
Identifying the Most Endangered Objects from
Spatial Datasets

Hua Lu Man Lung Yiu

Department of Computer Science, Aalborg University, Denmark
{luhua,mly}@cs.aau.dk

Abstract. Real-life spatial objects are usually described by their ge-
ographic locations (e.g., longitude and latitude), and multiple quality
attributes. Conventionally, spatial data are queried by two orthogonal
aspects: spatial queries involve geographic locations only; skyline queries
are used to retrieve those objects that are not dominated by others on all
quality attributes. Specifically, an object pi is said to dominate another
object pj if pi is no worse than pj on all quality attributes and better than
pj on at least one quality attribute. In this paper, we study a novel query
that combines both aspects meaningfully. Given two spatial datasets P
and S, and a neighborhood distance δ, the most endangered object query
(MEO) returns the object s ∈ S such that within the distance δ from s,
the number of objects in P that dominate s is maximized. MEO queries
appropriately capture the needs that neither spatial queries nor skyline
queries alone have addressed. They have various practical applications
such as business planning, online war games, and wild animal protec-
tion. Nevertheless, the processing of MEO queries is challenging and it
cannot be efficiently evaluated by existing solutions. Motivated by this,
we propose several algorithms for processing MEO queries, which can be
applied in different scenarios where different indexes are available on spa-
tial datasets. Extensive experimental results on both synthetic and real
datasets show that our proposed advanced spatial join solution achieves
the best performance and it is scalable to large datasets.

1 Introduction

Real-life spatial objects (e.g., hotels) are not only associated with geographic
locations but also with multiple quality attributes (e.g., price and star). Con-
ventionally, spatial objects are retrieved by using two orthogonal query types.
Spatial queries (e.g., nearest neighbor query, closest pair query) select objects
solely based on their geographic locations, or derived measures such as distances.
These queries fail to utilize the rich information captured by quality attributes.

On the other hand, the skyline query [1] is a powerful multi-criteria optimiza-
tion tool for retrieving objects based on their quality attributes. Specifically, this
query returns the objects that are not dominated by others on all quality at-
tributes. An object pi is said to dominate another object pj if pi is no worse than
pj on all quality attributes and better than pj on at least one quality attribute.

Unfortunately, skyline queries focus only on the quality attributes, disregarding
the importance of spatial distances among the objects.

Motivation of Retrieving the Most Endangered Objects.
Nowadays, spatial decision support systems need to combine both the location
and quality aspects of spatial objects in a meaningful way to retrieve desired ob-
jects for the users. This is especially true for a practical application that identifies
objects in endangered positions and conducts appropriate planning for them. As
an example, suppose that a hotel chain is facing financial challenges and it plans
to shut down one of its hotels. Intuitively, a hotel is unlikely to make profit if
it is located close to a large number of competitor hotels that have dominating
advantages on all quality attributes. Such a hotel may be considered to be shut
down. Note that the business of a hotel is not significantly affected by competitor
hotels that are far away. Thus, two hotels are considered as geographically close
if their distance is within a given neighborhood distance δ.

hotel price star

s1 $200 4
s2 $100 2
s3 $250 5
s4 $160 3
s5 $160 3

Fig. 1. Candidate set S

hotel price star

h1 $180 4
h2 $200 3
h3 $200 5
h4 $250 3
h5 $200 5
h6 $220 4
h7 $100 2
h8 $150 3
h9 $200 5
h10 $160 4

Fig. 2. Competitor set P

h4

h3

h1

h2

x

y

s1

s3

s2

s5
s4

h5

h7

h9

h6

h8

h10

δ

δ

δ

δ

δ

Fig. 3. Locations of hotels

Specifically, given a spatial dataset P (of competitors), a spatial dataset S (of
candidates), and a neighborhood distance δ, the most endangered object query
(MEO) query returns the object s ∈ S such that within the distance δ from s,
the number of objects of P that dominate s is maximized.

Figure 1 lists the quality attributes (price and star) of hotels in a candidate set
S that belongs to a hotel chain. Similarly, Figure 2 shows the quality attributes of
the set P of competitor hotels. Here, lower prices and higher stars are preferred.
For example, the candidate s1 is dominated by the competitors h1, h3, h5. The
locations of all hotels are shown in Figure 3, where competitors are drawn as dots,
candidates are shown as triangles, and the neighborhood distance δ is indicated
by dashed circles. Within the distance δ, the hotel s1 is only dominated by h1. s2
is dominated by no hotels, even though it is surrounded by h2 and h3. Next, s3 is
dominated by the nearby h5 only; s5 is dominated by both h8 and h10. Therefore,
the MEO query returns the hotel s5 as the result since it is dominated by the
largest number of competitors within the spatial distance δ.

In addition to the business planning application described above, MEO queries
also provide useful results for other fields. For online war games (e.g., War of
Warcraft), P is the set of enemy troop locations and S is the set of ally troop

locations. Each troop can be described by multiple quality attributes like solider
number, equipment level, etc. The MEO query can then be used to identify the
most endangered troop of S that need additional combat support. In wild animal
protection, S denotes the set of endangered species and P represents their ene-
mies. Quality attributes refer to abilities such as strength, agility, and stamina.
The MEO query helps to identify the animal most worthy of extra protection.

Deficiency of Existing Solutions.
It is noteworthy that neither a conventional spatial query nor a skyline query
alone will return the same result as a MEO query. A skyline query on the com-
petitor set followed by a spatial query with respect to all candidates does not
help either, because some candidates are dominated by non-skyline competitors.
Referring to our earlier example, the candidate s1 is dominated by the competi-
tor h1 which however is not a skyline object among the competitors (since h1 is
dominated by h10).

In Section 2.3, we will elaborate two straightforward solutions that correctly
process the MEO query: (i) an RDBMS solution, and (ii) a multi-step R-tree
based solution. Those solutions do not fully exploit the characteristics of the
MEO query so they incur high processing cost.

