
Authentication of Moving kNN Queries
Man Lung Yiu, Eric Lo, Duncan Yung

Department of Computing, Hong Kong Polytechnic University
{csmlyiu, ericlo, cskwyung}@comp.polyu.edu.hk

Abstract— A moving kNN query continuously reports the k
nearest neighbors of a moving query point. In addition to the
query result, a service provider that evaluates moving queries
often returns mobile clients a safe region that bounds the validity
of query results to minimize the communication cost between the
two parties. However, when a service provider is not trustworthy,
it may send inaccurate query results or incorrect safe regions to
clients. In this paper, we present a framework and algorithms
to authenticate results and safe regions of moving kNN queries.
Extensive experiments on both real and synthetic datasets show
that our methods are efficient in terms of both computation time
and communication costs.

I. INTRODUCTION

A moving kNN query [9, 25] continuously reports the
k nearest neighbors of a moving query point q and it has
numerous mobile applications, for example, finding the k
nearest gas stations when a car moves or finding the k nearest
restaurants when a tourist walks.

Location-based service providers (LBS) that offer remote
kNN querying services often return mobile users a safe region
[9, 25] in addition to the query results. A safe region SR(q)
of a moving query point q is a region in the dataset D where
the results of query q remain unchanged as long as q moves
within it. Safe region is a powerful optimization in moving
query processing because it allows a mobile user to issue a new
query to the LBS (to get the latest query results) only when
the user leaves the safe region, thereby significantly reduces
the communication frequency between the user and the service
provider.

Query results and safe regions returned by LBS, however,
may not be always accurate. For instance, a hacker may have
infiltrated the LBS’s servers [20] so that results of kNN queries
all include a particular location (e.g., the White House).
Furthermore, it is possible that the LBS is self-compromised,
and thus ranks sponsored facilities higher in its query results
or returns overly large safe region to clients so as to save
computation resources [12, 17, 24].

Recently, techniques for authenticating query results have
received a lot of attention. For example, [6, 11, 21] study
the authentication of relational queries; [7, 15] study the
authentication of sliding window (data stream) queries; [12]
addresses this issue on text similarity queries; [14, 22] study
the authentication of static spatial queries; and [24] addresses
the authentication of shortest path queries. The issue of au-
thenticating moving queries, however, has not been addressed
yet. Existing techniques for authenticating static spatial queries
such as [14, 22] cannot help in authenticating moving queries
because their authentication target is the query result, which

is a subset of the dataset, whereas the authentication targets
of moving queries include both the query result and the safe
region—the latter is not a subset of the dataset but dynamically
computed by the LBS at run-time.

To the best of our knowledge, this paper is the first to
address this challenging issue of authenticating moving kNN
queries. Our contributions include:

1) A framework to support the evaluation and authentica-
tion of moving kNN queries.

2) The design of verification objects VO [6, 12, 22, 24]
for authenticating the safe regions (and also the results)
of moving kNN queries.

3) Efficient algorithms to construct the verification ob-
jects. First, we present a solution that focuses on
communication-efficiency (i.e., minimizing the total
communication cost between a mobile client and the
LBS) for better network bandwidth utilization and also
for mobile users who are charged by mobile services
on a per-data basis. Unlike traditional moving query
processing, the total communication cost in our problem
setting depends not only on (i) the frequency of com-
munication between the LBS and the client, (ii) the size
of query results, but also (iii) the size of the verification
object VO transferred in each communication. Second,
we present another solution that focuses on computation-
efficiency. Such a solution is important to mobile devices
that have limited computation power and/or battery life.

4) A method for a mobile client to refresh its safe region
without issuing a new query to the server even when
the client leaves its current safe region. This technique
further helps to reduce the communication frequency as
well as the computation effort.

5) A thorough experimental study on real data and syn-
thetic data to study the communication and computation
efficiency of our proposed methods.

The rest of this paper is organized as follows. We discuss
related work in Section II. Our framework is presented in
Section III. In Section IV, we present two methods for
authenticating safe region of moving kNN queries that fit our
framework. The experimental study is presented in Section V.
Finally, we conclude this paper in Section VI.

II. RELATED WORK AND BACKGROUND

Query authentication In the literature, most authentication
techniques [6, 7, 12, 14, 15, 21, 22, 24] are based on Merkle
tree [8], which is an authenticated data structure (ADS) that
is built on the dataset. Digests of nodes in the tree are first

recursively computed from the leaf level to the root level
(a secure-hash h function is often used to compute a fixed-
length digest). Then, the signature of the dataset is obtained
by signing the root digest using the data owner’s private key.
Signature aggregation [11, 13] is an alternative of Merkle tree.
It works by having a signature for each tuple in the dataset.
When compared to Merkle tree based methods, signature
aggregation achieves better concurrency and generates smaller
verification objects. However, it incurs larger update overhead
at the data owner and higher verification cost at the client.
Recently, Yi et al. [23] propose a probabilistic approach for
authenticating aggregation queries; and Kundu et al. study the
authentication of trees [4] and graphs [5] without revealing
any data objects beyond the user’s access rights. In this
paper, we adopt the Merkle tree approach because of its wide
popularity/applicability.

To authenticate spatial queries, Yang et al. [22] develops
an authenticated data structure (ADS) called Merkle R-tree
(MR-tree) based on R∗-tree [1] and Merkle tree [8]. Figure 1b
shows an MR-tree for the dataset shown in Figure 1a. A
leaf entry pi stores a data point. A non-leaf entry ei stores
a rectangle ei.r and a digest ei.α, where ei.r is the minimum
bounding rectangle of its child node, and ei.α is the digest of
the concatenation (denoted by |) of binary representation of
all entries in its child node. For instance, e1.α = h(p1|p2),
e5.α = h(e1|e2), and eroot.α = h(e5|e6). The root signature
is generated by signing the digest of the root node eroot.α
using the data owner’s private key.

Consider the nearest neighbor (NN) query q in Figure 1. Its
NN is p1 and its NN distance is denoted by γ = dist(q, p1).
In order to let the client to verify the correctness of the NN
results, the LBS utilizes the MR-tree (provided by the data
owner) to generate a verification object VO. For kNN queries,
the VO is computed by a depth-first traversal of the MR-
tree. First, a circular verification region �(q, γ) with center
q and radius γ is defined. Then, the tree is traversed with
the following conditions: (i) if a non-leaf entry e does not
intersect �(q, γ), e is added to the VO (e.g., e2, e6) and its
subtree will not be visited; (ii) data points in any visited leaf
node are added into the VO (e.g., p1, p2). In this example, we
have VO = {{{p1, p2}, e2}, e6} , where { and } are tokens
for marking the start and end of a node.

