
Effective Caching of Shortest Paths for Location-Based
Services

Jeppe Rishede Thomsen Man Lung Yiu
Hong Kong Polytechnic University

{csjrthomsen,csmlyiu}@comp.polyu.edu.hk

Christian S. Jensen
Aarhus University
csj@cs.au.dk

ABSTRACT
Web search is ubiquitous in our daily lives. Caching has been ex-
tensively used to reduce the computation time of the search en-
gine and reduce the network traffic beyond a proxy server. Another
form of web search, known as online shortest path search, is popu-
lar due to advances in geo-positioning. However, existing caching
techniques are ineffective for shortest path queries. This is due to
several crucial differences between web search results and shortest
path results, in relation to query matching, cache item overlapping,
and query cost variation.

Motivated by this, we identify several properties that are essen-
tial to the success of effective caching for shortest path search. Our
cache exploits the optimal subpath property, which allows a cached
shortest path to answer any query with source and target nodes on
the path. We utilize statistics from query logs to estimate the benefit
of caching a specific shortest path, and we employ a greedy algo-
rithm for placing beneficial paths in the cache. Also, we design a
compact cache structure that supports efficient query matching at
runtime. Empirical results on real datasets confirm the effective-
ness of our proposed techniques.

1. INTRODUCTION
The world’s population issues vast quantities of web search

queries. A typical scenario for web search is illustrated in Fig-
ure 1. A user submits a query, e.g., “Paris Eiffel Tower,” to the
search engine, which then computes relevant results and returns
them to the user. A cache stores the results of frequent queries so
that queries can be answered frequently by using only the cache,
thus reducing the amount of computation needed and improving
query latency [1, 2, 17, 18].

Specifically, the cache can be placed at the search engine to save
its computation time, e.g., when the query (result) can be found in
the cache. Or, to improve latency or response time, the cache can
be placed at a proxy that resides in the same sub-network as the
user. A query result that is available at the proxy can be reported
immediately, without contacting the search engine.

The scenario in Figure 1 is applicable to online shortest path
search, also called directions querying. Due to the increasingly

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD ’12, May 20–24, 2012, Scottsdale, Arizona, USA.
Copyright 2012 ACM 978-1-4503-1247-9/12/05 ...$10.00.

mobile use of the web and advances in geo-positioning technolo-
gies, this has become a popular type of web query. This type of
query enables users to, e.g., obtain directions to a museum, a gas
station, or a specific shop or restaurant.

compute

result

Users

Cache

Cache

Proxy

Search engine

/ server

Cache

Figure 1: Scenario for web search

When compared to offline commercial navigation software, on-
line shortest path search (e.g., Google Maps, MapQuest) provide
several benefits to mobile users: (i) They are available free of
charge. (ii) They do not require any installation and storage space
on mobile devices. (iii) They do not require the purchase and in-
stallation of up-to-date map data on mobile devices.

Figure 2 shows a road network in which a node vi is a road junc-
tion and an edge (vi, vj) models a road segment with its distance
shown as a number. The shortest path from v1 to v7 is the path
〈v1, v3, v4, v5, v7〉 and its path distance is 3 + 6 + 9 + 5 = 23.
Again, caching can be utilized at a proxy to reduce the response
time, and it can also be used at the server to reduce the server-side
computation.

v
1

v
3

v
7

v
4

v
8

v
5

v
6

v
2

6

1

9

3

2

5

2v
7

2

Figure 2: An example road network

We study the caching of path search results in the scenario shown
in Figure 1. While shortest path search shares this scenario with
web search, there are also crucial differences between general web
search and shortest path search, rendering existing caching tech-
niques for web results ineffective in our context.

• Exact matching vs. subpath matching: The result of a web
query (e.g., “Paris Eiffel Tower”) seldom matches with that
of another query (e.g., “Paris Louvre Palace”). In contrast,
a shortest path result contains subpaths that can be used for
answering other queries. For example, the shortest path from
v1 to v7 (〈v1, v3, v4, v5, v7〉) contains the shortest path from
v3 to v5, the shortest path from v4 to v7, etc. We need to
capture this feature when formulating the benefit of a path.
• Cache structure: Web search caching may employ a hash

table to check efficiently whether a query can be found in
the cache. However, such a hash table cannot support the
subpath matching found in our setting. A new structure is
required to organize the cache content in an effective way
for supporting subpath matching. Furthermore, this prob-
lem is complicated by the overlapping of paths. For exam-
ple, the shortest path 〈v1, v3, v4, v5, v7〉 and the shortest path
〈v2, v3, v4, v5, v6〉 have a significant overlap, although one
does not contain the other. We will exploit the overlapping
of paths to design a compact cache structure.
• Query processing cost: At the server side, when a cache

miss occurs, an algorithm is invoked to compute the query
result. Some results are more expensive to obtain than others.
To optimize the server performance, we need a cost model
for estimating the cost of evaluating a query. However, to
our knowledge, there is no work on estimating the cost of a
shortest path query with respect to an unknown shortest path
algorithm.

In order to tackle the above challenges, we make the following
contributions:

• We formulate a systematic model for quantifying the benefit
of caching a specific shortest path.
• We design techniques for extracting statistics from query

logs and benchmarking the cost of a shortest path call.
• We propose an algorithm for selecting paths to be placed in

the cache.
• We develop a compact and efficient cache structure for stor-

ing shortest paths.
• We study the above contributions empirically using real data.

The rest of the paper is organized as follows. Section 2 studies
work related to shortest path caching. Section 3 defines our prob-
lem formally, and Section 4 formulates a model for capturing the
benefit of a cached shortest path, examines the query frequency and
the cost of a shortest path call, and presents an algorithm for select-
ing appropriate paths to be placed in the cache. Section 5 presents
a compact and efficient cache structure for storing shortest paths.
Our proposed methods are then evaluated on real data in Section 6.
Section 7 concludes.

2. RELATED WORK
Web Search Caching: A web search query asks for the top-K
relevant documents (i.e., web pages) that best match a text query,
e.g., “Paris Eiffel Tower.” The typical value of K is the number of
results (e.g., 10) to be displayed on a result page [17]; a request for
the next result page is interpreted as an unrelated query.

Web search caching is used to improve the performance of a
search engine. When a query can be answered by the cache, the cost
of computing the query result can be saved. Markatos et al. [16]
present pioneering work, evaluating two caching approaches (dy-
namic caching and static caching) on real query logs. Dynamic

caching [6, 15, 16] aims to cache the results of the most recently
accessed queries. For example, in the Least-Recently-Used (LRU)
method, when a query causes a cache miss, the least recently used
result in the cache is replaced by the current query result. This
approach keeps the cache up-to-date and adapts quickly to the dis-
tribution of the incoming queries; however, it incurs the overhead
of updating the cache frequently.

On the other hand, static caching [1–3,16–18] aims to cache the
results of the most popular queries. This approach exploits a query
log that contains queries issued in the past in order to determine the
most frequent queries. The above studies have shown that the fre-
quency of queries follows Zipfian distribution, i.e., a small number
of queries have very high frequency, and they remain popular for a
period of time. Although the cache content is not the most up-to-
date, it is able to answer the majority of frequent queries. A static
cache can be updated periodically (e.g., daily) based on the latest
query log. Static caching has the advantage that it incurs very low
overhead at query time.

Early work on web search caching adopt the cache hit ratio as
the performance metric. This metric reflects the number of queries
that do not require computation cost. Recent work [1, 17] on web
search caching uses the server processing time as the performance
metric. The motivation is that different queries have different query
processing times, e.g., a query involving terms with large posting
lists incurs a high processing cost. Thus, the actual processing time
of each query in the query log is taken into account, and both fre-
quency and cost information are exploited in the proposed static
caching methods.

None of the above works consider the caching of shortest paths.
In this paper, we adopt a static caching approach because it per-
forms well on query logs that are typically skewed in nature and in-
curs very low overhead at query time. Earlier techniques [1,17] are
specific to web search queries and are inapplicable to our problem.
In our caching problem, different shortest path queries also have
different processing times. Thus, we also propose a cost-oriented
model for quantifying the benefit of placing a path in the cache.

Semantic Caching: In a client-server system, a cache may be em-
ployed at the client-side in order to reduce the communication cost
and improve query response time. A cache located at a client can
only serve queries from the client itself, not from other clients.
Such a cache is only beneficial for a query-intensive user. All tech-
niques in this category adopt the dynamic caching approach.

Semantic caching [5] is a client-side caching model that asso-
ciates cached results with valid ranges. Upon receiving a query Q,
the relevant results in the cache are reported. A subqueryQ′ is con-
structed from Q such that Q′ covers the query region that cannot
be answered by the cache. The subquery Q′ is then forwarded to
the server in order to obtain the missing results of Q. Dar et al. [5]
focus on semantic caching of relational datasets. As an example,
assume that the dataset stores the age of each employee and that
the cache contains the result of the query “find employees with age
below 30.” Now assume that the client issues a query Q “find em-
ployees with age between 20 and 40.” First, the employees with
age between 20 and 30 can be obtained from the cache. Then, a
subquery Q′ “find employees with age between 30 and 40” is sub-
mitted to the server for retrieving the remaining results.

Semantic caching has also been studied for spatial data [10, 14,
22]. Zheng et al. [22] define the semantic region of a spatial object
as its Voronoi cell, which can be used to answer nearest neighbor
queries for a moving client user. Hu et al. [10] study semantic
caching of tree nodes in an R-tree and examine how to process spa-
tial queries on the cached tree nodes. Lee et al. [14] build generic
semantic regions for spatial objects so that they support generic

spatial queries. However, no semantic caching techniques have
been proposed for graphs or shortest paths.

