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Abstract— Web users and content are increasingly being geo-
positioned. This development gives prominence to spatial key-
word queries, which involve both the locations and textual
descriptions of content.

We study the efficient processing of continuously moving top-
k spatial keyword (MkSK) queries over spatial keyword data.
State-of-the-art solutions for moving queries employ safe zones
that guarantee the validity of reported results as long as the user
remains within a zone. However, existing safe zone methods focus
solely on spatial locations and ignore text relevancy.

We propose two algorithms for computing safe zones that
guarantee correct results at any time and that aim to optimize the
computation on the server as well as the communication between
the server and the client. We exploit tight and conservative
approximations of safe zones and aggressive computational space
pruning. Empirical studies with real data suggest that our
proposals are efficient.

I. INTRODUCTION

The Internet is increasingly being accessed by mobile users.
This development is fueled by advances in mobile devices,
networks, and services. Further, the Internet is acquiring a
spatial dimension, with content and users increasingly being
geo-positioned.

This development calls for spatial keyword queries that
integrate location with text search [1]–[5]. Taking a location
and a set of keywords as arguments, such queries return
relevant content that matches the arguments. However, all
existing proposals assume a static query location at a snapshot.
In contrast, we consider the moving top-k spatial keyword
(MkSK) query, which takes into account a continuously mov-
ing query location. This query enables a mobile user (or driver)
to be continuously aware of the k spatial web objects that best
match a query with respect to location and text relevancy.
A tourist visiting New York City may activate a “lunch
special vegetarian” query when lunch approaches to be alerted
about nearby opportunities for lunch. Individuals looking for
entertainment may issue a “happy hour free snacks” query in
the late afternoon to be alerted about bars with happy hour
deals with free snacks. With the MkSK query, a user always
has an up-to-date result as the user moves. The user can ignore
a result and just keep moving until an appealing result appears.

The straightforward solution to the MkSK query, of peri-
odically invoking an existing snapshot spatial keyword query
processing technique (e.g., [2]–[4], [6]), either yields excessive

costs or outdated results. Indeed, even with a very small
period, correct near-future results are not guaranteed.

State-of-the-art proposals for moving queries [7]–[9] adopt
a standard client-server architecture along with safe zones. In
response to a query, the server computes the result and a safe
zone, which are sent to the client. As long as the client stays
in the safe zone, the result is guaranteed to remain correct.
Only when leaving the safe zone, the client sends a location
update to the server, which repeats the above process.

To the best of our knowledge, this paper contains the first
study of moving spatial keyword queries. Voronoi cells [7]
have been used as safe zones for nearest neighbor queries.
However, these consider only location, not text relevancy.
We capture also text relevancy by using weights and then
define safe zones using multiplicatively weighted Voronoi
(MW-Voronoi) cells [10]. MW-Voronoi diagrams have been
applied extensively in geographic, market, and urban analysis.
For instance, they have been applied to study supply points
that result from consumer attraction [11], the U.S. national
systems of planning regions [12], and urban settlement and
socioeconomic structures [13].

The concept of weighted distance plays an important role
in the MW-Voronoi diagram. Assuming a data set D of points
p = (px, py) with weight w(p), the weighted distance between
p and a query point q is defined as dw(q, p) = ‖q p‖

w(p) , where
‖q p‖ denotes their Euclidean distance. The MW-Voronoi cell
of a point defines its influence region based on its weight.
Figure 2(b) shows a data set {p1, p2, p3, p4, p

∗}, where p∗ is
the top result of q. The shaded region is the MW-Voronoi
cell of p∗—all locations in this region have smaller weighted
distance to p∗ than any other point pi. In our setting, the weight
w(p) of a data object p is query-dependent and is determined
by the text relevancy between the object’s description and the
keywords in the query.

We use the weighted distance dw(q, p) as the ranking
function for MkSK queries. A key strength of this function is
that the different measurement units of the weights (i.e., text
relevancy) and the spatial distances do not affect the result
because the effect of the units is canceled in the ratio of the
weights used (covered in Definition 1 in detail).

Existing methods for constructing MW-Voronoi diagrams
involve a full scan of the data [14]. In our setting, we need
only compute a single MW-Voronoi cell, for which the existing



methods are inefficient. Pre-computation is inapplicable in our
setting because the weight w(p) of a point p is known only
when a query is received.

We develop two algorithms for computing safe zones using
a tree-based index [2]–[4], [6] over a spatial keyword data
set, so that only a small fraction of the data objects are
accessed during computation. Our objectives are to optimize
the computational cost at the server as well as the client/server
communication cost. The contributions of the paper are sum-
marized as follows.

1) We formalize the continuously moving top-k spatial
keyword query problem.

2) We develop an early stop algorithm (IBD) to compute
safe zones. It utilizes topological pruning to discard
objects that cannot contribute to a safe zone, and it also
incorporates an early stopping condition.

3) We present an advanced algorithm (MSK-uvr) that en-
ables pruning of subtrees of objects that do not con-
tribute to the safe zone, to improve efficiency. It also
applies two optimizations to further reduce the search
space and the communication cost.

4) We offer empirical insight into the performance of the
proposed algorithms.

The rest of the paper is organized as follows. We first
present the problem setting and provide background knowl-
edge in Section II. Then we develop the early stop algorithm
(IBD) in Section III and the advanced algorithm (MSK-uvr) in
Section IV. Next we study the performance of our proposals
on real data sets in Section V. Then we discuss related work
in Section VI, followed by conclusions in Section VII.

II. PROBLEM SETTING AND BACKGROUND

Following a formal problem definition, we provide back-
ground on the MW-Voronoi diagram and a tree-based index
for spatial keyword data.

A. Problem Definition

We consider a data set D in which each object p ∈ D is a
pair 〈λ, ψ〉 of a point location p.λ and a text description, or
document, p.ψ (e.g., the facilities and menu of a restaurant).
Next, a top-k spatial keyword query q = 〈λ, ψ, k〉 takes three
arguments: a point location λ, a set of keywords ψ, and a
number of requested objects k.

Let the function trq.ψ(p.ψ) denote the text relevancy of p.ψ
to q.ψ. Our approach is applicable to any information retrieval
model, e.g., TFIDF [22].

Intuitively, an object whose description is more relevant to
the query keywords and is closer to the query location is
preferable. We use a weighted distance [16] in Equation 1
as our ranking function, since it matches the semantics of the
query.

rankq(p) =
‖q.λ p.λ‖
trq.ψ(p.ψ)

, (1)

where ‖q.λ p.λ‖ denotes their Euclidean distance. An object
p with a smaller value of rankq(p) is ranked higher (more
relevant to the query).

The top-k spatial keyword query q returns a list of k objects
from D that minimize the ranking value and that are in
ascending order of their ranking values. Formally, the result,
denoted by RS, is a list of k objects from D that satisfy the
following condition:

∀p ∈ RS( ∀p′ ∈ D −RS( rankq(p) ≤ rankq(p′))) (2)

Figure 1(a) shows the locations of a set of objects D =
{p1, p2, p3, p4}. Figure 1(b) shows the word frequencies for
each object. Let the query q shown in Figure 1(a) with q.ψ =
〈a, b〉 and q.k = 2 be given. The number in brackets next to
each object is its text relevancy to the query keywords q.ψ
that are computed on-the-fly using the text relevancy function
trq.ψ(p.ψ). The result of query q is 〈p2, p3〉 according to
function rankq(·). The ranking value of p2 and p3 is 0.478
(= 0.11/0.23) and 0.54 (= 0.13/0.24), respectively. When q
moves to q′, the result rank becomes 〈p2, p4〉. The ranking
value of p2 and p4 is 0.478 and 0.48, respectively.

p1‹0.244›

p2‹0.23›

p3‹0.24›

p4‹0.25›

q

q'
1

1

tf a b

p1 3 4
p2 1 2
p3 2 3
p4 4 5

‖q pi‖ ‖q′ pi‖
p1 0.14 0.15
p2 0.11 0.11
p3 0.13 0.12
p4 0.14 0.12

(a) locations (b) descriptions (c) Euclidean distances

Fig. 1. Example moving top-k spatial keyword query

Problem Statement.
We study the efficient processing of moving top-k spatial key-
word (MkSK) queries over static objects in Euclidean space.
Thus, the spatial location of a query changes continuously
whereas the keywords of a query remain constant.