Upon receiving the VO, the client first checks the correct-
ness of the VO by reconstructing the digest of root of the
MR-tree from the VO and then verifying it against the root
signature using the data owner’s public key. If the verification
is successful, the client next finds the NN result (and the
NN distance γ′) directly from the data points extracted from
the VO (ignoring the non-leaf entries). Then, the client re-
defines his own verification region �(q, γ′). Note that if a
non-leaf entry e in the VO does not intersect �(q, γ′), that
means all the points in e are farther than the computed NN
result with respect to q. Thus, the client verification step is
to check whether every non-leaf entry in the VO satisfies
e.r∩�(q, γ′) = ∅. If so, the client can assure that the computed
NN result is correct.

e1
p1

q

e5p2

p3

p
e2

γγγγ

p2 p4

p5 p6
p7

p8

e2

e3

e4

e6

e1 (r,α) e2 (r,α) e3 (r,α) e4 (r,α)

e5 (r,α) e6 (r,α)

eroot (r,α)

p1 p2 p5 p6
p7 p8p3 p4

(a) data points on a plane (b) Merkle R-tree (TD)

Fig. 1. Authentication of nearest neighbor queries

To the best of our knowledge, we are the first to study
the authentication of moving queries. Existing spatial au-
thentication techniques [14, 22] cannot help in authenticating
moving queries because they focus on static queries, so that
the authentication targets (i.e., the query results) are part of the
dataset. In contrast, authentication of moving queries require
authenticating both the query results (part of the dataset) and
the safe regions (not part of the dataset).
Moving query processing In moving query processing, [19]
computes the nearest neighbors for each possible query point
on a given line segment, whereas [3] studies how to maintain
the user’s future kNN upon a change of the user’s velocity.
Both [19] and [3] model the user’s movement as a linear
function. When the user’s future movement is unknown, the
buffering approach [18] or the safe region approach [9, 25]
are more appropriate for efficient moving query processing.

In the buffering approach [18], the LBS retrieves the user’s
(k + ∆k)NN and uses them to derive a buffer region for the
user. While moving within the buffer region, the client’s latest
kNN result can be recomputed locally from the (k+ ∆k)NN
result of the previous query. However, it is not easy to find
the optimal value of ∆k in practice, and that value actually
strongly influences the communication frequency and the
number of objects transferred per communication.

In the safe region approach, the LBS reports a safe re-
gion [9, 25] for the query result, such that the result remains
unchanged as long as the user moves within the safe region.
Unlike the buffering approach, this approach does not require
the client to compute result locally. This approach not only
reduces the communication cost between the LBS and the
client, but also the computational cost. In this paper, we adopt
the order-k Voronoi cell [25] as the safe region for moving
kNN queries. We are aware of another safe region technique
called V∗-diagram [9], which formulates an advanced safe
region by fetching (k + ∆k) nearest neighbors. However, the
optimal value for ∆k is not easy to tune because it depends
on the data distribution and the query parameters.

III. THE FRAMEWORK

Following [9, 25], we use a more general problem setting
in which q is a moving object whose future locations cannot
be predicted in advance. In a moving query environment, the
question is when and where the client should (re-)issue query
in order to get the most updated kNN result as q moves.
A brute-force method is by sampling, in which the client

periodically issues a kNN query to the server for every T time
units. The correctness of the results can then be authenticated
using an MR-tree. However, the problem of this method is that
a high T makes the result stale while a small T leads to very
high communication cost. More problematically, there is no
way to guarantee that result is always up-to-date even when a
very small T is used, rendering this method impractical.
Baseline Method A baseline method is to use the buffering
technique [18] to compute kNN queries and then authenticate
the results by using an MR-tree [22]. Specifically, a client
issues (k + ∆k)NN queries to the LBS. Let qlast be the last
location sent to server and di be the distance between qlast
and its i-th nearest neighbor. The buffer region is a circle
�(qlast, ε) with qlast as the center and ε = (dk+∆k − dk)/2
as the radius. It is proven in [18] that, as long as the current
location of q moves within the buffer region �(qlast, ε), the
latest kNN result can be derived from the (k + ∆k)NN
result of the last query. The client is required to issue a new
(k+∆k)NN query only when it moves outside �(qlast, ε). Al-
though simple, finding the optimal value of ∆k for this method
is very difficult in practice. A small ∆k leads to more frequent
communication, thereby increasing the communication cost. A
large ∆k, unfortunately, also increases the communication cost
because of the size of the VO increases.
Safe Region Approach The buffering technique in the
baseline method is not a truly safe region approach because
even when staying within the buffer region the client is still
required to recompute result locally. Our approach is to return
a safe region [9, 25] for the query result, such that the
result remains unchanged as long as the user’s location q
stays within the safe region. This approach helps reducing the
communication frequency between the LBS and the client,
as well as their computation cost. However, for the sake of
saving computing resources and communication bandwidth
[12, 17, 24], the LBS may simply return, in our problem
context, an overly large safe region, rendering the user’s future
result incorrect. Our goal is thus to devise methods for the
client to verify the correctness of the safe region returned by
LBS.

Figure 2 illustrates our framework for answering moving
kNN that supports query correctness verification. A map
provider (e.g., the government’s land department, NAVTEQ1,
and TeleAtlas2) collects points-of-interests into a spatial
dataset. It builds the ADS3 of the dataset and signs the
digest of the root node, before distributing/selling it to a
service provider (i.e., LBS). Initially, a user downloads the
root signature from the LBS and the map provider’s public
key from a certificate authority (e.g., VeriSign). Afterwards,
the user sends its location to the LBS, and obtains as the
results the kNN, safe region, and the VO. The correctness
of the kNN and the safe region can be verified at the client
by using the received VO, the root signature and the map

1NAVTEQ Maps and Traffic. http://www.navteq.com
2TeleAtlas Digital Mapping. http://www.teleatlas.com
3We use MR-tree [22] and a new ADS called Voronoi MR-tree (Section

IV-B) in this paper.

provider’s public key. The client needs to issue a query to the
LBS again only when it leaves its safe region.

The spatial dataset is expected to have infrequent updates
(e.g., monthly map updates). In case the user wants to ensure
the results obtained are fresh (i.e., obtained from the latest
datasets), the map provider could follow [6] to include a
timestamp in the root signature of the tree.

Service provider
Spatial Dataset

Certificate authorityRoot signature

Map provider

ADS

Root

signature

build
distribute

ADS

Root

signature

Mobile client

location update

result, safe region, VO

when crossing

safe region

Certificate authority

Public key [once]

Root signature

[once]

Fig. 2. Moving kNN authentication

IV. SAFE REGION AUTHENTICATION

In this paper, we focus on the 2-dimensional space R2

because most spatial data reside in such a space. Nevertheless,
our result can be extended to the 3-dimensional space. We
abbreviate the minimum bounding rectangle e.r by its non-
leaf entry e. A summary of notation used in this paper is
given in Table I.