Our Contributions.
Motivated by these observations, we propose several algorithms for processing
MEO queries. These algorithms can be applied in different scenarios where dif-
ferent indexes are available on input datasets. Our first algorithm is a baseline
iterative approach which needs only an R-tree index on the dataset P . Our
next two algorithms require that the dataset S is indexed by an R-tree RS , and
the dataset P is indexed by an aggregate R-tree RP . In the aggregate R-tree
[12], each node entry stores a count of objects in its subtree. Then the query
is processed by a depth-first or best-first search on the tree RS , based on effi-
cient upper bound counting techniques using RP . Our last algorithm requires
the same indexes as the previous two, but it evaluates the query in a spatial join
manner.

The remainder of this paper is organized as follows. Section 2 formally de-
fines the MEO query and briefly reviews the related work. Section 3 develops our
algorithms for processing MEO queries. Section 4 presents extensive experimen-
tal results of our proposals on both synthetic and real data. Finally, Section 5
concludes the paper and discusses future research directions.

2 Preliminaries

2.1 Problem Statement

We assume that all quality attributes are numeric and each attribute domain is
totally ordered. Let c be the number of quality attributes. A quality vector is a
point ψ in the c-dimensional space Rc, where each dimension refers to a quality
attribute. ψ[i] denotes the i-th (quality) attribute value of ψ.

Without the loss of generality, we assume that smaller values are preferred
to larger ones in quality attributes throughout this paper. According to [1], a
quality vector ψ dominates another one ψ′ (denoted as ψ ≺ ψ′) when:

(∃ 1 ≤ i ≤ c, ψ[i] < ψ′[i]) ∧ (∀ 1 ≤ i ≤ c, ψ[i] ≤ ψ′[i]) (1)

A location is a pair (x, y) in the Euclidean space R2, where x and y are
coordinate values. A spatial object o = 〈loc, ψ〉 consists of both a location o.loc
and a quality vector o.ψ. The notation dist(o, o′) denotes the Euclidean distance
between the locations of the spatial objects o and o′. Given two spatial objects
o and o′, o is said to dominate o′ when o.ψ ≺ o′.ψ.

Definition 1. (Neighborhood Dominating Score) Given a spatial object
set P , a spatial object s, and a neighborhood distance δ, the neighborhood domi-
nating score of s on P with respect to δ is defined as:

ΦP,δ(s) = |{o ∈ P | dist(o, s) ≤ δ, o.ψ ≺ s.ψ}|

Whenever the context becomes clear, we drop the subscripts of Φ(s). We then
define the most endangered object query (MEO) as follows. Our objective is to
design an I/O-efficient solution for processing MEO queries on large datasets.

Definition 2. (Most Endangered Object Query) Given two spatial object
sets P and S, for competitors and candidates respectively, and a neighborhood
distance δ, the most endangered object query (MEO) returns from S an
object s such that ΦP,δ(s) is maximized, i.e., ∀ s′ ∈ S, ΦP,δ(s) ≥ ΦP,δ(s′)

2.2 Related Work

Spatial Join.
Given a distance bound δ, and two spatial datasets S and P , the δ-distance join
retrieves each pair 〈s, p〉 (where s ∈ S and p ∈ P) such that their Euclidean dis-
tance dist(s, p) is within δ. The R-tree join (RJ) [2] can be applied to evaluate the
δ-distance join if both S and P are indexed by R-trees RS and RP respectively.
RJ first examines the entries in the root nodes of RS and RP . If an entry eS (of
the tree RS) and an entry eP (of the tree RP) satisfies mindist(eS , eP) ≤ δ, then
the subtrees of eS and eP may contain some objects within δ. In that case, RJ
is recursively applied on the subtrees of eS and eP . Eventually, RJ reaches the
leaf level and reports the pairs of objects that are within δ. Efficient δ-distance
join algorithms on high-dimensional data have been studied in [8]. Zhu et al. [19]
proposed the top-k spatial join for computing k objects of S that intersect with
the largest number of objects in P .

The above studies consider only the spatial relationship between the objects
in S and P , but not their dominance relationship on quality attributes of objects
in our MEO query.

Location Selection Queries.
In the literature, various constraints have been combined with conventional spa-
tial queries in order to select semantically optimal locations or objects. Du et

al. [5] proposed the optimal-location query. Given a site set S, a weighted object
set O, and a spatial region Q, the optimal-location query returns a location in Q
with the maximum influence. The influence of a location l is defined as the total
weights of objects in O, each of which has l as its nearest neighbor in the set
S ∪ {l}. Using the same influence definition, Xia et al. [15] formulated a differ-
ent top-k most influential spatial sites query, which returns k sites (from S and
within Q) having the highest influences. In the same context, Zhang et al. [17]
proposed the min-dist optimal-location query. Rather than maximizing influ-
ence, this query selects from Q a location l which minimizes the average distance
from every object in O to its nearest site in S ∪ {l}. All these optimal-location
queries differ from our MEO query in the sense that they do not consider multi-
dimensional dominance relationship among the non-spatial quality attributes of
the objects. This renders their solutions inapplicable to our problem.

Yiu et al. [16] formalized the top-k spatial preference query, which returns the
k spatial objects with the highest ranking scores, based on the feature qualities
in their spatial proximity. Such score functions, however, do not support multi-
dimensional dominance relationship as in our MEO query.

Li et al. [9] proposed Dominant Relationship Analysis (DRA), for discover-
ing the dominant relationship between products and potential consumers. To
efficiently answer different analysis queries of DRA, the authors proposed a dat-
acube structure, named DADA, which stores the dominant relationships in the
way supporting ordered access and compressing. Li et al. [10] combined domi-
nance relationship with spatial distance and defined complex location selection
problems. However, its solution cannot be applied to solve our problem. Only
one dataset is considered in [10], from which desirable objects are selected. In
contrast, our problem involves two datasets with different practical semantics,
and aims at selecting an object (from the candidate dataset S) with the highest
score defined with respect to the competitor dataset P .