We aim for a solution that (i) guarantees that the client
has a correct result at any point in time, (ii) optimizes
the computational server-side cost, and (iii) optimizes the
client/server communication cost.

B. Multiplicatively Weighted Voronoi Diagram

Our approach to computing the moving top-k spatial key-
word query utilizes the so-called multiplicatively weighted
Voronoi (MW-Voronoi) diagram [10]. Here, we recall the
definitions of MW-Voronoi diagrams and regions.

Let D be a set of weighted points in two-dimensional
Euclidean space U . A point a in D has (i) a weight w(a)
and (ii) coordinates (ax, ay). The weighted distance between
any point z in U and a is defined as dw(z, a) = ‖z a‖

w(a) , where
‖z a‖ is the Euclidean distance between z and a.

Definition 1: The dominant region of point a over point b
is defined as:

Doma,b = {z ∈ U | dw(z, a) ≤ dw(z, b)} (3)
To characterize the shape of Doma,b, we define the Apol-

lonius circle [17] and explain its relationship with Doma,b.
As an example, Figure 2(a) shows the Apollonius circle of



two points a and b. Any location z on the circle satisfies the
equation ‖z a‖ = µ · ‖z b‖.

b a

z z

oa,b

ra,b

Doma,b

M N

v1

v2

v3

v4

v5
v6 v7 v8

c

q 1

p3‹0.6›

p4‹0.2›

p*‹0.5›
p1‹0.4›

p2‹0.7›

(a) Appollonius circle (b) MW-Voronoi region

Fig. 2. Example MW-Voronoi region

Definition 2: (Durell [17]) Given two points a and b and a
constant 0 ≤ µ ≤ 1, the Apollonius circle Ca,b is defined as
all locations z that satisfy: ‖z a‖ = µ · ‖z b‖. The Apollonius
circular region Ca,b is defined as the region: ‖z a‖ ≤ µ·‖z b‖.

Lemma 1: [Radius and center, Apollonius circle] (Okabe
et al. [10]) Given two points a and b such that w(a) < w(b),
Doma,b = Ca,b. The center oa,b and the radius ra,b of Ca,b are
shown in Equations 4 and 5. In addition, we have: Domb,a =
U − Ca,b, where U is the spatial domain.

oa,b =
(
w2(b)·ax−w2(a)·bx

w2(b)−w2(a) ,
w2(b)·ay−w2(a)·by

w2(b)−w2(a)

)
(4)

ra,b = w(a)·w(b)·‖a b‖
w2(b)−w2(a) (5)

We will use circle and circular region interchangeably.
For the special case w(a) = w(b), the Apollonius circular

region Ca,b degenerates to the perpendicular half plane ⊥a,b.
In general, the dominant region Doma,b is expressed as:

Doma,b =

Ca,b if w(a) < w(b)
U − Cb,a if w(a) > w(b)
⊥a,b if w(a) = w(b)

(6)

The MW-Voronoi diagram of D is the collection of MW-
Voronoi regions of all points in D. These regions form a
(disjoint and complete) partitioning of the spatial domain [10].

Definition 3: Given a (result) point p∗ ∈ D, its MW-Voronoi
region with respect to D is defined as:

Υ(p∗) =
⋂

p′∈D−{p∗}

Domp∗,p′ (7)

Based on a (result) point p∗ ∈ D, we can partition D into
D = D+ ∪ D− ∪ Do ∪ {p∗}, where set D+ contains all
points with higher weight than p∗, set D− contains all points
with lower weight than p∗, and set Do contains the objects
whose weights are identical to p∗. According to Mu et al. [14],
by applying Equation 6, we can re-express the MW-Voronoi
region as Equation 8. Thus, higher-weight neighbors add to the
MW-Voronoi region of a point, forming convex edges; lower-
weight neighbors subtract from it, forming concave edges; and
equal-weight neighbors crop it with straight lines.

Υ(p∗) =
⋂

p∈D−{p∗}

Domp∗,p (8)

=
⋂

pj∈D+

Cp∗,pj ∩
⋂

pi∈Do

⊥p∗,pi ∩
⋂

pk∈D−

(U − Cpk,p∗)

=
⋂

pj∈D+

Cp∗,pj ∩
⋂

pi∈Do

⊥p∗,pi −
⋃

pk∈D−

Cpk,p∗

Figure 2(b) shows a point set D = {p1, p2, p3, p4, p
∗}. The

number in brackets next to each point is its weight. The MW-
Voronoi region of p∗, Υ(p∗), is shaded. Every location in this
region has a smaller weighted distance dw(·, ·) to p∗ than to
any other point in D. We have that D+ = {p2, p3} and D− =
{p1, p4}. As shown in the figure, Cp∗,p2 = v1v2v7, Cp∗,p3 =
v1v3v6, Cp1,p∗ = v4v5v8, and Cp4,p∗ is the circle c. The MW-
Voronoi region of p∗ is then given as

Υ(p∗) = Cp∗,p2 ∩ Cp∗,p3 − (Cp1,p∗ ∪ Cp4,p∗).

C. Preliminaries: The IR-Tree

While our algorithms may utilize several tree-based in-
dexes [2]–[4], [6], we adopt the IR-tree [2] for indexing data
objects at the server.

The IR-tree [2] is an R-tree [18] extended with inverted
files [19]. Each leaf node contains entries of the form eo =
(Λ, ψ), where eo refers to a data object, eo.Λ is a minimum
bounding rectangle (MBR), and eo.ψ refers to the text descrip-
tion. Each leaf node also contains a pointer to an inverted file
with the text descriptions of all objects stored in the node.

An inverted file index has two main components.
• A vocabulary of all distinct words appearing in the

description of some object.
• A posting list for each word t, i.e., a sequence of the

identifiers of the objects whose descriptions contain t.
Each non-leaf node N in the IR-tree contains entries of the
form e = (Λ, ψ), where e is the address of a child node of N ,
e.Λ is the MBR of all rectangles in entries of the child node,
and e.ψ refers to a pseudo text description that represents all
text descriptions in the entries of the child node. The latter
enables derivation of an upper bound on the text relevancy to
a query of any object contained in the subtree rooted at e.
Each non-leaf node also contains a pointer to an inverted file
with the text descriptions of the entries stored in the node.

Figure 3(a) contains nine spatial objects, and Figure 3(b)
shows the frequency of words in the description of each object.
For example, the description of p1 contains the words a and c
five times each. Figure 4(a) illustrates the corresponding IR-
tree, and Figure 4(b) shows the contents of the inverted files
associated with the nodes. As a specific example, the weight of
the term c in entry R2 of node R5 is 7, which is the maximal
weight of the term in the three documents in node R2.

For ease of understanding, we use tf (t, p.ψ) to represent
the weight of word t in the running example of the paper.

Lemma 2: [Monotonicity, text relevancy function] (Cong
et al. [2]) Given a query q and an entry e with its rectangle
e.Λ, we have ∀p ∈ e.Λ (trq.ψ(e.ψ) ≥ trq.ψ(p.ψ)).



