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Abstract—Discovering motifs in sequence databases has been
receiving abundant attentions from both database and data
mining communities, where the motif is the most correlated pair
of subsequences in a sequence object. Motif discovery is expensive
for emerging applications which may have very long sequences
(e.g., million observations per sequence) or the queries arrive
rapidly (e.g., per 10 seconds). Prior works cannot offer fast
correlation computations and prune subsequence pairs at the
same time, as these two techniques require different orderings
on examining subsequence pairs. In this work, we propose a
novel framework named Quick-Motif which adopts a two-level
approach to enable batch pruning at the outer level and enable
fast correlation calculation at the inner level. We further propose
two optimization techniques for the outer and the inner level.
In our experimental study, our method is up to 3 orders of
magnitude faster than the state-of-the-art methods.

I. INTRODUCTION

The motif discovery problem has been shown to have great
utility for several data mining algorithms, including clustering,
classification, sequence summarization, and rule discovery [1],
[2], [3], [4], [5]. Given a sequence object (representing the
data), this problem reports the motif as the most correlated pair
of subsequences in a sequence object. The correlation between
subsequences is measured by a correlation metric, e.g., Pearson
correlation. As an example, Figure 1 illustrates a weekly motif
discovered in a power consumption dataset [6].
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Fig. 1: Weekly motif discovered in a sequence (35,000 values) that
records the average power consumption for a Dutch research facility
in the year 1997

This problem has received significant attention from both
databases and data mining communities [1], [2], [3], [4], [5].
Discovering motif is a core subroutine for activity discovery of

humans and animals, with applications in elder care, surveil-
lance and sports training [3]. Besides, clustering enumerated
motifs is shown to be more meaningful than clustering all the
subsequences in a long sequence [7]. As in other domains, this
approximately repeated structure may be conserved for some
reason that is of interest to domain specialists [4].

It is time consuming to solve the motif discovery problem.
Note that a sequence object of length m contains m − ` + 1
subsequences of length `. The brute force method would (i)
examine all pairs of subsequences (i.e., O((m − `)2) pairs)
and then (ii) compute the correlation for each pair (in O(`)
time). This method takes O((m − `)2 · `) time, which is too
expensive for a long sequence. Most of the literature focuses
on fast algorithms for approximate motif discovery [1], [2], [8];
however, they do not provide guarantee on the result quality.

Recently, Mueen et al. [5], [9] propose two efficient algo-
rithms for exact motif discovery. The smart brute force method
(SBF) [9] examines subsequence pairs in a specific ordering
in order to compute the correlation of each pair incrementally
in (amortized) constant time. However, this method always
examines O((m − `)2) subsequence pairs as it cannot prune
any subsequence pair. On the other hand, the reference indices
method (MK) [5] examines subsequences by the order of
correlation to a reference, and employs a pruning technique
to discard unpromising subsequence pairs. Then, it computes
the correlation for each remaining pair (in O(`) time). Nev-
ertheless, its pruning effectiveness relies heavily on the data
distribution. In the worst case, the number of remaining pairs
can be O((m−`)2) and it degrades to the brute force method.
In our experimental study, when compared to the brute force
method, MK computes exact distances for only 0.013% of all
pairs on the ECG dataset [10], but 89.37% of all pairs on the
EPG dataset1. Also, MK requires considerable memory space
for storing all normalized subsequences and reference indices.
We summarize the time and space complexity of existing
methods in Table I. We do not show the construction cost
as they are small when compared to their overall cost (cf.
Section IV-A).

It is tempting to ask whether we can obtain a more efficient
algorithm by combining the incremental correlation computa-
tion technique (in SBF) with the pruning technique (in MK).

1http://www.cs.ucr.edu/ mueen/txt/insect15.txt



TABLE I: Time and space complexities of exact methods

Methods Time Complexity Space
Brute force O((m− `)2 · `) O((m− `) · `)

SBF [9] O((m− `)2) O(m)

MK [5] O((m− `)2 · (1− Plb) ·R
+ (m− `)2 · (1− Pr) · `)

O((m− `) · (R+ `))

QM O((m−`
w

)2 · (1− Plb) · φ
+ (m− `)2 · (1− Pr) · `w )

O(m+Nsurvive)

R: number of references in MK
w: grouping size in QM
φ: PAA dimensionality in QM
Plb: the pruning probability of lower bound computation
Pr: the pruning probability of real distance computation
Nsurvive: number of surviving group pairs in QM

Unfortunately, since SBF and MK rely on different orderings
on examining subsequence pairs, these two techniques cannot
be readily combined together. To the best of our knowledge, no
prior work jointly applies both techniques to discover motif.

In this paper, we propose a two-level approach that enables
both techniques together. The idea is to group subsequences
by their offset locality, say, assigning every w consecutive
subsequences to the same group. First, at the outer level, we
examine all pairs of groups and prune unpromising group-
pairs. Second, for each remaining group-pairs, we can ap-
ply the incremental correlation computation technique for all
subsequence pairs within the group (i.e., at the inner level).
Furthermore, we propose two optimization techniques for both
the outer and the inner levels: (i) a locality-based searching
strategy for discovering the true motif as soon as possible,
and (ii) a batch refinement technique that shares the processing
cost of surviving group-pairs (i.e., promising pairs).

The improvement of our work is brought by Lemmas 1,
2, and 3. As shown in Table I, our proposed method (QM)
achieves a lower worst-case time complexity than MK 2. In
practice, our method is up to 3 orders of magnitude faster than
prior solutions. For example, QM only takes 0.88s to discover
a motif of length 900 in TAO dataset, however MK and SBF
will need 798s and 1257s for the same task respectively. This
dramatic performance gain makes online processing feasible
for motif discovery in very long sequences. Besides, our
method is ready for parallel implementation which performs
well with multi-core or distributed systems.

The remaining structure of our paper is organized as
follows. In Section II, we formally define the motif discovery
problem and briefly discuss existing solutions for this problem.
The framework Quick-Motif is proposed and analyzed in
Section III. We experimentally evaluate our framework in
Section IV. The related work is summarized in Section V and
we conclude our work in Section VI.

II. PRELIMINARIES

In this section, we formally define the motif discovery
problem and briefly discuss the latest solutions for this prob-
lem.

2It should be noted that the pruning ratios, Plb and Pr , are more sensitive
to the data than the methodology.

A. Motif Discovery

We first define the notation of sequence object s and its
subsequences as follows. These notations are thoroughly used
in this work.

Definition 1 (Subsequence of s): Given a sequence object
s of length m (i.e., s = s[0]...s[m− 1]), a valid subsequence
of length ` in s is denoted as si = s[i]...s[i+ `− 1], where i
is the offset of the subsequence and 0 ≤ i < m− `+ 1.

