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Abstract. Trajectory queries, which retrieve nearby objects for every point of a
given route, can be used to identify alerts of potential threats along a vessel route,
or monitor the adjacent rescuers to a travel path. However, the locations of these
objects (e.g., threats, succours) may not be precisely obtained due to hardware
limitations of measuring devices, as well as the constantly-changing nature of
the external environment. Ignoring data uncertainty can render low query quality,
and cause undesirable consequences such as missing alerts of threats and poor
response time in rescue operations. Also, the query is quite time-consuming, s-
ince all the points on the trajectory are considered. In this paper, we study how
to efficiently evaluate trajectory queries over imprecise location data, by propos-
ing a new concept called the u-bisector. In general, the u-bisector is an extension
of bisector to handle imprecise data. Based on the u-bisector, we design several
novel filters to make our solution scalable to a long trajectory and a large database
size. An extensive experimental study on real datasets suggests that our proposal
produces better results than traditional solutions that do not consider data impre-
cision.

1 Introduction

Given a set P of points, the Trajectory Nearest Neighbor Query (TNNQ in short) [1],
retrieves the closest object in P for every query point on the given trajectory T . As
an example, consider the trajectory T = {[q1, q2], [q2, q3], [q3, q4]} and objects P =
{o1, o2, o3}, shown in Figure 1(a). The TNNQ’s answer is as Figure 1(b). It means for
all points on [s′0, s

′
1], the nearest neighbor is o1, etc. The TNNQ can find applications in

location-based service (LBS in short), such as “what is the nearest gas station along the
travel route”.

Unfortunately, the measured location of an object is often imprecise because of: (i)
limited resolution of the measure device, (ii) infrequent measurement, (iii) environmen-
tal factors. For example, the shipping industries regard safety as their top priority. They
hope to identify alerts of potential threats along the route of a vessel in advance, and
take appropriate actions if necessary. People in the US and Northern Europe detect the
? This work is done in the University of Hong Kong.



icebergs by remote sensors and satellite imaging [2], which have limited measurement
accuracy and frequency. Sensors have limited battery capacity whereas satellite imag-
ing incurs expensive deployment cost. This causes infrequent measurements, rendering
the measured location of an object stale. Furthermore, as time passes by, icebergs may
move according to the temperature and the ocean current / wind speed. In the LBS ex-
ample, what if the objects being queried are not static but moving constantly (e.g. rescue
vehicles positioned by GPS devices)? Again, locations obtained by GPS devices can be
contaminated with measurement error, which can be further deteriorated by terrain and
climate conditions [3]. Also, the positions could be tracked only periodically due to the
limited battery powers [4].
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Fig. 1. Example Trajectory Query

A common way to represent an imprecise location or a moving object is to model
the position by an area called imprecise region [4,5,6,7,8,9,10]. The possible location
of the object is assumed to be within this region. Figure 1(c) shows a query trajectory
T = {[q1, q2], [q2, q3], [q3, q4]} and some imprecise objects o1, o2, o3. The result (Fig-
ure 1(d)) can be represented in a compact way by partitioning the query trajectory into
segments such that all locations within the same segment share the same result set. For
example, o2 is definite nearest neighbor to the segment [s2, s3]. On the other hand, o1
and o2 are possible nearest neighbors (PNNs) to the segment [s1, s2] because both of
them have potential to be the closest object. We define this query as Trajectory Possi-
ble Nearest Neighbor Query (TPNNQ in short). Note that [1] is a special case of our
problem, where the objects being queried are precise points.

Determining the TPNNQ answer can be technically challenging, since the impre-
cise regions are considered. A simple solution is to replace the imprecise region of each
object with a center point (shown as a grey dot), as illustrated in the scenario in Fig-
ure 1(a) and (b). The result consists of three segments, each associated with the closest
object. For instance, the closest object to location q2 appears to be o1 only. The object
o2 is missing from the result. Recall from Figure 1(c) and (d) that o2 also has possi-
bility to become a closest object to location q2. This “center simplification” approach
causes undesirable consequences such as missing alerts of threats and poor response
time in our applications. In the vessel/rescuer example, the ignorance of the imprecise



region could cause potential danger. Thus, it is important to augment each threat with
an imprecise region, in order to foresee the worst-case scenario. In the rescuer example,
a rescue vehicle seemingly close to / far from the travel path may be actually far from /
close to it. Thus, it would take longer time to respond. It is better to call up all rescuers
likely to be the closest, in order to handle the emergency as soon as possible.

Another attempt to simplify the problem is to use a “sampling approach”, which
considers positions at every fixed length on the query trajectory, and compute the po-
tential nearby objects at each position. However, if the sampling rate is high, it incurs
a huge computation cost; on the other hand, a low sampling rate can result in many
answers missing. Notice that a query trajectory consists of infinite number of possible
locations, and it is not easy to determine the sampling rate. As shown in Figure 1(c), the
result set changes only at a few positions (s1, s2, s3, s4). It is not clear how to determine
the correct sampling rate to in order to get these answers. In fact, our experimental re-
sults show that replacing imprecise regions with points or sampling the trajectory cannot
provide an accurate solution. Hence, we develop a solution that can accurately compute
a trajectory query on imprecise objects.

The techniques of [1] cannot be readily applied to evaluate TPNNQ. [1]’s idea is to
use the (perpendicular) bisectors of every pair of points to derive the query answer. For
example, in Figure 1(a), the point s′1 is the intersection between the query trajectory
and the bisector of objects o1 and o2, which are shown as dashed lines. Similarly, s′2 is
derived by o2 and o3’s bisector. However, the bisector, which forms the basis of [1], is
limited to precise points.