R1 R2
R3 R4

R5 R6
InvFile- root

p1 p2
p3 p4 p8 p5 p9 p6 p7

InvFile- R1 InvFile- R2 InvFile- R3 InvFile- R4

InvFile- R5
InvFile- R6

InvF -root InvF -R5 InvF -R6

a: (R5, 7), (R6, 4) a: (R1, 5), (R2, 7) a: (R3, 4), (R4, 1)
b: (R5, 5), (R6, 4) b: (R1, 5), (R2, 3) b: (R4, 4)
c: (R5, 7), (R6, 4) c: (R1, 5), (R2, 7) c: (R3, 4), (R4, 4)
d: (R5, 1), (R6, 1) d: (R2, 1) d: (R4, 1)

InvF -R1 InvF -R2 InvF -R3 InvF -R4

a: (p1, 5) a: (p3, 7) a: (p5, 4), (p9, 3) a: (p7, 1)
b: (p2, 5) b: (p8, 3) b: (p6, 4), (p7, 1)
c: (p1, 5), (p2, 5) c: (p4, 7), (p8, 3) c: (p5, 4), (p9, 3) c: (p6, 3), (p7, 4)

d: (p3, 1), (p4, 1) d: (p7, 1)

(a) Structure of the IR-tree (b) Content of the Inverted Files of the nodes

Fig. 4. Example of an IR-tree

p5

p1

p2

R1

R3

R

p9

Q

p7

p6

p4

p3

p8

R2

R4

R5

R6

p1 p2 p3 p4 p5 p6 p7 p8 p9

a 5 0 7 0 4 0 1 0 3
b 0 5 0 0 0 4 1 3 0
c 5 5 0 7 4 3 4 3 3
d 0 0 1 1 0 0 1 0 0

(a) object locations (b) object descriptions

Fig. 3. A data set of Spatial Keyword Objects

As an example in Figure 4, given any query q, trq.ψ(R5.ψ) ≥
trq.ψ(R1.ψ) ≥ trq.ψ(p1.ψ).

III. EARLY STOP SOLUTION

By setting the weight w(p) of each point p ∈ D to its text
relevancy trq.ψ(p.ψ), we have that rankq(p) = dw(q, p). The
safe zone of query q is the MW-Voronoi region Υ(p∗), where
p∗ is the top-1 result of q. In this section, we present an early
stop solution that utilizes the IR-tree for computing Υ(p∗),
without having to visit all data objects. First, we develop
pruning rules for discarding objects that cannot contribute to
defining the safe zone. Next, we discuss an efficient ordering
for accessing the IR-tree and then present the algorithm. We
first consider the case k = 1 and end by describing how to
extend the solution to arbitrary k.

A. Pruning Rules for Unseen Objects

It is generally far from every data object that contributes to
defining the safe zone Υ(p∗). In the example in Figure 2, the
(shaded) region Υ(p∗) is defined by points p1 and p2 only:
without the points p3 and p4, we would obtain exactly the
same region Υ(p∗). We proceed to present pruning rules for
discarding such irrelevant objects. Given a set I of objects in
D−{p∗} that have been seen so far, the temporary safe zone
is defined as:

ΩI =
⋂
p′∈I

Domp∗,p′ (9)

For convenience, we will simply use Ω instead of ΩI . The
following lemma states that temporary safe zone Ω is always
a superset of the actual safe zone Υ(p∗).

Lemma 3: [Temporary safe zone, superset property] It
holds that: (i) Ω ⊇ Υ(p∗), and (ii) ∀p′ ∈ I (Ω ⊆ Domp∗,p′).

Proof: For part (i), observe that:

Υ(p∗) =
⋂

p′∈(D−{p∗})

Domp∗,p′

= Ω ∩
⋂

p′∈(D−{p∗}−I)

Domp∗,p′

Therefore, we obtain: Ω ⊇ Υ(p∗). For part (ii), since Ω =⋂
p′∈I Domp∗,p′ , we get Ω ⊆ Domp∗,p′ for each p′ ∈ I .
Let p be an unseen object, i.e., p /∈ I , and p ∈ (D−{p∗}). If

the dominant region Domp∗,p of an unseen object p contains
Ω then the intersection of Domp∗,p and Ω is still Ω, and so p
does not contribute to shrinking Ω. We present several pruning
rules to discard such objects that do not help shrink Ω.

Recall from Section II-B that we decompose D into the sets
D+, D−, and Do. Similarly, we express the set of seen objects
as I = I+ ∪ I− ∪ Io. Any object p′ ∈ I belongs to either I+,
I−, or Io, depending on its weight.

Pruning Rule 1: Let p+ be an unseen object in D+.
If ∃p′ ∈ I+ (Cp∗,p+ ⊇ Cp∗,p′) then p+ cannot affect Ω.

Proof: Let p′ be an object of I+ such that Cp∗,p+ ⊇
Cp∗,p′ . By Equation 6, we have: Domp∗,p+ ⊇ Domp∗,p′ . By
Lemma 3, since p′ ∈ I , we get: Domp∗,p′ ⊇ Ω. Combining
them, we obtain: Domp∗,p+ ⊇ Ω, so Domp∗,p+ ∩ Ω = Ω.

Pruning Rule 2: Let p− be an unseen object in D−.
If ∃p′ ∈ I+ (Cp−,p∗ ∩ Cp∗,p′ = ∅) then p− cannot affect Ω.

Proof: Let p′ be an object of I+ such that Cp−,p∗ ∩
Cp∗,p′ = ∅. Thus, we get: (U − Cp−,p∗) ⊇ Cp∗,p′ . By
Equation 6, we have: Domp∗,p− ⊇ Domp∗,p′ . By Lemma 3,
since p′ ∈ I , we get: Domp∗,p′ ⊇ Ω. Combining these, we
obtain: Domp∗,p− ⊇ Ω, and thus Domp∗,p− ∩ Ω = Ω.

Pruning Rule 3: Let p− be an unseen object in D−.
If ∃p′ ∈ I− (Cp−,p∗ ⊆ Cp′,p∗) then p− cannot affect Ω.

Proof: Let p′ be an object of I− such that Cp−,p∗ ⊆
Cp′,p∗ . Thus, we get: (U − Cp−,p∗) ⊇ (U − Cp′,p∗). By
Equation 6, we have: Domp∗,p− ⊇ Domp∗,p′ . By Lemma 3,
since p′ ∈ I , we get: Domp∗,p′ ⊇ Ω. Combining them, we
obtain: Domp∗,p− ⊇ Ω, and thus Domp∗,p− ∩ Ω = Ω.

Pruning Rule 4: Let p− be an unseen object in D−.
If ∃p′ ∈ Io (Cp−,p∗ ∩ ⊥p∗,p′ = ∅) then p− cannot affect Ω.

Proof: Trivial; similar to the proof of rule 2.
Pruning Rule 5: Let po be an unseen object in Do.

If ∃p′ ∈ I+ (⊥p∗,po ⊇ Cp∗,p′) then po cannot affect Ω.
Proof: Trivial; similar to the proof of rule 1.



Pruning Rule 6: Let po be an unseen object in Do.
If ∃p′ ∈ Io (⊥p∗,po

⊇ ⊥p∗,p′) then po cannot affect Ω.
Proof: Trivial; similar to the proof of rule 1.

We summarize the pruning rules in Table I and proceed to
exemplify the power of the pruning rules. Thus, let p∗ be the
top result in Figure 2, and let Ω be the shaded region, with
I+ = {p2} and I− = {p1}. Next, we examine the unseen
objects p3 ∈ D+ and p4 ∈ D−. By rule 1, object p3 does
not affect Ω, since Cp∗,p2 = v1v2v7 ⊂ Cp∗,p3 = v1v3v6. By
rule 2, object p4 does not affect Ω, since Cp∗,p2 ∩Cp4,p∗ = ∅.

Now let p∗ be the top result in Figure 5(a), and let Ω be
the shaded region, with I+ = {p1} and I− = {p2}. We then
examine the unseen object p3 ∈ D−. By rule 3, this object
does not affect Ω, since Cp2,p∗ ⊃ Cp3,p∗ .