According to the definition, a motif of length ` in a
sequence object s means the most correlated subsequence pair
(si, sj)

3. In this work, we use normalized Euclidean distance
as the underlying distance measure which is commonly used
in motif discovery studies [3], [4], [5], [9]. Note that other
distance measures (e.g., p-norm or DTW) can be used to
measure the distances but the lack of normalization renders
them unsuitable for subsequences with different offset and
scale [3], [11], [12]. To produce meaningful motif result, we
omit overlapping subsequence pair (e.g., si and si+1) as they
are trivially matched [13], which are not interesting for data
analysts to explore further. Thus, in this work we report a
subsequence pair as a motif only if the pair is non-trivial (i.e.,
non-overlapping). The formal definition of motif discovery is
as follows:

Problem 1 (Motif Discovery): Given a sequence object s
and the targeted motif length `, the motif discovery is to
return a pair of subsequences (si, sj), where the normalized
Euclidean distance of si and sj is minimum among all non-
trivial subsequence pairs.

Generally the normalized Euclidean distance of a subse-
quence pair is calculated by the Euclidean distance of their
normalized form (Z-normalization) [14], where the normalized
form of a subsequence is defined as follows.

ŝi[k] =
si[k]− µ(si)

σ(si)
,∀0≤k<` (1)

where µ(si) and σ(si) denote the mean and standard deviation
of si, respectively. ŝi indicates the normalized version of si.
Accordingly, the normalized Euclidean distance can be repre-
sented by d(ŝi, ŝj). In the sequel, d(ŝi, ŝj) can be represented
by their Pearson correlation [11] as

d(ŝi, ŝj) =
√

2`(1− ρ(si, sj)) (2)

where ρ(si, sj) is the Pearson correlation of si and sj .

B. Preliminary: Running Sum Technique

The Pearson correlation for a pair (si, sj) can be computed
in O(1) time, by utilizing running sums [9], [11]. We introduce
this technique here as we will apply it in our solution. The
Pearson correlation is defined as:

ρ(si, sj) =

`−1∑
x=0

s[i+ x]s[j + x]− `µ(si)µ(sj)

`σ(si)σ(sj)
(3)

3If not explicitly mentioned, the length of a subsequence si is ` in this
work.



This technique requires keeping two running sum arrays as
follows:

A[i] =

i∑
x=0

s[x], A2[i] =

i∑
x=0

s[x]2, 0 ≤ i < m (4)

With these two running sum arrays, we can calculate the
mean and standard deviation of a subsequence in O(1) time.

µ(si) =
1

`
(

i+`−1∑
x=i

s[x])

=
1

`
(A[i+ `− 1]−A[i] + s[i]) (5)

σ(si)
2 =

1

`
(

i+`−1∑
x=i

s[x]2)− µ(si)
2

=
1

`
(A2[i+ `− 1]−A2[i] + s[i]2)− µ(si)

2 (6)

To calculate the Pearson correlation in constant time, we
need to calculate the cross sum (i.e.,

∑`−1
x=0 s[i+ x]s[j + x])

of Equation 3 in O(1) time. The cross sum can be maintained
in O(1) time incrementally by Equation 7.

`−1∑
x=0

s[i+ 1 + x]s[j + 1 + x]

=(

`−1∑
x=0

s[i+ x]s[j + x]) + s[i+ `]s[j + `]− s[i]s[j]

(7)

In summary, given
∑`−1
x=0 s[i+ x]s[j + x] and two running

sum arrays (i.e., A and A2), we can incrementally calculate
ρ(si+1, sj+1) in O(1) time.

By simple induction, we can calculate the subsequence
pairs of the same offset gap (i.e., ρ(si, sj), ρ(si+1, sj+1), · · · ,
ρ(si+`, sj+`)) incrementally. Thus, given m initial cross sums
of the offset gaps, i.e.,

∑`−1
x=0 s[x]s[x],

∑`−1
x=0 s[x]s[x+ 1],

...,
∑`−1
x=0 s[x]s[x+m− `], the Pearson correlation of every

subsequence pair can be calculated in O(1) time.

C. Related Work

Brute force. We first introduce the brute force solution which
compares every possible subsequence pair using standard
distance calculation (e.g., distance early termination [5]). The
pseudo code is shown in Algorithm 1. To efficiently calculate
the normalized Euclidean distances, this naı̈ve approach pre-
normalizes all subsequences and keeps their normalized forms
in main memory to avoid normalizing the same subsequence
multiple times during the discovery process [4]. During the ex-
ecution, the algorithm updates a best-so-far distance bsf when
a better motif is discovered. The complexity of Algorithm 1 is
O((m−`)2`), where (m−`)2 is the number of all subsequence
pairs and ` indicates the motif length.

Smart brute force (SBF). This solution [9] is to calculate
the distance of the subsequence pairs in a specific order (
(si, sj), (si+1, sj+1), (si+2, sj+2), · · · ), which can reduce the
time complexity of each distance calculation from O(`) to

Algorithm 1 Brute Force (BF)
Input: sequence s of length m, motif length `
Output: motif offset os and motif distance bsf

1: normalized all subsequences with length ` in sequence s
2: bsf←∞
3: for i← 0 to m− l do
4: for j ← i+ ` to m− l do . use ` to avoid trivial match
5: if d(ŝi, ŝj) < bsf then
6: bsf← d(ŝi, ŝj); os← (i, j)

O(1) (line 5 in Algorithm 1). It applies the running sum
technique in Section II-B.

Reference indices (MK). Given a set of subsequences and
their distances to a reference subsequence, we can derive the
distance lower bound between any subsequence pair based on
triangular inequality. Figure 2(a) illustrates this basic idea by
an example. Suppose we have two subsequences ŝi and ŝj
and their distance to a given reference ref , the lower bound
of d(ŝi, ŝj) can be calculated by |d(ref, ŝi) − d(ref, ŝj)| =
|5 − 13| = 8 in this example. If the lower bound is already
larger than bsf (i.e., the distance of the current motif candidate),
then this subsequence pair can be pruned safely. The lower
bound can be tightened if it is derived (as the maximum value)
from multiple reference indices.
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Fig. 2: Techniques in MK

Based on the lower bounds derived from the reference
indices, Mueen et al. [5] propose an efficient motif discovery
solution, MK, which avoids examining every subsequence
pair in the discovery process. Their approach first picks one
reference to construct a sorted list based on the distance from
each subsequence to the reference. This reference selection is
based on the standard deviation of the distances. According
to the order in the sorted list, MK progressively examines
the subsequence pairs based on their offset gaps. Given the
example in Figure 2(b), the first batch of subsequence pairs
contains (ŝi, ŝj), (ŝj , ŝm), and (ŝm, ŝn), where the offset gap
of these pairs is 1. For each subsequence pair in the current
batch, we estimate their lower bounds by the reference indices
(i.e., taking O(R) time from R reference indices) and calculate
their real distances if necessary (i.e., taking O(`) time). At the
end of each batch, we process the next batch of subsequence
pairs, e.g., (ŝi, ŝm) and (ŝj , ŝn), only if the lower bound
provided by the sorted list of any pair in the current batch is
better than bsf. Otherwise, we can safely terminate the process
and report the best-so-far motif as the result since the bsf is
already better than any unseen subsequence pair (due to the
monotonicity of the distances with respect to the offset gaps).