Shortest Path Computation: Existing shortest path indexes can
be categorized into three types, which represent different trade-offs
between their precomputation effort and query performance.

A basic structure is the adjacency list, in which each node vi is
assigned a list that stores the adjacent nodes of vi. It does not store
any pre-computed information. Uninformed search (e.g., Dijkstra’s
algorithm, bidirectional search) can be used to compute the shortest
path; however, it incurs high query cost.

Fully-precomputed indexes, e.g., the distance index [9] or the
shortest path quadtree [20], require precomputation of the shortest
paths between any two nodes in the graph. Although they support
efficient querying, they incur huge precomputation time (O(|V |3))
and storage space (O(|V |2)), where |V | is the number of nodes in
the graph.

Partially-precomputed indexes, e.g., landmarks [13], HiTi [12],
and TEDI [21], attempt to materialize some distances/paths in order
to accelerate the processing of shortest path queries. They employ
certain parameters to control the trade-offs among query perfor-
mance, precomputation overhead, and storage space.

As a possible approach to our caching problem, one could as-
sume that a specific shortest path index is being used at the server.
A portion of the index may be cached so that it can be used to an-
swer certain queries rapidly. Unfortunately, this approach is tightly
coupled to the assumed index, and it is inapplicable to servers that
employ other indexes (or new index developed in the future).

In this paper, we view the shortest path method as a black-box
and decouple it from the cache. The main advantage is that our ap-
proach is applicable to any shortest path method (including online
APIs such as Google Directions), without knowing its implemen-
tation.

3. PROBLEM SETTING
Following a coverage of background definitions and properties,

we present our problem and objectives. Table 1 summarizes the
notation used in the paper.

Notation Meaning
G(V,E) a graph with node set V and edge set E
vi a node in V

(vi, vj) an edge in E
W (vi, vj) the edge weight of W (vi, vj)
Qs,t shortest path query from node vs to node vt
Ps,t the shortest path result of Qs,t

|Ps,t| the size of Ps,t (in number of nodes)
Es,t the expense of executing query Qs,t

χs,t The frequency of a SP
Ψ the cache

U(Ps,t) the set of all subpaths in Ps,t

U(Ψ) the set of all subpaths of paths in Ψ
γ(Ψ) the total benefit of the content in the cache
QL query log

Table 1: Summary of notation

3.1 Definitions and Properties
We first define the notions of graph and shortest path.

DEFINITION 1. Graph model.
LetG(V,E) be a graph with a set V of nodes and a setE of edges.
Each node vi ∈ V models a road junction. Each edge (vi, vj) ∈
E models a road segment, and its weight (length) is denoted as
W (vi, vj).

DEFINITION 2. Shortest path: query and result.
A shortest path query, denoted by Qs,t, consists of a source node
vs and a target node vt.

The result of Qs,t, denoted by Ps,t, is the path from vs to vt
(on graph G) with the minimum sum of edge weights (lengths)
along the path. We can represent Ps,t as a list of nodes:
〈vx0 , vx1 , vx2 · · · , vxm〉, where vx0 = vs, vxm = vt, and the
path distance is:

∑m−1
i=0 W (vxi , vxi+1).

We consider only undirected graphs in our examples. Our tech-
niques can be easily applied to directed graphs. In the example
graph of Figure 2, the shortest path from v1 to v7 is the path
P1,7 = 〈v1, v3, v4, v5, v7〉 with its length 3 + 6 + 9 + 5 = 23.
We may also associate a point location with each vertex.

Shortest paths exhibit the optimal subpath property (see
Lemma 1): every subpath of a shortest path is also a short-
est path. For example, in Figure 2, the shortest path
P1,7 = 〈v1, v3, v4, v5, v7〉 contains these shortest paths:
P1,3, P1,4, P1,5, P1,7, P3,4, P3,5, P3,7, P4,5, P4,7, P5,7.

LEMMA 1. Optimal subpath property (from [4]).
The shortest path Pa,b contains the shortest path Ps,t if vs ∈ Pa,b

and vt ∈ Pa,b. Specifically, let Pa,b = 〈vx0 , vx1 , vx2 · · · , vxm〉.
We have Ps,t = 〈vxi , vxi+1 , · · · , vxj 〉 if vs = vxi and vt = vxj

for some i, j that 0 ≤ i ≤ j ≤ m.

As we will discuss shortly, this property can be exploited for the
caching of shortest paths.

3.2 Problem and Objectives
We adopt the architecture of Figure 1 when addressing the

caching problem. Users with mobile devices issue shortest path
queries to an online server. The cache, as defined below, can be
placed at either a proxy or the server. It helps optimize the com-
putation and communication costs at the server/proxy, as well as
reduce the response time of shortest path queries.

DEFINITION 3. Cache and budget.
Given a cache budget B, a cache Ψ is allowed to store a collection
of shortest path results such that |Ψ| ≤ B, where the cache size |Ψ|
is given as the total number of nodes of shortest paths in Ψ.

As discussed in Section 2, recent literature on web search
caching [1, 2, 17, 18] advocates the use of a static caching that has
very low runtime overhead and only sacrifices the hit ratio slightly.
Thus, we adopt the static caching paradigm and exploit a query log
to build the cache.

DEFINITION 4. Query log.
A query log QL is a collection of timestamped queries that have
been issued by users in the past.

Figure 3 identifies essential components in a static caching sys-
tem: (i) a shortest path API, (ii) a cache, (iii) an online module
for cache lookup, and (iv) offline/periodically invoked modules for
collecting a query log, benchmarking the API cost, and populating
the cache.

The shortest path component (in gray) is external to the system,
so we are not allowed to modify its implementation. For the server
scenario, the shortest path API is linked to a typical shortest path
algorithm (e.g., Dijkstra, A* search). For the proxy scenario, the
shortest path API triggers a query message to the server. In ei-
ther case, calling the shortest path API incurs expensive compu-
tation/communication, as defined shortly. Different queries may
have different costs. In general, a long-range query incurs higher
cost than a short-range query.

Query Q
s,t Shortest path API

(black-box)

Collect query log

statistics

Lookup cache

(query time) Cache

Build cache
Benchmark

API cost

hit

miss

User Server / Proxy Periodic cache refresh

E
s,t

χ
s,t

Result path P
s,t

hit

Online query evaluation

Figure 3: Components in a static caching system

DEFINITION 5. Expense of executing query.
We denote by Es,t the expense (i.e., response time) of the shortest
path API to process query Qs,t.

We employ a cache to reduce the overall cost of invoking
the shortest path API. Having received a query (at runtime), the
server/proxy checks whether the cache contains the query result.
If this is a hit, the result from the cache is reported to the user
immediately. This saves the cost of calling the shortest path API.
Otherwise, the result must be obtained by calling the shortest path
API.

We observe that maximizing the cache hit ratio does not nec-
essarily mean that the overall cost is reduced significantly. In the
server scenario, the cost of calling the shortest path API (e.g., short-
est path algorithm) is not fixed and depends heavily on the distance
of the shortest path.

We conducted a case study and found a strong correlation be-
tween shortest path computation cost and distance. In the first test,
Dijkstra’s algorithm is used as the API. We generated 500 random
shortest path queries on the Aalborg network (see Section 6). Fig-
ure 4a shows the shortest path distance (x-axis) and the number of
nodes visited (y-axis) for each query. In the second test, the Google
Directions API is used as the API. We tested several queries and
plotted their shortest travel times and costs (i.e., response times)
in Figure 4b. In summary, caching a short-range path may only
provide a negligible improvement, even if the path is queried fre-
quently. Therefore, we will study the benchmarking of the cost of
calling the API.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 20000 40000 60000 80000 100000

C
o

s
t
(n

o
d

e
s
 v

is
it
e

d
)

Shortest path distance

Source Target Travel Response
time (s) time (ms)

Capitol Building The Smithsonian 372 101.24
The Smithsonian Washington, DC 419 110.94

Whitehouse War Memorials 41831 168.44
Whitehouse Capitol Building 75805 278.44
Whitehouse Statue of Liberty 88947 362.8

Capitol Building Mount Rushmore 99456 364.68
Whitehouse Golden Gate Bridge 108353 342.8

(a) Dijkstra (b) Google Directions API

Figure 4: Cost vs. distance of a shortest path API

Adopting the static caching paradigm, the server/proxy collects
a query log and re-builds the cache periodically (e.g., daily). By
extracting the distribution of a query log, we are able to estimate
the probability of a specific shortest path being queried in the fu-
ture. Combining such information with benchmarking, we can
place promising paths in the cache in order to optimize the over-
all system performance. We will also investigate the structure of
the cache; it should be compact in order to accommodate as many
paths as possible, and it should support efficient result retrieval.

Our main objective or problem is to reduce the overall cost in-
curred by calling the shortest path API. We define this problem
below. In Section 4, we formulate a cache benefit notion γ(Ψ), ex-
tract statistics to compute γ(Ψ), and present an algorithm for the
cache benefit maximization problem.

PROBLEM: Static cache benefit maximization problem.
Given a cache budget B and a query logQL, build a cache Ψ with
the maximum cache benefit γ(Ψ) subject to the budget constraint
B, where Ψ contains result paths Ps,t whose queries Qs,t belong
toQL.

Our secondary objectives are to: (i) develop a compact cache
structure to maximize the accommodation of shortest paths, and
(ii) provide efficient means of retrieving results from the cache. We
focus on these issues in Section 5.

3.3 Existing Solutions for Caching Results
We revisit existing solutions for caching web search results [16]

and explain why they are inadequate for shortest path caching.

Dynamic Caching—LRU: A typical dynamic caching method for
web search is the Least-Recently-Used (LRU) method [16]. When
a new query is submitted, its result is inserted into the cache. When
the cache does not have space for a result, the least-recently-used
result in the cache is evicted to make space.