We extend the concept of “bisectors” to support imprecise objects, called u-
bisector. Figure 2 illustrates the corresponding u-bisectors for circular and rectangular
imprecise regions. From this figure, we can see that the u-bisector is not a straight line
anymore. It becomes a pair of lines, which partition the domain space into three parts:
(1) the left area, containing points q where Oi is absolutely closer to q than Oj ; (2) the
right partition, consisting of points q′ where Oj is absolutely closer to q′ than Oi; and
(3) the middle part, having points q′′ where both Oi and Oj can be the nearest to q′′.
We demonstrate how to use conceptually the intersection points of the query trajectory
and the u-bisectors to answer a trajectory query.

Fig. 2. u-bisector for imprecise regions.



In practice, it is expensive to compute the intersections points between the query
trajectory and the u-bisectors. As shown in Figure 2, these u-bisectors can be hyper-
bolic curves (Figure 2(a)), or segments of straight lines/curves (Figure 2(b)). Even for
one u-bisectors, they can intersect the query trajectory at more than one point. We
first design a Basic solution, which answers the query in O(ln2logn) (n:database size;
l:trajectory length). To make our solution scalable to large datasets and long trajecto-
ries, we design a filter-refinement framework. In the filtering phase, candidate objects
that may be the closest to each answer line-segment are obtained. In the refinement
phase, we develop a novel technique called ternary decomposition, which can derive
the final answers accurately. We show theoretically and experimentally that our solu-
tion is efficient and scalable. It is also more accurate than the center simplification and
the sampling approaches. We assume the imprecise regions are of circular shapes for
simplicity. Actually, our method is also general to other shaped objects. It would not be
discussed due to page limitations.

The rest of this paper is as follows. In Section 2 we discuss the related work. Sec-
tion 3 defines the problem and a basic solution based on the u-bisectors. We present our
solution framework in Section 4. The filtering and refinement phases are described in
Sections 5 and 6. In Section 7 we present our experiment results. Section 8 concludes.

2 Related Work

Nearest neighbor (NN) query for moving query points is a well studied top-
ic [11] [12] [13] [1]. These works focus on reducing the computational cost at the
server. Among these works, there are two major categories.

The first category does not require the user’s entire trajectory in ad-
vance [11] [12] [13], but processes the query online (multiple times) based on the user’s
moving location. In [11], the authors propose sampling techniques to answer the mov-
ing NN query. They study how to calculate the upper-bound distance within which the
moving point does not issue a new query to the server. [12] [13] use validity region and
validity time for the query answer of moving points. They use Voronoi cells to represent
the validity region. The query answer becomes invalid if the validity time is expired or
the user leaves the validity region.

The second category assumes that the user’s trajectory is known in advance. It evalu-
ates the query once only [1] [4]. In our application, the trajectory, such as sailing routes,
is known in advance. Thus, we elaborate the second category in details. In [1], the route
of the query point is split into sub-line-segments, such that the NN answer within the
same sub-line-segment remains unchanged. A perpendicular bisector⊥(pi, pj) between
two points pi and pj is used to partition the trajectory query into two sub-trajectories,
one being definitely closer to pi and the other being definitely closer to pj . However,
this technique is not applicable to our problem on imprecise location data. As shown in
Figure 1, some segments like [s1, s2] can have multiple PNNs and it is challenging to
derive them.

The bisector for imprecise objects has been addressed by a few works recently
[5] [6] [7]. They use bisectors to determine the dominance relationship between ob-
jects. Our work is different because we consider a query trajectory, but not a query



object. For the trajectory, our solution is capable of answering the query for every point
it.

The paper [4] is closely related to our problem. It also uses an imprecise region
to model the location of an object and compute the object closest to a given query
segment. Unlike our work, [4] only computes the answer for segments with the definite
nearest neighbor, such as [s0, s1] in Figure 1. It did not study how to compute objects
that might be the closest, for some segment like [s1, s2] in Figure 1. Furthermore, their
method scans the entire database to answer the query, thus it is not very scalable to data
volumes.

3 Problem and Preliminaries

In this section, we describe the query semantics in Section 3.1. We introduce the u-
bisector in Section 3.2 and propose a basic method in Section 3.3.

3.1 Problem Setting

We first introduce the definition of PNNQ (studied in [14]), which is used to define
TPNNQ, the query studied in this paper. Let q be a point, and let Oi be an imprecise
object from an object set O. We use distmin(q,Oi) and distmax(q,Oj) to denote the
minimum and maximum distances of object Oi from q, respectively.

Definition 1. Possible Nearest Neighbor Query (PNNQ): Given a set of imprecise ob-
jectsO and a query point q,Oi ∈ PNNQ(q), if @Oj ∈ O, such that distmax(q,Oj) <
distmin(q,Oi).

In Figure 1(c), PNNQ(q2) = {O1, O2} implies that either O1 or O2 could be the
NN of the query point q2. A query trajectory T can be represented by a set of query
line-segments T = {L1, ..., Ll}, where Li is a query line-segment. For a query point q,
whose trajectory is T , the trajectory possible nearest neighbor query (TPNNQ) returns
PNNs for all the points in T . In other words, the query returns {〈q, PNNQ(q)〉}q∈T .
If the connected points on the trajectory have the same PNNs, we could merge them
into a segment.

Definition 2. Trajectory Possible Nearest Neighbor Query (TPNNQ): Given a set of
imprecise objects O and a query trajectory T , the answer for the TPNNQ query is a
set of tuples R = {〈Ti, Ri〉|Ti ⊆ T , Ri ⊆ O}, where PNNQ(q) = Ri(∀q ∈ Ti).

