7 Shopping 0.4

m8 Shopping 0.6

m9 Shopping 0.6

m10 Museum 0.35

m11 Museum 0.25

Table I. Non-spatial information

Time Message
Normalized
distance to u

t0

Venue A 0.55

Venue C 0.75

m5 0.15

t1
Venue A 0.75

m4 0.6

t2

Venue A 0.1

Venue B 0.4

Table II. Spatial information

t0 t1 t2 t3Time

m1

m2

m3

m4

m5

m6

m7

m8

m9

m10

m11

Arrival time
Deadline

0.35

0.35

0.1

0.15

0.53

0.3

0.4

0.5

0.5

0.68

0.68

0.43

0.4

0.58

0.58

0.33

0.53

0.55

0.5

m4 0.1

m5 0.15

The relevance score of m11 to
u relevanceScore(u, m11) at t0

Fig. 3: Location-aware news feed scheduling.

messages (which have not been sent to u before) for the news feed at each location
(i.e., one reported and n predicted locations), such that the total relevance score of
the generated news feeds is maximized. In this paper, we design a heuristic news
feed scheduler for efficiency and an optimal one for the best quality.

4 Location Prediction and Message Relevance Measure

In this section, we present the details of the location prediction and relevance measure

functions in MobiFeed.

4.1 Location Prediction

The location prediction function can employ any existing location prediction algo-
rithm if it can predict a user’s location at a specified future time in a road network.
We here describe how to incorporate the path prediction algorithm [30] into Mob-
iFeed. Given a user u’s current location, u’s historical trajectories, the road map,
and a future time t, the path prediction algorithm estimates u’s location at t.
Fig. 4 depicts a graph model G = (V,E) of a road network, where E is a set of
road segments and V is a set of intersections of road segments that are represented
by circles and lines, respectively. The algorithm performs two steps to predict u’s
direction and speed.

Step 1. Direction prediction. When a user u is moving on an edge ei, this step
predicts which adjacent edge ej of ei u will go based on u’s historical trajectory
set Tu. This step predicts a user’s direction through one of the following three
cases [30]: (1) Given two edges ei and ej incident to a vertex v, the transition

probability of u turning from ei to ej is defined as P (ei, v, ej) =
τ(Tu,ei→ej)

∑

ek
τ(Tu,ei→ek)

,

where τ(Tu, ei → ej) is the number of trajectories in Tu that turn from ei to ej and
ek is an adjacent edge of ei incident to v. For each adjacent edge ej of ei incident to
v, this step calculates P (ei, v, ej) and predicts that u will turn to ej with the largest
probability. For example, Fig. 4 shows a user u’s four historical trajectories T1 to T4

and u is moving towards v2 on e7. Since P (e7, v2, e4) = 2/3, P (e7, v2, e5) = 0, and
P (e7, v2, e6) = 1/3, we predict that u will move to e4. (2) However, if τ(Tu, ei → ej)

is empty, the notion of reverse mobility statistics P (ei, v, ej) =
τ(Tu,ej→ei)

∑

ek
τ(Tu,ek→ei)

is

used. (3) In case that both τ(Tu, ei → ej) and τ(Tu, ej → ei) are empty, we select

10 Wenjian Xu et al.

the adjacent edge of ei incident to v with the smallest deviation angle from u’s
current travel direction, which is derived from u’s initial location at the query time
and current location.

Step 2. Speed prediction. This step estimates u’s travel speed S(e) on an
edge e by the average historical travel speeds of e from u’s Tu [30]. If e does not
exist in Tu, we use a heuristic method that computes S(e) = A(e)×α, where A(e)
is the speed limit of e and α is a system parameter.

Let’s consider a general case where u is moving on an edge ei, and then u will
enter an edge ej at t′ from a vertex vs and stay at ej at t. Let (xs, ys) denote
the location of vs and (xe, ye) denote the location of the other vertex of ej . The

predicted location of u at t is calculated as (λ1×xe+λ2×xs

λ1+λ2

, λ1×ye+λ2×ys

λ1+λ2

), where

λ1 = (t− t′)× S(ej) and λ2 = L(ej)− λ1 (where L(ej) is the length of ej).

4.2 Message Relevance Measure

MobiFeed only requires the relevance measure function to return a score to indicate
the relevance of a message mj to a user ui, i.e., relevanceScore(ui, mj). We describe
how to combine three relevance measure methods to implement the relevance mea-

sure function.

Message categories. The user usually has a preference for certain message cat-
egories. For instance, movie fans may prefer to receive movie showtimes from
nearby cinemas, while shopaholics would be interested in discount information
from nearby shopping malls [47]. To this end, we use the category information to
measure the relevance of a message to a user. Specifically, for each user ui in the
user profile (see Fig. 2), we maintain a list of categories CateListi sorted by the num-
ber of ui’s submitted messages belonging to each category. For example, if ui has
issued three messages (i.e.,m1 andm2 belong to the “restaurant” category, andm3

belongs to the “stadium” category), then CateListi = [restaurant(2), stadium(1)],
where the integer value in the parentheses counts the number of messages associ-
ated with each category.

Message contents. The user may be more interested in messages that are similar
to her submitted ones (e.g., a user’s common keywords reflect her interests [48]).
For example, a user issued a message “I like spicy food” would be happy to receive

e2

e1

e3

e4

e5

e6

e7v1 v2

T4T3T2

T1

u

Fig. 4: Four historical trajectories of a user.

MobiFeed: A Location-Aware News Feed Framework for Moving Users 11

messages about Thai restaurants. Therefore, we use the vector space model [42]
to measure the relevance of a message to a particular user in terms of content
similarity. Specifically, let T denote the term set of the message set M (see Fig. 2),
and each messagemj is represented by a vector of weights of all the terms in T , i.e.,
mj .V = 〈wj1, wj2, . . . , wj|T |〉. In general, a term Tk ∈ T should be weighted higher
for mj if Tk occurs more frequently in mj and occurs more rarely in other messages

in M. The weight can be computed by the TF × IDF scheme: wjk = tfjk · log
|M|
dfk

,
where tfjk is the term frequency of Tk inmj and dfk is the document frequency of Tk in
M. To incorporate the vector space model into MobiFeed, we maintain a preference
vector in the user profile (see Fig. 2) for each user based on her submitted messages.
Given a querying user ui with a preference vector ui.V and a message mj , we

use the cosine similarity to compute contentScore(ui, mj) =
∑|T |

k=1
wik·wjk

√

∑|T |
k=1

w2

ik
·
√

∑|T |
k=1

w2

jk

,

where wik ∈ ui.V and wjk ∈ mj .V .

Distance. We argue that the geographical proximities between users and messages
have a significant influence on the relevance measure. In our scenario, the relevance
of a message mj to a user ui can be measured by their distance, i.e., Dist(ui,mj). If
mj is associated with a spatial extent or a venue, Dist(ui,mj) returns the minimum

distance between ui and the spatial extent or the venue of mj . To accommodate
the difference in the value ranges of Dist(ui,mj) and other relevance measures,
we normalize Dist(ui,mj) to a range from zero to one (i.e., NDist(ui,mj) = 1 −
Dist(ui,mj)

u.D), where u.D is the query range distance of a news feed.

Relevance measure function. We employ two-level and linear combinations to
integrate the aforementioned three methods into the relevance measure function.
At the first level, we select top-δ categories ui.C in CateListi for a querying user
ui, where δ is a system parameter to specify the number of top categories. All
messages within ui’s range distance ui.D and belong to categories in ui.C are
considered as the set of candidate messages CM, i.e.,

CM = {m|m ∈ M,Dist(ui,m) ≤ ui.D,m.Category ∈ ui.C} (2)

At the second level, for each candidate message mj ∈ CM, we measure its relevance
to ui using a linear combination of contentScore(ui,mj) and NDist(ui,mj) [17]:

relevanceScore(ui,mj) =contentScore(ui,mj)× (1− β) +NDist(ui,mj)× β (3)

where 0 ≤ β ≤ 1 and β is a parameter that indicates the importance of the distance
factor with respect to the message content score.

In our example (Fig. 3) where δ = 4, n = 2 and β = 0.5, all candidate messages
(i.e., m1 to m11) belong to the top-4 categories (i.e., restaurant, stadium, shop-
ping, and museum). For the user u and each candidate message mj , the values
of contentScore(u,mj) and NDist(u,mj) are listed in Tables I and II, respectively.
At the second level, we calculate the relevance score relevanceScore(u,mj) for the
query regions at times t0, t1, and t2. For instance, m4 is the candidate message
at t1 and t2, i.e., relevanceScore(u,m4) = 0.2 × 0.5 + 0.6 × 0.5 = 0.4 at t1 and
relevanceScore(u,m4) = 0.2× 0.5 + 0.1× 0.5 = 0.15 at t2.

As depicted in Figure 2, the proposed location-aware news feed scheduler only
relies on the relevance measure function to return the relevance of a message
to a user as an input. The relevance measure function can be customized based

12 Wenjian Xu et al.

on different application scenario. For instance, the cosine similarity measure can
be replaced with other similarity measure models (e.g., a probabilistic model).
Furthermore, the relevance measure function can consider additional factors. For
example, in Section 8.3, we will consider a temporal factor as an additional aspect
in Equation 3. The key idea behind the temporal factor is that the interestingness
and importance of a message fade out as time goes on.

5 A Heuristic News Feed Scheduler

In this section, we present an n-look-ahead location-aware news feed scheduling
algorithm for MobiFeed, where n is a system parameter to control the number of
locations predicted for a mobile user. In general, if an underlying path prediction
algorithm provides more accurate locations, we should specify a larger n. Thus,
the value of n should be adjusted for different users and areas in a road network,
for example, P (ei, v, ej) should be larger than a certain threshold.