We proceed to illustrate the running steps of LRU on the map
in Figure 2. Let the cache budget B be 10 (i.e., it can hold 10
nodes). Table 2 shows the query and the cache content at each time
Ti. Each cached path is associated with the last time it was used.
At times T1 and T2, both queries produce cache misses and their
results (P3,6 and P1,6) are inserted into the cache (as they fit). At
time T3, query Q2,7 causes a cache miss as it cannot be answered
by any cached path. Before inserting its result P2,7 into the cache,
the least recently used path P3,6 is evicted from the cache. At time
T4, query Q1,4 contributes a cache hit; it can be answered by the
cached path P1,6 because the source and target nodes v1, v4 fall on
P1,6 (see Lemma 1). The running steps at subsequent times are
shown in Table 2. In total, the LRU cache has 2 hits.

Time Qs,t Ps,t Paths in LRU cache event
T1 Q3,6 〈v3, v4, v5, v6〉 P3,6 : T1 miss
T2 Q1,6 〈v1, v3, v4, v5, v6〉 P1,6 : T2, P3,6 : T1 miss
T3 Q2,7 〈v2, v3, v4, v5, v7〉 P2,7 : T3, P1,6 : T2 miss
T4 Q1,4 〈v1, v3, v4〉 P1,6 : T4, P2,7 : T3 hit
T5 Q4,8 〈v4, v5, v7, v8〉 P4,8 : T5, P1,6 : T4 miss
T6 Q2,5 〈v2, v3, v4, v5〉 P2,5 : T6, P4,8 : T5 miss
T7 Q3,6 〈v3, v4, v5, v6〉 P3,6 : T7, P2,5 : T6 miss
T8 Q3,6 〈v3, v4, v5, v6〉 P3,6 : T8, P2,5 : T6 hit

Table 2: Example of LRU on a sequence of queries

LRU cannot determine the benefit of a path effectively.
For example, paths P1,6 and P2,7 (obtained at times T2

and T3) can answer many queries at subsequent times, e.g.,
Q1,4, Q2,5, Q3,6, Q3,6. If they were kept in the cache, there would
be 4 cache hits. However, LRU evicts them before they can be used
to answer other queries.

As another limitation, LRU is not designed to support subpath
matching efficiently. Upon receiving a query Qs,t, every path in
the cache needs to be scanned in order to check whether the path
contains vs and vt. This incurs significant runtime overhead, pos-
sibly outweighing the advantages of the cache.

Static Caching—HQF: A typical static caching method for web
search is the Highest-Query-Frequency (HQF) method [16]. In an

offline phase, the most frequent queries are selected from the query
logQL, and then their results are inserted into the cache. The cache
content remains unchanged during runtime.

Like in web caching, the frequency of a query Qs,t is the
number of queries in QL that are identical to Qs,t. Let
us consider an example query log: QL = {Q3,6, Q1,6,
Q2,7, Q1,4, Q4,8, Q2,5, Q3,6, Q3,6}. Since Q3,6 has the highest
frequency (3), HQF picks the corresponding result path P3,6. It
fails to pick P1,6 because its query Q1,6 has a low frequency (1).
However, path P1,6 is more promising than P3,6 because P1,6 can
be used to answer more queries than can P3,6. This creates a
problem in HQF because the query frequency definition does not
capture characteristics specific to our problem—shortest paths may
overlap, and the result of one query may be used to answer multiple
other queries.

Shared limitations of LRU and HQF: Furthermore, neither LRU
nor HQF consider the variations in the expense of obtaining short-
est paths. Consider the cache in the server scenario as an example.
Intuitively, it is more expensive to process a long-range query than a
short-range query. Caching an expensive-to-obtain path could lead
to greater savings in the future. An informed choice of which paths
to cache should take such expenses into account.

Also, the existing approaches have not studied the utilization of
the cache space for shortest paths. For example, in Table 2, the
paths in the cache overlap and cause wasted space on storing dupli-
cate nodes among the overlapping paths. It is important to design a
compact cache structure that exploits path sharing to avoid storing
duplicated nodes.

4. BENEFIT-DRIVEN CACHING
We propose a benefit-driven approach to determining which

shortest paths should be placed in the cache. Section 4.1 for-
mulates a model for capturing the benefit of a cache on potential
queries. This model requires knowledge of (i) the frequency χs,t

of a query, and (ii) the expense Es,t of processing a query. Thus,
we investigate how to extract query frequencies from a query log
in Section 4.2 and benchmark the expense of processing a query
in Section 4.3. Finally, in Section 4.4, we present an algorithm for
selecting promising paths to be placed in the cache.

4.1 Benefit Model
We first study the benefit of a cached shortest path and then ex-

amine the benefit of a cache.
First, we consider a cache Ψ that contains one shortest path Pa,b

only. Recall from Figure 3 that when a queryQs,t can be answered
by a cached path Pa,b, this produces a cache hit and avoids the cost
of invoking the shortest path API. In order to model the benefit of
Pa,b, we must address two questions:

1. Which queries Qs,t can be answered by the path Pa,b?
2. For query Qs,t, what are the cost savings?

The first question is answered by Lemma 1. The path Pa,b con-
tains the path Ps,t if both nodes vs and vt appear in Pa,b. Thus, we
define the answerable query set of the path Pa,b as:

U(Pa,b) = {Ps,t | s ∈ Pa,b ∧ t ∈ Pa,b ∧ s 6= t} (1)

This set contains the queries that can be answered by Pa,b. Tak-
ing Figure 2 as the example graph, the answerable query set of
path P1,6 is: U(P1,6) = {P1,3, P1,4, P1,5, P1,6, P3,4, P3,5, P3,6,
P4,5, P4,6, P5,6}. Table 3 shows the answerable query sets of other
paths.

Pa,b U(Pa,b)
P1,4 P1,3, P1,4, P3,4

P1,6 P1,3, P1,4, P1,5, P1,6, P3,4, P3,5, P3,6, P4,5, P4,6, P5,6

P2,5 P2,3, P2,4, P2,5, P3,4, P3,5, P4,5

P2,7 P2,3, P2,4, P2,5, P2,7, P3,4, P3,5, P3,7, P4,5, P4,7, P5,7

P3,6 P3,4, P3,5, P3,6, P4,5, P4,6, P5,6

P4,8 P4,5, P4,7, P4,8, P5,7, P5,8, P7,8

U(Ψ), when Ψ = {P1,6, P3,6}
P1,3, P1,4, P1,5, P1,6, P3,4, P3,5, P3,6, P4,5, P4,6, P5,6

Table 3: Example of U(Ps,t) and U(Ψ)

Regarding the second question, the expected cost savings for
query Qs,t depends on (i) its query frequency χs,t and (ii) the ex-
pense Es,t for the shortest path API to process it. Since the path
Pa,b can answer queryQs,t, we save costEs,t a total of χs,t times,
i.e., χs,t · Es,t in total.1

Combining the answers to both questions, we define the benefit
of path Pa,b as:

γ(Pa,b) =
∑

Ps,t∈U(Pa,b)

χs,t · Es,t (2)

The path benefit γ(Pa,b) answers the question: “If path Pa,b is in
the cache, how much cost can we save in total?”

Let us assume that we are given the values of χs,t andEs,t for all
pairs (vs, vt), as shown in Figure 5. We study how to derive them
in subsequent sections. To compute γ(P1,6) of path P1,6, we first
find its answerable query set U(P1,6) (see Table 3). Since U(P1,6)
contains the path P1,4, it contributes a benefit of χ1,4 ·E1,4 = 1 · 2
(by lookup in Figure 5). Summing up the benefits of all paths in
U(P1,6), we thus obtain: γ(P1,6) = 0 + 1 · 2 + 0 + 1 · 4 + 0 + 0 +
3 · 3 + 0 + 0 + 0 = 15. Similarly, we can compute the benefit of
path P3,6: γ(P3,6) = 0 + 0 + 3 · 3 + 0 + 0 + 0 = 9.

χs,t v1 v2 v3 v4 v5 v6 v7 v8

v1 / 0 0 1 0 1 0 0
v2 0 / 0 0 1 0 1 0
v3 0 0 / 0 0 3 0 0
v4 1 0 0 / 0 0 0 1
v5 0 1 0 0 / 0 0 0
v6 1 0 3 0 0 / 0 0
v7 0 1 0 0 0 0 / 0
v8 0 0 0 1 0 0 0 /

Es,t v1 v2 v3 v4 v5 v6 v7 v8

v1 / 2 1 2 3 4 4 5
v2 2 / 1 2 3 4 4 5
v3 1 1 / 1 2 3 3 4
v4 2 2 1 / 1 2 2 3
v5 3 3 2 1 / 1 1 2
v6 4 4 3 2 1 / 2 3
v7 4 4 3 2 1 2 / 1
v8 5 5 4 3 2 3 1 /

(a) χs,t values (b) Es,t values

Figure 5: Example of χs,t and Es,t values for the graph

We proceed to extend our equations to the general case—a cache
containing multiple shortest paths. Observe that a query can be
answered by the cache Ψ if it can be answered by any path Pa,b in
Ψ. Thus, we define the answerable query set of Ψ as the union of
all U(Pa,b), and we define the benefit of Ψ accordingly.

U(Ψ) =
⋃

Pa,b∈Ψ

U(Pa,b) (3)

γ(Ψ) =
∑

Ps,t∈U(Ψ)

χs,t · Es,t (4)

The cache benefit γ(Ψ) answers the question: “Using cache Ψ,
how much cost can we save in total?”

1We ignore the overhead of cache lookup as it is negligible com-
pared to the expense Es,t of processing a query Qs,t. Efficient
cache structures are studied in Section 5.