In other words, the TPNNQ splits T into a set of consecutive segments
{T1, T2, ..., Tt}. Ti is a sub-trajectory of T . For ∀q ∈ Ti, q has the same possible near-
est neighbors (PNNs), then we call each Ti a validity interval. The connection point
of two consecutive segments, say Ti and Ti+1, is called turning point, which indicates
the change of PNNQ answers. An example for a TPNNQ over three imprecise objects
{O1, O2, O3} is shown in Figure 1(c). The trajectory query T (s, e) is split into 5 pieces
of segments. Also, point s1 is the turning point for T (s0, s1) and T (s1, s2).

Observe that there are two major differences between the results on imprecise ob-
jects and precise objects. Comparing Figures 1 (c) and (a): (1) the imprecise case could



have more tuples (5 compared to 3); (2) a query point in imprecise case might return a
set of PNNs instead of a single answer.

Thus, the TPNNQ can be answered by finding the turning points. Then, how to
derive the turning points on a trajectory, given a set of imprecise objects? To address
that, we first investigate the u-bisector, for imprecise objects. In general, the u-bisector
splits the domain into several parts, such that query points on different parts could have
different PNNs. Then, the turning points can be evaluated by finding the intersections
of the u-bisectors and the query trajectory. Next, we discuss the u-bisector.

3.2 u-bisector

Definition 3. Given two imprecise objects Oi and Oj , their u-bisector consists of two
lines: bi(j) and bj(i). The u-bisector half bi(j) is a set of points satisfying

bi(j) = {z : distmax(z,Oi) = distmin(z,Oj)} (1)
The curve bi(j) splits the domain into two half-spaces: Hi(j) and Hi(j), where Hi(j)
is the half closer to Oi and Hi(j) is the complementary half.An example is shown in
Figure 3. Thus we have:

Hi(j) = {z : distmax(z,Oi) ≤ distmin(z,Oj)} (2)

Hi(j) = {z : distmax(z,Oi) > distmin(z,Oj)} (3)

Fig. 3. u-bisector Fig. 4. Verification

Generally speaking, the u-bisector half bi(j) is a curve in the domain space. If a
query point q ∈ Hi(j), q must take Oi as its nearest neighbor certainly. The u-bisector
halves bi(j) and bj(i) separate the domain into three parts: Hi(j), Hj(i), and V (i, j),
where

V (i, j) = Hi(j) ∩Hj(i) (4)

Notice that V (i, j) = V (j, i). If Oi and Oj are degenerated into precise points, V (i, j)
becomes 0. Also, bi(j) = bj(i), which becomes a straight line.

If a query line-segment is totally covered by V (i, j) or Hi(j), it does not intersect
with bi(j). Otherwise, the intersections split the line-segment into several parts. Differ-
ent parts might correspond to different PNNs, as they are located on different sides of
bi(j).



For circular imprecise objects, it is easy to derive the closed form equations of the
u-bisector and evaluate the analytical solution for the intersection points. The number
of intersections is at most 2, since the quadratic equation has at most 2 roots (see Ap-
pendix A.1). Next, we present the basic method based on the analysis of the u-bisector’s
intersections. We focus our discussion on two dimension location data.

3.3 Basic Method
From Definition 2, the TPNNQ could be answered by deriving the turning points, which
are intersections of the query trajectory and the u-bisectors. A u-bisector is constructed
by a pair of objects. Given a set O of n objects, there can be Cn

2 u-bisectors. The Basic
method is to check the intersections of the query trajectory with theCn

2 u-bisectors. The
intersections can be found by evaluating the equation’s roots in Appendix A.1. Here we
use FindIntersection(.) (in Step 5) to represent the process.

However, not all of the bisectors intersect with the trajectory. Even if they intersect,
not all of the intersections are qualified as turning points. Thus, we need a “verification”
process to exclude those unqualified intersectinos. For example, in Figure 4, the u-
bisector half bi(k) intersect with [s, e] at s′. For an arbitrary point q ∈ [s, e], either Oi

or Oj is closer to q than Ok, since [s, s′] ∈ Hi(k) and [s′, e] ∈ Hj(k). Then, Ok is not
PNN for p ∈ [s, e], and s′ is not a qualified turning point.

We use the si`j to represent an intersection created by bi(j) (si`j = bi(j)∩L), and
siaj = bj(i) ∩ L. In other words, si`j can be understood as PNNQ(q) answer that
turns from containing Oi to both Oi and Oj , if q moves from Hi(j) to Hi(j) So, Oi

should definitely be si`j’s PNN , while Oj is not. This can be implemented by issuing
a PNNQ. Thus, we can use this for verification.

Algorithm 1 Basic
1: function BASIC(Trajectory T)
2: for all line-segment L ∈ T do
3: for i = 1 . . . n do . consider object Oi

4: for j = i+ 1 . . . n do . consider object Oj

5: I = FindIntersection(L,Oi, Oj);
6: Verify I and delete unqualified elements;
7: Evaluate PNNs for each Interval and Merge two successive ones if they have same
PNNs;

In Algorithm 1, suppose Step 5 can be done in time β, which is a constant if we call
Appendix A.1. Step 6 can be finished in O(log n). Suppose T contains l line-segments,
Basic’s total query time is O(l n2(log n+ β)). In later sections, we study several filters
which can effectively prune those unqualified objects, which cannot be PNN for any
point on the trajectory, in order to reduce the complexity.