Data structure.. In MobiFeed, a spatial grid structure is used to index all geo-
tagged messages, i.e., each grid cell stores messages with spatial extent intersecting
its cell area. Given a user u’s news feed query, a range query is issued to the grid
index to retrieve the messages, which are not generated by u, associated with
spatial extent intersecting the query region.

Algorithm. After a mobile user u issues a location-aware news feed query to
MobiFeed, the location prediction function returns n predicted locations for u. A
set of candidate messages is found for each of n+1 locations. The relevance measure

function filters out those candidate messages that do not belong to any u’s top-δ
categories, and then determines the relevance of each remaining candidate mes-
sage to u. The scheduler finally computes a news feed for each location such that
the overall relevance score is maximized. The heuristic n-look-ahead scheduling
algorithm has three main steps.

Step 1. Candidate message step. Given u’s query at time t0, the location

prediction function predicts n locations for u at times t1, t2, . . ., tn, where ti =
t0+u.td × i and u.td is u’s user-specified message minimum display time. For each
of n + 1 locations, a range query with a circular region centered at the location
with a radius of u.D is issued to retrieve the messages intersecting the query region
as a set of candidate messages CMi (0 ≤ i ≤ n). If there is an overlapping area
between two consecutive query regions, we can employ a materialized view Vu for
u to reduce the query processing time. The region of a materialized view of a range
query is a minimum bounding rectangle of all the grid cells intersecting the range
query region, as depicted in Fig. 5a.

Given a range query qi at time ti, where 0 ≤ i ≤ n, this step first finds a set of
candidate messages for qi (i.e., CMi) as follows:

• When i = 0, we find the region of Vu for qi’s query region (Fig. 5a). The
messages intersecting the region of Vu are materialized in Vu and then Vu is
used to compute CMi for qi.

• When i > 0, a materialized view Vu has been computed for qi−1 at time ti−1,
where 0 < i ≤ n. We first compute the region of a new materialized view
V ′u for qi. If the query regions of qi−1 and qi overlap (Fig. 5b), V ′u can be
efficiently computed by (i) removing a message m from Vu, if m’s spatial extent

MobiFeed: A Location-Aware News Feed Framework for Moving Users 13

u.D

A grid cell Range query

region

The region of Vu

u

(a) Range query

'

A

B

The region of Vu

The region of Vu

u's location

at ti-1

qi

qi-1

u's location

at ti

(b) Incremental query processing

Fig. 5: Materialized view.

is completely within the non-overlapping area of qi−1’s Vu (i.e., region B),
and (ii) adding a message m to Vu, if m’s spatial extent intersects the non-
overlapping area of V ′u’s region (i.e., region A) but not Vu’s region. V ′u is then
used to compute CMi.

The experiment results show that using materialized views can significantly im-
prove the query processing time, as depicted in Fig 10b in Section 8.

After retrieving CMi, the relevance measure function filters out all messages that
do not belong to any u’s top δ categories. For each remaining candidate message
m, a relevance score for u, i.e., relevanceScore(u,m), is calculated to indicate the
relevance of m to u. Finally, the messages in each CMi are sorted by their relevance
score in non-increasing order. To break ties, precedence will be given to a message
with a more recent post time. The pseudo code of this step is shown in Lines 4
to 17 in Algorithm 1.

Example. Fig. 3 depicts an example of location-aware news feed scheduling,
where a user u sends a query with her location to the server at the current time
t0. The location prediction function predicts u’s location at each of the next two
(i.e., n = 2) minimum display times td, i.e., t1 = t0+ td and t2 = t0+2× td. There
are totally 11 candidate messages for the three news feeds at the times t0, t1, and
t2. m4 and m5 are tagged with a spatial region and a point location, respectively.
{m1,m2,m3}, {m6,m7, m8,m9}, and {m10,m11} are associated with venues A, B,
and C (represented by rectangles), respectively. The lifetime of each message with
its relevance score for u at t0, t1, and t2 is shown on a timeline chart. Note that
the lifetime of m5 is broken from t1 to t2. The identifier of a message indicates
its posting time, i.e., a message with a larger identifier means a newer one. Three
range queries are issued to find the candidate messages for each news feed or query
region. Since all candidate messages (i.e.,m1 to m11) belong to the top-4 categories
(i.e., restaurant, stadium, shopping, and museum), no messages are filtered out. A

14 Wenjian Xu et al.

Algorithm 1 n-look-ahead scheduling algorithm.

1: function n-LookAhead (User u)
2: // u is at u.location0 at current time t0
3: // Step 1: Candidate Message Step
4: Generate n locations u.location1, u.location2, . . . , u.locationn at times t1, t2, . . . , tn for u,

where ti = t0 + i× u.td
5: for Each u.locationi at time ti do

6: Generate a query region qi centered at u.locationi with a range distance u.D
7: if i = 0 then

8: Find the region of Vu and compute Vu

9: Use Vu to compute CMi

10: else

11: Compute new V ′
u based on Vu

12: Use V ′
u to compute CMi

13: end if

14: Filter out all candidate messages that do not belong to any u’s top-δ categories from CMi

15: Compute a relevance score of each message in CMi

16: Sort the messages in CMi by their relevance score in non-increasing order
17: end for

18: // Step 2: Online Scheduling Step
19: For each qi, initialize an empty news feed result list RLi

20: while Some RLi is not full and some CMi is not empty do

21: For each qi, calculate a score for its first candidate message mj by relevanceScore(u,mj) ×
displayWeight(j, k)

22: BestMsg ← the candidate message with the highest score
23: Append BestMsg to RLh giving the highest score
24: Remove BestMsg from all the candidate message sets
25: if RLh contains u.k messages then

26: Discard all messages in CMh

27: end if

28: end while

29: Send all result lists RLi to u
30: // Step 3: Incremental Processing Step
31: Message Update: When a new message will improve the overall relevance score of a query region

qi, it is sent to u to replace the last message in RLi.
32: Inaccurate Location Prediction: When receiving a location update due to inaccurate location

prediction, this algorithm computes a new set of news feeds. Then, only a set of messages which
are not in the previous set of news feeds, positive and negative updates are sent to u.

relevance score is computed for each candidate message by Equation 3, as shown
beside each message in the timeline chart. For each query region, its candidate
messages are sorted by their relevance score, as shown in the first row in Table 2
(i.e., CM0, CM1, and CM2).

Step 2. Online scheduling step. As depicted in the running example (Fig. 3),
a geo-tagged message may be included in multiple sets of candidate messages. For
example, m1 is included in all three sets of candidate messages (i.e., CM0, CM1

and CM2), so m1 can be scheduled to one of the news feeds at t0, t1 and t2, or
none of them. This step aims at scheduling at most k× (n+1) candidate messages
to the n + 1 news feeds such that the overall relevance score of these news feeds
is maximized. Here we first describe a heuristic algorithm for this step, and an
optimal algorithm will be illustrated later in Section 6. For each query region qi, we
calculate a score for its first candidate message (i.e., the message with the highest
relevance score) mj by relevanceScore(u,mj)×displayWeight(j, k) (see Equation 1),
where u is the querying user and j is the highest available position in qi’s news
feed result list. The message with the largest such score, denoted as BestMsg,
is assigned to the result list of corresponding query region. Then, the scheduler
removes BestMsg from all the candidate message sets. Candidate messages are
iteratively selected to appropriate query regions until the news feed in each query

MobiFeed: A Location-Aware News Feed Framework for Moving Users 15

region has k messages or all candidate message sets become empty. Whenever k

messages have been assigned to the result list of a query region, its corresponding
candidate message set is discarded. The computed n+ 1 news feeds are sent to u.
The pseudo code of this step is shown in Lines 19 to 29 in Algorithm 1.

Example. Table 2 illustrates the heuristic news feed scheduler for our run-
ning example, where n = 2 and k = 2. In the first iteration, m2 is BestMsg

and it should be assigned to the result list of q1 to obtain the highest score
relevanceScore(u,m2) × displayWeight(j, k). Since all three candidate message sets
contain m2, m2 is removed from them. In the second iteration, m1 is the next
BestMsg and it is assigned to RL0. This is because assigningm1 to RL0 has a higher
score (0.58×2) than RL1 (0.68×1). In the third iteration,m5 is BestMsg, and it is as-
signed to the result list of q2. In the fourth iteration,m10 is BestMsg, and it can only
be assigned to q0. At this moment,RL0 contains k messages, so CM0 is discarded. In
the next two iterations, m9 and m3 are selected and assigned to q2 and q1, respec-
tively. Now all news feed result lists are full, so the online scheduling step is finished
and they are sent to the user. In this example, the overall relevance score of the
2-look-ahead news feeds is: 0.58×2+0.55×1+0.68×2+0.43×1+0.53×2+0.5×1 =
5.06. Without any look-ahead step (i.e., n = 0), the news feeds at t0, t1, and t2
are {(m2, 0.58), (m1, 0.58)}, {(m3, 0.43), (m4, 0.4)}, and {(m5, 0.55), (m9, 0.5)}, re-
spectively, so the overall relevance score of three zero-look-ahead news feeds is:
0.58×2+0.58×1+0.43×2+0.4×1+0.53×2+0.5×1 = 4.56. We can see that the
improvement of 2-look-ahead scheme using the heuristic algorithm is about 11%.

Step 3. Incremental processing step. After sending the news feeds to u, Mob-
iFeed temporarily stores the n+ 1 result lists until u’s next location update. Two
situations will trigger this step to maintain the news feeds:

• Message Update. The first situation is detected on the server side for new mes-
sages. When MobiFeed finds a new candidate message m that will improve the
overall relevance score for a u’s future query region q, it sends m to u to replace
the last message in q’s result list (Line 31 in Algorithm 1).