TABLE I
SUMMARY OF FREQUENTLY USED SYMBOLS

Symbol Meaning
D the dataset of points
p a data point of D
q the (current) query point
k number of nearest neighbors
S a subset of D with k points / kNN result
γ the kNN distance

�(q, a) circular region with center q and radius a
dist(p, p′) distance between points p and p′

⊥(p, p′) the half-plane closer to point p than point p′

V(p,D) Voronoi cell of p with respect to D
G(p,D) the generator set of V(p,D)
Vk(S,D) order-k Voronoi cell of S with respect to D

Ψ vertices of Vk(S,D)
e a non-leaf entry in an MR-tree

mindist(e, q) the minimum distance between q and the extent of e
KVR the kNN verification region
SRVR the safe region verification region

We adopt the (order-k) Voronoi cell as the safe region for
moving kNN queries as in [25]. The basic definitions for
Voronoi cells are as follows.

Definition 1: Half-plane [10].
Given points p and p′, the half-plane ⊥(p, p′) denotes the set
of locations that are closer to point p than point p′:

⊥(p, p′) = {z ∈ R2 | dist(z, p) ≤ dist(z, p′)}
Definition 2: Voronoi cell [10].

Given a point p from a point set D, the Voronoi cell V(p,D)

of p with respect to D is defined as:

V(p,D) =
\

p′∈D\{p}

⊥(p, p′)

Definition 3: Voronoi edge.
For two adjacent Voronoi cells V(p,D) and V(p′, D), their
Voronoi edge is defined as their shared line segment:

E(p, p′, D) = {z ∈ R2 | z ∈ V(p,D) ∧ z ∈ V(p′, D)}
Definition 4: Generator and symmetric property.

A point p′ is a generator of V(p,D) if E(p, p′, D) is non-
empty. Let G(p,D) be the set of all generators of V(p,D).
Since E(p, p′, D) = E(p′, p,D), we obtain: p′ ∈ G(p,D) iff
p ∈ G(p′, D).

Figure 3a illustrates the Voronoi cell of each point from
the dataset D = {p1, p2, p3, p4, p5, p6}. The Voronoi cell
V(p1, D) of p1 is shown as the triangle with three bold edges,
which can be represented by point p1 and its generator set
G(p1, D) = {p2, p5, p6}. Observe that Voronoi cells of points
in G(p1, D) share common edges with V(p1, D).

p4

E(p ,p ,D)

p1

p2

p6

p3

p5

E(p1,p5,D)

V(p1,D)

p

p4

p1

p2

p6

p3

p5

(a) Voronoi cells (b) order-k Voronoi cells, at k = 2

Fig. 3. Example of Voronoi cells

Definition 5: Order-k Voronoi cell [10].
Given a subset S ⊂ D such that |S| = k, the order-k Voronoi
cell Vk(S,D) of S with respect to D is defined as:

Vk(S,D) = {z ∈ R2 | max
p∈S

dist(z, p) ≤ min
p′∈D\S

dist(z, p′)}

=
\
p∈S

(
\

p′∈D\S

⊥(p, p′))

Figure 3b depicts the order-2 Voronoi cells on the dataset
D. For instance, any location within the cell V2({p1, p2}, D)
regard p1 and p2 as its 2 nearest neighbors.

p2

p4

p

⊥(p1,p3) ⊥(p1,p4)

p1

2

p6

p3

p5

q

⊥(p1,p5)

⊥(p1,p6)

⊥(p1,p2)

Fig. 4. Challenge of safe region authentication

The challenge of verifying the correctness of a safe region
(a Voronoi cell) is illustrated in Figure 4. Suppose that the
LBS needs to compute the 1NN of q (i.e., point p1) and
also the safe region (i.e., the Voronoi cell V(p1, D); the
gray triangle). Through Definition 4, the LBS can represent

the Voronoi cell V(p1, D) by point p1 and its generator set:
G(p1, D) = {p2, p5, p6}. The client can reconstruct V(p1, D)
by using p1 and G(p1, D).

Suppose that the LBS intentionally represents V(p1, D)
using a fake generator set G′(p1, D) = {p4, p5, p6}. In this
case, the client will reconstruct an incorrect Voronoi cell
V ′(p1, D), as indicated by the bold triangle in the figure. The
problem here is that the client cannot verify the correctness
of the fake generator set G′(p1, D). Note that all points of
G′(p1, D) also originate from the dataset D (thus it passes
the data correctness checking that verifies the root signature).
However, the client cannot determine whether those points
belong to the actual generator set G(p1, D).

By Definition 2, V(p1, D) is constructed by all points in
D. So, a brute-force solution is to return the whole dataset
D to the client so that he is guaranteed to compute V(p1, D)
correctly. Our goal is to design algorithms to construct verifi-
cation objects VO for verifying the correctness of the Voronoi
cell, yet the size of VO should be as small as possible.

In the following, we first present an approach that exploits
the relationship between the vertices of an order-k Voronoi
cell and the kNN to construct the VO (Section IV-A). The
VOs constructed by this approach are very compact and thus
the approach is more communication efficient. Afterwards,
we present another method that materializes order-1 Voronoi
cells in the MR-tree off-line and constructs the VO on-the-fly
(Section IV-B). The VO constructed by this approach may be
larger than the ones constructed by the first approach; however,
this approach is more computation efficient and thus more
suitable for mobile devices with limited computational power
and battery. In the end of this Section, we present a method
to re-use the VO to reduce the communication cost when the
client crosses a safe region (Section IV-C).

A. Vertex-based Approach (VA)

Our Vertex-based Approach (VA) constructs a compact VO
for authenticating a moving kNN query. Its idea is to exploit
the relationship between the vertices of an order-k Voronoi
cell and the kNN result. It consists of a server algorithm and
a client algorithm.

Algorithm 1 Vertex-based Approach (Server)
Receive from client: (Query point q, Integer k)
Using MR-tree TD (on dataset D)

1: S:=compute the kNN of q from the tree TD;
2: compute Vk(S,D) from the tree TD (using [25]);
3: γ:=maxp∈S dist(q, p); . authenticating kNN
4: KVR:=�(q, γ);
5: Ψ := set of vertices of Vk(S,D); . authenticating safe region
6: SRVR :=

S
ψ∈Ψ�(ψ,maxp∈S dist(ψ, p));

7: C:= KVR ∪ SRVR;
8: VO:=DepthFirstRangeSearch(TD .root, C);
9: send VO to the client;

Server Algorithm
Algorithm 1 is the pseudo-code of the server algorithm. Upon
receiving the user location q and the number k of required

NNs, it computes the kNN result S from an MR-tree TD (line
1).4 Then, it computes the safe region as the order-k Voronoi
cell Vk(S,D) (line 2). Next, it defines a verification region C
so as to identify points that are directly useful for verifying
the kNN results and the safe region and put them into the VO.
More specifically, the verification region C is the union of:
• The kNN verification region (KVR): the circular region
�(q, γ), where γ is the k-th nearest neighbor distance of
q (lines 3–4).