4 Solution Framework

In this section, we propose the framework of the TPNNQ algorithm, which follows
the filter-refinement framework. We assume an R-tree R is built on the imprecise objects



O and it can be stored in the main memory, as the storage capabilities increase fast in
recent years.

Framework In implementation, we organize the trajectory T = {L1, L2, ..., Ll} by
constructing a binary tree T(T ). Each binary tree node Ti = {L1, ..., Ll′} has two chil-
dren: Ti.left = {L1, ..., Lb l′2 c

} and Ti.right = {Ld l′2 e, ..., Ll′}. We show an example
of T = {L1, L2, L3}’s trajectory tree in Figure 5(a).

The data structure for each binary tree node Ti is a triple: Ti = 〈L,MBC,Guard〉.
L is a line-segment if Ti is a leaf-node and NULL otherwise. MBC is the minimum
bounded circle covering Ti; it is NULL for leaf-nodes. Guard is an entry which has
minimum maximum distance to Ti. As we describe later, the entry can be either an
R-tree node or an imprecise object. The Guards are not initialized until the process-
ing of TPNNQ. Since T contains l line-segments, the trajectory tree T(T ) could be
constructed in O(l log l) time.

Fig. 5. Trajectory Tree T(T ) and
Ternary Tree Ψ(L2)

Fig. 6. TPNNQ

Given a constructed trajectory tree T and an R-tree R, the TPNNQ algorithm,
shown in Algorithm 2, consists of two phases. Phase I is the filtering phase, which
includes two filters: Trajectory Filter and Segment Filter. Trajectory Filter is to retrieve
a set of candidates from the database (Step 3). Segment Filter prunes away unqualified
objects for each Li ∈ T (Step 4). Phase II is to evaluate all the validity intervals and
turning points for each line-segment of the trajectory (Step 5). Then, we scan the derived
validity intervals once and merge two consecutive validity intervals if they belong to
different line-segments but have the same set of PNNs (Step 7).

Example of TPNNQ Suppose an R-tree built on objects O = {a, b, c, d, e, f} and
a trajectory T = {L1, L2, L3}, as shown in Figure 6(a). We use Trajectory Filter to
derive T ’s trajectory filtering bound, as shown by shaded areas in Figure 6(b). The ob-
jects {c, d, e, f} overlapping with the trajectory filtering bound are taken as candidates.
During the process, object d is set to be L2’s Guard, and stored in the trajectory tree.



Algorithm 2 TPNNQ
1: function TPNNQ(Trajectory T, R-tree R)
2: let φ be a list (of candidate objects);
3: φ←TrajectoryFilter(T,R); . Section 5.1
4: for all line-segment Li ∈ T do . T = {Li}i≤l

5: φi ← SegmentFilter(Li, φ); . Section 5.2
6: {〈L,R〉}i ← TernaryDecomposition(Li, φi); . Section 6
7: {〈Ti, Ri〉}ti=1 ← Merge(∪l

i=1{〈L,R〉}i);

The segment filter is applied for each line-segment in T . Taking L2(h, t) as an exam-
ple, the segment filtering bound is shown as Figure 6(c), where f is excluded from L2’s
candidates. Because f does not overlap with the filter bound.

In the refinement phase, we call the routine TernaryDecomposition to derive the
turning points. We find the u-bisector halves bd(c) and bc(d) intersects with L2 at sd`c
and sdac, respectively. L2 is split into three sub-line-segments [h, sd`c], [sd`c, sdac],
and [sdac, t]. Meanwhile, the construction of a ternary tree Ψ(L2) starts, in Figure 5(b).
The root node of Ψ(L2) derives three children correspondingly.

Then, we repeat the above process for each of the three, recursively. Finally, the
process stops and we get a ternary tree Ψ(L2), in Figure 5(b). Observed from Ψ(L2),
the degree of a ternary tree node is at most 3, since a line-segment is split into at
most 3 sub-line-segments, as shown in Section 3. The query result on L2 can be
fetched by traversing the leaf-nodes of Ψ(L2). Then, we have: TPNNQ(L2) =
{〈[h, sd`c], {d}〉, 〈[sd`c, sc`e], {c, d}〉, 〈[sc`e, sdac], {c, d, e}〉, 〈[sdac, t], {c, e}〉}. Sim-
ilarly, the results of L1 and L3 can also be evaluated. By merging them we get the
answer of TPNNQ(T ). After we get the query answer, T and Ψ are deleted.

In the following sections, we study the Trajectory Filter in Section 5.1 and Segment
Filter in Section 5.2. The refinement step is shown in Section 6.

5 Filtering Phase
The trajectory query consists of a set of consecutive query line-segments. An
intuitive way is to: (1) decompose the trajectory into several line-segments;
(2) for each line-segment Li, access R-tree to fetch candidates. Then, apply
TernaryDecomposition to construct a ternary tree Ψ(Li) to evaluate its validi-
ty intervals and turning points. We call this method TP-S, which incurs multiple R-tree
traversals.

Meanwhile, two consecutive line-segments might share similar PNNs. Also, if two
line-segments are short, they could even be located within the same validity interval.
So, considerable efficiency would be saved if the R-tree traversal for each line-segment
inside the trajectory could be shared.