• Inaccurate Location Prediction. The second situation is detected on the client
side for an inaccurate predicted location. A user’s location detected by GPS
always incurs some error due to the problems of measurement imprecision and
sampling imprecision [18]. A tolerance threshold θ is thus defined for the differ-
ence between a user’s actual location and its corresponding predicted location
for a query region. If the location deviation is larger than θ, a prediction error
occurs, and u reports its actual location to the server to retrieve a new set of
news feeds. For example, given n = 2 (i.e., 2-look-ahead), for a trajectory with
a user’s locations at times t0, t1 = t0 + td, t2 = t0 + 2× td, . . . , where td is the
minimum display time, a first call of 2-look-ahead scheduling at t0 generates
news feeds for t0, t1, and t2. If no prediction error occurs from t0 to t2, a second
call of scheduling will take place at t3. In contrast, if prediction error occurs
at t1, our algorithm will perform re-scheduling at t1 and generate news feeds
for t1, t2, and t3. To reduce communication overhead, we determine (i) a set
of new messages that are in a newly computed set of news feeds, but not in a
previous set of news feeds, and (ii) positive or negative updates indicate that a
certain message should be added to or removed from the previous result lists,
respectively [46]. MobiFeed only sends the set of new messages, positive and
negative updates to the user. In practice, θ can be set to the accuracy of the

16 Wenjian Xu et al.

Table 2: Example of the heuristic scheduling algorithm (n = 2).

Iteration BestMsg Result Lists Candidate Message Sets

(k = 2)

Initial - RL0 = {∅} CM0 = {(m2, 0.58), (m1, 0.58), (m10, 0.55), (m5, 0.53)
RL1 = {∅} (m11, 0.5), (m3, 0.33)}
RL2 = {∅} CM1 = {(m2, 0.68), (m1, 0.68), (m3, 0.43), (m4, 0.4)}

CM2 = {(m5, 0.53), (m9, 0.5), (m8, 0.5), (m7, 0.4),
(m2, 0.35), (m1, 0.35), (m6, 0.3), (m4, 0.15), (m3, 0.1)}

1 (m2, 0.68) RL0 = {∅} CM0 = {(m1, 0.58), (m10, 0.55), (m5, 0.53), (m11, 0.5),
RL1 = {(m2, 0.68)} (m3, 0.33)}
RL2 = {∅} CM1 = {(m1, 0.68), (m3, 0.43), (m4, 0.4)}

CM2 = {(m5, 0.53), (m9, 0.5), (m8, 0.5), (m7, 0.4),
(m1, 0.35), (m6, 0.3), (m4, 0.15), (m3, 0.1)}

2 (m1, 0.58) RL0 = {(m1, 0.58)} CM0 = {(m10, 0.55), (m5, 0.53), (m11, 0.5), (m3, 0.33)}
RL1 = {(m2, 0.68)} CM1 = {(m3, 0.43), (m4, 0.4)}
RL2 = {∅} CM2 = {(m5, 0.53), (m9, 0.5), (m8, 0.5), (m7, 0.4),

(m6, 0.3), (m4, 0.15), (m3, 0.1)}
3 (m5, 0.53) RL0 = {(m1, 0.58)} CM0 = {(m10, 0.55), (m11, 0.5), (m3, 0.33)}

RL1 = {(m2, 0.68)} CM1 = {(m3, 0.43), (m4, 0.4)}
RL2 = {(m5, 0.53)} CM2 = {(m9, 0.5), (m8, 0.5), (m7, 0.4), (m6, 0.3),

(m4, 0.15), (m3, 0.1)}
4 (m10, 0.55) RL0 = {(m1, 0.58), CM1 = {(m3, 0.43), (m4, 0.4)}

(m10, 0.55)} CM2 = {(m9, 0.5), (m8, 0.5), (m7, 0.4), (m6, 0.3),
RL1 = {(m2, 0.68)} (m4, 0.15), (m3, 0.1)}
RL2 = {(m5, 0.53)}

5 (m9, 0.5) RL0 = {(m1, 0.58), CM1 = {(m3, 0.43), (m4, 0.4)}
(m10, 0.55)}

RL1 = {(m2, 0.68)}
RL2 = {(m5, 0.53),
(m9, 0.5)}

6 (m3, 0.43) RL0 = {(m1, 0.58),
(m10, 0.55)}

RL1 = {(m2, 0.68),
(m3, 0.43)}

RL2 = {(m5, 0.53),
(m9, 0.5)}

underlying positioning technique and device. For example, if Assisted-GPS is
used, θ is set to 50 meters [22] (Line 32 in Algorithm 1).

6 An Optimal News Feed Scheduler

The online scheduling step of the heuristic news feed scheduler (Step 2 in Algo-
rithm 1) aims at scheduling at most k× (n+1) candidate messages to n+1 news
feeds in order to maximize the total relevance score of all these news feeds. In this
section, we optimize the online scheduling step as finding the maximum weight
matching [55] in a weighted bipartite graph.

6.1 Maximum Weight Matching for MobiFeed

Given all sets of candidate messages CMi (0 ≤ i ≤ n) as the input of the online
scheduling step, we form a weighted bipartite graph G = (X ∪Y,E) [55] as follows:

• X is a partition of vertices that represent all the positions of n+1 news feeds.
Thus, there are k × (n + 1) vertices in X, where k is the news feed size. For
vertex xa ∈ X where a = k× i+ j, it stands for the j-th position (1 ≤ j ≤ k) in

MobiFeed: A Location-Aware News Feed Framework for Moving Users 17

�
��
����

��	

�
�
����

���

�	 �� �� �� �� �� �� �� �� �	� �		

������

�

�

�
��
����

���

�
�
����

���

�
��
����

���

�
�
����

���

�� �	 ��

��	
 ���
 ���
 ���
 ���
 ���
 ���
 ���
 ���
 ��	�
 ��		

Fig. 6: The bipartite graph of our running example.

the news feed result list at ti (0 ≤ i ≤ n). Fig. 6 depicts the bipartite graph for
our running example (Fig. 3), where X contains 6 positions (i.e., two positions
for each of three news feeds).

• Y is the other partition of vertices that represent all distinct messages in CMi

(0 ≤ i ≤ n). In our example, Y contains 11 messages (i.e., m1 to m11).
• E is a set of edges in G, for j-th position (1 ≤ j ≤ k) in the news feed at ti (0 ≤

i ≤ n), i.e., the vertex xa ∈ X, it links to all the messages in CMi. For an edge
(xa, yb), its weight w(xa, yb) equals relevanceScore(u,mb) × displayWeight(j, k)
(see Equation 1). In our example, for the first position in the news feed at t0
(i.e., x1), it connects to the vertices in y1, y2, y3, y5, y10, and y11. And the
weight of edge (x1, y1) equals 0.58× 2 = 1.16.

As described in Section 5, a solution of the online scheduling step is defined as
follows:

Definition 1 (Solution of the Online Scheduling Step) Given n+1 sets of can-

didate messages, a solution of the online scheduling step contains n+1 news feeds for

u’s query regions at t0, t1, . . . , and tn, with each news feed containing at most k mes-

sages. After a solution is found, there is no available position to which an unselected

candidate message can be assigned.

Fig. 7a shows an example of input for the online scheduling step, where n = 1,
k = 1. Each bold edge (ti, mj) in Fig. 7b, 7c, and 7d means that we assign mj to
the only position in the news feed at ti. By Definition 1, Fig. 7b and 7c depict
two solutions for this example. However, just scheduling m1 to the news feed at
t1 (Fig. 7d) is not a solution, since unselected message m2 can be assigned to an
available position in the news feed at t0.

In the modeled bipartite graph, we have matchings and maximal matchings
(Definition 2 and 3). By Definition 1, each maximal matching is a solution of the
online scheduling step. In the example of Fig. 7, the bold edges in Fig. 7b and
7c are maximal matchings, so they are solutions of the online scheduling step. By
contrast, the matching in Fig. 7d is not maximal.

18 Wenjian Xu et al.

t0
(x1)

t1
(x2)

m1
(y1)

m2
(y2)

0.9

0.1 0.1

t0
(x1)

t1
(x2)

m1
(y1)

m2
(y2)

0.9

0.1 0.1

(a) The bipartite graph (b) A solution

t0
(x1)

t1
(x2)

m1
(y1)

m2
(y2)

0.9

0.1 0.1

t0
(x1)

t1
(x2)

m1
(y1)

m2
(y2)

0.9

0.1 0.1

(c) A solution (d) Not a solution

Fig. 7: Example of solutions of the online scheduling step (k = 1, n = 1).

Definition 2 (Matching) A set of edges in a bipartite graph G is called a matching

if no two edges share a common end vertex.

Definition 3 (Maximal Matching) A maximal matching in a bipartite graph G is

a matching that cannot be enlarged by adding an edge.

We turn to derive the optimal solution of our online scheduling step. First of
all, we define the weight of a matching M as the sum of the weights of all edges in
M , i.e., w(M) =

∑

e∈M w(e). We then introduce the concept of maximum weight
matching:

Definition 4 (Maximum Weight Matching) The maximum weight matching in a

bipartite graph G is a matching with maximum weight among all maximal matchings

in G.

By Definition 4 and the modeling of bipartite graph G, the maximum weight
matching in G corresponds to the assignment of n+1 news feeds with the highest
total relevance score, and thus is exactly the optimal solution of the online schedul-
ing step. Based on this problem formulation, we describe the optimal scheduling
algorithm in the next section.