Skyline Queries in Spatial and Spatiotemporal Settings.
Skyline queries has been adopted in spatial and spatiotemporal database to
define specific problems. Huang and Jensen [6] proposed an in-route skyline
query for location-based services. When moving along a pre-defined road route
towards her/his destination, a user may visit points of interest in the network.
Points to visit are selected in terms of multiple distance-related preferences like
detour and total traveling distance. The authors optimize such selections using
skyline queries involving specific interesting dimensions.

Sharifzadeh and Shahabi [14] studied the spatial skyline query, which is in
fact a specialized version of the dynamic skyline query [13]. Given a set of query
points Q = {q1, . . . , qn} and two points p and p′, p is said to spatially dominate p′

iff dist(p, qi) ≤ dist(p′, qi) for any qi ∈ Q and dist(p, qi) < dist(p′, qi) for at least
one qi ∈ Q. The spatial skyline of a set of points P is the subset of all points not
spatially dominated by any other point of P . Observe that such queries consider
only spatial attributes but not any non-spatial quality attributes.

Huang et al. [7] defined continuous skyline query in a spatiotemporal context.
A spatial object p dominates another object p′ with respect to a query location

q, if p is closer to q than p′ and p dominates p′ on all non-spatial attributes. A
continuous skyline query then maintains all spatial objects not dominated by any
others, while the query q is continuously moving along a specified trajectory in
the Euclidean space. Using a similar setting, Zheng et al. [18] addressed how to
compute the valid scope for such a query result without knowing the movement
pattern of the object.

Our MEO query is also different from the constrained skyline query [13],
in which the objects being considered is restricted by a given constraint region
in the domain space of (multiple) quality attributes. In contrast, the spatial
distance constraint δ employed in the MEO query is only used in the spatial
domain but not on quality attributes.

The main difference of the MEO query from the above studies is that the
MEO query is not a skyline problem. Recall from the motivation example in the
Introduction that a non-skyline object (e.g., hotel h1) in the competitor set can
still dominate a candidate object (e.g., hotel s1) within its spatial neighborhood.

2.3 Straightforward Solutions

In this section, we describe two straightforward solutions for evaluating the MEO
query, and then discuss their drawbacks.

RDBMS Solution (SQL).
In fact, the MEO query can be expressed by the following SQL statement (see
Figure 4), and thus it can be executed in any existing commercial RDBMS. Here,
we assume that the input datasets are stored in two relational tables S and P,
which share the same schema. The attribute id is the identifier of a tuple. The
attributes x and y represent spatial coordinates; whereas the attributes psi_1,
psi_2, etc, are the quality attributes. The query parameter δ is translated to
the value delta in the SQL query.

In the following query, we first join the tuples of the tables S and P. Definition
1 is expressed by the join condition in the WHERE clause: the first line refers
to the neighborhood distance constraint, and the last two lines represent the
dominance comparison. After that, the intermediate join result set is partitioned
into groups based on its id in S. Then, the count of each group is computed and
the id of the largest group (together with its count) is returned as the result.

SELECT S.id, COUNT(*)

FROM S, P

WHERE (S.x-P.x)*(S.x-P.x)+(S.y-P.y)*(S.y-P.y)<=delta*delta

AND (P.psi_1<=S.psi_1 AND P.psi_2<=S.psi_2 AND ...)

AND (P.psi_1< S.psi_1 OR P.psi_2< S.psi_2 OR ...)

GROUP BY S.id

ORDER BY COUNT(*) DESC LIMIT 1

Fig. 4. Expression of MEO Query in SQL

The main disadvantage of this method is that it incurs very high execution
time in existing RDBMS. Even though typical indexes (e.g., B+-trees and hash

indexes) may be used by the RDBMS engine, it cannot fully exploit the complex
join condition (shown in the WHERE clause) for optimizing the search cost.

Multi-step R-tree based Solution (3Step).
Another straightforward method for the MEO query is as follows, assuming that
the datasets S and P are indexed by two R-trees RS and RP respectively.

In the first step, this method performs the δ-distance join by applying the
RJ algorithm [2] on those two trees, in order to obtain the pairs 〈s, p〉 that are
within the δ distance. In the second step, any pair 〈s, p〉 is pruned if it does not
satisfy p.ψ ≺ s.ψ. In the third step, the remaining pairs are assigned into groups
according to s.id, and the object s having the largest group count is reported as
the result.

The drawback of this method is that the first step incurs a high cost at a
large δ value, regardless of the pruning effectiveness of the second step.

3 Algorithms for Most Endangered Object Queries

We in this section detail our algorithms for processing most endangered object
queries. We first present the baseline approach that carries out an iterative search
on all candidate objects without any index on them. Then improved algorithms
are presented with specific index requirements. Table 1 lists the notations to be
used throughout the paper.

Notation Meaning

P the set of objects for competitors

S the set of objects for candidates

ψ ≺ ψ′ a quality vector ψ dominates another one ψ′

dist(o, o′) Euclidean distance between two objects o and o′

mindist(e, e′) minimum distance between two R-tree entries e and e′

Φ(s) neighborhood dominating score of an object s

�(s, δ) a circular region with center s and radius δ

Ξ(e, δ) δ-Minkowski region of an R-tree entry e
Table 1. Table of Notations

3.1 A Baseline Approach: Iterative Search Algorithm

In this section, we assume that the dataset P is indexed by an R-tree RP and
the dataset S is not indexed. We first present a basic algorithm for computing
the score Φ(s) of an object s ∈ S, and then apply it iteratively on each object
in order to obtain the final result.

ObjectScore (see Algorithm 1) is a recursive algorithm for computing the
Φ(s) value of the object s with respect to the objects in the subtree of the entry
eP (of the R-tree RP). The input parameter δ represents the distance threshold.
At line 1, the counter v is used to maintain the value of Φ(s). In case eP is a
leaf entry (line 2), we check whether its distance to s is within δ and its quality
vector dominates that of s. If so, then the counter v is incremented. When eP is
a non-leaf entry (line 5), we read its the child node, and recursively process each

of its entry e′P if the minimum distance mindist(e′P , s) from e′P to s is within δ.