5.1 Trajectory Filter
To save the number of R-tree node access, we design Algorithm 3 as the Trajecto-
ry Filter to retrieve the candidates for the entire trajectory. We start Algorithm 3 by
maintaining a heap in the ascending order of maximum distance between an entry to



Algorithm 3 TrajectoryFilter
1: function TRAJECTORYFILTER(Trajectory tree T, R-tree R)
2: let φ be a list (of candidate objects);
3: Construct a min-dist HeapH;
4: push heap(H, root(R), 0);
5: whileH is not empty do
6: E ← deheap(H);
7: if E is a non-leafnode of R then
8: for E’s each child e do
9: if isProbable(T, e) then

10: push heap(H, e, distmax(e,T));
11: else
12: if isProbable(T, E) then
13: insert E into φ;
14: return φ;

a trajectory tree node Ti’s center. If Ti is leaf-node, it is a line-segment. Ti’s center is
its mid-point. Otherwise, the center is MBC(Ti)’s circle center. Then, the top element
is popped to test if it/its children could be qualified to be the candidate objects. The
process is repeated until the heap is empty.

To determine if an entry is qualified or not, we use Algorithm 4. Let Ti be a T’s node
andG be Ti.Guard.G is initialized in Step 4. Given an R-tree nodeE, if Ti ⊆ HG(E),
then ∀Oj ∈ E, Oj cannot be Ti’s PNNs. Thus, ∀Oj ∈ E can be rejected. This helps
pruning those unqualified objects in a higher index level.

Algorithm 4 isProbable
1: function ISPROBABLE(Trajectory tree node Ti, R-tree node E)
2: Let G be MBC(Ti).Guard; . Initialize Guard Obj.
3: if G is NULL then
4: G← E;
5: elseif Ti is leaf-node and Ti ∈ HG(E) then
6: return false; . If E can be rejected, return false
7: elseif Ti is non-leaf-node and MBC(Ti) ∈ HG(E) then
8: return false; . If E can be rejected, return false
9: elseif distmax(E,MBC(Ti).c) < distmax(G,MBC(Ti).c) then

10: G← E; . If G can be updated
11: if Ti is not leaf-node then
12: return isProbable(Ti.left, E)‖isProbable(Ti.right, E);
13: else return true;

In order to check whether E can be rejected, we consider two cases: (i) if Ti is a
leaf-node; (ii) if Ti is a non-leaf-node.

(i) When Ti is a leaf-node, we can draw a pruning bound to test whether E is
qualified. If we denote }(c,G) as a circle centered at c and internally tangent with
object G, and �(c, r) as a circle centered at c with radius r, then:

} (c,G) = �(c, distmax(c,G)) (5)



The pruning bound is written as: }(s,G) ∪}(e,G). The correctness is guaranteed
by Lemma 1.

Lemma 1. Given two imprecise objects Oi, Oj and a line-segment L(s, e), Oj can not
be p ∈ L’s PNN if Oj does not overlap with }(s,Oi) ∪}(e,Oi).

Proof. To judge if Oj is L’s PNN , we first prove it is sufficient to check L’s two end
points s and e. Then, we show how the pruning bound can be derived by s and e.

Since bi(j) is a hyperbola half, it has at most two intersections with an arbitrary
line. Thus, Hi(j) is convex [15]. So, if s and e are in Hi(j), p ∈ L must be in Hi(j). It
means if Oj is not s and e’s PNN given Oi, it is not a PNN for all the points on L.

Next,
s ∈ Hi(j)⇔ distmax(s,Oi) < distmin(s,Oj)

⇔ }(s,Oi) ∩Oj = ∅
}(e,Oi) ∩Oj = ∅

}
⇔ Oj

⋂
}(s,Oi) ∪}(e,Oi) = ∅

So, the lemma is proved.

If another object Oj does not overlap with the pruning bound defined by Lemma 1,
it can not be the PNN of any p ∈ L, since Oi will be always be closer. We also use
Lemma 1 as the base to derive other pruning bounds in Section 6.

(ii) When Ti is a non-leaf-node, if MBC(Ti) ∈ HG(E), then E can be rejected
from candidates. Since MBC(Ti) ∈ HG(E), Ti must be in HG(E). In other words,
Equation 6 is satisfied when the condition below is true:

distmax(MBC(Ti), G) ≤ distmin(MBC(Ti), E) (6)

Since MBC(Ti) is a circle, Equation 6 can be rewritten as (�.c and �.r are �’s center
and radius):

distmax(MBC(Ti).c, G) +MBC(Ti).r ≤ distmin(MBC(Ti).c, E)−MBC(Ti).r

5.2 Segment Filter

After the trajectory filtering step of TPNNQ, we get a set φ of candidates. Before
passing φ to each line-segment Li in the refinement phase, we perform a simple filtering
process to shrink φ into a smaller set φi for Li. Notice that while deriving the trajectory
tree T(T ), we also derive an object called “Guard” for each node Ti. Then, for a T ’s
line-segment Li(si, ei), we can reuse the “Guard” Og to build the pruning bound. Ac-
cording to Lemma 1, the pruning bound is set to }(si, Og)∪}(ei, Og). An example is
shown in Figure 2(c), where the pruning bound for L2(h, t) is }(h, d) ∪}(t, d). After
that, we get φi. Empirically, the pruned candidates set φi is much smaller than φ.

6 Trajectory Refinement Phase

For trajectory T , the refinement is done by applying Algorithm 5 Ternary Decomposi-
tion for each line-segment Li ∈ T . Essentially, Algorithm 5 is to construct a ternary
tree Ψ(Li) for Li.



6.1 Trajectory Refinement

Ψ is constructed in an iterative manner. At each iteration, we select two objects from
the current candidate set φcur as seeds to divide the current line-segment Lcur into
two/three pieces.