• The safe region verification region (SRVR): the union
of circular regions defined using each vertex ψ of the
Voronoi cell and the farthest point in the kNN result S
from ψ, i.e.,

⋃
ψ∈Ψ�(ψ,maxp∈S dist(ψ, p)), where Ψ

denotes the set of vertices of the Voronoi cell Vk(S,D)
(lines 5–6).

p2

p4

ψ1

KVR SRVR

p1

p2

p6

p3

p5

V(p1,D)

q

γγγγ

ψ1

ψ2

ψ3

p2

p4

V2 ({p1, p2},D)

p1

p6

p3

p5

q

γγγγ

(a) order-1 cell V(p1, D) (b) order-2 cell V2({p1, p2}, D)

Fig. 5. Verification region of order-k Voronoi cell

Figure 5a illustrates the verification region C for the case
k = 1. The point p1 is the NN of q and the Voronoi cell
V(p1, D) (in gray color) is the safe region. The KVR is the
solid circle centered at q. The SRVR is the region formed by
the union of the dotted circles centered at vertices ψ1, ψ2, ψ3.
The VO is then computed by a depth-first traversal of the MR-
tree (line 8). That is, the tree is traversed with the following
two conditions: (i) if a non-leaf entry e does not intersect
C, e is added to the VO and its subtree will not be visited;
(ii) data points in any visited node (i.e., intersecting C) are
put into the VO. Thus, in our example, the VO contains the
points p1, p2, p5 and p6 and other non-leaf entries in the tree.
Figure 5b illustrates the verification region C for the case k =
2. The points p1 and p2 are 2NN of q and the order-2 Voronoi
cell V2({p1, p2}, D) (in gray color) is the safe region. In this
example, the verification region C contains the points p1, p2,
p3, p4, p5, p6 and other non-leaf entries in the tree.

We now prove that any point p∗ outside the SRVR cannot
alter the safe region Vk(S,D).

Theorem 1: [Points outside the SRVR cannot alter safe
region Vk(S,D)] Let Ψ be the set of vertices of the order-
k Voronoi cell Vk(S,D), where S is a set of k points
from the point set D. Let p∗ be a point of D\S. If
p∗ /∈

⋃
ψ∈Ψ�(ψ,maxp∈S dist(ψ, p)), then Vk(S,D) =

Vk(S,D\{p∗}). �

4Other tree-based spatial ADS, such as MR∗-tree [22], are also applicable
here.

Proof: To begin, we first have to state down two prelim-
inary lemmas.

Lemma 1: Let S be a set of k points from D. Let p∗ be
a point of D\S. We have: Vk(S,D) = Vk(S,D\{p∗}) ∩⋂
p∈S ⊥(p, p∗). �

Proof: Vk(S,D)

=
\
p∈S

(
\

p′∈D\S

⊥(p, p′))

=
\
p∈S

((
\

p′∈(D\{p∗})\S

⊥(p, p′)) ∩ ⊥(p, p∗))

=
\
p∈S

(
\

p′∈(D\{p∗})\S

⊥(p, p′)) ∩
\
p∈S

⊥(p, p∗)

= Vk(S,D\{p∗}) ∩
\
p∈S

⊥(p, p∗)

Lemma 2: A half-plane ⊥(·, ·) is convex. The intersection
of half-planes is also convex [10].�

We now show that, with the given if-condition in Theo-
rem 1, both Vk(S,D) and Vk(S,D\{p∗}) are strictly inside⋂
p∈S ⊥(p, p∗), and thus they are equal.
Let’s consider the region

⋂
p∈S ⊥(p, p∗). Any location z ∈

R2 can be classified into three types:

• zin, which is strictly inside
⋂
p∈S ⊥(p, p∗),

i.e., ∀p ∈ S, dist(zin, p) < dist(zin, p∗)
• zbor, which is on the border of

⋂
p∈S ⊥(p, p∗),

i.e., ∀p ∈ S, dist(zbor, p) ≤ dist(zbor, p∗)
and ∃p ∈ S, dist(zbor, p) = dist(zbor, p∗)

• zout, which is outside
⋂
p∈S ⊥(p, p∗),

i.e., ∃p ∈ S, dist(zout, p) > dist(zout, p∗)
Note that zin, zbor ∈

⋂
p∈S ⊥(p, p∗), but zout /∈⋂

p∈S ⊥(p, p∗).
From the given if-condition, we obtain: ∀ψ ∈

Ψ, dist(ψ, p∗) > maxp∈S dist(ψ, p). By rearranging
it, we have: ∀ψ ∈ Ψ,∀p ∈ S, dist(ψ, p) < dist(ψ, p∗).
Thus, each vertex ψ (of the cell Vk(S,D)) is strictly inside⋂
p∈S ⊥(p, p∗). Combining this with the fact that both
Vk(S,D) and

⋂
p∈S ⊥(p, p∗) are convex regions (refer to

Lemma 2), we infer that Vk(S,D) is strictly inside
⋂
p∈S

⊥(p, p∗). −(F)
By Lemma 1, Vk(S,D) = Vk(S,D\{p∗})∩

⋂
p∈S ⊥(p, p∗).

Clearly, any zin that belongs to Vk(S,D\{p∗}) must also
belong to Vk(S,D). To prove Vk(S,D) = Vk(S,D\{p∗}),
we proceed to show that zbor and zout do not exist in
Vk(S,D\{p∗}).

Suppose that there exists a location zbor in Vk(S,D\{p∗}).
Thus, zbor must also belong to Vk(S,D), by Lemma 1. This
contradicts with the property (F) that Vk(S,D) is strictly
inside

⋂
p∈S ⊥(p, p∗).

Suppose that there exists a location zout in Vk(S,D\{p∗}).
We construct a line segment from zout to a location zin
in Vk(S,D\{p∗}). This line segment must pass through a
location zbor, which falls in Vk(S,D\{p∗}) because it is

convex. This will then lead to contradiction, as stated above.
Therefore, Theorem 1 is proved.

For example, in Figure 5a, points p3 and p4 fall outside
SRVR. By Theorem 1, they cannot alter V(p1, D) and so they
are not included in the VO. On the other hand, points p2, p5

and p6 are the generators of the order-1 Voronoi cell V(p1, D).
They are essential for constructing V(p1, D), so they are in
SRVR and included in the VO. By Theorem 1, it is safe
to include only those points within C in the VO (and other
points are represented by a few non-leaf entries). Therefore,
while the VO constructed by this method is very compact, it
also provides all the information the client needs to verify the
correctness of the safe region (and the kNN results).

Note that, for efficient implementation, the server does not
need to render the complex shape of the verification region C
(line 7). Instead, we can check whether the following condition
holds during the tree traversal (line 8):

(mindist(e, q) ≤ γ) ∨
_
ψ∈Ψ

„
mindist(e, ψ) ≤ max

p∈S
dist(ψ, p)

«
(1)

where the first term checks whether a non-leaf entry e inter-
sects KVR and the second term checks whether e intersects
SRVR. If the condition holds, we add e into the VO. Using
this condition, the VO can be constructed efficiently. In the
final step, the server sends the VO to the client (line 9) and
the client will obtain the kNN result and the safe region from
the VO and authenticate them.