Algorithm 1 ObjectScore(Object s, Entry eP of the R-tree RP , Distance δ)
1: v := 0
2: if eP is a leaf entry then
3: if dist(eP , s) ≤ δ and eP .ψ ≺ s.ψ then
4: v := 1
5: else . eP is a non-leaf entry
6: read the child node CN pointed to by eP ;
7: for each entry e′P in CN do
8: if mindist(e′P , s) ≤ δ then
9: v := v+ObjectScore(s, e′P , δ)

10: return v

We then propose the iterative search (IS) for processing the MEO query.
Its pseudo code is shown in Algorithm 2. It takes as input (i) an R-tree on
competitor set P , (ii) the candidate object set S, and (iii) the distance δ. The
object meo is used to keep track the result object found so far, and the value
γ corresponds to the score of meo. At line 1, we initialize meo to null and γ
to 0 respectively. For each location s of the set S, the algorithm applies the
ObjectScore function on the root of R-tree RP (lines 2–3) to obtain the score
Φ(s) of s. If Φ(s) is higher than γ, then the result and its score will be updated
(lines 4–6). Finally, the algorithm returns the object meo as the result.

The IS algorithm is able to exploit the main-memory buffer better if it pro-
cesses all the locations of S via a locality-preserving order. Thus, we develop the
algorithm IS-Hil, which first applies external sorting on the locations in S based
on the Hilbert ordering [4, 11], and then processes them by IS.

Algorithm 2 IS(R-tree RP on P , Object set S, Distance δ)
1: meo :=null; γ := 0
2: for each object s ∈ S do
3: Φ(s) :=ObjectScore(s,RP .root, δ)
4: if Φ(s) > γ then
5: γ := Φ(s)
6: meo := s
7: return meo

3.2 Aggregate R-tree Search Algorithms

Observe that IS algorithm processes every object once in the set S. We now
propose to index the set S by an R-tree RS and develop an efficient method to
prune unqualified subtrees of RS that cannot contribute to the result.

In order to support efficient counting operations, we index the dataset P by
an aggregate COUNT R-tree RP [12]. Specifically, each non-leaf entry eP of the
tree RP stores an additional count value, denoted as eP .count, which is equal
to the number of objects in the subtree of eP .

Derivation of Upper Bound Score.
Suppose that eS is a non-leaf entry of the tree RS . Figure 5 shows the spatial

extent of eS as a rectangular region. We wish to derive an upper bound score
Φ+(eS) of eS such that Φ(s) ≤ Φ+(eS) for any object s in the subtree of eS .

eS
δ δ

δ
δδ

δ

δδ

Fig. 5. Ξ(eS , δ)

y

x

s δ
count: 20

eS
eP1
(5)

eP2
(8)

eP3
(6)

δ

Fig. 6. Pruning Rule 1

y

x

s δ
count: 20

eS
eP1
(5)

eP2
(8)

eP3
(6)

δ

Fig. 7. Pruning using Φ∗(eS)

First, we introduce the concept of δ-Minkowski region [3] of eS , denoted by
Ξ(eS , δ), which is the set of possible locations whose minimum distance from eS

is within the distance δ.

Ξ(eS , δ) = {t ∈ R2 | mindist(t, eS) ≤ δ} (2)

The region Ξ(eS , δ) is illustrated in Figure 5 as the region extended from the
rectangle eS by the distance δ. Given the dataset P and the distance δ, we define
the upper bound neighborhood dominating score Φ+

P,δ(eS) of eS as the number of
objects in P that fall into the region Ξ(eS , δ).

Φ+
P,δ(eS) = |{o ∈ P | o ⊆ Ξ(eS , δ)}| (3)

The nice property of the upper bound score Φ+
P,δ(eS) (of a non-leaf entry eS)

is that it is guaranteed to be greater than or equal to the score ΦP,δ(s) of any
object s in the subtree of eS . This is shown in the following lemma.

Lemma 1. Let δ be a distance threshold and P be a dataset of objects. Given a
rectangle eS, it holds that ΦP,δ(s) ≤ Φ+

P,δ(eS) for any object s that falls into eS.

Proof. Let s be an object that falls into eS . According to Definition 1, each object
o ∈ P that contributes to ΦP,δ(s) must satisfy the inequality dist(o, s) ≤ δ (and
also the condition o.ψ ≺ s.ψ). Each such object o also satisfiesmindist(o, eS) ≤ δ
because s falls into eS . That means such object o falls into the region Ξ(eS , δ)
and thus contributes to Φ+

P,δ(eS). Therefore, we have ΦP,δ(s) ≤ Φ+
P,δ(eS). �

We proceed to present the EntryScore algorithm, whose pseudo code is
shown in Algorithm 3. It takes as input (i) an entry eS of the R-tree RS on
S, (ii) an entry eP in the aggregate R-tree RP on P , and (iii) the distance
threshold δ. This algorithm serves for two purposes, depending on whether eS is
a leaf entry or not. If eS is a leaf entry, then the algorithm calls the ObjectScore
function to compute the exact score Φ(eS) of eS (lines 2–3).

Otherwise, eS is a non-leaf entry, lines 4–11 are used to compute the upper
bound score Φ+(eS) of eS . We then check whether the region Ξ(eS , δ) contains
eP . If so, then each object in the subtree of eP is guaranteed to fall in Ξ(eS , δ).
Thus, we increment the counter v by the count eP .count, without visiting the
subtree of eP . If not, then we need to read the child node of eP . An entry e′P in
the child node is recursively processed if it intersects Ξ(eS , δ), i.e., having the
potential of contributing to Φ+(eS).