To split Li, we have to evaluate a feasible u-bisector, whose intersections with Li

are turning points. Then, to find the u-bisector, we might have to try C(C−1)
2 pairs of

objects, C = |φi|. In fact, the object with minimum maximum distance to Li, say O1,
must be one PNN . The correctness is shown in Lemma 2. Thus, it is often that the
turning points on Li is derived by O1 and another object among the C candidates. So,
in Algorithm 5, the candidates are sorted first.

Lemma 2. If S = {O1, O2, ...} are sorted in the ascending order of the maximum
distance to the line-segment L, then O1 ∈ TPNNQ(L).

Proof. Suppose p is a point of L, such that distmax(p,O1) = distmax(L,O1). If O1

is definitely one PNN of p ∈ L, O1 must be one PNN of L. Thus, it is sufficient to
show O1 ∈ PNNQ(p).

To showO1 ∈ PNNQ(p) is equivalent to prove distmin(p,O1) < distmax(p,Oi)
(Oi ∈ S). Then, it is sufficient to show distmax(p,O1) < distmax(p,Oi)(Oi ∈ S), as
distmin(p,O1) < distmax(p,O1).

Notice that distmax(p,Oi) must be no less than distmax(L,Oi). Then,

distmax(p,O1) = distmax(L,O1) ≤ distmax(L,Oi)(Oi ∈ S)
≤ distmax(p,Oi)(Oi ∈ S)

So, O1 definitely belongs to TPNNQ(L).

Algorithm 5 TernaryDecomposition

1: function TERNARYDECOMPOSITION(Segment L(s, e), Candidates set φ[L]
cur)

2: Sort φ[L]
cur in the ascending of maximum distance to L

3: for i = 1 . . . |φcur| do . consider object Oi

4: for j = i+ 1 . . . |φcur| do . consider object Oj

5: I = FindIntersection(L,Oi, Oj);
6: Verify I and delete unqualified elements;
7: if |I| 6= 0 then
8: Use I to split L(s, e) into |I|+ 1 pieces
9: for each piece of line segment Li do

10: Use Lemma 3, 4, and 5 to derive pruning bound Bi

11: φ
[Li]
cur ← Bi(φ

[L]
cur)

12: release φ[L]
cur

13: for each piece of line segment Li do
14: TernaryDecomposition(Li, φ[Li]

cur )

Then, Lcur is split into 2 (or 3) pieces ( or children). For Lcur’s children Li, we
derive a pruning bound Bi for Li and select a subset of candidates from φcur , as
shown in Step 9 to Step 12.



Notice that for each leaf-node Li of the ternary tree Ψ(L(s, e)), Li’s two end points
must be s, e, or the turning points on L. If we traverse Ψ in the pre-order manner, any
two successively visited leaf-nodes are the successively connected validity intervals in
L. Suppose we have m turning points, we would have m + 1 validity intervals, which
corresponds to m+ 1 Ψ ’s leaf-nodes.

Algorithm 5 stops when any pair of objects in φ[L]
cur does not further split L. The

complexity depends on the size of the turning points in the final answer. Recall the s-
plitting process of Ternary Decomposition, a ternary tree node Ti splits only if one or
two intersections are found in Ti’s line-segment. If no intersections found in its line-
segment, Ti becomes a leaf-node. Given the final answer containing m turning points,
there would be at most 2m nodes in the ternary tree Ψ(T ). At least, there are d1.5me
nodes. So, Algorithm 5 will be called (1.5m, 2m] times. Step 5 is done in β and
Step 6 is in O(logC). If the candidate answers returned by Phase I contains C ob-
jects, the complexity of Phase II is O(mC2(logC + β)). Next, we study how to derive
the pruning bound Bi mentioned in Step 11.

6.2 Pruning Bounds for Three Cases

By a u-bisectors, a query line-segment could be divided into at most 3 sub-line-
segments. The sub-line-segments fall into 3 categories according to their positions in
half spaces. There are three types of sub-line-segments: Open Case, Pair Case, and
Close Case, For example, in Figure 5, [sd`c, sdac] belongs to the pair case. Two exam-
ples of open case are [h, sd`c] and [sdac, t]. The Close Case means the line-segment is
totally covered by a half-space. The three cases are formally described in Table 1.

Table 1. Three cases for a line segment

Case Form Position
pair [si`j , siaj ] l ∈ V (i, j)

open [s, si`j ] or [siaj , e] l ∈ Hi(j)(or l ∈ Hj(i)) (s(e) is the line-segment’s start(end) point)
close [si`j , s

′
i`j ] l ∈ Hi(j) and si`j , s′i`j ∈ bi(j)

For Pair Case and Open Case, we can derive two types of pruning bounds. Suppose
the u-bisector between O1 and O2 split the query line-segment [s, e] into sub-line-
segments: [s, s1`2], [s1`2s1a2], and [s1a2, e], which are of Open Case, Pair Case,
and Open Case, respectively. We shown the pruning bound derived for [s, s1`2] and
[s1`2s1a2] in Figure 7 (a) and (b). The bounds are highlighted by shaded areas. The
pruning bound of [s1a2, e] is similar to Figure 7(a), so it is omitted.

Close Case is a special case, when a line-segment has two intersections and totally
inside one half-space, say Hi(j). It could be represented by [si`j , s

′
i`j ], which means

the two end-points are on the same u-bisector half bi(j). In this example, we known
[si`j , s

′
iaj ] must be in Hi(j), so Oj cannot be the PNN for each point inside. Next,

we design their pruning bounds.