6.2 Optimal Online Scheduling Algorithm

In this section, we propose an optimal algorithm for our n-look-ahead news feed
scheduler. This algorithm is based on the Hungarian Algorithm [36], which finds

MobiFeed: A Location-Aware News Feed Framework for Moving Users 19

Algorithm 2 Optimal Online Scheduling Algorithm

1: function OptimalAlgorithm (User u)
2: // Step 1: Candidate Message Step (Lines 4 to 17 except Line 16 in Algorithm 1)
3: // Step 2: Online Scheduling Step
4: // Step 2a: Preprocessing

5: Construct the weighted bipartite graph G = (X ∪ Y,E) (see Section 6.1)
6: Scale up the weights of edges in G to integers
7: Insert missing edges to make G a complete bipartite graph
8: // Step 2b: Maximum weight matching
9: Initialize a label l(v) for each vertex v in G and construct the equality subgraph Gl accordingly

10: Generate an initial matching M in Gl

11: while |M| 6= min(|X|, |Y |) do

12: xs ← an unmatched vertex in X, S ← {xs}, T ← ∅
13: if Nl(S) = T then

14: dl ← minxa∈S,yb∈Y \T {l(xa) + l(yb)− w(xa, yb)}
15: Update the vertex labels:

l(xa) = l(xa)− dl for xa ∈ S; l(yb) = l(yb) + dl for yb ∈ T
16: end if

17: yt ← a vertex in Nl(S) \ T
18: if yt is matched, say to x′, then
19: S ← S ∪ {x′}, T ← T ∪ {yt}, go to Line 13
20: else

21: There is an augmenting path P in Gl from xs to yt. M ←M ⊖ P

22: end if

23: end while

24: // Step 2c: Assignment
25: For each edge (xa, yb) ∈ M , if its weight is larger than zero, assign message mb to the position

represented by xa (see Section 6.1).
26: Send generated news feeds to u

27: // Step 3: Incremental Processing Step (Lines 31 and 32 in Algorithm 1)

the maximumweight matching in a bipartite graphG with two equal-size partitions.
However, in our news feed scheduling problem, two partitions in G usually do not
have the same number of vertices (see Section 6.1). Thus, we modify the Hungarian
Algorithm such that it could be applied to our problem. Finally, we prove the
correctness of our optimal algorithm.

Algorithm. As shown in Algorithm 2, the Steps 1 and 3 of the optimal online
scheduling algorithm are almost the same as in Algorithm 1, except that we do not
require candidate messages CMi (0 ≤ i ≤ n) to be sorted (Line 16 in Algorithm 1).
We focus on the online scheduling step (Step 2), which can be further divided into
three steps.

Step 2a. Preprocessing. With n+ 1 sets of candidate messages generated by
Step 1, we construct the weighted bipartite graph G = (X ∪ Y,E) as described in
Section 6.1. Since the Hungarian Algorithm works on graphs with integer-weight
edges [6], we scale up the weights of edges in G to integers. Furthermore, the
Hungarian Algorithm requires that G should be a complete bipartite graph (i.e.,
every vertex of one partition is connected to every vertex of the other partition) [6],
so we insert the missing edges with zero weights. This does not affect the weight
of a matching we can obtain.

Step 2b. Maximum weight matching. This step aims at finding the max-
imum weight matching in G. To achieve this, we assign a label l(v) (i.e., an
integer value) for each vertex v ∈ X ∪ Y , which is initialized as follows [6]:
l(xa) = max{w(xa, yb)|yb ∈ Y } for xa ∈ X; l(yb) = 0 for yb ∈ Y . The labels
will be changed by the algorithm and they must satisfy l(xa) + l(yb) ≥ w(xa, yb)
for each xa ∈ X, yb ∈ Y . Then, we construct the equality subgraph Gl with respect to

20 Wenjian Xu et al.

 !"#$%$&

''(''((() ')()))) '') '))

*+ *+ ,,) *,)))) ** *)

',(',(+(+))))))))

(+ (+ -, -))))))))

.) .) /) ,) ')(() +) ')) '))))

,* ,* ') '* *, ,) -) *) *)))

01

02

03

04

05

06

71 72 73 74 75 76 78 79 7: 71; 711

Fig. 8: Weight matrix of the bipartite graph.

the labels l. More specifically, Gl contains all vertices in G, as well as edges (xa, yb)
in G which satisfy l(xa) + l(yb) = w(xa, yb). By Definition 2, we can generate an
initial matching M in Gl by checking the neighbors of every vertex in X. The size
of M is increased by one in each iteration (Lines 12 to 22 in Algorithm 2) until
|M | = min(|X|, |Y |). When the loop terminates, the matching M in Gl is the max-
imum weight matching in G. Note that the termination condition of the loop (i.e.,
Line 11) is different from that in the Hungarian Algorithm (i.e., |M | = |X| = |Y |).

To increase the size of matching M , the idea is to add new edges in Gl by
adjusting the vertex labels l, and then find an augmenting path P [6] in Gl, which is
a path with (a) edges alternating between M and M (called an alternating path [6]),
and (b) unmatched start and end vertices. Specifically, in each iteration, we pick
an unmatched vertex xs in X, and initialize a set S with {xs} and an empty set
T . We find an augmenting path by exploring alternating paths starting from xs.
Basically, S and T are used to record vertices that have been explored in X and
Y , respectively. We then determine the neighbors of S (denoted as Nl(S)), i.e., the
vertices in Y that can be reached (in terms of Gl) from any vertex in S. When
Nl(S) = T , all alternating paths from xs to vertices in Y have been explored but
no augmenting path is found, then we need to add new edges into the equality
subgraph Gl. This is achieved by updating the vertex labels l, as shown in Lines 14
and 15 in Algorithm 2. This update operation guarantees that new edges incident
to vertices in S are added into Gl [6], which leads to Nl(S) 6= T , so we can find
a vertex yt ∈ Nl(S) \ T . If yt is matched, say to vertex x′ in X, then x′ and yt
are inserted into S and T , respectively, and the algorithm turns back to check
the equality between Nl(S) and T again (Line 19). Otherwise, there exists an
augmenting path P in Gl from xs to yt. Thus, M can be augmented by computing
the symmetric difference of M and P , i.e., M ⊖ P (Line 21). This step terminates
when |M | = min(|X|, |Y |).

Step 2c. Assignment. For each edge (xa, yb) ∈ M , if its weight is larger than
zero, the corresponding message mb is assigned to the position represented by xa
(see Section 6.1). After checking every edge in M , the n+1 news feeds constitute
an optimal solution for our online scheduling step.

Example. We use our running example in Fig. 6 to illustrate the three steps
of the optimal online scheduling step.

MobiFeed: A Location-Aware News Feed Framework for Moving Users 21

Step 2a: Fig. 8 depicts the weighted bipartite graph G that is represented by a
weight matrix with 6 rows and 11 columns. In the matrix, the value in entry (a, b) is
the weight w(xa, yb) that is scaled by 100 to keep two decimal points for relevance
scores.

Step 2b: As shown in Fig. 9a, we get the equality subgraph Gl with respect to
the initial vertex labels l (in square brackets). By checking the neighbors of x1, x2,
. . . , and x6, we obtain an initial matching M = {(x1, y1), (x2, y2), (x5, y5)} in Gl

(bold edges in Fig. 9a) (i.e., no messages can be assigned to x3, x4, or x6). In the
first iteration, x3 is selected as an unmatched vertex, and S is initialized as {x3}.
Then, y1 is the vertex picked in Nl(S)\T . We add y1 and its matched vertex x1 into
T and S, respectively. Since Nl(S) is still not equal to T , y2 is inserted into T . After
its matched vertex x2 is added into S, Nl(S) is equal to T . We calculate dl = 3
according to Line 15 in Algorithm 2, and then decrease the labels in S (i.e., x1, x2,
and x3) by dl = 3 and increase the labels in T (i.e., y1 and y2) by dl = 3 (Fig. 9b).
Now a new edge (x2, y10) is added into the equality subgraph, since l(x2)+l(y10) =
w(x2, y10) after updating the vertex labels. When the unmatched vertex y10 is
explored as a neighbor of x2, an augmenting path P from x3 to y10 can be obtained
as x3 → y2 → x2 → y10 (highlighted in Fig. 9b). After augmenting M by M⊖P , we
obtain an expanded matching M = {(x1, y1), (x2, y10), (x3, y2), (x5, y5)} (Fig. 9c).
This step repeats such iterations until |M | = min(|X|, |Y |) = 6. The final matching
is M = {(x1, y10), (x2, y11), (x3, y2), (x4, y1), (x5, y5), (x6, y8)}, represented by bold
edges in Fig. 6.

Step 2c: After the assignment step, the corresponding news feeds at t0, t1, and
t2 are {(m10, 0.55), (m11, 0.5)}, {(m2, 0.68), (m1, 0.68)}, and {(m5, 0.53), (m8, 0.5)},
respectively. The total relevance score of the 2-look-ahead news feeds generated by
the optimal scheduler is: 0.55×2+0.5×1+0.68×2+0.68×1+0.53×2+0.5×1 = 5.2.
Compared with the total relevance score of the zero-look-ahead algorithm (i.e.,
4.56, as calculated in Section 5), the improvement of the optimal 2-look-ahead
algorithm is about 14%.

Correctness. We prove the correctness of our optimal online scheduling algorithm
by Theorem 1.

Theorem 1 The matching generated by Step 2b of Algorithm 2 is the maximum weight

matching in G.

Proof Case 1: |X| < |Y |. We first prove that after the main loop (Lines 11 to 23 in
Algorithm 2) terminates, the labels for unmatched vertices in Y are all zero. Firstly,
before entering the loop, the initial labels for vertices in Y are zero. Secondly,
in the loop, according to the update rule of vertex labels (Lines 14 and 15 in
Algorithm 2), the label for any vertex in Y is only updated if it belongs to set T ,
and all vertices in T are matched vertices (Line 19). Consequently, the labels for
unmatched vertices in Y remain unchanged as zero when the loop terminates.