Algorithm 3 EntryScore(Entry eS of the R-tree RS on S, Entry eP in the
aggregate R-tree RP on P , Distance δ)
1: v := 0
2: if eS is a leaf entry then
3: v :=ObjectScore(eS , eP , δ)
4: else . eS is a non-leaf entry
5: if Ξ(eS , δ) contains eP then
6: v := eP .count
7: else
8: read the child node CN pointed to by eP

9: for each child e′P in CN do
10: if Ξ(eS , δ) intersects e′P then
11: v := v+EntryScore(eS , e

′
P , δ)

12: return v

Figure 6 illustrates an example of computing the upper bound score Φ+(eS)
of a non-leaf entry eS (of the tree RS), by using the EntryScore algorithm.
Here, the aggregate R-tree RP (of the dataset P) only has the non-leaf entries
eP1, eP2, eP3, whose associated count values are 5, 8, 6 respectively. Since eP1

is contained by Ξ(eS , δ), its count (5) is added to the upper bound score of eS ,
without visiting the subtree. As the entries eP2 and eP3 intersect Ξ(eS , δ), their
child nodes need to be accessed. Then, the child nodes of eP2 and eP3 are found
to have 4 and 3 objects, respectively, that fall into the region Ξ(eS , δ). Therefore,
the values 4 and 3 are added to the upper bound score of eS . In summary, we
obtain: Φ+(eS) = 5 + 4 + 3 = 12.

Search Algorithm.
Recall that we have studied the notion of Φ+(eS) (for a non-leaf entry eS), and
the EntryScore algorithm for computing it. We continue to present a pruning
rule for reducing the search space, and then develop two algorithms for solving
MEO based on the pruning rule.

According to Lemma 1, we devise the following pruning rule to identify an
unpromising entry eS (of the R-tree RS on S) whose subtree cannot contain the
MEO object.

Pruning Rule 1 Let s ∈ S be an object from S, and eS be a non-leaf entry
from R-tree RS on S. If Φ(s) > Φ+(eS), then the entry eS can be safely pruned.

We continue with the example of Figure 6 to illustrate this pruning rule.
Suppose that we have already examined object s and computed its exact value

Φ(s) = 20 (by the EntryScore algorithm). Next, we want to check whether it
is necessary to visit the subtree of the non-leaf entry eS . Its upper bound score
Φ+(eS) = 5 + 4 + 3 = 12 can be computed by the EntryScore algorithm, as
discussed before. Since Φ+(eS) < Φ(s), the entry eS cannot contribute to the
result and therefore it can be safely pruned.

It is desirable to find early an object s with high Φ(s) value such that un-
qualified subtrees of RS can be effectively pruned. The search on RS can be
conducted in two tree search paradigms, namely best-first search or depth-first
search.

The pseudo code of the best-first search (BFS) is shown in Algorithm 4. It
employs a max-heap H so as to visit the tree entries of RS in descending order of
their upper bound scores. Initially, the algorithm inserts into H the root entry
of RS together with its upper bound score |P |. Each time a non-leaf entry is
deheaped, all its child entries are enheaped with their own priorities obtained
by calling the EntryScore algorithm (lines 5–8). If the entry being deheaped is
a leaf entry, it will be returned as the most endangered object (line 9–10). The
correctness of the BFS algorithm is guaranteed by (i) the property of the max-
heap, and (ii) the upper bound computed by EntryScore(RP .root, eS , δ) (stated
in Lemma 1).

Algorithm 4 BFS(Aggregate R-tree RP on P , R-tree RS of S, Distance δ)
1: initialize a max-heap H
2: enheap(H, 〈RS .root, |P |〉)
3: while H is not empty do
4: eS :=deheap(H)
5: if eS is a non-leaf entry then
6: read the child node CN pointed to by eS ;
7: for each child e′S of eS do
8: enheap(H, 〈e′S , EntryScore(e′S , RP .root, δ)〉)
9: else

10: return eS

Similarly, it is also possible to traverse the R-tree RS in the depth-first man-
ner. The resulting algorithm is called the depth-first search (DFS). Due to the
space limit, we omit its pseudo code here.

3.3 Spatial Join Based Algorithm

As in Section 3.2, here we assume that the set of candidates objects S is indexed
by an R-tree RS and the set of competitor objects P is indexed by an aggregate
R-tree RP . Recall that both the BFS and DFS algorithms need to compute the
upper bound score of a non-leaf entry eS (of the tree RS) explicitly by accessing
the tree RP , incurring considerable cost. This section presents a more efficient
solution by deriving an upper bound score of eS with low cost and tightening
the score bound gradually whenever necessary.

Formulation of a Join List.
Before proposing the solution, we first introduce several relevant concepts. Let

eS be an entry of the R-tree RS . At query time, we associate each encountered
entry eS with its join list eS .JL, for storing the entries of the R-tree RP that
may combine with the subtree of eS to generate potential results.

Specifically, a join list eS .JL is required to satisfy both of these conditions:

– (i) each entry eP in eS .JL satisfies eP ∩Ξ(eS , δ) 6= ∅,
– (ii) for each p ∈ P satisfying p ∩ Ξ(eS , δ) 6= ∅, there is exactly one ancestor

entry eP (of p) in eS .JL.

The first condition ensures that the entries stored in eS .JL are relevant to eS

because they intersect the Minkowski region Ξ(eS , δ) of eS . The second condition
ensures that there is no missing entry or redundant entry in eS .JL.

The next question is how to check whether a particular join list satisfies both
conditions (i) and (ii) stated above. First of all, we start with the root join list
eS .JL = {RP .root}, which trivially satisfies the condition (ii). The condition
(i) can be easily checked on eS .JL. In each subsequent step, we can apply the
following expansion operation on eS .JL; this operation guarantees that its output
join list must satisfy both conditions (i) and (ii). Each time, we pick an non-leaf
entry eP from eS .JL, read the child node CN pointed to by eP , and then insert
each entry e′P ∈ CN satisfying e′P ∩Ξ(eS , δ) 6= ∅ into the list eS .JL.

Having described the concept of a join list eS .JL, we then define the upper
bound score of eS with respect to eS .JL as:

Φ∗
P,δ(eS) =

∑
e′∈eS .JL

e′.count (4)

The above upper bound score Φ∗
P,δ(eS) is guaranteed to be greater than or

equal to the score ΦP,δ(s) of any object s in the subtree of eS . This is formally
stated in the following lemma.