The execution strategy of MK reduces the quadratic num-
ber of pairwise comparisons (lines 3-4 in Algorithm 1) to an
acceptable level in practice. MK is recognized as the most
efficient motif discovery solution in [9] and is used as a
core component in other time series problems [1], [2], [7],
[15]. However, the performance of MK is very sensitive to
the dataset. Another obvious drawback of MK is the space
overhead, which takes O((R + `)(m − `)) space [9] where
R(m − `) is the size of the reference indices and `(m − `)
is the space overhead for normalized subsequences (same as
Algorithm 1) [4].

Discussion. Table I shows the time and space complexity of
SBF and MK. The computational cost of MK contains two
parts, O((m − `)2 · (1 − Plb) · R) for checking the distance
lower bounds and O((m − `)2 · (1 − Pr) · `) for computing
the real distance of unpruned subsequence pairs. Regarding the
worst-case time complexity, SBF is superior to MK since it not
only reduces the time complexity from O((m−`)2 ·(`+R)) to
O((m−`)2) but also has lower space overhead, i.e., O(m) (two
running sum arrays). However, the strong pruning capability of
MK makes it superior to SBF in practices. Their performances
are evaluated thoroughly in our experimental section.

III. QUICK-MOTIF
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Fig. 3: The framework of Quick-Motif

To the best of our knowledge, prior solutions focus on one
narrow aspect to boost the query performance. For instance,
MK exploits the pruning capability using reference indices but
it takes O(`) time per distance calculation; SBF exploits the
fast distance calculation in O(1) time but without any pruning
support. Thus, none of these solutions can offer acceptable
performance for emerging applications when (i) the sequence
is long, e.g., millions of values, or (ii) the motif discovery
query is issued frequently, e.g., every minute. In this work,
we exploit more broadly such that our solution, Quick-Motif,
is more smarter than SBF as equipped with batch pruning
capability and it can be used to answer the motif discovery
problem at scale.

Figure 3 illustrates the work flow of our framework. To
reduce the dimensionality of the problem, we first trans-
form each subsequence into their PAA representation (Sec-
tion III-A1). To support fast distance calculation, we group
consecutive PAA representations into PAA MBRs such that
the pairwise distances of two MBRs can be computed in
O(1) time (Section III-A2). To support batch pruning, we

manage the MBRs into a Hilbert R-tree and apply a filter-and-
refinement framework to prune unpromising MBR pairs (Sec-
tion III-B). To further improve the performance, we propose
a lazy group refinement technique which attempts to process
surviving MBRs in one refinement batch (Section III-C). By
taking the advantages of all these techniques, Quick-Motif
outperforms the state-of-the-art approaches by up to 3 orders
of magnitude in terms of response time, which addresses the
need of emerging applications.

A. PAA MBR Construction

1) Efficient PAA Construction: PAA is an intuitive dimen-
sionality reduction method, yet shown to be competitive with
other dimensionality reduction representations like SVD, DFT
and DWT as discussed in [16]. Specifically, a normalized
subsequence ŝi can be transformed into φ segments of equal
length `

φ . Formally, given a normalized subsequence ŝi, the k-
th element (i.e., k-th line segment) of its φ-dimensional PAA
representation is defined as follows.

eŝi [k] =
φ

`

`
φ
(k+1)−1∑
x= `

φ
·k

ŝi[x] (8)

To transform a subsequence si into its normalized PAA
representation eŝi , a straightforward solution first normalizes
si into ŝi and then transforms ŝi into eŝi using Equation 8.
Thus each PAA construction takes O(`) time. In the following,
we extend the running sum technique (cf. Section II-B) to con-
struct PAA representations such that each construction takes
only O(φ) time. We first expand Equation 8 (i.e., expanding
ŝi[x] by Equation 1) as follows.

eŝi [k] =
φ

`

`
φ
(k+1)−1∑
x= `

φ
·k

s[i+ x]− µ(si)

σ(si)
(9)

where the value of µ(si) and σ(si) can be computed in O(1)
time using two running sum arrays, A and A2 (cf. Equations 5
and 6). To compute the summation form of s[i + x] in O(1)
time, we derive the following equation based on the running
sum array A.
`
φ
(k+1)−1∑
x= `

φ
·k

s[i+ x] = A[i+
`

φ
·(k+1)−1]−A[i+ `

φ
·k]+s[i+ `

φ
·k]

(10)
Thus each φ-dimensional PAA representation can be con-
structed in O(φ) time. Algorithm 2 shows the pseudo-code
for clarity.

Algorithm 2 Quick-Motif: Efficient PAA construction
Input: subsequence si, running sum arrays A, A2, dimensionality φ
Output: PAA representation eŝi

1: compute µ(si) and σ(si) by A, A2 . O(1)
2: for k ← 0 to φ− 1 do

3: compute
∑ `

φ
(k+1)−1

x= `
φ
·k

s[i+ x] by A using Equation 10 . O(1)

4: compute eŝi [k] using Equation 9 . O(1)

In subsequent sections, we will utilize these PAA rep-
resentations to support pruning. By [17], the PAA distance



dPAA between two PAA representations eŝi and eŝj serves
as the lower bound of the Euclidean distance between their
representative subsequences ŝi and ŝj :

d(ŝi, ŝj) ≥ dPAA(eŝi , eŝj ) = (
`

φ

φ−1∑
x=0

(eŝi [x]− eŝj [x])
2)

1
2 (11)

2) PAA MBR Construction: To support batch pruning, we
attempt to group the PAA representations of subsequences into
minimum bounding rectangles (MBRs) M . We only refine an
MBR pair (i.e., calculating the distance of subsequence pairs in
between two MBRs) if their minimum distance is smaller than
the best-so-far distance bsf. The minimum distance between
Mu and Mv is define as follows:

dPAA(Mu,Mv) =
√
`/φ · dmin2 (Mu,Mv) (12)

where dmin2 (Mu,Mv) denotes the minimum 2-norm distance
between two MBRs. Typically the grouping strategy is to group
elements as tight as possible such that more unpromising MBR
pairs can be pruned. However, if we group the subsequences
arbitrarily (regardless of their offsets), then the running sum
technique (c.f. Section II-B) cannot be applied and every pair-
wise distance must be calculated from scratch. Thus the time
complexity to process a surviving MBR pair is O(|Mu||Mv|`),
where |Mi| indicates the number of elements in MBR Mi.

According to [11], [13], overlapping (i.e., trivially matched)
subsequences tend to be similar. Thereby, grouping the PAA
representation of overlapping subsequences likely minimizes
the volume of MBRs. Another advantage of this grouping strat-
egy is that the distance calculation in between two surviving
MBRs can be reduced to O(1) time by exploiting the locality
of the elements. In the following, we formally define our
grouping strategy and then introduce an efficient approach to
calculate the subsequence distances by an incremental strategy.

w-MBR construction. We first define our grouping strategy,
denoted as w-MBR, as follows.

Definition 2 (w-MBR, Mw
u ): Given a sequence s of length

m and motif length `, a w-MBR Mw
u consists of all PAA

representations eŝτ for all τ subject to uw ≤ τ ≤ (u+1)w−1
and τ < m− `+ 1.