Finally, let p∗ be the top result in Figure 5(b), and let Ω
be the shaded region, with I+ = {p3} and Io = {p2}. We
examine unseen objects p1 ∈ D− and p4 ∈ Do. By rule 4, p1

does not affect Ω, since Cp1,p∗ ∩ ⊥p∗,p2 = ∅. By rule 5, p4

does not affect Ω, since ⊥p∗,p4 ⊇ Cp∗,p3 . Also, by rule 6, p4

does not affect Ω, since ⊥p∗,p4 ⊇ ⊥p∗,p2 .

TABLE I
PRUNING RULES FOR UNSEEN OBJECTS

p+ ∈ D+ p− ∈ D− po ∈ Do

I+ Pruning Rule 1: ∃p′ ∈ I+ Pruning Rule 2: ∃p′ ∈ I+ Pruning Rule 5: ∃p′ ∈ I+

(Cp∗,p+ ⊇ Cp∗,p′ ) (Cp−,p∗ ∩ Cp∗,p′ = ∅) (⊥p∗,po ⊇ Cp∗,p′ )

I− – Pruning Rule 3: ∃p′ ∈ I− –
(Cp−,p∗ ⊆ Cp′,p∗ )

Io – Pruning Rule 4: ∃p′ ∈ Io Pruning Rule 6: ∃p′ ∈ Io

(Cp−,p∗ ∩ ⊥p∗,p′ = ∅) (⊥p∗,po ⊇ ⊥p∗,p′ )

p1‹0.7›

p*‹0.5›

p2‹0.4›

p3‹0.3›

Cp3,p*

Cp2,p*

(a) Rule 3

p1‹0.2›

p2‹0.5›

p3‹0.7›

p4‹0.5›p*‹0.5›

Lp*,p4Lp*,p2

Cp*,p3

Cp1,p*

(b) Rules 4, 5, and 6

Fig. 5. Pruning rule examples

Representation of Safe Zone.
The finalized set of objects I = I+ ∪ I− ∪ Io, called the
influence set, is used to represent the safe zone. With this
set, the client can easily check whether its current location
q belongs to the safe zone, by using the Boolean condition:∧
p∈(I+∪I−∪Io)(q ∈ Domp∗,p). The client needs not render

the shape of the safe zone.

Implementation Issues.
For the sake of easy implementation, we convert the topo-
logical conditions in the pruning rules into distance-based
conditions. For example, in rule 1, the topological condition
∃p′ ∈ I+ (Cp∗,p+ ⊇ Cp∗,p′) is equivalent to the distance-
based condition ∃p′ ∈ I+ (‖op∗,p′ op∗,p+‖ ≤ rp∗,p+ − rp∗,p′ ),
which can be evaluated by using the centers and radii of
the respective Appollonius circles. In rule 2, the topological

condition ∃p′ ∈ I+ (Cp−,p∗ ∩ Cp∗,p′ = ∅) is the same as
the distance-based condition ∃p′ ∈ I+ (‖op∗,p′ op−,p∗‖ ≥
rp−,p∗ + rp∗,p′). Similar conversions are applied to the topo-
logical conditions of the other rules.

B. Ordering Accesses of Data Objects with Early Stop

This section studies the order in which it is desirable to
access the data objects. An early stopping condition is derived,
and processing of unpromising objects that cannot contribute
to the safe zone is avoided.

The first step is to study the distance between an Apollonius
circular region and data points. Figure 2(a) shows an Apollo-
nius circular region Ca,b defined by two data points a and b,
where w(a) < w(b). We present the concept of border distance
in Definition 4 and cover its computation in Lemma 4.

Definition 4: Consider two points a and b such that w(a) <
w(b). The minimum border distance bordmin(a,Ca,b) (or
bordmin(b, Ca,b)) is defined as the minimum distance from
a (or b) to the border of Ca,b. The maximum border distance
bordmax(a,Ca,b) (or bordmax(b, Ca,b)) is defined as the max-
imum distance between a (or b) and Ca,b.

Lemma 4: [Border distance computation] The functions
bordmin(·) and bordmax(·) can be expressed as:

bordmin(a,Ca,b) = ‖a M‖ =
w(a)

w(a) + w(b)
· ‖a b‖ (10)

bordmin(b, Ca,b) = ‖b M‖ =
w(b)

w(a) + w(b)
· ‖a b‖ (11)

bordmax(a,Ca,b) = ‖a N‖ =
w(a)

w(b)− w(a)
· ‖a b‖ (12)

bordmax(b, Ca,b) = ‖b N‖ =
w(b)

w(b)− w(a)
· ‖a b‖ (13)

Proof: Observe that the line oa,b a b intersects the
border of Ca,b at locations M and N . According to Okabe
et al. [10], the center oa,b of Ca,b is co-linear with points
a and b. Therefore, we have: bordmin(a,Ca,b) = ‖a M‖,
bordmin(b, Ca,b) = ‖b M‖, bordmax(a,Ca,b) = ‖a N‖, and
bordmax(b, Ca,b) = ‖b N‖.

Recall that the value w(a)/w(b) is a constant. By Defini-
tion 2 (of the Apollonius circle), we derive:

‖a M‖
‖b M‖ =

w(a)

w(b)
⇒ ‖a M‖
‖a b‖ − ‖a M‖ =

‖a b‖ − ‖b M‖
‖b M‖ =

w(a)

w(b)

‖a N‖
‖b N‖ =

w(a)

w(b)
⇒ ‖b N‖ − ‖a b‖

‖b N‖ =
‖a N‖

‖a b‖+ ‖a N‖ =
w(a)

w(b)

Thus, we can express bordmin(·) and bordmax(·) in terms
of w(a), w(b), and ‖a b‖, as in Equations 10–13.

For the special case w(a) = w(b), the Apollonius circle
degenerates into a half plane, so we have: bordmin(a,Ca,b) =
bordmin(b, Ca,b) = ‖a b‖/2 and bordmax(a,Ca,b) =
bordmax(b, Ca,b) = ∞. For convenience, we define the
minimum border distance of point p from p∗ as:

bordmin(p∗, p) =
{
bordmin(p∗, Cp∗,p) if w(p∗) ≤ w(p)
bordmin(p∗, Cp,p∗) otherwise (14)



Lemma 5 presents an early stopping threshold τ that enables
us to save significant computational cost by skipping a set of
unseen objects. In order to utilize the condition, we propose
to visit points in the data set in the ascending order of the
bordmin(p∗, p) value. With this access order, it suffices to
check bordmin(p∗, pnew) of the current point in Dnew, as all
unseen objects have an equal or larger bordmin(p∗, p) value.

Lemma 5: [Early stopping threshold] Let τ =
minp∈I+ bordmax(p∗, p). Let Dnew be a set of unseen objects
such that bordmin(p∗, pnew) > τ for each pnew ∈ Dnew.
Then no object in Dnew can affect Ω.

Proof: Let p+ be the object in I+ that produces the value
τ . Let �(p∗, τ) be the circular region with center p∗ and radius
τ . By the property of maximum border distance, we have:
Domp∗,p+ ⊆ �(p∗, τ). By Lemma 3, we get: Ω ⊆ Domp∗,p+ .
Thus, we have: Ω ⊆ �(p∗, τ). —(F)

Let pnew be any object in the unseen object set Dnew. Since
we are given bordmin(p∗, pnew) > τ , we have: Domp∗,pnew

⊃
�(p∗, τ). Combining this with Equation F, we obtain: Ω ⊆
Domp∗,pnew . Therefore, pnew cannot affect Ω.