Lemma 2. Φ∗
P,δ(eS) ≥ ΦP,δ(s) for any object s that falls into eS.

Proof. Let s be an object that falls into eS . According to Lemma 1, we obtain
Φ+

P,δ(es) ≥ ΦP,δ(s). From the property (ii) of the join list, we derive Φ∗
P,δ(eS) ≥

Φ+
P,δ(eS). By combining both inequalities above, we have Φ∗

P,δ(eS) ≥ ΦP,δ(s). �

We illustrate an example on exploiting the upper bound score of join list for
pruning unnecessary subtrees of the tree RS . Figure 7 shows a non-leaf entry eS .
Suppose that we have encountered an object with ΦP,δ(s) = 20. Next, we check
whether it is necessary to access the child node of eS . Suppose that eS .JL =
{ep1, ep2, ep3}, and Φ∗

P,δ(eS) = 5 + 8 + 6 = 19 < 20, i.e., lower than the score
of object s. Therefore, the entry eS (together with its join list) can be safely
pruned as no object in eS can have higher score than s.

Search Algorithm.
Algorithm 5 is the pseudo code of the spatial join based algorithm. It employs a
max-heapH to keep all RS entries to be processed. Each RS entry eS is enheaped
together with its join list eS .JL and a count value obtained from Equation 4.

If the RS entry eS being deheaped is a leaf node and its join list is null, it
is returned as the most endangered object according to the max-heap property
(lines 5–8). If the leaf entry eS ’s join list is not null, its exact neighbor dominator
count is calculated by calling the ObjectScore algorithm for each entry in its join
list (lines 10–12). After that, eS is enheaped again with a null join list and the
calculated count value (line 13).

Algorithm 5 SJB(Aggregate R-tree RP of P , R-tree RS of S, Distance δ)
1: initialize a max-heap H
2: eroot := RS .root; eroot.JL := {RP .root}
3: enheap(H, 〈eroot, eroot.JL, 0〉)
4: while H is not empty do
5: 〈eS , eS .JL〉 := deheap(H)
6: if eS is a leaf entry then
7: if eS .JL is null then
8: return eS

9: else
10: v := 0
11: for each ej in eS .JL do
12: v := v+ObjectScore(eS , ej , δ)

13: enheap(H, 〈eS , null, v〉)
14: else
15: read the child node CNS pointed to by eS

16: for each entry ei in CNS do
17: v := 0; ei.JL := ∅
18: for each ej in eS .JL do
19: if Ξ(ei, δ) contains ej then
20: add ej to ei.JL; v := v + ej .count
21: else
22: read the child node CNP pointed to by ej

23: for each child e′ in CNP do
24: if Ξ(ei, δ) intersects e′ then
25: add e′ to ei.JL; v := v + e′.count

26: enheap(H, 〈ei, ei.JL, v〉)

Otherwise, the join is executed by expanding the non-leaf RS entry eS being
deheaped, and enheaping each subentry in eS with its corresponding join list
and count value (15–26). In particular, when eS is expanded its each subentry
ei gets part of entries in eS .JL as ei.JL. In this way, as the join proceeds on the
RS entries are enheaped with join lists of smaller coverage, thus giving tighter
upper bounds of neighbor dominator counts which favors pruning.

4 Experimental Study

In this section, we experimentally evaluate our proposed algorithms for process-
ing MEO queries. All algorithms were implemented in Java and were run on a
Windows XP PC with a 2.8GHz Intel Pentium D CPU and 1GB RAM. We used
synthetic and real datasets for both the competitor set P and the candidate
set S. In each dataset, all spatial coordinates are normalized to Euclidean space

[0,10000]2, whereas each quality attribute is normalized to the unit interval [0,1].
In all experiments, the disk page size is set to 4KBytes and a LRU memory buffer
with 512KBytes is used. We issue 20 queries for each test case in each experi-
ment, and the spatial distance constraint δ in each query is a random value in
(0,1000]. We measure the average node access cost per each query because it
dominates the total query processing cost.

4.1 Experimental Results on Real Data

In this section, we used two real datasets from AllStays.com1 that maintains
collections of hotels, resorts, campgrounds, etc. around the world. We chose
the dataset of hotels in US and cleaned it up as follows. We removed all those
records without longitude and latitude, and discarded quality attributes with
very few non-null values. For each remaining quality attribute, any null value
was replaced by a random value from its attribute domain. As a result, we
obtained 30,918 hotel records with the schema (longitude, latitude, review, stars,
price). Value conversion was done on a quality attribute if necessary, e.g., a
higher stars value was converted to a lower value in the normalized range [0, 1].
This way, lower values are preferable to higher ones. After normalizing the hotel
records as mentioned above, one third (10,306 records) are randomly picked as
the S dataset and the others (20,612 records) form the P dataset.

We then used different quality attribute combinations and got four variants
of P dataset: review and stars (denoted as rs), review and price (denoted as
rp), stars and price (denoted as sp), and all three attributes (denoted as rsp).
The corresponding S dataset variants were obtained in the same way. We then
performed three groups of experiments on the real datasets obtained.

100

101

102

103

104

105

106

107

rs rp sp rsp

N
od

e
ac

ce
ss

Dataset variant

IS
IS-Hil

3Step
BFS

DFS
SJB

100

101

102

103

104

105

106

107

500 1000 1500 2000 2500 3000

N
od

e
ac

ce
ss

δ

IS
IS-Hil
BFS
DFS
SJB

0

50

100

150

200

250

500 1000 1500 2000 2500 3000

R
es

po
ns

e
tim

e
(s

)

δ

SQL
BFS
DFS
SJB

(a) Node access, all datasets (b) Node access vs. δ, on rsp (c) Response time, on rsp

Fig. 8. Results on real datasets

The first group of experiments investigated into the effect of different real
dataset variants. We also implemented the multi-step R-tree based solution men-
tioned in Section 2.3 (named 3Step for short). The average node access cost
results are reported in Figure 8(a). The 3Step solution is inefficient because it
cannot exploit the characteristics of the MEO query for effective pruning. The
SJB algorithm has the lowest cost.