Suppose that the cache Ψ contains two paths P1,6 and P3,6. The
answerable query set U(Ψ) of Ψ is shown in Table 3. By Equa-
tion 4, we compute the cache benefit as: γ(Ψ) = 1·2+1·4+3·3 =
15.

Note that γ(Ψ) is not a distributive function. For example,
γ(P1,6) + γ(P3,6) = 15 + 9 = 24 6= γ(Ψ). Since the
path P3,6 appears in both answerable query sets U(P1,6) and
U(P3,6), the benefit contributed by P3,6 is double-counted in the
sum γ(P1,6) + γ(P3,6). On the other hand, the value of γ(Ψ) is
correct because the path P3,6 appears exactly once in the answer-
able query set U(Ψ) of the cache.

Benefit per size unit: The benefit model does not take the size
|Pa,b| of a path Pa,b into account. Assume that we are given two
paths Pa,b and Pa′,b′ that have the same benefit (i.e., γ(Pa,b) =
γ(Pa′,b′)) and where Pa′,b′ is smaller than Pa,b. Intuitively, we
then prefer path Pa′,b′ over path Pa,b because Pa′,b′ occupies less
space, leaving space for the caching of other paths. Thus, we define
the benefit-per-size of a path Pa,b as:

γ(Pa,b) =
γ(Pa,b)

|Pa,b|
(5)

We will utilize this notion in Section 4.4.
Recall from Section 3.2 that our main problem is to build a cache

Ψ such that its benefit γ(Ψ) is maximized. This requires values for
χs,t andEs,t. We discuss how to obtain these values in subsequent
sections.

4.2 Extracting χs,t from Query Log
The frequency χs,t of query Qs,t plays an important role in the

benefit model. According to a scientific study [7], the mobility
patterns of human users follow a skewed distribution. For instance,
queries between hot regions (e.g., shopping malls, residential build-
ings) generally have high χs,t, whereas queries between sparse re-
gions (e.g., rural areas, country parks) are likely to have low χs,t.

In this section, we propose automatic techniques for deriving
the values of χs,t. In our caching system (see Figure 3), the
server/proxy periodically collects the query log QL and extracts
values of χs,t. The literature on static web caching [2] suggests
that the query frequency is stable within a month and that a month
can be used as the periodic time interval. We first study a simple
method to extract χs,t and then propose a more effective method
for extracting χs,t.

Node-pair frequency counting: With this method, we first create
a node-pair frequency table χ with |V | × |V | entries, like the one
in Figure 5a. The entry in the s-th row and the t-th column repre-
sents the value of χs,t. The storage space of the table is O(|V |2),
regardless of the query log size.

At the beginning, all entries in the table are initialized to zero.
Next, we examine each query Qs,t in the query log QL and incre-
ment the entry χs,t (and χt,s).

Consider the query log QL in Table 4 as an example. For the
first query Q3,6 in QL, we increment the entries χ3,6 and χ6,3.
Continuing this process with the other queries in QL, we obtain
the table χ shown in Figure 5a. The χs,t values in the table χ can
then be used readily in the benefit model in Section 4.1.

Timestamp T1 T2 T3 T4 T5 T6 T7 T8

Query Q3,6 Q1,6 Q2,7 Q1,4 Q4,8 Q2,5 Q3,6 Q3,6

Table 4: Query logQL

Region-pair frequency counting: The node-pair frequency table
χ requiresO(|V |2) space, which cannot fit into main memory even

for a road network of moderate size (e.g., |V | = 100, 000). To
tackle this issue, we propose to (i) partition the graph intoL regions
(where L is system parameter), and (ii) employ a compact table for
storing only the query frequencies between pairs of regions.

For the first step, we can apply any existing graph partitioning
technique (e.g., kD-tree partitioning, spectral partitioning). The
kD-tree partitioning is applicable to the majority of road networks
whose nodes are associated with coordinates. For other graphs,
we may apply spectral partitioning, which does not require node
coordinates. In Figure 6a, we apply a kD-tree on the coordi-
nates of nodes in order to partition the graph into L = 4 regions:
R1, R2, R3, R4. The nodes in these regions are shown in Figure 6b.

v
1

v
3

v
7

v
4

v
8

v
5

v
6

v
2

6

1

9
3

2

5

2

R
1

R
2

R
3

R
4 v

7
2

(a) a graph partitioned into 4 regions

R1 : {v1, v2}
R2 : {v3, v4}
R3 : {v5, v6}
R4 : {v7, v8}

χRi,Rj
R1 R2 R3 R4

R1 0 1 2 1
R2 1 0 3 1
R3 2 3 0 0
R4 1 1 0 0

(b) node sets of regions (c) region-pair frequency table χ̂

Figure 6: Counting region-pair frequency in table χ̂

For the second step, we create a region-pair frequency table χ̂
with L× L entries, like the one in Figure 6c. The entry in the Ri-
th row and the Rj-th column represents the value of χ̂Ri,Rj . The
storage space of this table is only O(L2) and can be controlled by
the parameter L. Initially, all entries in the table are set to zero. For
each query Qs,t in the query log QL, we first find the region (say,
Ri) that contains node vs and the region (say, Rj) that contains
node vt. Then we increment the entry χ̂Ri,Rj and χ̂Rj ,Ri . As an
example, we read the query log QL in Table 4 and examine the
first query Q3,6. We find that nodes v3 and v6 fall in the regions
R2 and R3, respectively. Thus, we increment the entries χ̂R2,R3

and χ̂R3,R2 . Continuing this process with the other queries inQL,
we obtain the table χ̂ as shown in Figure 6c.

The final step is to describe how to derive the value of χs,t

from the region-pair frequency table χ̂ so that the table is use-
ful for the benefit model. Note that the frequency of χ̂Ri,Rj is
contributed by any pair of nodes (vs, vt) such that region Ri con-
tains vs and region Rj contains vt. Thus, we obtain: χ̂Ri,Rj =∑

vs∈Ri

∑
vt∈Rj

χs,t. If we make the uniformity assumption
within a region, we have: χ̂Ri,Rj = |Ri| · |Rj | · χs,t, where |Ri|
and |Rj | denotes the number of nodes in the region Ri and Rj , re-
spectively. In other words, we compute the value of χs,t from the
χ̂ as follows:

χs,t =
χ̂Ri,Rj

|Ri| · |Rj |
(6)

The value ofχs,t is only computed when it is needed. No additional
storage space is required to store χs,t in advance.

A benefit of the region-pair method is that it can capture generic
patterns for regions rather than specific patterns for nodes. An ex-
ample pattern could be that many users drive from a residential re-
gion to a shopping region. Since drivers live in different apartment
buildings, their starting points could be different, resulting in many
dispersed entries in the node-pair frequency table χ. In contrast,

they contribute to the same entry in the region-pair frequency table
χ̂.

4.3 Benchmarking Es,t of Shortest Path APIs
In our caching system (see Figure 3), the shortest path API is

invoked when there is a cache miss. Here, we study how to capture
the expense Es,t of computing query Qs,t.

Recall that the cache can be placed at a proxy or a server. For the
proxy scenario, the shortest path API triggers the issue of a query
message to the server. The cost is dominated by the communication
round-trip time, which is the same for all queries. Thus, we define
the expense Es,t of query Qs,t in this scenario as:

Es,t(proxy) = 1 (7)

Our subsequent discussion focuses on the server scenario. Let
ALG be the shortest path algorithm invoked by the shortest path
API. We denote the running time of ALG for query Qs,t as the
expense Es,t(ALG).

We develop a generic technique for estimating Es,t(ALG); it is
applicable to any algorithm ALG and to an arbitrary graph topol-
ogy. To our best knowledge, this paper is the first to explore
this issue. There exists work on shortest path distance estima-
tion [19], but no work exists on estimating the running time of
an arbitrary algorithm ALG. Even for existing shortest path in-
dexes [9, 12, 13, 20, 21], only worst-case query times have been
analyzed. They cannot be used to estimate the running time for
a specific query Qs,t.

A brute-force approach is to precomputeEs,t(ALG) by running
ALG for every pair of source node vs and target node vt. These
values can be stored in a table, like the one in Figure 5b. However,
this approach is prohibitively expensive as it requires runningALG
|V |2 times.

Our estimation technique incurs only a small precomputation
overhead. Intuitively, the expense Es,t is strongly correlated with
the distance of the shortest path Ps,t. Short-range queries are ex-
pected to incur small Es,t, whereas long-range queries should pro-
duce high Es,t. Our idea is to classify queries based on distances
and then estimate the expense of a query according to its category.

Estimation structures: To enable estimation, we build two data
structures: (i) a distance estimator and (ii) an expense histogram.

The distance estimator aims at estimating the shortest path dis-
tance of a query Qs,t. We simply adopt the landmark-based esti-
mator [19] as the distance estimator. It requires selecting a set U
of nodes as landmarks and precomputing the distances from each
landmark node to every node in the graph. This incurs O(|U ||V |)
storage space and O(|U ||E| log |E|) construction time. Potamias
et al. [19] suggest that |U | = 20 is sufficient for accurate distance
estimation. Figure 7a shows an example with two landmark nodes,
i.e., U = {v3, v5}, together with their distances d(uj , vi) to other
nodes.

d(uj , vi) v1 v2 v3 v4 v5 v6 v7 v8

u1 : v3 3 1 0 6 15 17 20 22
u2 : v5 18 16 15 9 0 2 5 7

d 0-5 5-10 10-15 15-20 20-25
E(d) 1.2 2.5 3.8 5.3 6.8

(a) distance estimator (b) expense histogram

Figure 7: Example of estimating expense χs,t

We use an expense histogram for recording the average expense
of queries with respect to their distances, as illustrated in Figure 7b.
In general, the histogram consists of H categories of distances.
Then, we execute the algorithm ALG on a sample of S random
queries to obtain their expenses, and we update the corresponding

buckets in the histogram. This histogram requires O(H) storage
space and S · O(ALG) construction time. We recommend to use
H = 10 and S = 100 on typical road networks.