Figure 6 illustrates how the early stopping works. We visit
the objects according to the minimum border distance order:
p1, p2, p3, p4. After visiting p1, we add it to I+ and update τ =
bordmax(p∗, Cp∗,p1). The dashed circle indicates the stopping
circle with center p∗ and radius τ . When we visit point p3,
we find that its minimum border distance exceeds τ . Thus, we
stop and do not visit p4.

p*‹0.5›

p2‹0.3›

p1‹0.9›

p3‹0.1›

p4‹0.8›

bordmin(p*,Cp3,p*)

bordmin(p*,Cp2,p*)

bordmin(p*,Cp*,p4)

bordmin(p*,Cp*,p1)

bordmax(p*,Cp*,p1)=τ

Fig. 6. Early stopping example

C. Incremental Border Distance (IBD) Algorithm

We proceed to present the incremental border distance (IBD)
algorithm that utilizes the IR-tree to compute the safe zone
Υ(p∗) of the top-1 result p∗. Extension to an arbitrary k is
given at the end of the section.

The intended use of the IR-tree calls for a few of definitions.
We let Λ be a rectangle that contains a subset of points of D
and let wu(Λ) be the maximum weight of any point in Λ.
Also, we let ‖p∗ Λ‖min be the minimum distance between p∗

and Λ. To be able to apply Lemma 5 to the IR-tree, we need
to define the minimum border distance of Λ from p∗ such that
bordmin(p∗,Λ) is always a lower-bound of bordmin(p∗, p) for
any point p ∈ Λ.

We consider the two cases in Equation 14. For the first
case, we obtain w(p∗) ≤ w(p) and then substitute a = p∗

and b = p into Equation 10. To minimize the bordmin value,

we maximize w(p) to wu(Λ), and we minimize the distance
‖p∗ p‖ to ‖p∗ Λ‖min. Thus, we define the minimum border
distance of Λ from p∗ as:

bordmin(p∗,Λ) =
w(p∗)

w(p∗) + wu(Λ)
· ‖p∗ Λ‖min (15)

For the second case, we obtain w(p∗) > w(p) and then
substitute b = p∗ and a = p into Equation 11. By minimizing
its bordmin value, we also obtain the above equation. Thus,
we can safely use the above equation for both cases.

Algorithm 1 is the pseudo-code of IBD. It takes the root of
the IR-tree, the current query object q, and the result p∗ as
arguments. The method for computing p∗ based on the text
relevancy function rankq(pi) is orthogonal to our work, and
it has been studied by Cong et al. [2].

First, the algorithm creates the sets I+, I−, and Io for
storing influence objects. The early stopping threshold τ is
initially set to ∞. With a min-heap H , we apply standard
best-first search to visit index entries (e.g., nodes or objects)
in ascending order of their minimum border distances from
p∗.

When the deheaped entry e is an object, we consider three
possible cases based on its weight w(e). We then apply the
six pruning rules in Table I to discard objects that cannot
contribute to the safe zone. Specifically, rule 1 is used to
compute I+; rules 2, 3, and 4 are used to compute I−;
and rules 5 and 6 are used to compute Io. Each time we
insert an object into I+, we update the threshold τ such
that it captures the minimum value of the maximum border
distances of objects in I+. The algorithm terminates when
the minimum border distance of the current dequeued entry
exceeds τ . Finally, the algorithm reports the set I+ ∪ I− ∪ Io
to the client.

Voronoi Cell Optimization—Enhancing Rules 4 and 6.
We propose an optimization to enhance pruning rules 4 and 6.
Let Φ be a convex polygon that represents the temporary safe
zone defined by the set Io. As an example, the condition ∃p′ ∈
Io(⊥p∗,po

⊇ ⊥p∗,p′) of pruning rule 6 can be replaced by
⊥p∗,p′ ⊇ Φ. The pruning power is higher as Φ is much smaller
than the halfplanes ⊥p∗,p′ . We maintain the polygon Φ each
time when we insert an object p into Io. We first derive the
halfplane ⊥p∗,p and then update Φ by the intersection Φ ∩
⊥p∗,p. Instead of keeping the entire Io, it suffices to use the
polygon Φ, whose average number of vertices is six [10].

Extension to Arbitrary k.
Let RS be the top-k result of the query q. According to Okabe
et al. [10], the order-k MW-Voronoi region of the set RS,
denoted by Υk(RS), contains all locations that take the set
RS as the top-k result. In other words, Υk(RS) is the safe
zone for the result set RS.

We can express the region Υk(RS) by using the intersec-
tions of order-1 MW-Voronoi regions [10]:

Υk(RS) =
⋂

p∗j∈RS
ΥD−RS(p∗j ), (16)



Algorithm 1 IBD (Tree root root, Query q, Result p∗)
1: I+ ← new set; I− ← new set; Io ← new set;
2: τ ←∞; . τ is the early stop threshold
3: H ← new min-heap;
4: H.enheap(root, 0);
5: while (H is not empty) and (H.top.key ≤ τ ) do
6: e← H.deheap();
7: if e is an object and e 6= p∗ then
8: if w(e) > w(p∗) then . object in D+

9: if 6 ∃p′ ∈ I+(Cp∗,e ⊇ Cp∗,p′) then . rule 1
10: insert e into I+;
11: τ ← min{τ, bordmax(Cp∗,e)}; . shrink τ

12: if w(e) < w(p∗) then . object in D−
13: if 6 ∃p′ ∈ I+(Ce,p∗ ∩ Cp∗,p′ = ∅) and . rule 2

6 ∃p′ ∈ I−(Ce,p∗ ⊆ Cp′,p∗) and . rule 3
6 ∃p′ ∈ Io(⊥p∗,p′ ∩ Ce,p∗ = ∅) then . rule 4

14: insert e into I−;
15: if w(e) = w(p∗) then . object in Do

16: if 6 ∃p′ ∈ I+(⊥p∗,e ⊇ Cp∗,p′) and . rule 5
6 ∃p′ ∈ Io(⊥p∗,p′ ⊆ ⊥p∗,e) then . rule 6

17: insert e into Io;
18: else . e points to a child node
19: read the child node CN of e;
20: for each entry e′ in node CN do
21: H.enheap(e′, bordmin(p∗, e′.Λ));
22: return the set I+ ∪ I− ∪ Io;

where ΥD−RS(p∗j ) denotes the MW-Voronoi region of p∗j with
respect to the object set D −RS.

A simple solution for computing the safe zone Υk(RS) is
to run the IBD algorithm for each result p∗j ∈ RS to obtain
the influence object set of ΥD−RS(p∗j ). The union of these
influence object sets enable the client to determine whether
the query belongs to the safe region.

Instead, we propose an efficient extension of IBD that
only traverses the IR-tree once, regardless of the value of
k. Let the result object of RS be p∗1, p

∗
2, · · · , p∗k. For each

result object p∗j , we maintain its influence object sets I+
j ,

Ioj , and I−j , and also its early stopping threshold τj =
minp∈I+j bordmax(p

∗
j , p). From Equation 16, we learn that the

safe region Υk(RS) is the intersection of k order-1 MW-
Voronoi regions. Therefore, an object (or entry) can be pruned
if it cannot contribute to any such order-1 MW-Voronoi region.
For this, we add the following checking condition for the
deheaped entry e just after Line 6:∨

j∈[1,k]

bordmin(p∗j , e
′.Λ) > τj

If it evaluates to true then entry e can be safely pruned.
In order to ensure the correctness of the early stopping

condition, we perform the following modifications: (i) replace
τ in Line 5 by a global threshold τmax = maxj∈[1,k] τj ,
and (ii) compute the key of an entry e′ (in Line 21) as
minj∈[1,k] bordmin(p∗j , e

′.Λ).

IV. ADVANCED SOLUTION

Except for the early stopping condition, IBD can only
apply pruning at the object level. Here, we develop techniques

capable of pruning entire subtrees that cannot contribute to
the safe region. Then, we present an advanced solution for
computing the safe zone efficiently, with two optimizations
for enhancing the power of the pruning rules.