The second group of experiments studied the effect of distance constraint δ.
We used the rsp datasets and varied δ from 500 to 3000. The results are reported
1 Hotel and Travel Guide. http://www.allstays.com/

in Figure 8(b). Since SJB applies an effective pruning technique, it outperforms
the other algorithms.

In the last group of experiments, we executed the RDBMS solution mentioned
in Section 2.3 (named SQL for short) on the rsp dataset. We executed SQL in
the Oracle RDBMS; we could only obtain the response time of SQL but not its
I/O cost. Therefore, we compared the response time of SQL with our proposed
BFS, DFS and SJB algorithms (see the results in Figure 8(c)). Obviously, our
algorithms incur considerably shorter response time than SQL.

In subsequent experiments, we discard the solutions 3Step and SQL due to
their high query cost.

4.2 Scalability and Robustness Experiments on Synthetic Data

Having studied the performance of our algorithms on real data, we now test their
scalability and robustness by using synthetic data. Table 2 lists the parameters
for the generation of synthetic datasets; the default parameter values are shown
in bold. The cardinality of the set P varies from 100K to 1000K. For each P
set, the cardinality of the corresponding S set changes from 10% to 50% of
the cardinality of P . For both P sets and S sets, all locations are generated
randomly in the normalized Euclidean space [0,10000]2. The quality attribute
dimensionality of those datasets varies from 2 to 5. For both P and S sets, we
generated quality values following the independent (IN) distribution and the
anti-correlated (AC) distribution, according to Borzonyi et al. [1].

Parameter Setting

Competitor dataset cardinality, |P | 100K, 200K, . . ., 1000K

Candidate dataset cardinality, |S| 10%·|P |, 20%·|P |, . . ., 60%·|P |
Quality attribute dimensionality, c 2, 3, 4, 5

Quality attribute distribution Independent (IN), Anti-correlated (AC)
Table 2. Parameters of synthetic datasets

Effect of Competitor Dataset Cardinality |P |.
We first varied |P | from 100K to 1000K to see its effect on the performance of
all algorithms. The results are reported in Figure 9(a) and Figure 10(a), on IN
and AC distribution respectively. As |P | increases, both IS and IS-Hil algorithms
incur more node accesses. The reason is that the recursive ObjectScore algorithm
needs to access more nodes from the R-tree on a larger P . While BFS and DFS
algorithms degrade first and then improve as |P | increases. As |S| was fixed to
10% of that of |P |, a larger P leads to a larger S and a larger R-tree on S.
Therefore BFS and DFS degrade as they have to search a larger R-tree. The
subsequent improvement is resulted from a better organized R-tree on S, which
is achieved only when S contains enough objects. The performance of the SJB
algorithm fluctuates more visibly, as the join operation complicates the use of
both the R-tree on S and the aggregate R-tree on P . Among all algorithms, SJB
performs the best as the join is very efficient due to the powerful pruning rule
it employs.

Effect of Candidate Dataset Cardinality |S|.
We then varied |S| from 10% to 50% of that of |P |. The results on the effect

100

102

104

106

108

200K 400K 600K 800K 1000K

N
od

e
ac

ce
ss

P cardinality

IS
IS-Hil
BFS
DFS
SJB

100

102

104

106

108

10 20 30 40 50

N
od

e
ac

ce
ss

S cardinality, percent of |P| (%)

IS
IS-Hil
BFS
DFS
SJB

100

101

102

103

104

105

106

107

2 3 4 5

N
od

e
ac

ce
ss

Attribute dimensionality

IS
IS-Hil
BFS
DFS
SJB

(a) Effect of |P | (b) Effect of |S| (c) Effect of c

Fig. 9. Node access on synthetic datasets, with IN quality attributes

100

102

104

106

108

200K 400K 600K 800K 1000K

N
od

e
ac

ce
ss

P cardinality

IS
IS-Hil
BFS
DFS
SJB

100

102

104

106

108

10 20 30 40 50

N
od

e
ac

ce
ss

S cardinality, percent of |P| (%)

IS
IS-Hil
BFS
DFS
SJB

100

101

102

103

104

105

106

107

2 3 4 5

N
od

e
ac

ce
ss

Attribute dimensionality

IS
IS-Hil
BFS
DFS
SJB

(a) Effect of |P | (b) Effect of |S| (c) Effect of c

Fig. 10. Node access on synthetic datasets, with AC quality attributes

100

101

102

103

104

105

106

107

108

500 1000 1500 2000 2500 3000

N
od

e
ac

ce
ss

δ

IS
IS-Hil
BFS
DFS
SJB

100

101

102

103

104

105

106

107

108

500 1000 1500 2000 2500 3000

N
od

e
ac

ce
ss

δ

IS
IS-Hil
BFS
DFS
SJB

(a) IN quality attributes (b) AC quality attributes

Fig. 11. Node access vs. δ

of varying |S| are reported in Figure 9(b) and Figure 10(b). Observe that the
SJB algorithm still outperforms all others; BFS and DFS are the second best
among all. As |S| increases, both BFS and DFS improve slightly. This again is
attributed to a better organized R-tree on S.

Both IS and IS-Hil algorithms degrades slightly as |S| increases, because they
invoke the recursive ObjectScore algorithm for every object in S. Whereas the
latter performs slightly better steadily as |S| varies. Accessing objects of S in
the Hilbert curve order enables IS-Hil to considerably reuse RP tree nodes in
the buffer, which offsets the effect of increasing |S|.

Effect of Quality Attribute Dimensionality c.
To observe the effect of quality attribute dimensionality, we varied the qual-
ity dimensionality c from 2 to 5. The results on IN and AC data are shown
in Figure 9(c) and Figure 10(c) respectively. All algorithms are insensitive to
the variation of attribute dimensionality. This is attributed to the fact that all

indexes used in those algorithms are spatial access methods. They only index
spatial coordinates of all objects, and therefore are not affected much by the
number of quality attributes in each object dataset. Here SJB remains to be the
best solution.