Estimation process: With the above structures, the value of Es,t

can be estimated in two steps. First, we apply the distance estima-
tor of Potamias et al. [19] and estimate the shortest path distance of
Ps,t as: mini=1..|U| d(uj , vs) + d(uj , vt). This step takes O(|U |)
time. Second, we perform a lookup in the expense histogram and
return the expense in the corresponding bucket as the estimated ex-
pense Es,t.

Consider the estimation of E1,4 as an example. Using the dis-
tance estimator in Figure 7a, we estimate the shortest path distance
of P1,4 as: min{3 + 6, 18 + 9} = 9. We then do a lookup in the
expense histogram in Figure 7b and thus estimate E1,4 to be 2.5.

4.4 Cache Construction Algorithm
As in other static caching methods [1, 2, 17, 18], we exploit the

query logQL to identify promising results to be placed in the cache
Ψ. Each query Qa,b ∈ QL has a corresponding path result Pa,b.
This section presents a cache construction algorithm for placing
such paths into cache Ψ so that the total cache benefit γ(Ψ) is max-
imized, with the cache size |Ψ| being bounded by a budget B.

In web search caching, Ozcan et al. [17] propose a greedy algo-
rithm to populate a cache. We also adopt the greedy approach to
solve our problem. Nevertheless, the application of a greedy ap-
proach to our problem presents challenges.

Challenges of a greedy approach: It is tempting to populate the
cache with paths by using a greedy approach that (i) computes the
benefit-per-size γ(Pa,b) for each path Pa,b and then (ii) iteratively
places items that have the highest γ(Pa,b) in the cache. Unfor-
tunately, this approach does not necessarily produce a cache with
high benefit.

As an example, consider the graph in Figure 6a and the query
logQL in Table 4. The result paths of the queries ofQL are: P1,6,
P2,7, P1,4, P4,8, P2,5, P3,6. To make the benefit calculation read-
able, we assume that Es,t = 1 for each pair, and we use the values
of χs,t in Figure 5a. In this greedy approach, we first compute the
benefit-per-size of each path above. For example, P1,6 can answer
five queries Q3,6, Q1,6, Q1,4, Q3,6, Q3,6 inQL, and its size |P1,6|
is 5, so its benefit-per-size is: γ(P1,6) = 5/5. Since P3,6 has a size
of 4 and it can answer three queries Q3,6, Q3,6, Q3,6 in QL, its
benefit-per-size is: γ(P3,6) = 3/4. Repeating this process for the
other paths, we obtain: γ(P1,4) = 1/3, γ(P1,6) = 5/5, γ(P2,5) =
1/4, γ(P2,7) = 2/5, γ(P3,6) = 3/4, γ(P4,8) = 1/4. Given the
cache budget B = 10, the greedy approach first picks P1,6 and then
picks P3,6. Thus, we obtain the cache Ψ = {P1,6, P3,6} with the
size 9 (i.e., total number of nodes in the cache). No more paths can
be inserted into the cache as it is full.

The problem with the greedy approach is that it ignores the ex-
isting cache content when it chooses a path Pa,b. If many queries
that are answerable by path Pa,b can already be answered by some
existing path in the cache, it is not worthwhile to include Pa,b into
the cache.

In the above example, the greedy approach picks the path P3,6

after the path P1,6 has been inserted into the cache. Although path
P3,6 can answer the three queriesQ3,6, Q3,6, Q3,6 inQL, all those
queries can already be answered by the path P1,6 in the cache. So
while path P3,6 has no benefit, the greedy approach still picks it.

A revised greedy approach: To tackle the above issues, we study
a notion that expresses the benefit of a path Pa,b in terms of the
queries that can only be answered by Pa,b and not any existing
paths in the cache Ψ.

DEFINITION 6. Incremental benefit-per-size of path Pa,b.
Given a shortest path Pa,b, its incremental benefit-per-size
∆γ(Pa,b,Ψ) with respect to the cache Ψ, is defined as the addi-
tional benefit of placing Pa,b into Ψ, per the size of Pa,b:

∆γ(Pa,b,Ψ) =
γ(Ψ ∪ {Pa,b})− γ(Ψ)

|Pa,b|
(8)

=
∑

Ps,t∈U(Pa,b)−U(Ψ)

χs,t · Es,t

|Pa,b|

We propose a revised greedy algorithm that proceeds in rounds.
The cache Ψ is initially empty. In each round, the algorithm com-
putes the incremental benefit ∆γ(Pa,b,Ψ) of each path Pa,b with
respect to the cache Ψ (with its current content). Then the algo-
rithm picks the path with the highest ∆γ value and inserts it into
Ψ. These rounds are repeated until the cache Ψ becomes full (i.e.,
reaching its budget B).

We continue with the above running example and show the steps
of this revised greedy algorithm in Table 5. In the first round, the
cache Ψ is empty, so the incremental benefit ∆γ(Pa,b,Ψ) of each
path Pa,b equals its benefit γ(Pa,b). From the previous example,
we obtain: ∆γ(P1,4) = 1/3, ∆γ(P1,6) = 5/5, ∆γ(P2,5) = 1/4,
∆γ(P2,7) = 2/5, ∆γ(P3,6) = 3/4, ∆γ(P4,8) = 1/4. After
choosing the path P1,6 with the highest ∆γ value, the cache be-
comes: Ψ = {P1,6}. In the second round, we consider the cache
when computing the ∆γ value of a path. For the path P3,6, all
queries that can be answered by it can also be answered by the path
P1,6 in the cache. Thus, the ∆γ value of P3,6 is: ∆γ(P3,6) = 0.
Continuing this with other queries, we obtain: ∆γ(P1,4) = 0,
∆γ(P1,6) = 0, ∆γ(P2,5) = 1/4, ∆γ(P2,7) = 2/5, ∆γ(P3,6) =
0, ∆γ(P4,8) = 1/4. The path P2,7 with the highest ∆γ value is
chosen and then the cache becomes: Ψ = {P1,6, P2,7}. The total
benefit of the cache γ(Ψ) is 7. Now the cache is full.

Round Path Cache Ψ
P1,4 P1,6 P2,5 P2,7 P3,6 P4,8 before round after round

1 1/3 |5/5| 1/4 2/5 3/4 1/4 empty P1,6

2 0 0 1/4 |2/5| 0 1/4 P1,6 P1,6, P2,7

Table 5: Incremental benefits of paths in our greedy algorithm
(boxed values indicate the selected paths)

Cache construction algorithm and its time complexity: Algo-
rithm 1 shows the pseudo-code of our revised greedy algorithm. It
takes as input the graphG(V,E), the cache budgetB, and the query
log QL. The cache budget B denotes the capacity of the cache in
terms of the number of nodes. The statistics of query frequency χ
and query expense E are required for computing the incremental
benefit of a path.

The initialization phase corresponds to Lines 1–5. The cache Ψ
is initially empty. A max-heap H is employed to organize result
paths in descending order of their ∆γ values. For each query Qa,b

in the query log QL, we retrieve its result path Pa,b, compute its
∆γ value as ∆γ(Pa,b,Ψ), and then insert Pa,b into H .

The algorithm incorporates an optimization to reduce the number
of incremental benefit computations in each round (i.e., the loop of
Lines 6–13). First, the path Pa′,b′ with the highest ∆γ value is
selected from H (Line 7) and its current ∆γ value is computed
(Line 8). According to Lemma 2, the ∆γ value of a path Pa,b

in H , which was computed in some previous round, serves as an
upper bound of its ∆γ value in the current round. If ∆γ(Pa′,b′ ,Ψ)
is above the top key ofH (Line 9) then we can safely conclude that
Pa′,b′ is superior to all paths inH , without having to compute their

Algorithm 1 Revised-Greedy(Graph G(V,E), Cache budget B,
Query logQL, Frequency χ, Expense E)
1: Ψ← new cache;
2: H ← new max-heap; . storing result paths
3: for each Qa,b ∈ QL do
4: Pa,b.∆γ ← ∆γ(Pa,b,Ψ); . compute using χ and E
5: insert Pa,b into H;
6: while |Ψ| ≤ B and |H| > 0 do
7: Pa′,b′ ←H.pop(); . potential best path
8: Pa′,b′ .∆γ ← ∆γ(Pa′,b′ ,Ψ); . update ∆γ value
9: if Pa′,b′ .∆γ ≥ top ∆γ of H then . actual best path

10: if B − |Ψ| ≥ |Pa′,b′ | then . enough space
11: insert Pa′,b′ into Ψ;
12: else . not the best path
13: insert Pa′,b′ into H;
14: return Ψ;

exact ∆γ values. We then insert the path Pa′,b′ into the cache Ψ if
it has sufficient remaining space B − |Ψ|. In case ∆γ(Pa′,b′ ,Ψ)
is smaller than the top key of H , we insert Pa′,b′ back into H .
Eventually, H becomes empty, the loop terminates, and the cache
Ψ is returned.

LEMMA 2. ∆γ is a decreasing function of round i.
Let Ψi be the cache just before the i-th round of the algorithm. It
holds that: ∆γ(Pa,b,Ψi) ≥ ∆γ(Pa,b,Ψi+1).

PROOF. All paths in Ψi must also be in Ψi+1, so we have:
Ψi ⊆ Ψi+1. By Equation 3, we derive: U(Ψi) ⊆ U(Ψi+1)
and then obtain: U(Pa,b) − U(Ψi) ⊇ U(Pa,b) − U(Ψi+1). By
Definition 6, we have ∆γ(Pa,b,Ψ) =

∑
Ps,t∈U(Pa,b)−U(Ψ) χs,t ·

Es,t/|Pa,b|. Combining the above facts, we get: ∆γ(Pa,b,Ψi) ≥
∆γ(Pa,b,Ψi+1).