Lemma 3. (Pair Case) Suppose two imprecise objects Oi and Oj , whose u-bisector
bi(j) and bj(i) intersect with a straight line at si`j and siaj . For another object ∀ON ∈
O, it cannot be q ∈ [si`jsiaj ]’s PNN , if ON has no overlap with the pruning bound
}(si`j , Oi) ∪}(siaj , Oj)

⋂
}(si`j , Oj) ∪}(siaj , Oi).



Proof. ∀p ∈ [si`jsiaj ], both Oi and Oj have chances to be p’s PNN. According to
Lemma 1, a new object ON cannot be Oi or Oj’s nearest neighbor if

ON

⋂
(}(si`j , Oi) ∪}(siaj , Oi)) = ∅, orON

⋂
(}(si`j , Oj) ∪}(siaj , Oj)) = ∅

So, the pruning bound is:
} (si`j , Oi) ∪}(siaj , Oi)

⋂
}(si`j , Oj) ∪}(siaj , Oj) (7)

Lemma 4. (Open Case) Given a line-segment [s, si`j ], for other objects ∀ON ∈ O, it
cannot be query point q ∈ [s, si`j ]’s nearest neighbor, if ON has no overlap with the
}(s,Oi) ∪}(si`j , Oi).
Lemma 5. (Close Case) Given two split points si`j and s′i`j , the pruning bound for
[si`j , s

′
i`j ] is }(si`j , Oi) ∪}(s′i`j , Oi).

1 1

2

1├2

2 2 3 3

1 1 2 3 4 4

Step 1: se <= {O1, O2, O3}

Step 2: ss2 <= {O1, O2, O3}
            s2s3  <={O2, O3}
            s3e <= {O2, O3}

Step 3: ss1 <= {O1}
            s1s2  <={O1, O2}

Step 4: s3s4 <= {O2, O3}
            s4e <={O3}

O1

B(S,O1) B(S1,O1)

B(v,O1)
pA

B(S,pA) B(S1,pA)

B(v,pA)

1├2 1┤2

Fig. 7. Open Case and Pair Case

Since the proofs of Lemma 5 and Lemma 4 can be easily derived from Lemma 1,
they are omitted due to page limitation. The Pair Case could also be considered as
the overlap of two Open Cases. For example, a Pair Case [si`j , siaj ] is equivalent to
the overlap part of [s, siaj ] and [si`j , e]. Also, the Close Case could be viewed as the
overlap of [s, s′iaj ] and [si`j , e]. The three cases and their combinations could cover all
the cases for each piece(validity interval) of the line segment. After Ψ ’s construction is
done, we can view the pruning bound of a validity interval. It is the intersection of all
its ascender nodes’ pruning bounds in the ternary tree Ψ .

7 Experimental Results
Section 7.1 describes settings. We adopt a metric to measure to quality of results in
Section 7.2. Section 7.3 discusses the results.

7.1 Setup
Queries The query trajectories are generated by Brinkhoff’s network-based mobile

data generator 4. The trajectory represents movements over the road-network of Olden-
burg city in Germany. We normalize them into 10k ×10k space. By default, the length
of trajectory is 500 units. Each reported value is the average of 20 trajectory query runs.

Imprecise Objects We use four real datasets of geographical objects in Germany and
US5, namely germany, LB, stream and block with 30k, 50K, 199K, 550k spatial objects,

4 http://iapg.jade-hs.de/personen/brinkhoff/generator/
5 http://www.rtreeportal.org/



respectively. We use stream as the default dataset. We construct the MBC for each
object thus get 4 datasets with circular imprecise regions. Datasets are normalized to
the same domain as queries. To index imprecise regions, we use a packed R*-tree [16].
The page size of R-tree is set to 4k-byte, and the fanout is 50. The entire R-tree is
accommodated in the main memory.

For the turning points calculation, we call GSL Library 6 to get the analytical solu-
tion. All our programs were implemented in C++ and tested on a Core2 Duo 2.83GHz
PC.

7.2 Quality Metric
To measure the accuracy of a query result, we adopt a Error function based on the
Jaccard Distance [17], which is used in comparing the similarity between two sets.
Recall the definition of TPNNQ the query result is a set of tuples {〈Ti, Ri〉}. It can
be transformed into the PNNs for every point on the query trajectory. Formally, the
result is {〈q, PNNQ(q)〉}q∈T . LetR∗(q) be the optimal solution for the point q, where
R∗(q) = PNNQ(q). We use RA(q) to represent the PNNs derived for the point q in
algorithm A. Then, the Error for algorithm A on query T is:

Error(T , A) = 1

|T |

∫
q∈T

1− R∗(q) ∩RA(q)

R∗(q) ∪RA(q)
dq (8)

|T | is the total length of trajectory T . If T is represented by a set of line-segments
T = {Li}ti=1, the total length |T | =

∑t
i=1 |Li|.

Equation 8 captures the effect of false positives and false negatives as well. There is
a false positive when RA(q) contains an extra item not found in R∗(q). There is a false
negative when an item of R∗(q) is missing from RA(q). For a perfect method with no
false positives and false negatives, the two terms R∗(q) and RA(q) are the same, so the
integration value is 0.

In summary, the error score is a value between 0 and 1. The smaller an Error score
is, the more accurate the result is. On the other hand, if a method has many extra or
missing results, then it obtains a high Error.