We prove that the matching M in Gl generated by Step 2b is the maximum
weight matching in G. Since Gl is a subgraph of G, M is a matching in G. Also,
due to the fact that (1) |M | = |X|, i.e., each vertex in X and each matched vertex
in Y are covered only once by M , (2) the labels for unmatched vertices in Y are 0
(as discussed above), and (3) Gl is the equality subgraph derived from l, we have:
(a) w(M) =

∑

e∈M w(e) =
∑

v∈X∪Y l(v). On the other hand, assume thatM ′ is any
matching in G. For any edge (xa, yb) ∈ M ′, we have: l(xa) + l(yb) ≥ w(xa, yb) (i.e.,

22 Wenjian Xu et al.

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11

x1 x2 x3 x4 x5 x6

[116] [58] [136] [68] [106] [53]

[0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0]

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11

x1 x2 x3 x4 x5 x6

[113] [55] [133] [68] [106] [53]

[3] [3] [0] [0] [0] [0] [0] [0] [0] [0] [0]

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11

x1 x2 x3 x4 x5 x6
[113] [55] [133] [68] [106] [53]

[3] [3] [0] [0] [0] [0] [0] [0] [0] [0] [0]

Update the labels and

equality subgraph

Augment the

matching

Updated

Updated

(a)

(b)

(c)

S S S

T T

S

Fig. 9: Example of maximum weight matching.

the property of vertex labels l), and hence, (b) w(M ′) ≤
∑

v∈X∪Y l(v). Combining
inequalities (a) and (b), w(M) ≥ w(M ′). Therefore, M is the maximum weight
matching in G.

Case 2: |X| > |Y |. This case is symmetric to Case 1.
Case 3: |X| = |Y |. The original Hungarian algorithm works exactly on this

case [6].

6.3 Discussion

The “optimality” of our scheduling algorithm is defined as follows: given a user’s
location at the query time and n predicted locations, our algorithm generates a
news feed for each of these n+ 1 locations, such that the total relevance score of
these news feed is maximized.

MobiFeed: A Location-Aware News Feed Framework for Moving Users 23

7 Complexity Analysis

In this section, we analyze the time complexity of the heuristic news feed scheduler
(Algorithm 1) and the optimal news feed scheduler (Algorithm 2). As defined in
Section 6, let X denote all available positions in n + 1 news feeds, i.e., |X| =
k× (n+1), and let Y represent the set of distinct messages in all CMi (0 ≤ i ≤ n).
Since the complexity of the Step 3 of the heuristic and optimal schedulers is the
same, we focus on their first two steps.

Heuristic news feed scheduler. In Algorithm 1, Step 1 takes O((n+1)|Y | log |Y |)
to sort candidate messages. Step 2 takes constant time to schedule each BestMsg.
Since the goal is to schedule at most k(n+1) messages, the complexity of Step 2 is
O(k(n+1)). As a result, the complexity of the heuristic scheduler is O(n(|Y |log |Y |+
k)).

Optimal news feed scheduler. In Algorithm 2, Step 1 only takes O((n+1)|Y |) =
O(|X||Y |) (because |X| = k × (n+ 1)) to retrieve all candidate messages. Step 2a
takes O(|X||Y |) time to construct G. We can distinguish two cases in Step 2b:

Case 1: |X| ≤ |Y |. There are at most |X| iterations in Step 2b. In each iteration,
at most |X| vertices can be moved from S̄ to S. For each of such operations, we
may update the vertex labels l. Just using formulas in Lines 14 and 15 directly
will lead to a cost of O(|X||Y |). For the sake of efficiency, we use a slack array [55]
initialized in O(|Y |) time (S only contains one element initially):

slack[yb] = min
xa∈S

(l(xa) + l(yb)− w(xa, yb)), yb ∈ Y

When one vertex is moved from S̄ to S, it takes O(|Y |) time to update the slack

array. The calculation of dl takes O(|Y |) time, since dl = minyb∈Y \T slack[yb], and
additional O(|Y |) time is needed to update the labels l. Thus, the label update
operation needs O(|Y |) time, and the complexity of Step 2b is O(|X|2|Y |).

Case 2: |X| > |Y |. Similarly, in this case, the complexity of Step 2b is
O(|X||Y |2). Step 2c takes O(min(|X|, |Y |)) to assign every edge in M . As a result,
the complexity of the optimal scheduler is O(|X|2|Y |) or O(|X||Y |2) for Case 1
or 2, respectively.

8 Experiment Results

In this section, we evaluate the performance of MobiFeed through experiments
using a real location-aware social networking data set collected from FourSquare
(Sections 8.2, 8.3, and 8.4). Also, we study the scalability of MobiFeed using a
synthetic data set (Section 8.5). We first describe our experiment settings, and
then analyze experiment results.

8.1 Experiment Setting

Road map and data sets. We extracted the road map of NYC from the USA
Census TIGER/Line Shapefiles [1] and randomly generated 5,000 30-minute tra-
jectories using the A* algorithm [29]. In the first three sets of experiments (Sec-
tions 8.2, 8.3, and 8.4), we use a real location-aware social network data set in

24 Wenjian Xu et al.

Table 3: Space cost of different schedulers

Memory Usage GeoFeed zero-LA n-LA-H n-LA-O n-LA-H n-LA-O
(w/o view) (w/o view)

Road Map 506K 506K 506K 506K 506K 506K
Grid Index 49M 49M 49M 49M 49M 49M

Bipartite Matching N/A N/A N/A 124K N/A 124K
Materialized View N/A N/A 84K 84K N/A N/A

Others 6K 8K 9K 12K 9K 12K

New York City (NYC), USA, which was crawled from FourSquare [25] from De-
cember 10 to 25, 2012. The data set contains 417,897 geo-tagged user-generated
messages (belong to 420 categories in total) and 101,232 users. We also use a
synthetic data set to evaluate the scalability of MobiFeed in Section 8.5.

Parameters and performance measure. Unless mentioned otherwise, all users
move at a constant speed of 40km/h, the minimum message display time (td) is
20 seconds, the look-ahead step (n) is 5, the number of messages per news feed
(k) is 5, the number of top categories (δ) is 3, and the query range distance (D)
is 600 meters. In Section 8.2, we first consider no location prediction error and
evaluate the performance of MobiFeed with respect to various parameters. After
that, we discuss the relevance measure function considering temporal factor in
Section 8.3. Then, in Section 8.4 we study the effect of prediction errors of the
location prediction function described in Section 4.1.

We measure the quality and efficiency of MobiFeed in terms of the average
relevance score and running time per news feed, respectively. For comparison, a
GeoFeed user issues a query at every td to retrieve the k most recent messages. Also,
we implement the zero-look-ahead scheduler (termed zero-LA) as another baseline,
and evaluate the performance of the heuristic n-look-ahead scheduler (termed n-LA-

H) and the optimal n-look-ahead scheduler (termed n-LA-O).

All the experiments were implemented in C++ and run on an Ubuntu 13.10
machine with a 3.4GHz Intel Core i7-4770 processor and 16GB RAM. In the
experiments, the road network and largest dataset occupies 1 MB and 50 MB,
respectively. Thus, all data can fit in the main memory.

8.2 Performance Study with Various Parameters

In this section, we investigate the performance of MobiFeed by varying parameters
including (a) the look-ahead step, (b) the minimum display time, (c) the new feed
size, (d) the query range distance, (e) the number of top categories, and (f) the
user movement speed.

Effect of the Number of Look-ahead Steps. Fig. 10 and Table 4 depict the
performance of MobiFeed with respect to 1 to 10 look-ahead steps (n). The perfor-
mance of zero-LA and GeoFeed is not affected by the value of n. When n is larger,
both n-LA-H and n-LA-O have a higher chance to assign a message to a better news
feed within its lifetime; and hence, the quality of news feeds generated by n-LA-H

and n-LA-O improves (Fig. 10a). Besides, n-LA-O obtains a relevance score about
5% higher than n-LA-H and about 15% higher than zero-LA on average. Fig. 10a

MobiFeed: A Location-Aware News Feed Framework for Moving Users 25

 0

 1

 2

 3

 4

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 R
el

ev
an

ce
 S

co
re

Look-ahead Steps

GeoFeed
zero-LA
n-LA-H
n-LA-O

(a) Relevance score

0.0

0.1

0.2

0.3

0.4

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 R
un

ni
ng

 T
im

e
(m

s)

Look-ahead Steps

GeoFeed
zero-LA
n-LA-H
n-LA-O

n-LA-H (w/o view)
n-LA-O (w/o view)

(b) Running time

Fig. 10: Look-ahead steps.

Table 4: The number of location updates.

Look-ahead steps 1 2 3 4 5 6 7 8 9 10

n-LA-H/n-LA-O 90 60 45 36 30 26 23 20 18 17
zero-LA/GeoFeed 180 180 180 180 180 180 180 180 180 180

also shows that GeoFeed performs worst among all approaches. The reason is that,
GeoFeed simply uses submission time as the ranking measure, while our schedulers
use a more advanced ranking function (described in Section 4.2).

Interestingly, compared with zero-LA and GeoFeed, although n-LA-H and n-LA-O

have extra overhead in assigning messages to a news feed within their lifetime, this
overhead is almost offset by the benefit of sharing the computation of scheduling
n + 1 news feeds for a user’s location (Fig. 10b). Fig. 10b also depicts that ma-
terialized views help to reduce the query processing time for n-LA-H and n-LA-O.
The main reason is that the overlapping area between consecutive query regions is
large, and most of the messages stored in the views can be reused for the evalua-
tion of range queries. Since in other experiments, the improvement of efficiency for
using views is similar, we will not depict the results for schedulers without views
in other experiments. Table 4 shows that when n increases, n-LA-H and n-LA-O are
able to pre-compute more news feeds for a mobile user’s location update; thus, the
number of location updates reduces.

In Table 3 we show the space costs of different schedulers by breaking down
their memory usage. The grid index for all messages consumes the majority of
the whole space cost. The materialized view for our schedulers does not consume
much memory. The reason is that, the view keeps being updated with the candidate
messages in the most recent query region, and the quantity of these messages would
not be very large.