Effect of Distance Constraint δ.
We also investigated into the effect of the distance constraint δ used in most
endangered object queries. In this batch of experiments, we used the default
settings and changed δ from 500 to 3000. Figure 11 reports the relevant results.
On both attribute distributions, larger distance ranges result in marked perfor-
mance degradation for IS and IS-Hil algorithms. This is because the ObjectScore
algorithm (Algorithm 1) is called more often by these two algorithms when the
distance range is larger. In contrast, almost no performance change is visible for
the BFS, DFS and SJB algorithms. This implies that the variation of distance
range does not affect the pruning power via the the R-trees exploited by those
algorithms. Note that SJB still performs the best, indicating the strong pruning
power of the upper bound score obtained from an entry’s join list.

5 Conclusion and Future Work

In this paper we formalize a novel query, the most endangered object query
(MEO), which takes into account both spatial distance constraint and multiple
quality attributes. Given a competitor object set P and a candidate object set
S, and a distance δ, the MEO query returns from S an object s such that it
maximizes the number of objects of P dominating s within the δ-neighborhood
(of s). It has important applications in business planning, online war games, wild
animal protection, etc.

We propose several algorithms for processing MEO queries efficiently. The IS
algorithm is an iterative search approach which requires that only P is indexed
by an R-tree. To improve the performance, we index S by an aggregate R-tree,
which enables effective pruning by using the aggregate count in each node entry.
Then, best-first search (BFS) and depth-first search (DFS) for evaluating the
query are studied. A spatial-join based algorithm (SJB) is also developed to
process query fast. An extensive experiment study for the above methods is
conducted on both synthetic and real datasets. Empirical results show that the
SJB algorithm outperforms other solutions and it scales well for large datasets.

Several interesting directions exist for future research. First, we want to cap-
ture the realistic scenario that dominators (from P) tend to have more impact on
a candidate object s ∈ S when they are close to s. For this, the score function
(in Definition 1) can be redefined by assigning higher weights to competitors
that are close to s. The challenge is then to extend our proposed algorithms
for such a weighted score function. Second, the set S of candidate locations can
appear in other forms than a location set. For example, certain practical appli-
cations need to find the most endangered location(s) on a pre-defined trajectory
of a wild animal or a military operation. Third, it is also of interest to define
a generic query type that combines spatial locations and quality attributes. A

fundamental solution can be developed for such a generic definition, which can
be instantiated to process concrete queries like MEO queries in this paper.

Acknowledgments We thank the anonymous reviewers and SSDBM 2009 PC
Chair for their constructive comments.

References

1. S. Borzonyi, D. Kossmann, and K. Stocker. The skyline operator. In Proc. ICDE,
pages 421–430, 2001.

2. T. Brinkhoff, H.-P. Kriegel, and B. Seeger. Efficient Processing of Spatial Joins
Using R-Trees. In Proc. SIGMOD, pages 237–246, 1993.

3. Christian Böhm. A cost model for query processing in high dimensional data
spaces. ACM Trans. Database Syst., 25(2):129–178, 2000.

4. A. R. Butz. Alternative Algorithm for Hilbert’s Space-Filling Curve. IEEE Trans.
Comput., C-20(4):424–426, 1971.

5. Y. Du, D. Zhang, and T. Xia. The optimal-location query. In Proc. SSTD, pages
163–180, 2005.

6. X. Huang and C. S. Jensen. In-route skyline querying for location-based services.
In Proc. W2GIS, pages 120–135, 2004.

7. Z. Huang, H. Lu, B. C. Ooi, and A. K. H. Tung. Continuous skyline queries for
moving objects. TKDE, 18(12):1645–1658, 2006.

8. N. Koudas and K. C. Sevcik. High Dimensional Similarity Joins: Algorithms and
Performance Evaluation. In Proc. ICDE, pages 466–475, 1998.

9. C. Li, B. C. Ooi, A. K. H. Tung, and S. Wang. DADA: A data cube for dominant
relationship analysis. In Proc. SIGMOD, pages 659–670, 2006.

10. C. Li, A. K. H. Tung, W. Jin, and M. Ester. On dominating your neighborhood
profitably. In Proc. VLDB, pages 818–829, 2007.

11. B. Moon, H. V. Jagadish, C. Faloutsos, and J. H. Saltz. Analysis of the Clustering
Properties of the Hilbert Space-Filling Curve. TKDE, 13(1):124–141, 2001.

12. D. Papadias, P. Kalnis, J. Zhang, and Y. Tao. Efficient OLAP Operations in
Spatial Data Warehouses. In Proc. SSTD, pages 443–459, 2001.

13. D. Papadias, Y. Tao, G. Fu, and B. Seeger. An optimal and progressive algorithm
for skyline queries. In Proc. SIGMOD, pages 467–478, 2003.

14. M. Sharifzadeh and C. Shahabi. The spatial skyline queries. In Proc. VLDB, pages
751–762, 2006.

15. T. Xia, D. Zhang, E. Kanoulas, and Y. Du. On computing top-t most influential
spatial sites. In Proc. VLDB, pages 946–957, 2005.

16. M. L. Yiu, X. Dai, N. Mamoulis, and M. Vaitis. Top-k spatial preference queries.
In Proc. ICDE, pages 1076–1085, 2007.

17. D. Zhang, Y. Du, T. Xia, and Y. Tao. Progressive computation of the min-dist
optimal-location query. In Proc. VLDB, pages 643–654, 2006.

18. B. Zheng, K. C. K. Lee, and W.-C. Lee. Location-dependent skyline query. In
Proc. MDM, pages 148–155, 2008.

19. M. Zhu, D. Papadias, J. Zhang, and D. L. Lee. Top-k spatial joins. IEEE Trans.
Knowl. Data Eng., 17(4):567–579, 2005.