We proceed to illustrate the power of the above optimization.
Consider the second round shown in Table 5. Without the op-
timization, we must recompute the ∆γ values of the 5 paths
P1,4, P2,5, P2,7, P3,6, P4,8 before determining the path with the
highest ∆γ value. Using the optimization, we just need to pop
the paths P3,6, P2,7 from the heap H and recompute their ∆γ val-
ues. The other paths (e.g„ P1,4, P2,5, P4,8) have upper bound ∆γ
values (1/3, 1/4, 1/4, from the first round) that are smaller than the
current ∆γ value of P2,7 (2/5). Thus, we need not recompute their
current ∆γ values.

We then analyze the time complexity of Algorithm 1, without
using the optimization. Let |QL| be the number of result paths
for queries in QL. Let |P | be the average size of the above result
paths. The number of paths in the cache is B/|P |, so the algorithm
completes in B/|P | rounds. In each round, we need to process
|QL| result paths and recompute their ∆γ values. Computing the
∆γ value of a path Pa,b requires the examination of each subpath
of Pa,b (see Definition 6). This takes O(|P |2) time as there are
O(|P |2) subpaths in a path. Multiplying the above terms, the time
complexity of our algorithm is: O(|QL|·B·|P |). This running time
is affordable for a static caching scheme. Also, our experimental
results show that the running time of the optimized algorithm is
notably better in typical cases.

5. CACHE STRUCTURE
Section 5.1 presents a structure that supports efficient cache

lookup at query time. Sections 5.2 and 5.3 present compact cache
structures that enable a cache to accommodate as many shortest
paths as possible, thus improving the benefit of the cache.

5.1 Efficient Lookup via Inverted Lists
Upon receiving a query Qs,t, the proxy/server performs a cache

lookup for any path Pa,b that can answer the query (see Figure 3).
We propose a structure that enables efficient cache lookup.

The proposed structure involves an array of paths (see Figure 8a)
and inverted lists of nodes (see Figure 8b). The array stores the con-
tent of each path. In this example, the array contains three paths:
Ψ1,Ψ2,Ψ3. The inverted lists for nodes are used to support effi-
cient lookup. The inverted list of a node vi stores a list of path IDs
Ψj whose paths contain vi. For example, since paths Ψ1 and Ψ2

contain the node v1, the inverted list of v1 stores Ψ1 and Ψ2.

Ψ1 v1, v3, v4

Ψ2 v1, v3, v2

Ψ3 v2, v3, v4, v5

v1 Ψ1,Ψ2

v2 Ψ2,Ψ3

v3 Ψ1,Ψ2,Ψ3

v4 Ψ1,Ψ3

v5 Ψ3

(a) path array (b) inverted lists

Figure 8: Path array, with inverted lists

Given a query Qs,t, we just need to examine the inverted lists of
vs and vt. If these two lists have a non-empty intersection (say, Ψj)
then we are guaranteed that the path Ψj can answer queryQs,t. For
example, for the query Q2,4, we first retrieve the inverted lists of
v2 and v4. The intersection of these two lists is Ψ3 that can then
be used to answer the query. Consider the query Q1,5 as another
example. Since the inverted lists of v1 and v5 have an empty inter-
section, we get a cache miss.

Cache size analysis: So far, we have only measured the cache size
in terms of the paths or nodes in the cache and have not considered
the sizes of the auxiliary structures (e.g., inverted lists). Here, we
measure the cache size accurately and in an absolute terms, consid-
ering both (i) the sizes of paths/nodes in the path array and (ii) the
sizes of inverted lists.

Let |Ψ| be the number of nodes in the path array, and let m be
the number of paths in the path array. Observe that an attribute with
the domain size x can be stored as a binary string of Ix = dlog2 xe
bits.

In the path array, each node can be represented by I|V | bits.
Thus, the path array occupies |Ψ| · I|V | bits. In each inverted list,
each path ID can be represented by Im bits. Note that the total
number of path IDs in inverted lists equals |Ψ|. Thus, the inverted
lists occupy |Ψ| ·Im bits. In summary, the total size of the structure
is: |Ψ| · (I|V | + Im) bits.

5.2 Compact Cache via a Subgraph Model
We propose a cache structure that consists of a subgraphGΨ (see

Figure 9a) and inverted lists (see Figure 9b). The same inverted lists
as in Figure 8b are used in Figure 9b. The main difference is that
the path array in Figure 8a is now replaced by a subgraph structure
GΨ that stores the adjacency lists of nodes that appear in the cache.
The advantage of the subgraph structure is that each node (and its
adjacency list) is stored at most once in GΨ.

To check whether a query Qs,t can be answered by the cache,
we just examine the inverted lists of vs and vt and follow the same
procedure as in Section 5.1. There is a hit when the intersection of
these two lists contains a path ID (say, Ψj). To find the result path
Ps,t, we start from source vs and visit a neighbor node v′ whenever
the inverted list of v′ contains Ψj .

Figure 9c visualizes the structures in Figures 9a,b. Note that
the subgraph GΨ only contains the adjacency lists of nodes that
appear in the cache. Take query Q2,4 as an example. First, we
check the inverted lists of v2 and v4 in Figure 9b. Their intersection

v1 v3

v2 v3

v3 v1, v2, v4

v4 v3, v5

v5 v4

v1 Ψ1,Ψ2

v2 Ψ2,Ψ3

v3 Ψ1,Ψ2,Ψ3

v4 Ψ1,Ψ3

v5 Ψ3

v
1

v
2

Ψ
1

Ψ
2

Ψ
2

Ψ
3

Ψ
3v

1

v
3

v
4

v
5

6

1

9

3

Ψ
1
Ψ

2
Ψ

3 Ψ
1
Ψ

3

(a) subgraph GΨ (b) inverted lists (c) visualization

Figure 9: Subgraph representation, with inverted lists

contains a path ID (Ψ3). We then start from the source v2 and
visit its neighbor v3 whose inverted list contains Ψ3. Next, we
examine the unvisited neighbors of v3, i.e., v1 and v4. We ignore
v1 as its inverted list does not contain Ψ3. Finally, we visit v4 and
reach the target. During the traversal, we obtain the shortest path:
〈v2, v3, v4〉.
Cache size analysis: We proceed to analyze the size of the above
cache structure. As in Section 5.1, let |Ψ| be the number of nodes
in the cache and let m be the number of paths in the cache. Let
VΨ ⊂ V be the number of distinct nodes in the cache and let e be
the average number of neighbors per node.

The inverted lists take |Ψ|·Im bits, as covered in the last section.
The subgraph occupies |VΨ| · e · I|V | bits. Thus, the total size of
the structure is: |VΨ| · e · I|V | + |Ψ| · Im bits.

Note that |VΨ| is upper bounded by |V | and that it is independent
of the number of paths m in the cache. Thus, the subgraph repre-
sentation is more compact than the structure in Section 5.1. The
saved space can be used for accommodating additional paths into
the cache, in turn improving the benefit of the cache.

5.3 Compact Inverted Lists
We present two compression techniques for reducing the space

consumption of inverted lists. These are orthogonal and can be
combined to achieve better compression. Again, the saved space
can be used to accommodate more paths in the cache.

Interval path ID compression: This technique represents a se-
quence of consecutive path IDs Ψi,Ψi+1,Ψi+2, ·,Ψj as an inter-
val of path IDs Ψi,j . In other words, j − i + 1 path IDs can be
compressed into 2 path IDs. The technique can achieve significant
compression when there are long consecutive sequences of path
IDs in inverted lists.

Figure 10a shows the original inverted lists, and Figure 10b
shows the compressed inverted lists obtained by this compression.
For example, the inverted list of v3 (Ψ1,Ψ2,Ψ3) is compressed
into the interval Ψ1,3.

v1 Ψ1,Ψ2

v2 Ψ2,Ψ3

v3 Ψ1,Ψ2,Ψ3

v4 Ψ1,Ψ3

v5 Ψ3

v1 Ψ1−2

v2 Ψ2−3

v3 Ψ1−3

v4 Ψ1,Ψ3

v5 Ψ3

content parent
v1 Ψ1,Ψ2 NIL
v2 · · · · · ·
v3 Ψ3 v1

v4 · · · · · ·
v5 · · · · · ·

(a) original (b) interval compressed (c) prefix compressed

Figure 10: Compressed inverted lists

Prefix path ID compression: This technique first identifies in-
verted lists that share the same prefix and then expresses an inverted
list by using the other inverted list as a prefix.

Consider the original inverted lists in Figure 10a. The inverted
list of v1 is a prefix of the inverted list of v3. Figure 10c shows

the compressed inverted lists produced by this compression. In the
compressed inverted list of v3, it suffices to store path IDs (e.g.,
Ψ3) that do not appear in its prefix. The remaining path IDs of v3

can be retrieved from the parent (v1) of its inverted list.

6. EXPERIMENTAL STUDY
We proceed to evaluate the performance of our caching meth-

ods and the competitors on real datasets. The competitors, Least-
Recently-Used (LRU) and Highest-Query-Frequency (HQF), are
the dynamic and static caching methods introduced in Section 3.3.
Our methods Shortest-Path-Cache (SPC) and its optimized vari-
ant (SPC∗) share the same techniques in Section 4. Regarding
the cache structures, LRU, SPC, and HQF use a path array cache
(Section 5.1), whereas SPC∗ uses a compressed graph cache (Sec-
tions 5.2 and 5.3). All methods answer queries by using the optimal
subpath property (Lemma 1). We implemented all methods in C++
and conducted experiments on an Intel i7 3.4GHz PC running De-
bian.