Mu

3M0

3

0 l-1 3u 3u+l-1

PAA representation 3-MBR

Fig. 4: An example of 3-MBRs construction

Figure 4 illustrates a concrete example of our grouping
strategy, where we group every three consecutive PAA repre-
sentations into a 3-MBR M3

i according to Definition 2. Thus
the total number of MBRs is (m − ` + 1)/w, and the space
overhead is O((m−`)φ/w). To reduce the memory consump-
tion in the implementation, we discard the PAA representation
eŝ after the corresponding w-MBR is constructed.

3) Refining a pair of w-MBRs: The w-MBR grouping
strategy not only offers reasonable grouping performance (in
terms of tightness) but also enables fast distance calculation
of subsequence pairs. By applying the running sum techniques
(cf. Section II-B), the pairwise distances of two w-MBRs can
be calculated in O(1) time incrementally.
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212223
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24

O(l)

Fig. 5: Fast distance calculations of M5
1 and M5

5 , w = 5

Figure 5 shows an example of the fast distance calculation
in between M5

1 and M5
5 . According to the discussion in

Section II, d(ŝ6, ŝ26) can be derived from d(ŝ5, ŝ25) in O(1)
time using two running sum arrays. Thus, only 9 subsequence
distances are calculated in its entirety (i.e., taking O(`) time)
and the other 16 subsequence distances can be computed in
O(1) incrementally as illustrated in Figure 5, where each
incremental process is highlighted by one dashed line (i.e.,
diagonal cells). We conclude the effectiveness of this approach
in Lemma 1.

Lemma 1: Given two w-MBRs, the ratio of full distance
calculations is 2w−1

w2 .

Proof: Trivial, the number of gap offsets in two w-MBRs
is 2w − 1 (i.e., the topmost row plus the leftmost column in
Figure 5) and the total number of subsequence pairs is w2.

Algorithm 3 Quick-Motif: Refining w-MBR pair
Input: sequence s of length m, motif length `, running sum arrays A,
A2; w-MBRs Mw

u , Mw
v .

Output: motif offset os and motif distance bsf
1: bsf←∞
2: for gap← (v − u− 1)w + 1 to (v − u+ 1)w − 1 do . v ≥ u
3: (si, sj) is the first corresponding pair based on gap
4: if si and sj is trivially matched then continue
5: repeat . process pairs with the same offset gap
6: compute µ(si),µ(sj),σ(si),σ(sj) by A, A2 . O(1)
7: if (si, sj) is the first subsequence pair then
8: compute

∑`−1
x=0 si[x]sj [x] in its entirety . O(`)

9: else
10: compute

∑`−1
x=0 si[x]sj [x] incrementally by Eq. 7 . O(1)

11: compute ρ(si, sj) by Eq. 3 . O(1)
12: if

√
2`(1− ρ(si, sj)) < bsf then

13: bsf←
√

2`(1− ρ(si, sj)); os← (i, j)

14: i← i+ 1; j ← j + 1
15: until si /∈Mw

u or sj /∈Mw
v

Inspired by the fast distance calculations, we study our
first refinement algorithm (Algorithm 3) to discover a motif
in between two w-MBRs. Note that we do not need to check
the intra subsequence pairs inside a w-MBR since they are



trivially-matched4 when w ≤ `. For each offset gap, we
calculate the normalized distance of the first pair in its entirety
and incrementally derive the distance of the remaining pairs
with the same offset. In our running example of Figure 5, the
first offset gap is 16 and it is easy to derive the first subse-
quence pair is (ŝ9, ŝ25). Note that this execution paradigm is
memory-effective since it only requires keeping one cross sum
(i.e.,

∑`−1
x=0 si[x]sj [x]) during the entire refinement process.

According to Lemma 1, the time complexity of Algorithm 3
is O( |Mu||Mv|`

w ) = O(w
2`
w ) = O(w`).

Discussion. The w-MBR grouping strategy not only offers
effective pruning but also enables fast distance calculations.
Obviously the parameter w plays a role in tuning the per-
formance of Algorithm 3. According to Lemma 1, the ratio
of complete distance calculations is lower when w is larger.
However, the tightness of w-MBRs is also sensitive to the value
of w which affects the pruning performance (to be discussed
in the next section). We will experimentally demonstrate this
tradeoff in Section IV.

B. Filter-and-Refinement (FaR)

In the last section we know how to discover a motif in a w-
MBR pair. This section we turn our focus on how to efficiently
find the surviving w-MBR pairs (i.e., their minimum distance
is smaller than bsf). A naı̈ve solution is to check every pair
of w-MBRs where this solution takes O(((m − `)/w)2 · φ)
time to compute. The motif discovery problem can be viewed
as a problem of finding closest pair of `-dimensional points.
A better solution is to organize w-MBRs into a hierarchical
structure and applies filter-and-refinement framework to dis-
cover the surviving w-MBR pairs.

Hilbert R-tree, Hξ. In this work, we simply apply Hilbert
R-tree to group w-MBRs since it offers reasonable grouping
quality and fast construction time [18]. In motif discovery, the
construction cost remains a performance factor since the query
sequences may arrive on-the-fly.

We place the Hilbert R-tree in memory. Instead of using
the page size, let ξ be the branch factor (system parameter).
We first sort the w-MBRs based on their Hilbert curve order.
Based on the sorted order, we group every ξ MBRs into a
next-level MBRs. The grouping process is recursively called
until there is only one MBR constructed at i-th level. As an
example illustrated in Figure 6(a), there are 9 w-MBRs and
ξ is set to 3. We construct 3 level Hilbert R-tree. The space
overhead is negligible as the number of non-leaf nodes is much
smaller than the number of leaf nodes (i.e., w-MBRs).

State-of-the-art. Sorted-list aggregation [21] and best-first

TABLE II: Statistics of methods on TAO dataset under default setting

Locality-based Best-first [19], [20] Sorted-list [21]
Non-leaf pairs 18.11 M 18.14 M N/A
Surviving pairs 0.1256 M 0.1249 M 0.1249 M

Heap size N/A 2.78 M 0.075 M
# pushes 11.73 M (queue) 6.75 M (heap) 2357 M (heap)

Resp. time 1.56 s 6.32 s 1409.1 s

search [19], [20] are the state-of-the-art solutions in finding

4In our framework, we always set w smaller than `.
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Fig. 6: Hilbert R-tree and its search space

closest pair. Both approaches utilize min-heaps to prioritize
the execution order such that the number of surviving w-
MBR pairs can be minimized. However, the cost of the heap
operations may already outweigh its benefit in motif discovery
due to the problem dimensionality. For instance, [21] only
evaluates their method up to 6 dimensions. For clarity, we
demonstrate the performance of these two methods in Table II
on TAO dataset. These two methods execute excessive push
operations in the min-heap(s). To make things worse, the best-
first search may introduce many false positive MBR pairs
into the min-heap due to the curse of dimensionality (i.e., φ).
The best-first search maintains a min-heap with 2.78 million
elements on average. Alternatively, the sorted-list aggregation
requires to maintain φ min-heaps (instead of one) and exam-
ines the candidate pairs one-by-one from φ min-heaps. The
lack of batch pruning and the curse of dimensionality make
the sorted-list aggregation execute more push operations than
the best-first search.