7.3 Performance Evaluation
The query performance is evaluated by two metrics: efficiency and quality. The efficien-
cy is measured by counting the clock time. The quality is measured by the error score.
We compare four methods: Basic, Sample, TP-S, and TP-TS. The suffixes T and S refer
to Trajectory Filter and Segment Filter, respectively. Basic does not use any filter; TP-S
does not use Trajectory Filter; TP-TS (Algorithm 2) uses all the filtering and refinement
techniques. Sample draws a set of uniform sampling points {q} from T . Then, for all q,
PNNQ(q) is evaluated. The sampling interval, denoted by ε, is set to 0.1 unit. 7

Query Efficiency Tq From Figure 8, the Basic method is the slowest method among
all the four, since it elaborates all the possible pairs of objects for turning points (but
most of them do not contribute to validity intervals). For the second slowest Sample, we
analyze it later.

6 http://www.gnu.org/software/gsl/
7 The sampling rate is reasonably high regarding to the trajectory’s default length. More details

about sampling rates are discussed later.
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The other two methods have significant improvement over Sample and Basic. One
reason is because of the effectiveness of the pruning techniques, as shown in Figure 9.
For all the real datasets, the pruning ratio are as high as 98.8%. TP-S is less efficient,
because some candidates shared by different line-segments in trajectory will be fetched
multiple times. This drawback is overcome by TP-TS.

To get a clearer picture about the efficiency of our framework, we measure the time
costs for Phase I and Phase II in Figure 10. TP-TS is faster in both phases. In Phase I,
the combined R-tree traversal in TP-TS saves plenty of extra node access, compared to
TP-S. The number of node access is shown in Figure 12. In Phase II, TP-TS is faster,
since it has fewer candidates to handle. This observation is also consistent with the fact
that TP-TS has a higher pruning ratio, shown in Figure 9.

We also test the query efficiency by varying the query length in Figure 11. The
Sample method is slower than others at least one order of magnitude. The costs of other
two methods increase slowly w.r.t. the query length.

TP-TS vs. Sample Sample method is a straightforward solution to approximate the
TPNNQ answer. However, this solution suffers from the extensive R-tree traversal-
s, since every sampling point q requires accessing of R-tree. As shown in Figure 12,
Sample incurs at least more than one order of magnitude node access than our method.

On the other hand, Sample could incur false negatives, even with a large sampling
rate. Because Sample only considers query points sampled on the trajectory, whereas
TPNNQ is for all the points in T . To calculate Sample’s error score, we have to infer
the PNNs for a point q ∈ T not being sampled, as required by Equation 8. With limited
sampled answers, q’s PNNs can only be “guessed” by using its closest sampling point
p. In other words, PNNQ(q) has to be substituted with PNNQ(p).

The efficiency is reflected in Figure 14, where the sampling interval ε is varied from
0.01 to 10. We can observe that TP-TS outperforms Sample in most of the cases. Sample
is faster only when ε is very large (e.g. equal to 10 units). Then, is it good if large ε is



used? The answer is NO. In Table 15, when “Sample, ε = 10, block”, the error score of
Sample is as high as 0.443!

We demonstrate the error score of Sample and TP-TS in Table 15. Since TP-TS
evaluate the exact answer, the error is always 0. The error of Sample is small when ε
is small, (e.g. equal to 0.01, block). However, the query time of that case is 100 times
slower than TP-TS. We would like to emphasize that even the error score is empirically
tested to be 0 over large sampling rates, there is no theoretical guarantee for the Sample
to contain 0 false negative.

We also test the error score of simplifying the imprecise regions into precise points,
as mentioned in the introduction. For german dataset, the error is as high as 0.76! Thus,
the simplified solution could be harmful for applications such as safety sailing.
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Datasets Sample TP-TS
ε = 0.01 ε = 0.1 ε = 1 ε = 10

german 0.00340 0.00457 0.01528 0.12310 0
LB 0.00005 0.00029 0.00257 0.02672 0

stream 0.00059 0.00090 0.00298 0.03962 0
block 0.01872 0.02541 0.08516 0.44310 0

Fig. 15. TP-TS vs. Sample(Error)

Analysis of TPNN Observed from Figure 13, the number of validity intervals increas-
es with the size of the datasets. TP-S and TP-TS have the same number of validity
intervals, which is as expected.

In summary, we have shown that TP-TS is much more efficient than Basic, Sample,
and TP-S methods. It also achieves much better quality than Sample method.

8 Conclusion

In this paper, we study the problem of trajectory query over imprecise data. To tackle the
low quality and inefficiency in simplified methods, we study the geometric properties of
the u-bisector. Based on that, we design several novel filters to support our algorithm.
Extensive experiments show that our method can efficiently evaluate the TPNNQwith
high quality.

The geometric theories studied in this paper has no limitations in the dimensionality
and shape of imprecise regions. In future, we would like to evaluate the algorithm’s
performance in multi-dimensional space with different shaped imprecise regions. We
would also extend our work to support variants queries like k-PNN query, etc.
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A Appendix
A.1 Intersection of a hyperbola and a straight line
Given a hyperbola h1 and a straight line l1, they could have 0, 1, or 2 intersection points,
which is the roots of the following:{

h1 : x2

a2
1
− y2

b21
= 1

l1 : a2x+ b2y + c2 = 0
(9)

By solving Equation 9, we can have:x =
−a2

1a2c2±
√
−a2

1b
2
1b

2
2(a

2
1a

2
2−b21b22−c22)

a2
1a

2
2−b21b22

y =
−a2±

√
a2
1b

2
1b

2
2(−a2

1a
2
2+b21b

2
2+c22)−b

2
1b

2
2c2

b2(b21b
2
2−a2

1a
2
2)

(10)

where a21a
2
2 − b21b22 6= 0

b2 6= 0
a1b1 6= 0

(11)

Notice that if any of the three pre-conditions in Equation 11 is not satisfied, there
should be no intersection point for the given curve and line.
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