Effect of Minimum Display Time. In this experiment, we evaluate the effect
of the minimum message display time (i.e., td), varying from 5 to 30 seconds, on
MobiFeed. Fig. 11a depicts that the quality of news feeds improves when td gets
larger. n-LA-H and n-LA-O also perform better than zero-LA and GeoFeed as td gets
larger. The main reason is that, as td gets larger, the distance between the centers
of two consecutive query regions increases; thus, the overlapping area between two

26 Wenjian Xu et al.

 0

 1

 2

 3

 4

 5

5 10 15 20 25 30

A
ve

ra
ge

 R
el

ev
an

ce
 S

co
re

Minimum Display Time (s)

GeoFeed
zero-LA
n-LA-H
n-LA-O

(a) Relevance score

0.0

0.1

0.2

0.3

5 10 15 20 25 30

A
ve

ra
ge

 R
un

ni
ng

 T
im

e
(m

s)

Minimum Display Time (s)

GeoFeed
zero-LA
n-LA-H
n-LA-O

(b) Running time

Fig. 11: Minimum display time.

 0

 2

 4

 6

 8

 10

 12

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 R
el

ev
an

ce
 S

co
re

No. of Messages per News Feed

GeoFeed
zero-LA
n-LA-H
n-LA-O

(a) Relevance score

0.0

0.1

0.2

0.3

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 R
un

ni
ng

 T
im

e
(m

s)

No. of Messages per News Feed

GeoFeed
zero-LA
n-LA-H
n-LA-O

(b) Running time

Fig. 12: News feed sizes.

consecutive query regions reduces (given fixed range distance). As a result, there
are more distinct candidate messages for n+ 1 query regions, and the schedulers
have a higher chance to generate news feeds with better quality. However, td should
not be too long because mobile users would miss many nearby relevant messages.
As depicted in Fig. 11b, the running time of MobiFeed increases when td gets
larger, since all the schedulers have to process more distinct candidate messages.

Effect of News Feed Sizes. Fig. 12 depicts the performance of MobiFeed with
respect to various user-required number of messages per news feed (i.e., k). It is
expected that the average relevance score of a news feed increases when a mobile
user requires more messages per news feed (i.e., a larger value of k) (Fig. 12a).
n-LA-O performs best since it optimizes the scheduling of news feeds over n + 1
query regions. Furthermore, the improvement of n-LA-H and n-LA-O over zero-LA

increases when k gets larger (Fig. 12a). The reason is that when zero-LA selects
more messages for a current news feed, it has a higher chance to reduce the quality
of subsequent news feeds; however, some selected messages could be put in a higher
position in a subsequent news feed by n-LA-H and n-LA-O. For n-LA-O, a larger k

MobiFeed: A Location-Aware News Feed Framework for Moving Users 27

 0

 2

 4

 6

200 400 600 800 1000

A
ve

ra
ge

 R
el

ev
an

ce
 S

co
re

Range Distance (m)

GeoFeed
zero-LA
n-LA-H
n-LA-O

(a) Relevance score

0.0

0.1

0.2

0.3

200 400 600 800 1000

A
ve

ra
ge

 R
un

ni
ng

 T
im

e
(m

s)

Range Distance (m)

GeoFeed
zero-LA
n-LA-H
n-LA-O

(b) Running time

Fig. 13: Query range distances.

 0

 2

 4

 6

1 2 3 4 5

A
ve

ra
ge

 R
el

ev
an

ce
 S

co
re

No. of Top Categories

GeoFeed
zero-LA
n-LA-H
n-LA-O

(a) Relevance score

0.0

0.1

0.2

0.3

1 2 3 4 5

A
ve

ra
ge

 R
un

ni
ng

 T
im

e
(m

s)

No. of Top Categories

GeoFeed
zero-LA
n-LA-H
n-LA-O

(b) Running time

Fig. 14: The number of top categories.

needs more time to compute the maximum weight matching, so its running time
increases (Fig. 12b).

Effect of Query Range Distances. This section studies the effect of user-
specified query range distances (i.e.,D) on the performance of MobiFeed by varying
D from 200 to 1,000 meters. The increase of D leads to more candidate messages
for a query region. The news feed quality of MobiFeed improves when the number
of candidate messages gets larger (Fig. 13a), since there is a higher chance to find
more relevant messages for a user. However, Fig. 13b shows that the running time
of all the schedulers gets worse when D increases. The main reason is that the
system needs to process more candidate messages to generate news feeds.

Effect of the Number of Top Categories. Fig. 14 depicts the results of varying
the number of top categories (i.e., δ) from 1 to 5. When δ increases, more candidate
messages belong to the top-δ categories for a news feed, so all the schedulers have
a higher chance to find news feeds with better quality (Fig. 14a). However, the
increase of δ results in higher running times (Fig. 14b) because all the schedulers
have to process more candidate messages for each query region.

Effect of User Movement Speeds. This experiment varies user’s movement

28 Wenjian Xu et al.

 0

 2

 4

 6

 8

20 40 60 80 100

A
ve

ra
ge

 R
el

ev
an

ce
 S

co
re

User Movement Speed (km/h)

GeoFeed
zero-LA
n-LA-H
n-LA-O

(a) Relevance score

0.0

0.1

0.2

0.3

20 40 60 80 100

A
ve

ra
ge

 R
un

ni
ng

 T
im

e
(m

s)

User Movement Speed (km/h)

GeoFeed
zero-LA
n-LA-H
n-LA-O

(b) Running time

Fig. 15: User movement speeds.

speeds from 20 to 100 km/h. A higher speed reduces the overlapping area of
two consecutive query regions, so the query regions have more distinct candidate
messages. As a result, there is a higher chance for our schedulers to generate news
feeds with better quality (Fig. 15a). Correspondingly, since all schedulers have
to process more distinct candidate messages, their running times increase as the
user’s speed gets higher.

8.3 Study on Relevance Measure Function with Temporal Factor

In Section 4.2, we have defined the relevance measure function by considering
the message’s content, associated categories, and distance to the querying user
(see Equation 3). We here consider a temporal factor as an addition criterion for
relevance measure. Intuitively, the interestingness of a message’s content would
fade as time goes, so we re-define Equation 3 as follows:

relevanceScore(ui,mj , Tcur) =contentScore(ui,mj)× fading(Tcur, Tmj)× (1− β)

+NDist(ui,mj)× β (4)

where fading(Tcur, Tmj) indicates how fast the interestingness of mj fades; specifi-
cally, it is defined as follows:

fading(Tcur, Tmj) = 1−
Tcur − Tmj

Tcur − Tmin
(5)

where Tcur, Tmj and Tmin are the current timestamp, mj ’s submission timestamp
and the smallest submission timestamp for all candidate messages within current
query region, respectively.

We conduct an experiment to show the performance of MobiFeed with the
updated relevance measure function. The experimental results (Figure 16) exhibit
similar trends compared to those with original relevance measure function (i.e.,
Figure 10 in Section 8.2).

MobiFeed: A Location-Aware News Feed Framework for Moving Users 29

0.0

1.0

2.0

3.0

4.0

 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 R
el

ev
an

ce
 S

co
re

Look-ahead Steps

GeoFeed
zero-LA
n-LA-H
n-LA-O

(a) Relevance score

0.0

0.1

0.2

0.3

0.4

0.5

 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 R
un

ni
ng

 T
im

e
(m

s)

Look-ahead Steps

GeoFeed
zero-LA
n-LA-H
n-LA-O

(b) Running time

Fig. 16: Performance of MobiFeed with updated relevance measure function

2.5

3.0

3.5

4.0

4.5

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 R
el

ev
an

ce
 S

co
re

Look-ahead Steps

zero-LA
n-LA-H
n-LA-O

n-LA-H (with prediction errors)
n-LA-O (with prediction errors)

(a) Relevance score

0.0

0.5

1.0

1.5

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 R
un

ni
ng

 T
im

e
(m

s)

Look-ahead Steps

zero-LA
n-LA-H
n-LA-O

n-LA-H (with prediction errors)
n-LA-O (with prediction errors)

(b) Running time

Fig. 17: Look-ahead steps (with prediction errors).

Table 5: Prediction error (look-ahead steps).

Look-ahead steps 1 2 3 4 5 6 7 8 9 10
Prediction error (%) 1.7 15.5 18.5 19.7 20.4 20.8 21.0 21.3 21.4 21.5

8.4 Study on Location Prediction Errors

Training set and test set. This section evaluates the effect of prediction errors
of the location prediction function (Section 4.1). We randomly generate 10,000 tra-
jectories on the road map with speeds randomly selected from 20km/h to users’
maximum movement speed (40 km/h by default). 5,000 trajectories are randomly
selected as a training set for the location prediction function, and α = 1 (see Sec-
tion 4.1). We use the remaining 5,000 trajectories as a test set to evaluate the
effect of the prediction algorithm.

Prediction error measure. In the experiments, a prediction error occurs if the
difference between a user’s actual location and predicted location is larger than the
tolerance threshold θ that is set to 50 meters. When a prediction error takes place,
the scheduler needs to re-schedule news feeds based on a user’s location update.

30 Wenjian Xu et al.

 2

 3

 4

 5

20 40 60 80 100

A
ve

ra
ge

 R
el

ev
an

ce
 S

co
re

Maximum Speed (km/h)

zero-LA
n-LA-H
n-LA-O

n-LA-H (with prediction errors)
n-LA-O (with prediction errors)

(a) Relevance score

0.0

0.5

1.0

1.5

2.0

20 40 60 80 100

A
ve

ra
ge

 R
un

ni
ng

 T
im

e
(m

s)

Maximum Speed (km/h)

zero-LA
n-LA-H
n-LA-O

n-LA-H (with prediction errors)
n-LA-O (with prediction errors)

(b) Running time

Fig. 18: Maximum user movement speeds (with prediction errors).

Table 6: Prediction error (user maximum speeds).

Maximum speed (km/h) 20 40 60 80 100
Prediction error (%) 3.0 20.4 38.6 50.9 59.5

We measure the prediction error of an experiment as the ratio of the number
of prediction errors to the number of location predictions. In the experiments,
we make a performance comparison between the n-look-ahead schedulers with
prediction errors and those without errors. Although zero-LA and GeoFeed do not
require location prediction, we plot the performance of zero-LA for reference.