This analysis raises an interesting question, can we mini-
mize surviving w-MBR pairs without costly heap operations?

Locality-based search strategy. In this work, we recommend
to execute the filtering phase using a locality-based strategy.
The locality-based search strategy prioritizes the execution
order by exploring the locality of the Hilbert R-tree, and it
only utilizes a queue during the execution (i.e., taking O(1)
time for each operation). We begin by defining the LLCA
value of two w-MBRs.

Definition 3 (LLCA(Mw
u ,M

w
v )): Given two w-MBRs,

Mw
u and Mw

v , we define LLCA(Mw
u ,M

w
v ) as the level of

their lowest common ancestor.

For example, LLCA(Mw
4 ,M

w
6 ) = 1 and

LLCA(Mw
4 ,M

w
3 ) = 2 in Figure 6(a). The basic idea

of the locality-based search strategy is to examine w-MBR
pairs in ascending order of their LLCA values. In other
words, we prioritize to examine w-MBR pairs from closest to
furthest in terms of their tree path distances. As illustrated in
Figure 6(b), the search space of all tree nodes at level i covers



the all w-MBR pairs with their LLCA value equal to i (cf.
line 3 in Algorithm 4); When processing Mroot at level 2, we
generate 3 intermediate pairs, (Ma,Mb), (Ma,Mc), (Mb,Mc).
Suppose (Ma,Mb) is the only surviving pair whose distance
lower bound is smaller than bsf, we then examine 9 inter
w-MBR pairs in between Ma and Mb, e.g., (Mw

4 ,M
w
2 ). The

pseudo code of the locality-based search strategy is shown
in Algorithm 4 for clarity. Algorithm 4 covers all possible
w-MBR pairs which provides the exactness of our search
strategy.

Algorithm 4 Quick-Motif: Filter-and-refinement
Input: sequence s of length m, motif length `, pre-computed cumulative
arrays A and A2, Hilbert R-tree Hξ

Output: motif offset os and motif distance bsf
1: bsf←∞
2: for level i from 1 to root do
3: for Mj at level i do . find all w-MBR pairs with LLCA = i
4: for all children pairs (Mu,Mv) of Mj do
5: push (Mu,Mv) into queue Q if dPAA(Mu,Mv) < bsf
6: while Q is not empty do
7: pop a pair (Mu,Mv) from Q
8: if Mu,Mv are not the leaf nodes then
9: for all inter pairs (M ′u,M

′
v) of Mu and Mv do

10: push (M ′u,M
′
v) into Q if dPAA(M ′u,M

′
v) < bsf

11: else
12: invoke Algorithm 3 to refine (Mu,Mv)
13: update os and bsf if a better motif is found

As shown in Table II, the locality-based approach intro-
duces slightly more surviving w-MBR pairs, but it completely
liberates from the costly heap operations. When compared
with the best-first search, the locality-based approach examines
fewer non-leaf node pairs as the running bsf decreases faster
due to the locality of the result. As a consequence, the locality-
based approach outperforms other two search strategies.

C. Lazy Group Refinement (LGR)

1) Limitation of FaR: The filter-and-refinement framework
(Algorithm 4) is an efficient solution especially when it prunes
large amount unpromising MBR pairs at the filtering phase.
However, the pruning ratio is sensitive to the data distributions.
In our experimental testings, the pruning ratio can be from
75.24% in EPG to 99.99% in TAO. In the worst case, it has
∆(∆ − 1)/2 w-MBR pairs to invoke Algorithm 3, where ∆
indicates the total number of w-MBRs (i.e., (m − `)/w). If
there are many surviving w-MBR pairs (e.g., 20%) from the
filtering phase, then the refinement phase becomes costly as
refining a w-MBR pair takes O(w`) time.
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Fig. 7: Lazy Group Refinement

2) Concept of Lazy Group Refinement: Inspired by the
above discussion, we attempt to refine the surviving w-MBR
pairs by batch such that the reusability of running cross-sum
is maximized (cf. Line 10 of Algorithm 3). Figure 7 illustrates
this idea by an example. For ease of presentation, we use Pu,v
to indicate a w-MBR pair (Mw

u ,M
w
v ). Suppose there are 4

w-MBR pairs (e.g,. P0,4, P0,5, P1,4, and P1,5) to be refined
by Algorithm 3. If we process every w-MBR pair individually,
each pair has to calculate 9 out of 25 distances in their entirety
(cf. Section III-A2). However, if we lazily refine these 4 pairs
in a batch, then some distance calculations can incrementally
computed in O(1) time. For instance, d(ŝ5, ŝ21) can be derived
from d(ŝ4, ŝ20) in O(1) time if we refine P0,4 and P1,4 in one
batch. For clarity, d(ŝ5, ŝ21) is necessarily calculated in its
entirety if we process P1,4 individually.

Sub-Partition of Pu,v . To support LGR, we first partition
the calculation space of a w-MBR pair (i.e,. the rectangles in
Figure 5 and Figure 7) into 3 sub-partitions. Without loss of
generality, we assume that v is always larger than u since Pu,v
and Pv,u are interchangeable. The first sub-partition (upper
partition), PUu,v , indicates all subsequence pairs with offset gap
range from (v− u− 1)w+ 1 to (v− u)w− 1 (e.g., the upper
triangle in Figure 7); the second sub-partition (lower partition),
PLu,v , indicate all subsequence pairs with offset gap range from
(v − u)w + 1 to (v − u+ 1)w − 1 (e.g., the lower triangle in
Figure 7); and the last sub-partition (diagonal partition), PDu,v ,
contains all subsequence pairs with offset gap (v − u)w (e.g.
the diagonal elements in Figure 7). Given the sub-partition
notations, we study the following Lemmas which secure the
performance gain of the lazy refinement process.

Lemma 2: The distance of subsequence pairs in PXu,v can
be calculated in O(1) time if
(i) PLu,v−1 is processed together when X = U ; or
(ii) PUu−1,v is processed together when X = L; or
(iii) PDu−1,v−1 is processed together when X = D;

Proof: Due to the space limit, we only show the correct-
ness of the third condition. The other two conditions can be
proved similarly. The subsequence pairs in PDu,v have only one
offset gap (v−u)w. Thus the cross sum of the first subsequence
pair {suw, svw} in PDu,v can be incrementally calculated from
the last subsequence pair {suw−1, svw−1} located in PDu−1,v−1
based on Equation 7.

For instance, the distance of PU1,5 (e.g., d(ŝ6, ŝ25)) can be
calculated in O(1) time if it is processed with PL1,4 (e.g.,
d(ŝ5, ŝ24)). We formally give the performance gain of LGR
in Lemma 3.

Lemma 3: Given n adjacent sub-partitions to be processed
in a batch, the ratio of full distance calculations is 1

nw when
the process starts from PDu,v; otherwise, the ratio is 2

nw .

Proof: For diagonal partition, each partition has w subse-
quence pairs to be processed and only one pair is computed in
it entirety. Thus, the ratio of full distance calculations is 1

nw
if we process n adjacent diagonal partitions by batch.