Client Algorithm
Algorithm 2 is the pseudo-code of the client algorithm. Upon
receiving the verification object VO from the server, it first
reconstructs the root digest from the VO and verifies it against
the MR-tree root signature signed by the data owner (lines 1–
2). If the verification is successful, then the VO is guaranteed
to contain only entries from the original MR-tree (i.e., no fake
entries). Next, it proceeds to verify the correctness of the kNN
result and the safe region provided by the VO. It extracts from
the VO (i) a set D′ of data points, and (ii) a set R′ of non-leaf
entries, and then computes the kNN result S′ from D′ (lines
4–6).

As described in Section II, the kNN set S′ is correct if
every non-leaf entry of R′ does not intersect �(q, γ′), where
γ′ is the kNN distance (lines 7–8). If the kNN result is
authenticated, the client next computes the order-k Voronoi
cell V = Vk(S′, D′) from D′ as the safe region for the kNN
result S′ (line 9). It then constructs the SRVR by the set of
vertices Ψ in V (lines 10–11). By Theorem 1, the client can
ensure that the cell V is correct if every non-leaf entry of R′

does not intersect the SRVR (line 12). And if so, the client
can regard the computed kNN result and the safe region V as
correct.

VO Size Analysis
We estimate the size of the VO by estimating the number

of data points in the verification region C = �(q, γ) ∪
⋃
ψ∈Ψ

Algorithm 2 Vertex-based Approach (Client)
Receive from server: (Verification Object VO)

1: h′root:=reconstruct the root digest from VO;
2: verify h′root against the MR-tree root signature;
3: if h′root is correct then
4: D′:=the set of data points extracted from VO;
5: R′:=the set of non-leaf entries extracted from VO;
6: S′:=compute the kNN of q from D′;
7: γ′:=maxp∈S′ dist(q, p);
8: if ∀e ∈ R′, e ∩ �(q, γ′) = ∅ then . authenticate kNN
9: V:=compute Vk(S′, D′);

10: Ψ := set vertices of V;
11: SRVR :=

S
ψ∈Ψ�(ψ,maxp∈S′ dist(ψ, p));

12: if ∀e ∈ R′, e ∩ SRVR = ∅ then . authenticate safe
region

13: return kNN result S′ and safe region V;
14: return authentication failed;

�(ψ, maxp∈S dist(ψ, p)). We will ignore �(q, γ) because it
is always covered by

⋃
ψ∈Ψ�(ψ, maxp∈S dist(ψ, p)).

For simplicity, we assume that the data points are uniformly
distributed in the square domain space [0, 1]2. Let n be the
number of points in the dataset D. The average kNN distance
is: γ =

√
k
πn . According to [10], the number of order-k

Voronoi cells is: F (k, n) = (2k − 1)n − (k2 − 1). Thus, the
average area of an order-k Voronoi cell is: 1

F (k,n) .
Under uniform distribution, we approximate the shape of an

order-k Voronoi cell Vk(S,D) by a circle with radius λ. Thus,
we have: λ =

√
1

πF (k,n) . Recall that the verification region C
is formed by a union of circles, in which each circle has its
radius as γ and its center as a vertex of Vk(S,D).

The verification region C can be approximated as a circle
with the radius λ + γ. Therefore, the number of data points

in C is estimated as: n · π(λ + γ)2 =
(√

n
F (k,n) +

√
k

)2

≈(√
1

2k−1 +
√
k
)2

≤ k+ 3. The number of non-leaf entries in
the VO can be estimated by substituting the above circle into
the MR-tree analysis in [22].

Observe that the above estimated value is robust for uniform
data distribution. In case of other data distributions, different
vertices of Vk(S,D) could be located in different parts of the
space, with different densities. We leave the analysis of VO
size under other distributions as our future work.

Discussion
An advantage of this Vertex-based Approach (VA) is that it
exploits the property between the vertices of order-k Voronoi
cell and the kNN results such that it only adds very few
data points to the verification object. That leads to a low
communication cost per query while the use of safe region
reduces the number of queries issued. Also, this approach does
not require the building of a new authenticated data structure
(ADS) to authenticate the Voronoi cells; rather, it reuses the
existing MR-tree, which is useful for authenticating other types
of spatial queries. However, this method requires the online
computation of an order-k Voronoi cell on both the server-

side and the client-side at run-time.

B. Materialization Approach (MA)

We now present an alternate approach that materializes
some Voronoi cell information in the ADS so as to save
computational cost at the server and mobile clients. The
challenge is that the value of k is a user parameter and
it cannot be known in advance. Therefore, pre-computing
order-k Voronoi diagrams for all possible values of k and
materializing them in the MR-tree is not practical—that places
a very heavy burden on the data owner and makes the MR-tree
bulky and inefficient.

Instead of using full materialization, our Materialization
Approach (MA) is a client-server method that operates on
a simple extension of VoR-tree [16], which we call Voronoi
MR-tree. We will show that by using the Voronoi MR-tree,
the safe region verification region (SRVR) is identical to the
kNN verification region (KVR). Therefore, the clients and the
LBS need not explicitly authenticate the safe region (order-
k Voronoi cells). Also, we will prove that points added to
the VO based on the Voronoi MR-tree are sufficient for the
client to derive the safe region from the VO directly. In other
words, the server needs not even compute the safe region.
All these enhancements dramatically speed-up the server and
client algorithms.

Voronoi MR-tree
The Voronoi MR-tree is a simple “Merkle extension” of VoR-
tree [16]. VoR-tree is an R-tree like index structure. In a
VoR-tree, each leaf entry stores not only a point pi but
also the generator set G(pi, D) of its order-1 Voronoi cell.
However, the MBR of a leaf node is solely constituted by the
entries’ data points. The Voronoi MR-tree is simply a VoR-
tree with digests added to each node recursively like MR-tree
(see Section II). The signature of the dataset is obtained by
signing the root digest with the map provider’s private key. For
instance, Figure 6a shows a Voronoi MR-tree (T]D) built from
the data points shown in Figure 3a. The leaf entry for point
p1 stores the binary string of p1 and its generators (p2 p5 p6).

Maintaining (i.e., insert/delete/update of data points) a
Voronoi MR-tree is the same as maintaining a VoR-tree (see
[16]) followed by maintaining the digests as in MR-tree (see
[22]), so we do not discuss it in detail. Maintaining a Voronoi
MR-tree is asymptotically as efficient as maintaining an R-tree
because the average number of generators of each Voronoi cell
(in R2) is at most six [16], which is a constant. The average
capacity of the leaf nodes of VoR-tree and Voronoi MR-tree is
seven (1+6) times lower than that of the MR-tree on average
but the capacity of non-leaf nodes in the VoR-tree and Voronoi
MR-tree is still the same as in the MR-tree. As the capacity of
non-leaf nodes is usually in the order of hundred, the height
of Voronoi MR-tree is usually the same or one level higher
than that of MR-tree.