Varying look-ahead steps. Fig. 17 and Table 5 depict the experiment results of
the increase of the look-ahead steps (n) from 1 to 10. Fig. 17b shows that, a larger
n increases the running times of our schedulers with errors in location prediction

function. This is because as n gets larger, MobiFeed needs to predict longer path,
and there is a higher chance for a prediction error to occur (Table 5). When a
prediction error takes place, the scheduler needs to re-schedule news feeds based
on a user’s location update, thus incurring additional computational overhead.

Interestingly, as shown in Fig. 17a, the schedulers with prediction errors gen-
erate better news feeds than those without prediction errors. The main reason is
that, schedulers with errors incur additional news feed re-scheduling over those
without errors, which leads to better assignment of news feeds in a global sense.
Here we give an example for explanation. Given a trajectory with a user’s locations
at times t0, t1 = t0+td, t2 = t0+2×td, . . . , where td is the minimum display time,
a first call of 2-look-ahead scheduling at t0 generates news feeds for t0, t1, and t2.
If no prediction error occurs from t0 to t2, a second call of scheduling will take
place at t3. In contrast, if MobiFeed detects prediction error at t1, it will perform
re-scheduling at t1 and generate news feeds for t1, t2, and t3; in this case, some
messages originally assigned to news feed at t2 may be re-assigned to news feed at
t3, which results in higher overall quality of news feeds from t0 to t3.

Varying other parameters. Since varying parameters, including k, D and δ, does
not affect the prediction error, we only show the results of user’s maximum move-
ment speed (Smax) and the minimum display time (td). Fig. 18 and Table 6 depict

MobiFeed: A Location-Aware News Feed Framework for Moving Users 31

 1

 2

 3

 4

 5

5 10 15 20 25 30

A
ve

ra
ge

 R
el

ev
an

ce
 S

co
re

Minimum Display Time (s)

zero-LA
n-LA-H
n-LA-O

n-LA-H (with prediction errors)
n-LA-O (with prediction errors)

(a) Relevance score

0.0

0.5

1.0

1.5

5 10 15 20 25 30

A
ve

ra
ge

 R
un

ni
ng

 T
im

e
(m

s)

Minimum Display Time (s)

zero-LA
n-LA-H
n-LA-O

n-LA-H (with prediction errors)
n-LA-O (with prediction errors)

(b) Running time

Fig. 19: Minimum display times (with prediction errors).

Table 7: Prediction error (minimum display times).

Minimum display time (s) 5 10 15 20 25 30
Prediction error (%) 9.5 20.4 30.2 37.8 43.9 49.1

the performance of MobiFeed with respect to various user’s maximum movement
speeds Smax from 20 to 100 km/h. The minimum movement speed is 20 km/h.
It is expected that the prediction error increases, as Smax gets higher (Table 6).
The increase of the prediction error leads to a higher chance for the scheduler
to re-schedule news feeds, so the running time increases (Fig. 18b). Similar to
Fig. 17a, re-scheduling incurred by prediction error increases the quality of news
feeds (Fig. 18a).

Fig. 19 and Table 7 depict the results of varying the minimum display time
(td). When td increases, n-LA-H and n-LA-O need to predict a longer path that leads
to a higher prediction error (Table 7). Similar to the previous two experiments,
the increase of the prediction error results in higher running time (Fig. 19b).

8.5 Scalability Study with Synthetic Data Set

In this experiment, we evaluate the scalability of MobiFeed using a synthetic data
set. Specifically, we use the same NYC road map as previous experiments. We
also consider location prediction errors by dividing trajectories into training set
and test set. Instead of using real geo-tagged messages crawled from FourSquare,
we generate points in the road map and regard them as geo-tagged messages. We
control the features of this synthetic data set as follows:

• Message density. We divide the road map of NYC into 1 mile × 1 mile cells,
and generate a designated number (denoted as ρ) of messages in each cell. The
default value of ρ is 600. Note that in the real social network data set, there
are about 250 messages per square mile.

• Message distribution. When generating messages in each cell, we control the
distribution of messages. Specifically, for a distribution type ‘Gau[σ%]’, we
regard a cell as a Gaussian bell, set the standard deviation of the Gaussian

32 Wenjian Xu et al.

 0

 2

 4

 6

 8

 10

200 400 600 800 1000

A
ve

ra
ge

 R
el

ev
an

ce
 S

co
re

No. of Messages per Square Mile

zero-LA
n-LA-H
n-LA-O

(a) Relevance score

0.0

0.5

1.0

1.5

200 400 600 800 1000

A
ve

ra
ge

 R
un

ni
ng

 T
im

e
(m

s)

No. of Messages per Square Mile

zero-LA
n-LA-H
n-LA-O

(b) Running time

Fig. 20: Message density.

to be σ% of the cell domain length1 [10], and generate messages in that bell
following such distribution. We name σ as the percentile standard deviation.
Smaller σ means that the geo-tagged messages are clustered around the center
of the cell to a larger extent. Note that when σ is set to 100 (the default value),
the messages follow a uniform distribution.

• Score distribution. Instead of using the ranking function (i.e., scoring function)
described in Section 4.2, we generate the scores of synthetic messages following
a Zipfian distribution [28]. Such distribution is determined by the skew param-
eter θ ranging from 0.0 to 1.0, where a smaller value of θ results in higher skew
of message scores (i.e., more low-scored messages). Note that when θ is set to
1.0 (the default value), the scores follow a uniform distribution.

In the following experiments, we test the performance of MobiFeed by varying
these three features of the synthetic data set. Other parameters of MobiFeed take
their default values as described in Section 8.1.

Effect of message density. Fig. 20 depicts the experiment results by varying the
number of messages per square mile (i.e., ρ). The news feed quality of MobiFeed
improves as the geo-tagged messages become denser (Fig. 20a), since there are
more candidate messages for a query region, and the schedulers have a higher
chance to find more relevant messages for a user. However, Fig. 20b shows that
the running time of all schedulers gets worse as there are more messages per square
mile, since the system needs to process more candidate messages to generate news
feeds. As a remark, even when ρ increases to 1000, the running time of MobiFeed
is still acceptable (about 1ms).

Effect of message distribution. This experiment illustrates the effect of message
distribution on the performance of the MobiFeed. Fig. 21a shows that, if the geo-
tagged messages are uniformly distributed, the performance gap between n-LA-O

and n-LA-H is not that evident. When the messages follow the Gaussian distribu-
tion with percentile standard deviation (i.e., σ) equal to 20, n-LA-O shows greatest
advantage over n-LA-H in terms of the quality of generated news feeds. Fortunately,

1 Here the cell domain length is set as the largest distance between the cell’s center and its
boundary.

MobiFeed: A Location-Aware News Feed Framework for Moving Users 33

 0

 2

 4

 6

 8

Gau[2.5%] Gau[5%] Gau[10%] Gau[20%] Gau[50%] Uniform

A
ve

ra
ge

 R
el

ev
an

ce
 S

co
re

Distribution Type

zero-LA
n-LA-H
n-LA-O

(a) Relevance score

0.0

0.2

0.4

0.6

0.8

1.0

Gau[2.5%] Gau[5%] Gau[10%] Gau[20%] Gau[50%] Uniform

A
ve

ra
ge

 R
un

ni
ng

 T
im

e
(m

s)

Distribution Type

zero-LA
n-LA-H
n-LA-O

(b) Running time

Fig. 21: Message distribution.

 0

 2

 4

 6

 8

0.0 0.2 0.4 0.6 0.8 1.0

A
ve

ra
ge

 R
el

ev
an

ce
 S

co
re

Skew of Zipfian Distribution

zero-LA
n-LA-H
n-LA-O

(a) Relevance score

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

A
ve

ra
ge

 R
un

ni
ng

 T
im

e
(m

s)

Skew of Zipfian Distribution

zero-LA
n-LA-H
n-LA-O

(b) Running time

Fig. 22: Score distribution.

in real location-aware social networking systems, the geo-tagged messages do ex-
hibit a geographical clustering phenomenon [59], rendering our n-LA-O superior
to the heuristic approach. However, if σ further gets smaller, their performance
gap decreases. The reason is that, as messages further cluster around the center of
cells, there is a higher chance that the number of candidate messages in a query
region is less than k, rendering the performance of n-LA-O and n-LA-H almost the
same. Fig. 21b shows that the running time of all schedulers is insensitive to the
distribution of messages.

Effect of score distribution. This experiment varies the skewness of message
score distributions. Fig. 22a shows that the quality of news feeds improves as the
score becomes less skewed. The reason is that, as mentioned in the synthetic data
generation, lower skewness indicates larger population of high-scored messages,
and there is a higher chance for schedulers to generate news feeds with better
quality. As depicted in Fig. 22b, the score distribution only slightly affects the
efficiency of our schedulers.

34 Wenjian Xu et al.

9 Conclusion

In this paper, we presented MobiFeed that is a framework designed for schedul-
ing location-aware news feeds for mobile users. MobiFeed has three key functions:
location prediction, relevance measure, and news feed scheduler. We proposed the n-
look-ahead heuristic and optimal news feed schedulers that work with the other two
functions to generate news feeds for a user at her current and n future predicted
locations. We evaluated the performance of MobiFeed through extensive experi-
ments using a real road map, a real location-aware social network data set and a
synthetic data set. The experiment results show that MobiFeed provides efficient
and high-quality news feeds for mobile users.

Acknowledgments

Wenjian Xu and Chi-Yin Chow were supported by Guangdong Natural Science
Foundation of China under Grant S2013010012363 and a research grant (CityU
Project No. 9680117). Man Lung Yiu was supported by grant GRF 5302/12E from
Hong Kong RGC.