For other two types of partitions, each partition has w(w−
1)/2 subsequence pairs and it requires to calculate w − 1
subsequence pairs in their entirety (i.e., the first row or the



first column pairs). Thus, the ratio of full distance calculations
is w−1

nw(w−1)/2 = 2
nw .

For instance, when we lazily refine 4 w-MBR pairs (i.e.,
4 upper, 4 lower, and 4 diagonal partitions) in Figure 7, the
number of full distance calculations is reduced to 2∗10−1 =
19 5 from 4∗(2∗5−1) = 36. Thus the full distance calculations
is 52.7% smaller than refining w-MBRs individually. More
importantly, the performance gain provided by the lazy group
refinement becomes more obvious when more w-MBR pairs
are surviving from the filtering phase (such that more adjacent
sub-partitions are processed by batch).

3) Filter-and-Refinement with LGR: We still need an ef-
fective strategy to integrate LGR into the filter-and-refinement
framework. Note that we cannot simply defer every w-MBR
pair (line 12 of Algorithm 4) to LGR as this naı̈ve strategy
never updates bsf in the filtering phase. An alternative strategy
is to defer a w-MBR pair only when their lower bound is
smaller than a given threshold. However, there is no unified
approach to define the threshold for different datasets. To make
our solution more data-oriented, we set the best-so-far value
bsf after processed λ levels in FaR as bsfλ. More specifically,
tree nodes with level smaller than λ would be filtered and
refined using Algorithm 4 (cf. Line 2), and the correlation of
motif discovered among these tree nodes will be used as a fix
threshold (i.e., bsfλ) to derived the candidate w-MBR pairs
for LGR. The value of λ is typically set to a small value (e.g.,
λ=2) as the locality of the Hilbert R-tree can provide a good
enough threshold at low level.

Given all deferred w-MBR pairs (whose lower bounds
are smaller than bsfλ), their subsequence distances can be
computed by batch using LGR. According to Lemma 2, the
distance of a sub-partition can be calculated in O(1) time
if it is processed with its predecessor. For instance, we can
compute the normalized distance of PU1,5 in O(1) time if it is
processed with PL1,4 in the same batch. Straightforwardly we
can map all surviving w-MBR pairs into a 2D array (with size
∆ × ∆) and dig out the adjacent sub-partitions by scanning
the 2D array from top-left to right-bottom. The space overhead
of this solution is O(∆2). However, ∆2 can be very large in
practices (based on the length of input sequence and w). For
instance, the value of ∆2 is 1.0×1010 in the default setting
of our experiments where the space overhead is 37.25 GB
if every cell store a 4 Bytes record. In the following, we
discuss a new solution which can reduce the space overhead
to O(∆ +Nsurvive), where Nsurvive indicates the number of
surviving pairs.

To efficiently dig out the preceding information, we main-
tain two array lists Lfirst and Llast where each list contains
2∆ buckets in total. Each bucket keeps the preceding informa-
tion of its corresponding offset gap interval. For instance, the
first two buckets keep the preceding information of interval
[1, w− 1] and [w,w], respectively (denoted as 0w+ and 1w in
short). For clarity, we illustrate the relationship of the buckets
and the offset gaps in Figure 8.

Figure 9 is a concrete example of 5 surviving w-MBR pairs
to demonstrate how to process all adjacent sub-partitions by

5For ease of understanding, this number can be derived from the first row
plus the first column if the refining w-MBRs is grouped as a big rectangle.
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... 5w+ 6w 6w+ 7w 7w+ ...
Lfirst ... - - PU1,8 PD1,8 PL1,8 ...
Llast ... - - PU1,8 PD1,8 PL1,8 ...

(b) 1st access, P1,8

... 5w+ 6w 6w+ 7w 7w+ ...
Lfirst ... PL2,7 PD2,8 PU1,8 PD1,8 PL1,8 ...
Llast ... PU2,8 PD2,8 PL2,8 PD1,8 PL1,8 ...

(c) 3rd access, P2,8
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Llast ... PU3,9 PD3,9 PL3,9 PD1,8 PL1,8 ...

(d) Refine sub-partitions PU1,8 to PL2,8 after 5th access, P3,9

Fig. 9: An example of lazy group refinement

batch using the preceding arrays. During the filtering phase,
we insert every deferred w-MBR pair into a sorted list where
the pairs are sorted in an order to their (u, v) values. For
instance, P1,8 is prioritized ahead of P1,9 and P2,7 in the
sorted list. After we defer all surviving w-MBR pairs to
LGR, we iteratively process these pairs according to the sorted
list. For each processing pair Pu,v , we decompose it into 3
sub-partitions, PUu,v , PDu,v , and PLu,v , and then maintain the
corresponding bucket of the preceding arrays. For instance,
when getting P1,8 at the first access, it is decomposed into PU1,8,
PD1,8, and PL1,8 where their corresponding buckets are 6w+, 7w,
and 7w+, respectively (cf. Figure 9(a)). As an example, we
simply mark PU1,8 as a new batch in bucket 6w+ (by updating
Lstart and Lend in Figure 9(b)) as bucket 6w+ is empty. In
the next iteration, we get pair P2,7 from the sorted list and
update the preceding information of empty buckets 4w+, 5w,
and 5w+. When processing the next pair P2,8, we update the



preceding information of 5w+, 6w, and 6w+. Note that we
update Llast of 5w+ since PU2,8 is adjacent to PL2,7 in 5w+

and the reason of updating Llast of 6w+ is similar.

The preceding information are iteratively updated till the
new coming sub-partition is not adjacent to the previous batch.
For instance, when getting PL3,9, the preceding information
in 6w+ (from PU1,8 to PL2,8) is not the predecessor of PL3,9.
We refine PU1,8 to PL2,8 by batch and replace the preceding
information by PL3,9 (cf. Figure 9(d)). Note that we do not
miss any adjacent subpartition in the batch processing since
all pairs are sorted access from top-left to right-bottom (as
illustrated in Figure 9(a)).

Algorithm 5 Quick-Motif: Lazy group refinement
Input: sequence s of length m, motif length `, pre-computed cumulative
arrays A and A2, sorted list SL
Output: motif offset os and motif distance bsf

1: initial Lbegin, Lend of 2∆ buckets to null
2: for Pu,v ∈ SL do
3: for each PX

(u,v)
, X ∈ U ,L,D do

4: B[idx]← bucket of PX
(u,v)

. Equation 13
5: (Lbegin, Lend)← B[idx]’s preceding information
6: if Lend is the predecessor of PX

(u,v)
then . Lemma 2

7: Lend ← PX
(u,v)

8: else
9: process sub-partitions from Lbegin to Lend in B[idx]

10: Lbegin ← PX
(u,v)

; Lend ← PX
(u,v)

Algorithm 5 shows the pseudo code for LGR. The sorted
list SL keeps all surviving w-MBR pairs which is maintained
by a revised Algorithm 4. Given a subpartition PXu,v , the index
of the corresponding bucket (line 4 of Algorithm 5), idx, is
easily derived from a simple rule using u, v, and X as follows.

idx =

 (v − u− 1)w+ if X=U
(v − u)w if X=D
(v − u)w+ if X=L

(13)

In Line 9, processing adjacent sub-partitions in batch is
just a variant of refining an w-MBR pair (Algorithm 3). The
detail is omitted for simplicity.