A. Subtree Pruning

Let Λ be the minimum bounding rectangle (MBR) of a
subtree, and let wu(Λ) be the upper bound of the weights of all
the objects in Λ. We use ‖Λ p∗‖min (or ‖Λ p∗‖max) to denote
the minimum (or maximum) Euclidean distance between Λ
and the result object p∗. Given a region R, we define its
minimal dominant region as:

Domp∗,R =
⋂

p∈R, 0≤w(p)≤wu(R)

Domp∗,p (17)

With this concept, we can extend the pruning rules of Sec-
tion III for pruning a rectangle Λ. For example, pruning rule 1
can be extended to ∃p′ ∈ I+ (Domp∗,Λ ⊇ Cp∗,p′), i.e., there
exists an object p′ ∈ I+ such that the dominant region Cp∗,p′
is contained in the region Domp∗,Λ.

It is challenging to represent the shape of Domp∗,Λ because
the Appollonius circles formed by points in Λ can have
different centers and radii.

We first present two lemmas that specify how dominant
regions vary with respect to location and weight.

Lemma 6: [Subset dominant region property at higher
weight] Given three objects p∗, p, and p′, such that w(p) ≥
w(p′) and p.λ = p′.λ then Domp∗,p ⊆ Domp∗,p′ .

Proof: By Definition 1, we have ∀z ∈ Domp∗,p

(‖p
∗ z‖

w(p∗) ≤ ‖p z‖
w(p) ). Since p.λ = p′.λ, we have ‖p z‖ =

‖p′ z‖. In addition, we have w(p) ≥ w(p′). Thus ∀z ∈
Domp∗,p(

‖p∗ z‖
w(p∗) ≤ ‖p′ z‖

w(p′) ). According to the definition of
Domp∗,p′ , we have Domp∗,p ⊆ Domp∗,p′ .

Lemma 7: [Subset dominant region property at closer
distance] Given three objects p∗, p, and p′, such that w(p∗) ≤
w(p) = w(p′) and ‖p∗ p‖ ≤ ‖p∗ p′‖, and such that the points
p∗, p, and p′ form a line. Then Domp∗,p ⊆ Domp∗,p′ .

Proof: Without loss of generality, we translate and rotate
the space such that p∗ = (0, 0), p = (x1, 0), and p′ = (x2, 0),
where 0 ≤ x1 ≤ x2. By Definition 1 and using w(p) = w(p′),
we obtain the centers and radii of circles Cp∗,p and Cp∗,p′

as: op∗,p = ( −w2(p∗)·x1
w2(p)−w2(p∗) , 0), op∗,p′ = ( −w2(p∗)·x2

w2(p)−w2(p∗) , 0),

rp∗,p = w(p∗)·w(p)·x1
w2(p)−w2(p∗) , and rp∗,p′ = w(p∗)·w(p)·x2

w2(p)−w2(p∗) . By using

w(p∗) ≤ w(p), we derive: ‖op∗,p op∗,p′‖ = w2(p∗)·(x2−x1)
w2(p)−w2(p∗) ≤

w(p∗)·w(p)·(x2−x1)
w2(p)−w2(p∗) = rp∗,p′ − rp∗,p. Thus, we have: Cp∗,p ⊆

Cp∗,p′ , i.e., Domp∗,p ⊆ Domp∗,p′ .
We proceed to illustrate the subset property of the above two

lemmas. In Figure 7, we fix the location of p while varying
its weight w(p). When w(p) decreases, the dominant region
Domp∗,p becomes a subset of the former dominant region. In
Figure 8(a), we fix the weight of p while moving its location
(e.g., p3, p2, p1) towards p∗ along the line segment p p∗. When
‖p∗ p‖ decreases, Domp∗,p becomes a subset of the former
dominant region. The remaining case of Figure 8(b) will be
discussed later.
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We then consider how to conservatively approximate
Domp∗,Λ using a tight subset expressed by simple geometric
shapes. First, we propose to enclose Λ by a minimum bound-
ing ring-sector, as shown in Definition 5. Figure 9(a) shows
the minimum bounding sector rsΛ of Λ, with respect to point
p∗. It is bounded by the arcs and segments of four vertices v1,
v2, v3, and v4.

Definition 5: Given a rectangle Λ, its minimum bounding
ring-sector rsΛ w.r.t. an object p∗ is defined by a quadruple
〈rmin, rmax, θmin, θmax〉 where the minimum and maximum
radii are rmin = ‖Λ p∗‖min and rmax = ‖Λ p∗‖max, and
θmin and θmax are the bounding angles w.r.t. p∗.

Lemma 8: [Coverage of the minimum bounding ring-
sector] Given an object p∗ and a rectangle Λ such that
wu(Λ) ≥ w(p∗), let rsΛ be the minimum bounding ring-sector
of Λ, and arcs be the arc of rsΛ closest to p∗. It holds that:

Domp∗,Λ ⊇
⋂

p′∈arcs, w(p′)=wu(Λ)

Domp∗,p′ , (18)

where p′ is any possible point on arcs with weight wu(Λ).
Proof: For each object p ∈ Λ, there exists an object p′

on arcs, such that p∗, p′, and p form a line, ‖p∗ p′‖ ≤ ‖p∗ p‖,
and w(p′) ≥ w(p). By Lemmas 6 and 7, we have Domp∗,p′ ⊆
Domp∗,p. Hence, we have Domp∗,Λ ⊇

⋂
p′∈arcs

Domp∗,p′ .

We then study the shape of Domp∗,Λ for three cases.

The shape of Domp∗,Λ when wu(Λ) = w(p∗).
By Lemma 8, the region Domp∗,arcs

is a subset of Domp∗,Λ.
The boundary of Domp∗,arcs

(the shaded region in Fig-
ure 9(c)) is formed by the perpendicular bisectors of p∗ and
each point on the arc arcs. It can be represented as the arc
(v̂5v7) with center p∗, radius 1

2 · rmin and angle ∠v1p∗v2, and
the halfplanes formed by the arc’s tangent lines v5v6 and v7v8.

The shape of Domp∗,Λ when wu(Λ) > w(p∗).
By Lemma 8, the region Domp∗,arcs

is a subset of Domp∗,Λ.
Observe that any location z on circle Cp∗,p can be represented
in the polar system of p∗ as a magnitude ‖p∗ z‖ and an angle
θ. Thus, we have: z = (p∗x+‖p∗ z‖·cos θ, p∗y+‖p∗ z‖·sin θ).
Since z falls onto the circle Cp∗,p, it satisfies:

(p∗x+‖p∗ z‖ ·cos θ−ox)2 +(p∗y+‖p∗ z‖ ·sin θ−oy)2 = r2p∗,p

Using Fα = p∗x− ox, Fβ = p∗y − oy and solving ‖p∗ z‖ in the
above equation, we obtain Equation 19, which expresses the
magnitude ‖p∗ z‖ as a function of θ.

‖p∗ z‖ =
√
F 2
γ − F 2

α − F 2
β + r2p∗,p − Fγ (19)

where Fα = p∗x − ox, Fβ = p∗y − oy , and Fγ = Fα · cos θ +
Fβ · sin θ.

The dominant region of p∗ over arcs, i.e., Domp∗,arcs
,

is the intersection of the Apollonius circle C(p∗, p) for each
point on arcs. It is the shaded region in Figure 9(b). Consider
the endpoint v1 of arcs in the figure. By rotating circle Cp∗,v1
with the angle of arcs, i.e., replacing θ by θ+δ in Equation 19,
and taking the intersection, we obtain Domp∗,arcs

that is a
subset of Domp∗,Λ.