Section 6.1 covers the experimental setting. Then Section 6.2
and Section 6.3 presents findings for caches in the proxy scenario
and the server scenario, respectively.

6.1 Experimental Setting
Datasets: Due to the privacy policies of online shortest path ser-
vices (e.g., the Google Directions API), their query logs are un-
available in the public. Thus, we attempt to simulate query logs
from trajectory data. For each trajectory, we extract its start and end
locations as the source vs and target vt of a shortest path query, re-
spectively. In the experiments, we used two real datasets (Aalborg
and Beijing) as shown in Table 6. Each dataset consists of (i) a
query log derived from a collection of trajectories, and (ii) a road
network for the corresponding city.

Following the experimental methodology of static web
caching [17], we divide a query log into two equal sets: (i) a histor-
ical query log QL, for extracting query statistics, and (ii) a query
workload WL, for measuring the performance of caching meth-
ods. Prior to running a workloadWL, the cache of LRU is empty
whereas the caches of HQF, SPC, and SPC∗ are built by usingQL.

Dataset Trajectories Road network
Aalborg Infati GPS data [11] From downloads.cloudmade.com

4,401 trajectories 129k nodes, 137k edges
Beijing Geo-Life GPS data [23] From downloads.cloudmade.com

12,928 trajectories 76k nodes, 85k edges

Table 6: Description of real data sets

Default parameters: Since the Aalborg and Beijing query logs are
not large, we use scaled down cache sizes in the experiments. Thus,
the default cache size is 625 kBytes and the maximum cache size is
5 MBytes. The default number of levels in the kD-tree (for query
statistics extraction) is 14.

If we had access to huge query logs from online shortest path
services, we would have used a large cache size, e.g., 1 GBytes.

6.2 Caching in the Proxy Scenario
In the proxy scenario, the shortest path API issues a query to the

server, rather than computing the result by itself (see Section 4.3).
Since its response time is dominated by the round-trip time with
server, the cache hit ratio is used as the performance measure in
this scenario.

Effect of the kD-tree level: Figure 11 plots the hit ratio of our
methods (SPC and SPC∗) with respect to the number of levels in

the kD-tree. The more levels the kD-tree contains, the more ac-
curate its query statistics become, and this improves the hit ratio
of our methods. Note that SPC∗ performs better than SPC on both
datasets. Since SPC∗ has a more compact cache structure than SPC,
it accommodates more shortest paths and thus achieving a higher
hit ratio.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 6 8 10 12 14 16

H
it
 r

a
ti
o

 (
%

)

kD-tree level

SPC
SPC*

 0

 10

 20

 30

 40

 50

 6 8 10 12 14 16

H
it
 r

a
ti
o

 (
%

)

kD-tree level

SPC
SPC*

(a) Aalborg (b) Beijing

Figure 11: Hit ratio vs. levels

Effect of the cache size: Figure 12 shows the hit ratio of the meth-
ods as a function of the cache size. SPC has a lower hit ratio than
SPC∗ for the reasons explained above. Observe that SPC∗ achieves
double the hit ratio of HQF and LRU for small cache sizes (below
100 kBytes). This is because SPC∗ exploits historical query statis-
tics to choose paths with high benefit values for inclusion into the
cache. Our benefit model (Section 4.1) considers the number of his-
torical queries answerable by (a subset of) a path Pa,b, not just the
number of historical queries identical to Pa,b (in HQF). At a large
cache size (beyond 1000 kBytes), all static caching methods (SPC,
SPC∗, HQF) have similar hit ratios as the caches can accommodate
all shortest paths from the historical query log.

Figure 13 shows the hit ratio of the methods versus the number
of processed queries in the workload, at the largest cache size (5
MBytes). The hit ratio in this figure is measured with respect to the
number of processed queries so far. Static caching is able to obtain
a high hit ratio in the beginning. The hit ratio of dynamic caching
(LRU) increases gradually and then converges to its final hit ratio.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 1 10 100 1000 10000

H
it
 r

a
ti
o

 (
%

)

Cache size (kB)

HQF
LRU
SPC

SPC*

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55

 1 10 100 1000 10000

H
it
 r

a
ti
o

 (
%

)

Cache size (kB)

HQF
LRU
SPC

SPC*

(a) Aalborg (b) Beijing

Figure 12: Hit ratio vs. cache size

 0

 10

 20

 30

 40

 50

 0 500 1000 1500 2000 2500

H
it
 r

a
ti
o

 (
%

)

Number of processed queries (from workload)

HQF
LRU

SPC/SPC*
 0

 10

 20

 30

 40

 50

 60

 0 2000 4000 6000

H
it
 r

a
ti
o

 (
%

)

Number of processed queries (from workload)

HQF
LRU

SPC/SPC*

(a) Aalborg (b) Beijing

Figure 13: Hit ratio vs. processed queries (5 MBytes cache)

Cache construction time: Our methods incur low overhead on
selecting cache items in the offline phase. SPC and SPC∗ require
at most 3 minutes on both of the Aalborg and Beijing datasets in
this phase. Since the cache structure of SPC is simpler than that of
SPC∗, its cache construction time is 50% of SPC∗.

6.3 Caching in the Server Scenario
In the server scenario, the shortest path API invokes a shortest

path algorithm (e.g., Dijkstra, A∗) to compute a query result. The
performance of a caching method C on a query workload is mea-
sured as (i) the total number of visited nodes, nodes(C), and (ii)
the total query time (including cache lookup overhead), time(C).

As a reference for comparison, we consider a no-caching method
NC that simply executes every query in the workload. Table 7
shows the total query time and the total number of visited nodes of
NC (on the entire query workload), for each combination of dataset
(Aalborg, Beijing) and shortest path algorithm (Dijkstra, A∗).

Dataset Shortest path Query time (s) Visited nodes
algorithm time(NC) node(NC)

Aalborg Dijkstra 18.5 18,580,659
Beijing Dijkstra 43.5 41,615,917
Aalborg A∗ 4.5 2,929,128
Beijing A∗ 9.8 6,544,620

Table 7: Total query time and visited nodes on the entire work-
load, for the no-caching method

For a caching methodC, we define its visited nodes savings ratio
as 100% · (1− (nodes(C)/nodes(NC))), and we define its query
time savings ratio as 100% · (1 − (time(C)/time(NC))). We
measure these ratios in the subsequent experiments.

Effect of the kD-tree level: We investigate the effect of the number
of levels in the kD-tree on the savings ratios of our methods (SPC
and SPC∗).

Figure 14 plots the savings ratios when Dijkstra is used as the
shortest path algorithm. Like the trends in Figure 11, both meth-
ods obtain higher node savings ratios when the kD-tree used con-
tains many levels and captures more accurate statistics (see Fig-
ure 14a,b).

However, there is a significant difference in the query time sav-
ings ratios (see Figure 14c,d). This is because the path array cache
(used in SPC) incurs a high cache lookup overhead—all paths in
the cache need to be examined when a query cannot be answered
by the cache. On the other hand, the inverted lists (used in SPC∗)
support efficient cache lookup. SPC∗ achieves up to 30% savings
of query time whereas SPC saves only up to 15-20% of query time.

Figure 15 shows the savings ratios of our methods when A∗

is used instead of Dijkstra. The node savings ratios of SPC and
SPC∗ in Figure 15a,b exhibit similar trends as seen in Figure 14a,b.
Note that the query time savings ratio of SPC is negative (see Fig-
ure 15c,d), meaning that it is slower than the no-caching method.
Recall that the no-caching method requires only little running time
when using A∗ for shortest path search (see Table 7). Thus, the high
cache lookup overhead of SPC outweighs the benefit of caching.
On the other hand, SPC∗ supports efficient lookup, achieving sav-
ings of up to 26% and 32% of the query time on the Aalborg and
Beijing datasets.

In summary, SPC∗ consistently performs better than SPC, espe-
cially for the query time savings ratio.

 0

 5

 10

 15

 20

 25

 30

 6 8 10 12 14 16V
is

it
e

d
 n

o
d

e
s
 s

a
v
in

g
 r

a
ti
o

 (
%

)

kD-tree level

SPC
SPC*

 14

 16

 18

 20

 22

 24

 26

 28

 30

 6 8 10 12 14 16V
is

it
e

d
 n

o
d

e
s
 s

a
v
in

g
 r

a
ti
o

 (
%

)

kD-tree level

SPC
SPC*

(a) visited nodes savings, Aalborg (b) visited nodes savings, Beijing

 12
 14
 16
 18
 20
 22
 24
 26
 28
 30

 6 8 10 12 14 16Q
u

e
ry

 t
im

e
 s

a
v
in

g
 r

a
ti
o

 (
%

)

kD-tree level

SPC
SPC*

 0

 5

 10

 15

 20

 25

 30

 35

 6 8 10 12 14 16Q
u

e
ry

 t
im

e
 s

a
v
in

g
 r

a
ti
o

 (
%

)

kD-tree level

SPC
SPC*

(c) query time savings, Aalborg (d) query time savings, Beijing

Figure 14: Performance savings vs. levels, using Dijkstra

 14

 16

 18

 20

 22

 24

 26

 6 8 10 12 14 16

V
is

it
e

d
 N

o
d

e
s
 S

a
v
in

g
 R

a
ti
o

 (
%

)

kD-tree level

SPC
SPC*

 14

 16

 18

 20

 22

 24

 26

 28

 30

 6 8 10 12 14 16V
is

it
e

d
 n

o
d

e
s
 s

a
v
in

g
 r

a
ti
o

 (
%

)

kD-tree level

SPC
SPC*

(a) visited nodes savings, Aalborg (b) visited nodes savings, Beijing

-20
-15
-10

-5
 0
 5

 10
 15
 20
 25
 30

 6 8 10 12 14 16Q
u

e
ry

 t
im

e
 s

a
v
in

g
 r

a
ti
o

 (
%

)

kD-tree level

SPC
SPC*

-40

-30

-20

-10

 0

 10

 20

 30

 40

 6 8 10 12 14 16Q
u

e
ry

 t
im

e
 s

a
v
in

g
 r

a
ti
o

 (
%

)
kD-tree level

SPC
SPC*

(c) query time savings, Aalborg (d) query time savings, Beijing

Figure 15: Performance savings vs. levels, using A∗

Effect of the cache size: We proceed to study the impact of the
cache size on the performance savings ratios of all caching methods
(SPC, SPC∗, HQF, LRU).