To use LGR, we need to slightly modify the filter and
refinement process (lines 12-13) of Algorithm 4. If the process
level i is smaller than the level constraint (i.e., λ), then we
invoke Algorithm 3 and update bsf value. Otherwise, we insert
the surviving w-MBR pair into a sorted list SL. After the filter
and refinement process, Algorithm 5 is invoked using SL as
input.

Discussion. As compared with the 2D array solution, our
approach consumes much smaller space in practices since we
only keep two array lists plus one sorted list instead of a 2D
array, O(∆2) vs O(∆ +Nsurvive). Even though Nsurvive can
be up to ∆(∆ − 1)/2, we can avoid the worst case by fine-
tuning the level constraint (i.e., λ) during the execution.

In majority of cases, applying LGR into the filter-and-
refinement framework (FaR) is beneficial since the only over-
head is to prepare the sorted list of the surviving w-MBR
pairs. Obviously, the sorting cost becomes higher when there
are more deferred w-MBR pairs. However, such large amount

of deferred w-MBR pairs will improve the refinement per-
formance by batch processing (Line 9 of Algorithm 5 and
Lemma 3). Thereby, we strongly recommend to apply LGR
into FaR as a complete framework for Quick-Motif.

D. Putting it all together

Algorithm 6 Quick-Motif
Input: A sequence s of length m, motif length `, dimensionality φ,
grouping size w, branch factor ξ, level constraint λ
Output: motif offset os and motif distance bsf

1: Precompute running sum array A, A2 . Section II-B
2: Construct w-MBRs , (w and φ) . Section III-A
3: Construct Hilbert R-tree, (ξ) . Section III-B
4: Invoke Alg. 4 to filter and refine w-MBR pairs, (λ) . Section III-B
5: Invoke Alg. 5 to process w-MBR pairs by batch . Section III-C

We are now ready to present our complete framework,
Quick-Motif, in Algorithm 6. We first construct two running
sum arrays using the techniques introduced in Section II-B.
Next we construct the w-MBRs of the query sequence (cf.
Section III-A). To filter out unpromising w-MBR pairs, we
organize the w-MBRs into a Hilbert R-tree and then apply
the locality-based search strategy (cf. Section III-B). Lastly
we apply our lazy group refinement technique to process the
surviving w-MBR pairs by batch (cf. Section III-C).

Parallel execution. Quick-Motif is a parallel friendly frame-
work. In the filter-and-refinement process, the master dispatchs
each processing node (cf. line 3 of Algorithm 4) to different
slaves. When a slave returns a result, the master maintains the
sorted list SL and motif result if necessary. In LGR, the master
partitions the SL into several pieces according to the offset gap
and dispatch them to different salves so that each slave invokes
their LGR locally. Note that this parallel framework unlikely
reduces the effectiveness of the batch processing since w-MBR
pairs of each small piece remain sorted.

IV. EXPERIMENTS

In this section, we conduct extensive experiments to evalu-
ate Quick-Motif (QM) with other competitors. All methods
were implemented in C++, complied using gcc 4.6.3, and
performed on a machine equipped with Intel Core 6-Cores
(12-Threads) i7-3930K 3.2GHz and 16GB main memory.
The machine was running Ubuntu 12.04. For the sake of
experimental reproducibility, we have posted our datasets and
executables at [22].

A. Experiment Setup

We use both synthetic and real datasets in the experiments.
The synthetic datasets are used to evaluate the scalability of
our techniques. Each sequence is generated by a random model
(adopted in [5], [17], [23]) as follows.

s[i+ 1] = s[i] + N(µ, σ) (14)

where N(µ, σ) is a normal distribution function. By default, we
set the mean µ=0 and the standard deviation σ=1 (following
the experiment setting of [5]). Besides, we evaluate our work
on four real datasets that were used in [3], [5], [10], [11].

ECG The Koski ECG was evaluated in [10] where the
ECG sequence is of length 144, 002.



EEG It is a sequence of length 180,204 which can
reflect the activity of large populations of neurons
[5].

EPG It is a concatenation of the two EPG sequences
which traces insect behavior [3], it has 106,950
observations.

TAO It records the sea surface temperatures of 55 array
sensors over years. We evaluate our methods on
a sequence of length 374,071 collected from the
array sensors. This dataset was used in [11].

TABLE III: Experimental parameters and their values

Parameter Default Range
Sequence length, m 500k 250k, 500k, 750k, 1000k

Motif length, ` 500 300, 500, 700, 900
Grouping size, w/` 1% 0.5%, 1%, 2%, 3%, 4%

Branch factor, ξ 4 2, 4, 6, 8
Level constraint, λ 2 1, 2, 3, 4

Table III summarizes the ranges of the investigated pa-
rameters and their default values. In each experiment, we
vary a single parameter, while setting the others to their
default values. For experiments on synthetic dataset, we report
the average response time by running the methods on 10
sequences. We compare QM to two closest competitors MK [5]
and SBF [9]. For MK, 20 subsequences are randomly selected
to build the indices as investigated by authors in [5]. In QM,
we set the PAA dimensionality φ to 10 as suggested in [11]
and the tuning of other three system parameters w/`, ξ and λ
will be studied at Section IV-D. The response time of MK and
QM include the indices construction time, and for each testing,
we only use one core to run algorithms unless explicitly stated.

As a remark, under the default settings, the construction
time of MK is 7.17 s (0.18% of overall cost) and it is only 0.39
s (5.5% of overall cost) for QM. The memory usage of SBF,
MK, and QM is 13 MB, 2273 MB and 48 MB, respectively.
QM uses 35 MB (out of 48 MB) extra memory to support
pruning and lazy group refinement (cf. Sec. III-C).

B. Effectiveness of Optimizations

We have proposed an optimization for filtering w-MBR
pairs, and evaluated it in Table II (in Section III-B). In this
subsection, we proceed to examine the effectiveness of two
optimization techniques for refining subsequence pairs: (i) fast
distance calculation (Alg. 3 and noted as QM-FDC) and (ii)
lazy group refinement (Alg. 6). These two techniques are
compared with distance early termination (noted as QM-DET).
Instead of invoking Alg. 3 to refine a surviving w-MBR pair
as in QM-FDC, QM-DET uses the distance early termination
to refine subsequence pairs in w-MBR pairs (cf. line 12 of
Alg. 4). In order to utilize the distance early termination, we
need to keep all normalized subsequences in the memory [4],
and this makes QM-DET infeasible for very long sequences.

Effectiveness of FDC. Even distance early termination can
be quite effective when tight threshold is applied, it still needs
building time and memory space for all normalized subse-
quences. As shown in Figure 10(a), the overall performance
of QM-FDC is superior to QM-DET , and the superiority of
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Fig. 10: The effect of optimization methods, on synthetic dataset

QM-FDC becomes significant when ` increases, e.g., 1.9 times
faster when ` = 900.