Specifically, we capture the region Domp∗,arcs
by a subset

f -sided polygon as described next. The parameter f decides
the tightness of the approximation. In the example of Fig-
ure 10, we have: rp∗,p = 1, (ox, oy) = (0, 0), and (p∗x, p

∗
y) =

(0, 0.5). Figure 10(b) plots the value of ‖p∗ z‖ with respect
to θ (see Equation 19). The ×-curve is obtained by shifting
the �-curve to the left by the angle δ = π/3. For each angle
θ = 2πi

f where i ∈ [1, f ], we compute the minimum ‖p∗ z‖
and obtain its (x, y) coordinates (see Figure 10(a)). Then we
link these f points to form a polygon, which is guaranteed to
be a subset of Domp∗,arcs

.
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The shape of Domp∗,Λ when wu(Λ) < w(p∗).
In this case, we have: Domp∗,Λ =

⋂
p∈ΛDomp∗,p =⋂

p∈Λ(U − Cp,p∗) = U −
⋃
p∈Λ Cp,p∗ . In order to obtain

a subset representation of Domp∗,Λ, we need to derive a
superset representation of the region

⋃
p∈Λ Cp,p∗ .

Let p be a point in Λ and consider the example of
Figure 8(b) where w(p∗) > w(p). We fix the weight of
p while moving its location (e.g., p1, p2, p3) away from p∗

along the line segment p∗ p. The union of these circles can
be represented by a ring-sector. Figure 9(d) illustrates how to
represent the superset of the region

⋃
p∈rsΛ Cp,p∗ , which can

also be approximated by a ring-sector.

B. Optimizations

Upgraded Voronoi Cell—Enhancing Rules 1, 2, 4, 5, and 6.
The Voronoi cell optimization (presented in Section III-C)
employs a convex polygon Φ to represent the temporary safe
zone defined by the set Io. We now upgrade this technique
by using the set I+ with a parameter f that enables a trade-
off between pruning power and computational overhead. Each
time we insert an object p into I+, we derive the circle Cp∗,p
and compute an f -sided polygon (say, G) such that it encloses
Cp∗,p. Next, we update Φ to the intersection region Φ ∩ G.
This upgraded Φ enhances pruning rules 1, 2, 4, 5, and 6.
Correctness is ensured because G is a superset of Cp∗,p, so
no pruned object can contribute to the actual safe zone.

In the example in Figure 11(a), the shaded region is the
temporary safe zone Φ formed by objects in Io. The circles
C+

1 and C+
2 are formed by objects in I+. After intersecting

Φ with the f -sided polygons of the two circles, Φ becomes
the striped polygon, which is much smaller than the initial Φ
and both circles.
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(a) upgraded Voronoi cell, f = 8 (b) reducing I−, level = 2

Fig. 11. Optimization techniques for the MSK algorithm

Recursive Refinement of I−—Enhancing Rule 3.
We finally enhance pruning rule 3. Consider the example in
Figure 11(b) where the set I− has two objects, forming two
circles C−

1 and C−
2 with the result object p∗, respectively. Now

we encounter a new object pnew ∈ D− and define the circle
C−
new (w.r.t. p∗). Rule 3 cannot prune away pnew because

neither C−
1 nor C−

2 contains C−
new.

We propose a recursive refinement technique to remove an
object pnew whose circle is covered by the union of the circles
in I−. This can significantly reduce the size of I−. The idea
is to partition the circle C−

new into four squares, say s1, s2,
s3, and s4, as shown in Figure 11(b). Then we check whether
each square is covered by some circle, e.g., s1 and s2 are
covered by C−

2 ; s3 and s4 are covered by C−
1 . If each square si

satisfies the condition then circle C−
new is covered by the union

of circles in I−, and thus C−
new is pruned. In case a square

si does not intersect any circle of I− then C−
new cannot be

pruned. When a square si only partially intersects some circle
of I−, we apply the above process recursively on the square
si until reaching a pre-defined maximum recursion level lmax.
In practice, it is sufficient to use a small constant for lmax;
we study its effect empirically.

C. MSK-uvr Algorithm

Algorithm 2 shows the pseudo code of the advanced algo-
rithm for computing the safe zone Υ(p∗) of the top-1 result
p∗. It differs from Algorithm 1 in several respects. First, it is
able to prune an unqualified node (or a subtree) in Lines 20–21
by using the techniques developed in Section IV-A. Second, it
applies the upgraded Voronoi cell optimization (Line 12) for
enhancing pruning rules 1, 2, 4, 5, and 6. Third, it performs
the recursive refinement (Line 18) in order to reduce the size
of the set I−.

Extension to Arbitrary k.
Recall that the order-k MW-Voronoi cell Υk(RS) is the safe
zone of the result set RS (see Equation 16). Here, we extend
Algorithm 2 to arbitrary k, so that it visits each IR-tree
node at most once. Let result set RS be {p∗1, p∗1, · · · , p∗k}.
The key of an entry e′ (in Line 24) is computed as
minj∈[1,k] bordmin(p∗j , e

′.Λ). When we encounter an object e
in the IR-tree, we compute its dominant region for each result
p∗i . If any of them does not intersect the polygon Φ then we
prune the object e. Otherwise, we update Φ by its intersection
with all such dominant regions. When we visit a non-leaf entry
e, we also compute the dominant region for each result p∗i . If
any of them does not intersect Φ then we prune the subtree
of e.

V. EMPIRICAL STUDY

A. Experimental Setup

We use four real data sets, each containing objects with
a point location and a set of keywords, for studying the
robustness and performance of the proposals. Data set HOTEL
contains US hotels (www.allstays.com); GN is obtained from
the U.S. Board on Geographic Names (geonames.usgs.gov);
and EURO and USCAN contain points of interest (e.g., ATMs,



Algorithm 2 MSK-uvr (Tree root root, Query q, Result p∗)
System parameters: f, lmax . used for optimizations

1: I+ ← new set; I− ← new set;
2: Φ← the space domain U ; . a convex polygon
3: H ← new min-heap;
4: H.enheap(root, 0);
5: while H is not empty do
6: e← H.deheap();
7: if e is an object and e 6= p∗ then
8: if w(e) > w(p∗) then
9: if Φ 6⊆ Cp∗,e then . enhanced rule 1

10: insert e into I+;
11: G← an f -sided polygon that contains Cp∗,e;
12: Φ← Φ ∩G; . upgraded vor. cell optimization
13: else if w(e) = w(p∗) then
14: if Φ 6⊆ ⊥p∗,e then . enhanced rules 5,6
15: Φ← Φ ∩ ⊥p∗,e;
16: else if w(e) < w(p∗) then
17: if Φ ∩ Ce,p∗ 6= ∅ then . enhanced rules 2,4
18: Recur Refine(e, I−, lmax); . enhanced rule 3
19: else . e points to a child node
20: if (wu(e) ≥ w(p∗) and Φ ⊆ Domp∗,e) or

(wu(e) < w(p∗) and Φ ∩Dome,p∗ = ∅) then
21: continue; . pruning a child node
22: read the child node CN of e;
23: for each entry e′ in node CN do
24: H.enheap(e′, bordmin(p∗, e′.Λ));
25: return the set I+ ∪ I− and the polygon Φ;

hotels, stores) in Europe, and in USA and Canada, respectively
(www.pocketgpsworld.com). Table II offers additional detail.
We normalize object locations to fit a square domain with
side-length 10, 000 meters.

TABLE II
DATA SET STATISTICS

data set # of objects # of distinct words average # of words per object
HOTEL 21,021 602 3

GN 1,868,821 222,407 4
EURO 162,033 35,315 18

USCAN 13,977 5,106 15

Brinkhoff’s generator [20] is used to generate a trajectory
of 100 points, using one location acquisition per timestamp
(second). Each experiment has 100 moving queries with such
trajectories. The keyword set of each query is generated
randomly within the word domain of the data sets used.

The TF function is used to measure the relevancy between
two keyword sets. We generally report the average value per
query per timestamp of the following: (i) server-side elapsed
time, (ii) client-side elapsed time, (iii) communication cost
(number of influence objects transferred), and (iv) communi-
cation frequency (the probability of sending a request to the
server).

We study our proposed solutions: IBD and MSK. To observe
the effects of the optimizations on MSK, we consider three
variants: MSK-v (using Voronoi cells), MSK-uv (using up-
graded Voronoi cells), and MSK-uvr (using upgraded Voronoi
cells and I− refinement).