The Voronoi MR-tree is simply a blend of MR-tree and
VoR-tree. Actually, we put our focus on how to compute
and authenticate order-k Voronoi cells using Voronoi MR-tree,

which contains only order-1 Voronoi cells.5

e (r,α) e (r,α) e (r,α) e (r,α)

e5 (r,α) e6 (r,α)

eroot (r,α)

e1 (r,α) e2 (r,α) e3 (r,α) e4 (r,α)

p1 (p2 p5 p6) p2 (…) … … …

Token Point
j1 p1

j2 p2

j3 p5

j4 p6

· · · · · ·

(a) Voronoi MR-tree T]D (b) Compression dictionary
Fig. 6. Voronoi MR-tree

Server Algorithm
Algorithm 3 is the pseudo-code of the server algorithm. Upon
receiving the user location q and the number k of required
NNs, it computes the kNN result from a Voronoi MR-tree
T]D (line 1). Next, it defines a verification region C so as to
identify points that are directly useful for the client to verify
the kNN results and the safe regions. Differ from the vertex-
based approach, the verification region C consists of only one
part, which is surprisingly the usual kNN verification region
(KVR), i.e., C = �(q, γ), where γ is the k-th nearest neighbor
distance of q (lines 2–3).

With a Voronoi MR-tree, we now prove that by putting all
points within the verification region C (and their associated
order-1 Voronoi cell generators) into the VO, the client can
compute the safe region, i.e., order-k Voronoi cell for the kNN
result, merely from the points in the VO:

Theorem 2: [Correctness of the verification region com-
puted from Voronoi MR-tree]

Let S be a set of k points from the point set D, q be a query
point, and γ = maxp∈S dist(q, p). The order-k Voronoi cell
Vk(S,D) can be computed from points in Voronoi MR-tree
that fall into �(q, γ). �

Proof: We first establish the following lemma.
Lemma 3: Let S be a subset of the point set D. Let p∗

be a point in the set D but not in the set union D∗S =
∪p∈S G(p,D). We have: Vk(S,D) = Vk(S,D\{p∗}). �

Proof: We first attempt to prove: G(p∗, D) ∩ S = ∅. For
the sake of contradiction, assume that there exists a point
p ∈ S such that p ∈ G(p∗, D). By the symmetry property
in Definition 4, we derive: p∗ ∈ G(p,D), and thus: p∗ ∈
∪p∈S G(p,D). This contradicts with the initial condition
of p∗. Thus, we obtain: G(p∗, D) ∩ S = ∅.
Since G(p∗, D) ∩ S = ∅, we obtain: G(p∗, D) =
G(p∗, D\S). Let p be any point of S. We have p /∈
G(p∗, D\S). By the symmetric property in Definition 4,
we have: p∗ /∈ G(p,D\S). Therefore, we obtain:
V(p,D\S) = V(p, (D\{p∗})\S). Thus, we derive:⋂
p∈S V(p,D\S) =

⋂
p∈S V(p, (D\{p∗})\S). —(F1)

(Continued on next page)

5We remark that [16] has not studied the computation nor the authentication
of order-k Voronoi cells from order-1 Voronoi cells.

Finally, we attempt to prove: Vk(S,D) =
Vk(S,D\{p∗}). By Definition 5, we have:
Vk(S,D) =

⋂
p∈S (

⋂
p′∈D\S ⊥(p, p′)), which is equal to⋂

p∈S V(p,D\S), by using Definition 2. Therefore, we
obtain: Vk(S,D) =

⋂
p∈S V(p,D\S) —(F2).

Then, by replacing D with (D\{p∗}) in equation (F2),
we obtain: Vk(S, (D\{p∗})) =

⋂
p∈S V(p, (D\{p∗})\S).

—(F3).
By combining the equations (F1), (F2), and (F3), we
have: Vk(S,D) = Vk(S,D\{p∗}).

We then establish the proof of Theorem 2 as follows.
The circular region �(q, γ) contains each point satisfying
dist(q, p) ≤ γ. Thus, it contains each point from S. From
the Voronoi MR-tree, we can fetch the generator set G(p,D)
for each point in S. These generator sets are correct, as they
were pre-computed by the data owner, by definition. Thus, the
union set D∗S = ∪p∈S G(p,D) can be obtained correctly. Let
p∗ be a point in the set D but not in the set union D∗S . By
repeating Lemma 3 and exhausting each point p∗ in D but
not in D∗S , we have: Vk(S,D) = Vk(S,D∗S), which can be
computed correctly as we have the correct D∗S .

By applying Theorem 2, the remaining part of the server
algorithm is pretty simple. It simply traverses the Voronoi MR-
tree as what the vertex-based approach does and puts (i) non-
leaf entries that do not intersect C and (ii) points in visited
leaf entries into the VO (line 4). As a final step, the server
sends the VO to the client (line 5) and the client will be able
to derive the kNN results and the safe region from the VO
and authenticate them.

Figure 7a illustrates an example for the case k = 2. The
query point q has its 2NN set as S = {p1, p2}. The verification
region C is simply the circular region �(q, γ), which contains
the points p1 and p2. In the tree T]D, the leaf entries of p1

and p2 store their corresponding generator sets: G(p1, D) =
{p2, p5, p6} and G(p2, D) = {p1, p3, p4, p5, p6}. They are also
added into the VO when the leaf entries of p1 and p2 are
inserted into the VO.

Algorithm 3 Materialization Approach (Server)
Receive from client: (Query point q, Integer k)
Using Voronoi MR-tree T]D (on dataset D)

1: S:=compute the kNN of q from the tree T ∗D;
2: γ:=maxp∈S dist(q, p); . start preparing the VO
3: C:=�(q, γ);
4: VO:=DepthFirstRangeSearch(T ∗D .root, C);
5: send VO to the client;

Client Algorithm
Algorithm 4 is the pseudo-code of the client algorithm. The
first few lines (lines 1–3) are identical to the client algorithm
of the vertex-based approach (Algorithm 2). However, as
this approach is based on a Voronoi MR-tree, the successful
verification of the root digest implies both the data points and
the order-1 Voronoi cells are originated from the data owner’s

p2

p4

V(p ,D)

V2 (S,D)

p1

p2

p6

p3

p5

V(p1,D)

V(p2,D)

q

γ

p4

V2 ({p1, p2}, D)

e2
e1

p8

p7

e

V2 ({p2, p3}, D)

p1

p2

p6

p3 p5

qlast

Clast

qnow

Cnow

e3

e4

(a) VO derivation (b) VO reuse

Fig. 7. Deriving an order-k cell from order-1 cells, k = 2

Voronoi MR-tree (i.e., no fake entries). Next, it proceeds to
verify the correctness of the kNN result and the safe region
provided by the VO. Same as Algorithm 2, it extracts from
the VO (i) a set D′ of data points and (ii) a set R′ of non-
leaf entries, then computes the kNN result S′ and the kNN
distance γ′ from D′ (lines 4–7).