References

1. 2010 Census TIGER/Line Shapefiles. http://www.census.gov/geo/www/tiger/

tgrshp2010/tgrshp2010.html.
2. L. Aalto, N. Göthlin, J. Korhonen, and T. Ojala. Bluetooth and WAP push based location-

aware mobile advertising system. In ACM MobiSys, 2004.
3. G. AdWords. http://adwords.google.com/.
4. G. Aggarwal, G. Goel, C. Karande, and A. Mehta. Online vertex-weighted bipartite

matching and single-bid budgeted allocations. In SIAM SODA, 2011.
5. N. Armenatzoglou, S. Papadopoulos, and D. Papadias. A general framework for geo-social

query processing. In VLDB, 2013.
6. A. S. Asratian, T. M. J. Denley, and R. Häggkvist. Bipartite Graphs and Their Applica-

tions. Cambridge University Press, 2008.
7. R. A. Baeza-Yates and B. A. Ribeiro-Neto. Modern Information Retrieval. ACM

Press/Addison-Wesley, 1999.
8. J. Bao and M. F. Mokbel. GeoRank: An efficient location-aware news feed ranking system.

In ACM SIGSPATIAL GIS, 2013.
9. J. Bao, M. F. Mokbel, and C.-Y. Chow. GeoFeed: A location-aware news feed system. In

IEEE ICDE, 2012.
10. N. Bruno, S. Chaudhuri, and L. Gravano. Stholes: A multidimensional workload-aware

histogram. In ACM SIGMOD, 2001.
11. Y. Cai and T. Xu. Design, analysis, and implementation of a large-scale real-time location-

based information sharing system. In ACM MobiSys, 2008.
12. X. Cao, G. Cong, and C. S. Jensen. Retrieving top-k prestige-based relevant spatial web

objects. In VLDB, 2010.
13. B. Chandramouli and J. Yang. End-to-end support for joins in large-scale pub-

lish/subscribe systems. In VLDB, 2008.
14. B. Chandramouli, J. Yang, P. K. Agarwal, A. Yu, and Y. Zheng. ProSem: Scalable wide-

area publish/subscribe. In ACM SIGMOD, 2008.
15. J.-J. Chen, J. Wu, C.-S. Shih, and T.-W. Kuo. Approximation algorithms for scheduling

multiple feasible interval jobs. In IEEE RTCSA, 2005.
16. F. Y. L. Chin, M. Chrobak, S. P. Y. Fung, W. Jawor, J. Sgall, and T. Tichý. Online com-

petitive algorithms for maximizing weighted throughput of unit jobs. Journal of Discrete
Algorithms, 4(2):255–276, 2006.

MobiFeed: A Location-Aware News Feed Framework for Moving Users 35

17. C.-Y. Chow, J. Bao, and M. F. Mokbel. Towards location-based social networking services.
In ACM SIGSPATIAL LBSN, 2010.

18. C.-Y. Chow, M. F. Mokbel, J. Nap, and S. Nath. Evaluation of range nearest-neighbor
queries with quality guarantee. In SSTD, 2009.

19. G. Cong, C. S. Jensen, and D. Wu. Efficient Retrieval of the Top-k Most Relevant Spatial
Web Objects. In VLDB, 2009.

20. R. I. Davis and A. Burns. A survey of hard real-time scheduling for multiprocessor systems.
ACM Computing Surveys, 43(4), 2011.

21. I. De Felipe, V. Hristidis, and N. Rishe. Keyword search on spatial databases. In IEEE
ICDE, 2008.

22. G. M. Djuknic and R. E. Richton. Geolocation and Assisted GPS. IEEE Computer,
34(2):123–125, 2001.

23. Facebook. http://www.facebook.com/about/location.
24. J. Feldman, N. Korula, V. Mirrokni, S. Muthukrishnan, and M. Pál. Online ad assignment

with free disposal. In Internet and Network Economics, 2009.
25. Foursquare. http://www.foursquare.com.
26. D. Freni, C. R. Vicente, S. Mascetti, C. Bettini, and C. S. Jensen. Preserving location and

absence privacy in geo-social networks. In ACM CIKM, 2010.
27. Google Buzz Mobile. http://www.google.com/mobile/buzz.
28. G. Grimmett. Probability: an introduction. Oxford University Press, 1986.
29. P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determination

of minimum cost paths. IEEE TSSC, 4(2):100–107, 1968.
30. H. Jeung, M. L. Yiu, X. Zhou, and C. S. Jensen. Path prediction and predictive range

querying in road network databases. VLDB Journal, 19(4):585–602, 2010.
31. M.-Y. Kao, T.-W. Lam, W.-K. Sung, and H.-F. Ting. A decomposition theorem for max-

imumweight bipartite matchings with applications to evolutionary trees. In Algorithms-
ESA, 1999.

32. M.-Y. Kao, T.-W. Lam, W.-K. Sung, and H.-F. Ting. A decomposition theorem for
maximum weight bipartite matchings. SIAM Journal on Computing, 31(1):18–26, 2001.

33. R. M. Karp, U. V. Vazirani, and V. V. Vazirani. An optimal algorithm for on-line bipartite
matching. In ACM STOC, 1990.

34. T. Kesselheim, K. Radke, A. Tönnis, and B. Vöcking. An optimal online algorithm for
weighted bipartite matching and extensions to combinatorial auctions. In Algorithms–ESA
2013, 2013.

35. A. Khoshgozaran and C. Shahabi. Private buddy search: Enabling private spatial queries
in social networks. In IEEE SIN, 2009.

36. H. W. Kuhn. The hungarian method for the assignment problem. Naval Research Logistics
Quarterly, 2:83–97, 1955.

37. K. W.-T. Leung, D. L. Lee, and W.-C. Lee. CLR: A collaborative location recommendation
framework based on co-clustering. In ACM SIGIR, 2011.

38. J. J. Levandoski, M. Sarwat, A. Eldawy, and M. F. Mokbel. LARS: A location-aware
recommender system. In IEEE ICDE, 2012.

39. Z. Li, K. C. Lee, B. Zheng, W.-C. Lee, D. L. Lee, and X. Wang. IR-Tree: An efficient
index for geographic document search. IEEE Trans. on Knowledge and Data Engineering,
23:585–599, 2011.

40. Loopt. http://www.loopt.com.
41. M. Mahdian and Q. Yan. Online bipartite matching with random arrivals: an approach

based on strongly factor-revealing LPs. In ACM STOC, 2011.
42. C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Information Retrieval.

Cambridge University Press, 2008.
43. A. Mehta. Online matching and ad allocation. Theoretical Computer Science, 8(4):265–

368, 2012.
44. A. Mehta, A. Saberi, U. Vazirani, and V. Vazirani. Adwords and generalized on-line

matching. In IEEE FOCS, 2005.
45. A. Mehta, A. Saberi, U. Vazirani, and V. Vazirani. Adwords and generalized online match-

ing. Journal of the ACM, 54(5), 2007.
46. M. F. Mokbel, X. Xiong, and W. G. Aref. SINA: Scalable incremental processing of

continuous queries in spatio-temporal databases. In ACM SIGMOD, 2004.
47. A. Noulas, S. Scellato, C. Mascolo, and M. Pontil. Exploiting semantic annotations for

clustering geographic areas and users in location-based social networks. In International
AAAI Conference on Weblogs and Social Media, 2011.

36 Wenjian Xu et al.

48. O. Phelan, K. McCarthy, and B. Smyth. Using twitter to recommend real-time topical
news. In ACM RecSys, 2009.

49. Renren. http://www.renren.com.
50. L. Siksnys, J. Thomsen, S. Saltenis, and M. L. Yiu. Private and flexible proximity detection

in mobile social networks. In IEEE MDM, 2010.
51. A. Silberstein, J. Terrace, B. F. Cooper, and R. Ramakrishnan. Feeding Frenzy: Selectively

materializing user’s event feed. In ACM SIGMOD, 2010.
52. Sina Weibo. http://www.weibo.com.
53. J.-W. Son, A. Kim, and S.-B. Park. A location-based news article recommendation with

explicit localized semantic analysis. In ACM SIGIR, 2013.
54. Twinkle. http://tapulous.com/twinkle.
55. D. B. West. Introduction to Graph Theory (2nd Edition). Prentice Hall, 2001.
56. D. Wu, G. Cong, and C. S. Jensen. A framework for efficient spatial web object retrieval.

VLDB Journal, 21:797–822, 2012.
57. D. Wu, M. L. Yiu, and C. S. Jensen. Moving spatial keyword queries: Formulation,

methods, and analysis. ACM Trans. on Database Systems, 38:7:1–7:47, 2013.
58. M. Ye, P. Yin, and W.-C. Lee. Location recommendation for location-based social net-

works. In ACM SIGSPATIAL GIS, 2010.
59. M. Ye, P. Yin, W.-C. Lee, and D.-L. Lee. Exploiting geographical influence for collaborative

point-of-interest recommendation. In ACM SIGIR, 2011.
60. H. Yin, Y. Sun, B. Cui, Z. Hu, and L. Chen. Lcars: a location-content-aware recommender

system. In Proc. of the ACM Conference on Knowledge Discovery and Data Mining, 2013.
61. D. Zhang, Y. M. Chee, A. Mondal, A. Tung, and M. Kitsuregawa. Keyword search in

spatial databases: Towards searching by document. In IEEE ICDE, 2009.
62. V. W. Zheng, Y. Zheng, X. Xie, and Q. Yang. Collaborative location and activity recom-

mendations with GPS history data. In WWW, 2010.
63. Y. Zheng, X. Xie, and W.-Y. Ma. GeoLife: A collaborative social networking service among

user, location and trajectory. IEEE Data Engineering Bulletin, 33(2):32–39, 2010.
64. Y. Zheng, L. Zhang, Z. Ma, X. Xie, and W.-Y. Ma. Recommending friends and locations

based on individual location history. ACM Trans. on the Web, 5(1):5, 2011.
65. Y. Zhou, A. Salehi, and K. Aberer. Scalable delivery of stream query results. In VLDB,

2009.