By default, we set the number k of results to 1, the number
of query keywords to 3, and the client speed to 10 m/s. For
the optimizations of MSK, we set f (the number of sides per
polygon) to 16, and lmax (the level of recursive pruning) to
5. We used disk-based IR-trees with the page size fixed at 8
KBytes. All the algorithms are implemented in Java and run
on a Linux server with one processor (Pentium-R Dual-Core
CPU E5200 @ 2.50GHz) and 4GB memory.

B. Performance of Continuous MkSK Queries

We study the proposed methods under varying settings.

Results for the Real Data Sets.
Table III reports the average server elapsed time, server I/O

cost, client elapsed time, communication cost, and communi-
cation frequency for the four methods. Since the MSK variants
can prune objects at higher levels in the IR-tree, they beat
IBD significantly in terms of server elapsed time and I/O
cost. MSK-uv benefits from upgraded Voronoi cells that offer
tighter bounds than do the Voronoi cells used in MSK-v and
IBD. MSK-uv thus achieves some 20% lower cost than MSK-
v. In contrast, MSK-uvr’s recursive refinement of I− incurs
an overhead, and so its server elapsed time is slightly higher
than that of MSK-uv. On the positive side, MSK-uvr is able
to shrink I− significantly, reducing the communication cost
and also client elapsed time. All methods use safe zones and
have the same low communication frequency. As the methods
perform consistently across the different data sets, we use
EURO as the default data set in subsequent experiments. We
drop MSK-v as it is always worse than MSK-uv.

TABLE III
PERFORMANCE PER TIMESTAMP ON REAL DATA SETS

Data Set HOTEL GN EURO USCAN
IBD 2.673 7285.350 182.606 1.454

Server elapsed time MSK-v 0.549 79.602 9.350 0.534
(milliseconds) MSK-uv 0.531 54.651 7.897 0.523

MSK-uvr 0.582 54.490 9.215 0.554
IBD 9.288 1413.180 163.435 6.159

Server I/O cost MSK-v 0.503 16.006 8.014 0.622
(page accesses) MSK-uv 0.459 10.563 7.340 0.568

MSK-uvr 0.459 10.563 7.340 0.568
IBD 0.002 0.012 0.014 0.002

Client elapsed time MSK-v 0.002 0.009 0.016 0.002
(milliseconds) MSK-uv 0.004 0.010 0.015 0.003

MSK-uvr 0.003 0.003 0.003 0.001
IBD 0.611 1.620 2.589 0.332

Communication MSK-v 0.606 1.587 2.575 0.332
cost (objects) MSK-uv 0.623 1.584 2.583 0.338

MSK-uvr 0.489 0.809 0.841 0.279
Communication All 0.036 0.078 0.056 0.025

frequency methods

Varying the Speed of Moving Queries.
This experiment compares IBD, MSK-uv, and MSK-uvr when
varying the speed of the moving queries. As the speed
increases, the server elapsed time (Figure 12(a)), the client
elapsed time (Figure 12(b)), and the communication cost
(Figure 12(c)) exhibit an increasing trend. The query leaves the
safe zone faster at a higher speed. Indeed, Figure 12(d) shows
that the communication frequency increases with increasing
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Fig. 12. Performance per timestamp, varying speed, on EURO
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Fig. 14. Performance per timestamp, varying k, on EURO

speed, leading to more elapsed time and communication costs.
MSK-uv and MSK-uvr outperform IBD significantly.

Varying the Number of Query Keywords.
We consider again IBD, MSK-uv, and MSK-uvr. As expected,
the MSK variants outperform IBD significantly in terms of
server elapsed time as shown in Figure 13(a). Figures 13(b)
and 13(c) show that the communication cost is proportional to
the client elapsed time, with MSK-uvr being the winner due
to its recursive refinement of I−. Figure 13(d) shows that the
communication frequency increases slightly with the number
of keywords. This is because large query keyword sets yield
smaller safe zones.

Varying k.
Figure 14(a) shows that MSK-uv and MSK-uvr have much
lower server elapsed time than IBD. Figures 14(b) and 14(c)
show that MSK-uvr has the lowest client elapsed time and
communication cost. The communication frequency increases
slightly with k increases (see Figure 14(d)), as a larger k yields
smaller safe zones.

Effect of f on the Upgraded Voronoi Cell Optimization.
Figure 15 shows the elapsed time and I/O cost of MSK-uv
when varying the number f of edges used for circles in the
upgraded Voronoi cell optimization. As f increases, it more

tightly represents a circle by a (superset) f -sided polygon.
This makes the temporary safe zone tighter, enabling more
tree nodes to be pruned and thus reducing the I/O cost. The
elapsed time decreases when f < 32, but increases when f >
32. A larger f leads to higher computational overhead, which
counteracts the savings from pruned nodes. The elapsed time
is low for a wide range of f (8–128).

Effect of lmax on the Recursive Refinement.
We end by observing the effect of varying the maximum
recursion level lmax on the recursive refinement. Figure 16
reports the elapsed time and the size of I−. As lmax increases,
partition squares become smaller, making it easier to prune an
object (in D−) whose dominant region is covered by the union
of circles formed by objects in I−. Even at a high lmax (e.g.,
8), MSK-uvr only incurs slightly more elapsed time.

In summary, MSK-uv achieves the lowest server elapsed
time and MSK-uvr is the best in terms of communication cost.

VI. RELATED WORK

Spatial Keyword Queries.
A spatial keyword query retrieves the best object(s) with
respect to a given location and a set of keywords. Efficient
implementation of such queries, with varying semantics, has
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been studied. Zhou et al. [6] build a separate R∗-tree on the
objects for each distinct keyword. The IR2-tree [3] is an R-
tree augmented with signatures, and the IR-tree [2] is an R-
tree augmented with inverted files. The former is applicable
when the keywords serve as a Boolean filter; the latter supports
the ranking of objects based on a weighted sum of spatial
distance and text relevancy. The recently proposed mCK query
retrieves m objects within a minimum diameter that match
given keywords. The bR∗-tree and the virtual bR∗-tree [4],
[5], which augment each node with a bitmap and MBRs for
keywords, are used for computing this query

None of the above techniques take into account continuous
queries, and our focus, the computation of safe zones for query
results, has not been studied.

Moving Queries.
In our setting, the query moves continuously while the data
objects (e.g., hotels, restaurants) are stationary. We consider
related work for this setting.

Given the known future movement of the user, a time-
parameterized query [21] retrieves the current result along with
a time interval indicating its validity. When the user’s move-
ment is not known in advance, the safe zone approach [7]–[9]
is more suitable and may reduce the client-server communi-
cation cost significantly. The server returns a query result to
the user along with a safe zone. It is guaranteed that the result
remains unchanged as long as the user remains in the safe
zone. When leaving the safe zone, the user requests a new
result and safe zone from the server. The safe zone of a kNN
query can be captured by an order-k Voronoi cell [7], or a V∗-
diagram [8]. The safe zone of a moving circular range query
can be captured by a set of objects that affect the safe zone [9].

None of the above techniques consider the text relevancy of
the data objects. In our work, the safe zone is an MW-Voronoi
region, whose efficient computation has not been studied.

VII. CONCLUSIONS

This paper studies the moving top-k spatial keyword query
and utilizes the concept of the safe zone to save computa-
tion and communication costs. We develop two solutions for
computing a safe zone: (i) an early stop algorithm IBD and
(ii) an advanced algorithm MSK-uvr that prunes subtrees of
objects that do not contribute to the safe zone and applies two
optimizations to further reduce the search space and commu-
nication cost. Empirical studies on real data sets demonstrate

that MSK-uv (a variant of MSK-uvr) has the lowest server
elapsed time and that MSK-uvr has the lowest communication
cost. In future work, it is of interest to examine the processing
of moving top-k spatial keyword queries over road networks.
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