Recall from Theorem 2 that, given a query point q and a
set S of k points, an order-k Voronoi cell can be computed
from points in a Voronoi MR-tree that intersect �(q, γ),
where γ=maxp∈S dist(q, p). Thus, the client first defines
its own circular verification region �(q, γ′). Next, it checks
whether all non-leaf entries in R′ do not intersect �(q, γ′)
(line 8). If yes, it immediately satisfies the kNN authentication
requirement (that we have encountered before; e.g., Section
II, or line 8 of Algorithm 2). More interestingly, Theorem
2 is applicable to the client after it defines its own circular
verification region �(q, γ′). Specifically, by ensuring that no
non-leaf entry in R′ intersects �(q, γ′), Theorem 2 guarantees
that we can compute the order-k Voronoi cell using only the
points in the VO. The client then exploits the following lemma
to collect points that are required to construct the order-k
Voronoi cell for the kNN result S′:

Lemma 4: Let S be a subset of the point set D. Let D∗S =
∪p∈S G(p,D). We have: Vk(S,D) = Vk(S,D∗S). �

Proof: Let p∗ be a point in the set D but not in the set
union D∗S . By repeating Lemma 3 and exhausting each point
p∗ in D but not in D∗S , we have: Vk(S,D) = Vk(S,D∗S),
which can be computed correctly as we have the correct D∗S .

This lemma states that an order-k Voronoi cell Vk(S,D) of
a set S of points can be computed from their order-1 Voronoi
cells if they are represented as generator points. Therefore, the
client collects a small set of points D∗S′ by union the generator
sets for each nearest neighbor in S′ (line 9) and computes the
order-k Voronoi cell from D∗S′ as the safe region for the current
kNN result (line 10).

Continuing with the example of Figure 7a (for the case
k = 2), the client first computes the kNN set as S = {p1, p2}
and verifies its correctness. The client then extracts their
generator sets: G(p1, D) = {p2, p5, p6} and G(p2, D) =
{p1, p3, p4, p5, p6}. The union set D∗S of these generator sets
is used to compute the order-2 Voronoi cell V2(S,D) (the
gray region; the dotted lines illustrate the formation of edges

of V2(S,D)).

Algorithm 4 Materialization Approach (Client)
Receive from server: (Verification Object VO)

1: h′root:=reconstruct the root digest from VO;
2: verify h′root against the MR-tree root signature;
3: if h′root is correct then
4: D′:=the set of data points extracted from VO;
5: R′:=the set of non-leaf entries extracted from VO;
6: S′:=compute the kNN of q from D′;
7: γ′:=maxp∈S′ dist(q, p);
8: if ∀e ∈ R′, e ∩ �(q, γ′) = ∅ then . authenticate both kNN

and safe region
9: D∗S′ :=

S
p∈S′ G(p,D); . extract generators from VO

10: V:=compute Vk(S′, D∗S′);
11: return kNN result S′ and safe region V;
12: return authentication failed;

Optimizing the VO Size using Space-Efficient Tokens
When the verification object VO is computed by using the
Voronoi MR-tree, the VO may contain duplicate points be-
cause a data point p can appear in the generator sets of
different points. For instance, in Figure 3a, the point p1

belongs to the generator sets of the points p2, p3, and p5.
Thus, p1 may be stored multiple times in the VO.

To reduce the size of the VO, we propose to represent
the data points using some space-efficient tokens. While the
server is constructing the VO, it computes a dictionary (see
Figure 6b) to represent the data points it encounters. Each oc-
currence of a point (e.g., p1) in the VO will be replaced by its
corresponding token (e.g., j1). The dictionary will be appended
to the end of the VO. When the client receives the VO, those
tokens will be replaced with the corresponding points from
the dictionary in order to reconstruct the original VO. The
resulting space reduction can be quite significant because the
number of data points in a VO is usually much smaller than the
dataset cardinality. For a VO with B data points, each token
can be represented by dlog2Be bits. Therefore, a VO with
100 data points requires only 7 bits per token, which is much
smaller than using 2× 8 bytes = 128 bits per (2-dimensional)
data point.

VO Size Analysis
We estimate the size of the VO by analyzing the number
of points in the verification region C = �(q, γ). Observe
that the number of points intersecting �(q, γ) is exactly k,
which is independent of the extent and vertices of Vk(S,D).
In addition, the generator set of each such point will also
be included into VO. According to [10], the Voronoi cell of
a point has 6 edges on average, and thus its generator set
contains 6 points on average, regardless of data distribution.
In summary, the total number of points (including duplicates)
is estimated to be (6 + 1)k = 7k. The number of non-leaf
entries in the VO can be estimated by substituting the above
circle into the MR-tree analysis in [22].

Discussion
One advantage of this Materialization Approach (MA) is that,

at query time, the server saves significant computational cost
by skipping the order-k Voronoi cell computation. Further-
more, the client also saves computational cost because it
computes the high order Voronoi cells by using only the
generator sets of points in the kNN results but not other
irrelevant points.

C. Handling Client Location Updates

Both VA and MA use order-k Voronoi cells Vk(S,D) as the
safe region. As long as the client travels within the Voronoi
cell, the kNN result set S remains valid so that there is no
need to submit a new query (with updated client location q)
to the server. When the client leaves the region Vk(S,D), the
kNN result set changes so that the client needs to submit a
new query to the server.

In this section, we discuss how the client can reuse the pre-
viously received VO to reduce the communication frequency
between the server and the client even when the client leaves
the safe region. This optimization technique is applicable to
both VA and MA. For ease of discussion, we only show its
example for MA.

Let’s consider the example of Figure 7b, at k = 2. Assume
the client is now located at qnow and its previous location is
at qlast, which has its 2NN set as {p1, p2} and its safe region
as V2({p1, p2}, D) (the light-gray region). Note that, for qlast,
its verification region is defined as the circle Clast (with center
at qlast). Since Clast intersects the non-leaf entries e1, e2, e3,
their leaf nodes are visited and their data points are inserted
into the verification object VOlast. Clast does not intersect e4,
so e4 is inserted into VOlast, and the subtree of e4 is not
visited. Thus, VOlast = {p1, p2, p3, p4, p5, p6, e4}.

Later on, the client moves to a new location qnow outside
the region V2({p1, p2}, D). Before sending a new query to the
server, the client can run Algorithm 4 again using the previous
VOlast but with the current client location qnow. First, the
client attempts to find the kNN result set of qnow from VOlast.
The 2NN answer is: {p2, p3} and its corresponding verification
region is defined as the circle Cnow (with center at qnow).
Observe that Cnow does not intersect with any non-leaf entries
in VOlast (e.g., e4) as well. Thus, the correctness of VOlast is
maintained even for the new query location qnow. The client
can then extract the generator sets of p2 and p3, and compute
the new safe region as V2({p2, p3}, D) (the dark-gray region).
This example illustrates how the client is able to refresh the
safe region without issuing a new query to the server. By using
this technique, the client needs to send a new query to the
server only when the new verification region Cnow intersects
some non-leaf entry in VOlast.