Figure 16 plots savings ratios when Dijkstra is used. At low
cache sizes, SPC∗ outperforms the other methods in terms of the
visited nodes savings ratio (see Figure 16a,b). At large cache sizes
(beyond 1000 kBytes), all static caching methods (HQF, SPC and
SPC∗) have the same visited nodes savings ratio (28%). In Fig-
ure 16c,d, the query time savings ratios of all methods increase
when the cache size increases. However, at large cache sizes, the
query time savings ratios of HQF, LRU, and SPC drop slightly.
Since they use the path array cache structure, their cache lookup
overhead increases with the number of paths in the cache, reducing
the overall utility of the cache. SPC∗ performs significantly better
than the others, and its query time savings ratio remains compara-
ble to its visited nodes savings ratio in Figure 16a,b.

Figure 17 plots the savings ratio of the caching methods when us-
ing A∗. The trends of the methods are similar to those in Figure 16.
The only difference is that the query time savings ratio of HQF,

 0

 5

 10

 15

 20

 25

 30

 1 10 100 1000 10000V
is

it
e

d
 n

o
d

e
s
 s

a
v
in

g
 r

a
ti
o

 (
%

)

Cache size (kB)

HQF
LRU
SPC

SPC*

 0

 5

 10

 15

 20

 25

 30

 1 10 100 1000 10000V
is

it
e

d
 n

o
d

e
s
 s

a
v
in

g
 r

a
ti
o

 (
%

)

Cache size (kB)

HQF
LRU
SPC

SPC*

(a) visited nodes savings, Aalborg (b) visited nodes savings, Beijing

 0

 5

 10

 15

 20

 25

 30

 35

 1 10 100 1000 10000Q
u

e
ry

 t
im

e
 s

a
v
in

g
 r

a
ti
o

 (
%

)

Cache size (kB)

HQF
LRU
SPC

SPC*

-5

 0

 5

 10

 15

 20

 25

 30

 35

 1 10 100 1000 10000Q
u

e
ry

 t
im

e
 s

a
v
in

g
 r

a
ti
o

 (
%

)

Cache size (kB)

HQF
LRU
SPC

SPC*

(c) query time savings, Aalborg (d) query time savings, Beijing

Figure 16: Performance savings vs. cache size, using Dijkstra

LRU, and SPC are even more negative in Figure 17c,d. Since A∗

is much more efficient than Dijkstra, the high cache lookup over-
heads of HQF, LRU, and SPC become more apparent. They exhibit
up to an additional 50-60% longer query time on the Beijing data
set. SPC∗ remains the best method, and its query time savings ratio
is comparable to its visited nodes savings ratio.

 0

 5

 10

 15

 20

 25

 1 10 100 1000 10000V
is

it
e

d
 n

o
d

e
s
 s

a
v
in

g
 r

a
ti
o

 (
%

)

Cache size (kB)

HQF
LRU
SPC

SPC*

 0

 5

 10

 15

 20

 25

 30

 1 10 100 1000 10000V
is

it
e

d
 n

o
d

e
s
 s

a
v
in

g
 r

a
ti
o

 (
%

)

Cache size (kB)

HQF
LRU
SPC

SPC*

(a) visited nodes savings, Aalborg (b) visited nodes savings, Beijing

-20
-15
-10

-5
 0
 5

 10
 15
 20
 25
 30

 1 10 100 1000 10000Q
u

e
ry

 t
im

e
 s

a
v
in

g
 r

a
ti
o

 (
%

)

Cache size (kB)

HQF
LRU
SPC

SPC*

-60
-50
-40
-30
-20
-10

 0
 10
 20
 30
 40

 1 10 100 1000 10000Q
u

e
ry

 t
im

e
 s

a
v
in

g
 r

a
ti
o

 (
%

)

Cache size (kB)

HQF
LRU
SPC

SPC*

(c) query time savings, Aalborg (d) query time savings, Beijing

Figure 17: Performance savings vs. cache size, using A∗

7. CONCLUSION
We study the caching of shortest paths in proxy and server sce-

narios. We formulate a model for capturing the benefit of caching
a path in terms of its frequency and the cost of processing it. We
develop techniques to extract query frequency statistics and to es-
timate the cost of an arbitrary shortest path algorithm. A greedy
algorithm is proposed to select the most beneficial paths from a
historical query log for inclusion into the cache. Also, we provide
cache structures that improve cache lookup performance and cache
space utilization. Our experimental results on real data show that
our best method, SPC∗, achieves high hit ratio in the proxy sce-
nario, as well as small lookup overhead and low query time in the
server scenario.

Our static caching problem is analogous to materialized view
selection in data warehousing [8]. In future, we aim to utilize their
ideas to build a shortest path cache with quality guarantees.

Acknowledgments
C. S. Jensen was supported in part by the EU STREP project, Re-
duction. We thank Eric Lo, Jianguo Wang, Yu Li, and the anony-
mous reviewers for their insightful comments.

8. REFERENCES
[1] I. S. Altingövde, R. Ozcan, and Ö. Ulusoy. A Cost-Aware Strategy

for Query Result Caching in Web Search Engines. In ECIR,
pp. 628–636, 2009.

[2] R. A. Baeza-Yates, A. Gionis, F. Junqueira, V. Murdock,
V. Plachouras, and F. Silvestri. The Impact of Caching on Search
Engines. In SIGIR, pp. 183–190, 2007.

[3] R. A. Baeza-Yates and F. Saint-Jean. A Three Level Search Engine
Index Based in Query Log Distribution. In SPIRE, pp. 56–65, 2003.

[4] T. H. Cormen, C. E. Leiserson, and C. Stein. Introduction to
Algorithms. MIT Press, 3rd edition, 2009.

[5] S. Dar, M. J. Franklin, B. T. Jónsson, D. Srivastava, and M. Tan.
Semantic Data Caching and Replacement. In VLDB, pp. 330–341,
1996.

[6] Q. Gan and T. Suel. Improved Techniques for Result Caching in Web
Search Engines. In WWW, pp. 431–440, 2009.

[7] M. C. González, C. A. Hidalgo, and A. L. Barabási. Understanding
Individual Human Mobility Patterns. Nature, 453(7196):779–782,
2008.

[8] V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing Data
Cubes Efficiently. In SIGMOD, pages 205–216, 1996.

[9] H. Hu, D. L. Lee, and V. C. S. Lee. Distance Indexing on Road
Networks. In VLDB, pp. 894–905, 2006.

[10] H. Hu, J. Xu, W. S. Wong, B. Zheng, D. L. Lee, and W.-C. Lee.
Proactive Caching for Spatial Queries in Mobile Environments. In
ICDE, pp. 403–414, 2005.

[11] C. S. Jensen, H. Lahrmann, S. Pakalnis, and J. Runge. The Infati
Data. CoRR, cs.DB/0410001, 2004.

[12] S. Jung and S. Pramanik. An Efficient Path Computation Model for
Hierarchically Structured Topographical Road Maps. IEEE TKDE,
14(5):1029–1046, 2002.

[13] H.-P. Kriegel, P. Kröger, M. Renz, and T. Schmidt. Hierarchical
Graph Embedding for Efficient Query Processing in Very Large
Traffic Networks. In SSDBM, pp. 150–167, 2008.

[14] K. Lee, W.-C. Lee, B. Zheng, and J. Xu. Caching Complementary
Space for Location-Based Services. In EDBT, pp. 1020–1038. 2006.

[15] X. Long and T. Suel. Three-Level Caching for Efficient Query
Processing in Large Web Search Engines. In WWW, pp. 257–266,
2005.

[16] E. P. Markatos. On Caching Search Engine Query Results. Computer
Communications, 24(2):137–143, 2001.

[17] R. Ozcan, I. S. Altingövde, B. B. Cambazoglu, F. P. Junqueira, and
Ö. Ulusoy. A Five-Level Static Cache Architecture for Web Search
Engines. Information Processing & Management, 2011.

[18] R. Ozcan, I. S. Altingövde, and Ö. Ulusoy. Static Query Result
Caching Revisited. In WWW, pp. 1169–1170, 2008.

[19] M. Potamias, F. Bonchi, C. Castillo, and A. Gionis. Fast Shortest
Path Distance Estimation in Large Networks. In CIKM, pp. 867–876,
2009.

[20] H. Samet, J. Sankaranarayanan, and H. Alborzi. Scalable Network
Distance Browsing in Spatial Databases. In SIGMOD, pp. 43–54,
2008.

[21] F. Wei. TEDI: Efficient Shortest Path Query Answering on Graphs.
In SIGMOD, pp. 99–110, 2010.

[22] B. Zheng and D. L. Lee. Semantic Caching in Location-Dependent
Query Processing. In SSTD, pp. 97–116, 2001.

[23] Y. Zheng, L. Zhang, X. Xie, and W.-Y. Ma. Mining Interesting
Locations and Travel Sequences from GPS Trajectories. In WWW,
pp. 791–800, 2009.