Effectiveness of LGR. The performance gap between QM-
FDC and QM is shown in Figure 10(a). The tight correlation of
motif, e.g., 0.993 when ` = 500, led to fewer sub-partitions for
LGR, thus the performance gain of QM is limited. However,
QM is 1.62 times faster than QM-FDC when ` = 900 as it
has more adjacent sub-partitions for LGR with the decreasing
of motif’s correlation in this setting.

Parallel execution. Next we evaluate the parallel version of
QM in Figure 10(b), where it is implemented in OpenMP6.
Experimental result demonstrates that the response time de-
creases when more cores are used. For example, the response
time is reduced to 3.2 s (from 7.13 s) when we execute QM
by 8 cores (compared to single core).

C. Performance Studies

Overview. In this subsection, we compare QM with two
state-of-the-art solutions, MK and SBF. QM outperforms these
two methods (i.e., up to 3 orders of magnitude faster) in all
performance studies. The improvement of QM makes online
processing feasible for motif discovery (e.g., 2.48 s at sequence
length m=250k).

Scalability experiments on synthetic data. Figure 11(a)
shows the response time of the methods as a function of query
sequence length m, after setting all other parameters to their
default values. Cost grows with m for all methods. The result
of QM is impressive since it is at least two orders of magnitude
faster than SBF and MK. For instance, QM is 327 and 543
times faster than SBF and MK, respectively, when m=500k.

Figure 11(c) shows the response time of the methods versus
motif length `. SBF is not very sensitive to ` since SBF
incrementally computes the distance of (m − `)2 pairs (i.e.,
taking O((m− `)2) time). MK is also not very sensitive to `
since the length of subsequences affects the pruning ability
of the reference indices. QM is the only method that has
obvious gain when ` becomes larger since it jointly reduces
the number of comparisons and accelerates each individual
correlation calculation. Similarly, QM is at least two orders of
magnitude faster than SBF and MK.

Figure 11(b), 11(d) illustrate the cost of each phase in
QM. Grouping is the cost for constructing Hilbert R-tree;

6http://openmp.org/wp/
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Fig. 11: Scalability evaluation, on synthetic dataset

Pruning represents the cost to prune unpromising w-MBR
pairs and prepare the sorted list; LGR is the cost for our lazy
group refinement. Grouping, Pruning and LGR occupies 5.5%,
72.8%, 21.7% of cost time in the default setting, respectively.
As shown in Figure 11(b), by varying m, the cost distributions
of these three phases are similar as using the same `. When `
becomes larger, QM prefers to use larger w (e.g., w = 0.01`),
thus fewer w-MBR pairs under the same m setting and the
cost of Pruning reduces as in Figure 11(d).

Real data experiments. Figure 12 plots the response time
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Fig. 12: Experiments on real datasets

of all methods versus motif length ` on four real datasets. In
TAO and ECG, MK is superior to SBF for all motif length

since the reference indices can provide competitive pruning
ability. Again QM outperforms MK and SBF, e.g., in TAO
dataset, QM is 1412 and 897 times faster than SBF and MK,
respectively, when ` = 900. As a remark, in EEG dataset, QM-
FDC performs slower than SBF as the pruning ability is weak
when ` = 900. Our best method QM is 2.93 times faster than
QM-FDC due to the gain of LGR, and still performs better
than SBF as in shown in Figure 12(b).

D. Tuning of System Parameters

In this subsection, we test the robustness of QM by varying
three system parameters: w/`, λ and ξ. According to our
experimental evaluation, QM is not very sensitive to λ and
ξ, and the only necessary tuning parameter is w. However
even using the worst w/` setting, QM is at least two orders
of magnitude faster than SBF and MK.

Effect of w/`. We first study the effect of the grouping size
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Fig. 13: Tuning of system parameters, on synthetic dataset

w, where w controls the number of consecutive subsequences
grouped in a MBR. To make our system suitable for different
length motif discovery, this parameter is set to a ratio of `.
Figure 13(a) shows the effect of w. Obviously the value of w
leads a tradeoff between the effectiveness of pruning capability
and fast distance calculations. When w is set to a small value
(e.g., w/` = 0.5%), the filter-and-refinement can prune more
MBR pair due to the tightness of the MBRs but it degrades the
effectiveness of the fast distance calculations. We should use
a small value of w; otherwise it may introduce many w-MBR
pairs to be refined (such that more subsequence pairs to be
computed). According to our experiments, we set w/` = 1%
in our default setting as it achieves good overall performance.

Effect of λ. Next we demonstrate the effect of the level con-
straint λ in LGR in Fig. 13(b). As explained in Section III-C,
the value of λ can be set to a small value (e.g., 2). More
importantly, the response time is not very sensitive to λ which
verifies the robustness of our grouping idea and the bottom-up



search strategy (i.e., a good motif candidate can be discovered
in low levels of w-MBR pairs).

Effect of ξ. Fig. 13(c) shows the effect of branch factor ξ.
According to the experimental evaluation, the performance of
QM is not very sensitive to ξ, and we set ξ = 4 in our default
setting.

V. OTHER RELATED WORK

Time series motif discovery was first introduced by Chiu et
at [13]. Now it becomes a core subroutine in modern sequence
mining tasks [3], [7]. As introduced in Section I, the naı̈ve
solution requires quadratic number of distance calculations
which becomes infeasible for large scale data in modern
applications.

To address the performance of motif discovery, one di-
rection is to discover an approximate motif. Castro and
Azevedo [1] propose an approximate solution that converts a
sequence into a set of symbols by iSAX [10]. This conversion
significantly reduces the dimensionality of the problem such
that the approximate motif can be computed efficiently. How-
ever, their solution has no quality guarantee on the result. Tao
et al. [24] propose a locality-sensitive B-tree to answer closest
pair query approximately with guarantee for high dimensional
objects. Their work is the state-of-the-art solution in this
category to the best of our knowledge, but their solution does
not guarantee it returns exact motif result.

Regarding exact motif discovery, we already discuss two
state-of-the-art solutions, MK [5] and SBF [9], in Section II.
Besides MK and SBF, Mueen et al. [4] propose a disk-aware
algorithm to find exact motif for sequences of million lengths.
However, the disk based solution does not fulfill the need of
emerging applications (i.e., fast response time). Mueen and
Keogh [3] develop a sliding window based motif discovery
algorithm which maintains the motif over the most recent
history of a stream. Their problem is different from ours where
we assume the sequence comes in its entirety per query.

To the best of our knowledge, we are the first work to
jointly reduce the number of comparisons and accelerate each
individual correlation calculation such that we can boost up
the exact motif discovery at scale.

VI. CONCLUSION

In this paper, we present a scalable framework, Quick-
Motif (QM), to handle exact motif discovery efficiently. To
the best of our knowledge, we are the first work that discovers
motif in a sequence of million lengths in ∼20s on a com-
modity machine (while other approaches take several hours
to complete the same discovery task). The performance of our
approach enables the possibility to offer online motif discovery
in emerging applications.

In the future, we plan to implement Quick-Motif on mas-
sively parallel hardware architectures likes GPUs or HPC.
Another direction is to study the motif discovery problem
based on other distance measurements, such as dynamic time
warping with normalization.
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