V. EXPERIMENTAL STUDY

We evaluate our methods using both synthetic and real
datasets. We implemented all methods in C++ and used
cryptographic functions in the Crypto++ library6. Experiments
were run on a PC with Intel 2.83GHz Quad CPU and 4

6Crypto++ library: http://www.cryptopp.com/

Gbytes RAM. The page size of MR-trees and Voronoi MR-
trees is set to 4 Kbytes. The two real datasets are NA (North
America, 175K points)7 and SF (San Francisco, 174K points)
[2]. We also generated SYN (synthetic uniform) datasets for
the scalability experiments. In our experiments, we normalize
the datasets to the domain space [0, 10000]2. By default,
the number k of requested NNs is 10. Each query work-
load contains the trajectories of 500 objects generated by
Brinkhoff’s trajectory generator [2]. Each trajectory simulates
an object running on a road network and has a location
measurement record for its object at every timestamp; there
are 100 timestamps in total. The default speed of an object
along the route is 50 distance units per timestamp. A distance
unit denotes 1 meter and the time between adjacent timestamps
is 1 second.

Table II shows the building time of MR-trees and Voronoi
MR-trees on the real datasets and synthetic datasets. For the
Voronoi MR-tree, we also show the breakdown of its building
time into: (i) the time for computing generators of order-
1 Voronoi cell for each data point, and (ii) the time for
constructing the tree structure. The building time of both trees
scales well with the data size. The building time of Voronoi
MR-trees is not sensitive to the data distribution and is within
a small factor of 2 from that of MR-trees. The Voronoi MR-
trees have the same tree height as the MR-trees in most cases
and are one level higher than the MR-trees in only a few cases.

TABLE II
TREE BUILDING TIME

Dataset Building Time (seconds)
MR-tree Voronoi MR-tree

Total Generators Tree
SF 115.38 208.8 91.69 117.11
NA 124.05 214.45 89.44 125.01

SYN–50,000 30.11 49.94 19.51 30.43
SYN–100,000 63.11 104.43 40.32 64.11
SYN–200,000 128.80 215.36 84.74 130.62
SYN–500,000 334.30 572.04 234.13 337.91

SYN–1,000,000 732.92 1300.98 558.42 742.56

Following [9], we measure the cumulative total cost for
each object’s trajectory (which has 100 timestamps). In our
experiments, we measure the communication cost (in kilo-
bytes) as the total size of VO, per object. We measure
the communication frequency as the total number of clients’
queries received by the server, per object. We also report the
total server and client CPU time (in seconds), per object.
We evaluate the performance of the vertex-based approach
(VA) and the materialization approach (MA) based on above
measures.

For comparison, we also implemented the baseline method
(BASE) mentioned in Section III. We remark that BASE
is an impractical method because its performance heavily
depends on the ∆k value, which in turns heavily depends on
various factors such as k, query speed, data size, and data
distribution. The optimal ∆k for a particular setting cannot
be found unless we exhaustively try every possible ∆k value.

7www.maproom.psu.edu/dcw/

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 10 100 1000 10000

C
o

m
m

u
n

ic
a

ti
o

n
 F

re
q

u
e

n
c
y

delta k

BASE k=1

BASE k=5

BASE k=10

BASE k=15

BASE k=20

BASE k=25

 0

 500

 1000

 1500

 2000

 1 10 100 1000 10000

C
o

m
m

u
n

ic
a

ti
o

n
 C

o
s
t

(k
b

y
te

s
)

delta k

BASE k=1

BASE k=5

BASE k=10

BASE k=15

BASE k=20

BASE k=25

(a) total comm. frequency (b) total comm. cost (Kbytes)
Fig. 8. Tuning ∆k for BASE, varying k, on SF data

 0

 500

 1000

 1500

 2000

 1 10 100 1000 10000

C
o

m
m

u
n

ic
a

ti
o

n
 C

o
s
t

(k
b

y
te

s
)

delta k

BASE Speed=20
BASE Speed=30
BASE Speed=50

BASE Speed=100
BASE Speed=200
BASE Speed=500

 0

 500

 1000

 1500

 2000

 1 10 100 1000 10000

C
o
m

m
u
n
ic

a
ti
o
n
 C

o
s
t
(k

b
y
te

s
)

delta k

BASE data size=50k
BASE data size=100k
BASE data size=200k
BASE data size=500k

BASE data size=1m

(a) Varying query speed (SF) (b) Varying data size (SYN)
Fig. 9. Tuning ∆k for BASE

This tedious tuning process is impractical for typical mobile
users. However, for comparison purpose, we do carry out such
a tuning process for BASE in all our experiments. We use
BASEO to denote the best performance of BASE that uses the
optimal ∆k value. We use BASEA to represent the average
performance of BASE over every ∆k value.

The following is an example of how we find the optimal
∆k value for each given k value on the SF dataset. Figure 8a
shows the communication frequency of BASE as a function of
∆k, for six different values of k. As ∆k increases, the buffer
region of BASE becomes larger, and thus the communication
frequency between the server and the client reduces. However,
low communication frequency does not necessarily imply low
communication cost. Figure 8b shows the communication cost
of BASE with respect to ∆k. When ∆k is high, the size of
VO (in bytes) per communication trip is high and thus the
communication cost of BASE rises. When ∆k is low, the
communication frequency is high and so the communication
cost of BASE also rises. Observe that different values of k lead
to different optimal values of ∆k, rendering it impossible to
tune ∆k in advance. For instance, the optimal ∆k is 600 at
k = 1 but the optimal ∆k is 900 at k = 25. The tuning of
∆k with respect to other parameters and datasets are done
similarly. Due to limited space, we do not present all figures
related to the tuning process. The tuning of ∆k with respect
to different query speeds on SF dataset, and the tuning of ∆k
with respect to different synthetic data sizes, are presented in
Figure 9 for readers’ reference.

Effect of query speed on real datasets
We study the effect of query speed on the performance of
VA, MA, BASEA, and BASEO. Figures 10a,b,c,d show the
communication frequency, communication cost, server CPU
time, and client CPU time, with respect to different query
speeds, per object, on the SF dataset.

In Figure 10a, the communication frequency of BASEO is

 0

 20

 40

 60

 80

 100

 20 30 50 100 200 500

C
o

m
m

u
n

ic
a

ti
o

n
 F

re
q

u
e

n
c
y

speed (distance per time stamp)

800
800

700

300

1 1

BASE
A

BASE
O

VA
MA

 0

 500

 1000

 1500

 2000

 2500

 20 30 50 100 200 500

C
o

m
m

u
n

c
a

ti
o

n
 C

o
s
t

(k
b

y
te

s
)

speed (distance per time stamp)

BASE
A

BASE
O

VA
MA

 0

 0.05

 0.1

 0.15

 0.2

 20 30 50 100 200 500

S
e

rv
e

r
T

im
e

 (
s
e

c
)

speed (distance per time stamp)

BASE
A

BASE
O

VA
MA

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 20 30 50 100 200 500

C
lie

n
t

T
im

e
 (

s
e

c
)

speed (distance per time stamp)

BASE
A

BASE
O

VA
MA

(a) total comm. frequency (b) total comm. cost (Kbytes) (c) total server CPU time (sec) (d) total client CPU time (sec)
Fig. 10. Effect of query speed, on SF data

 0

 20

 40

 60

 80

 100

 20 30 50 100 200 500

C
o

m
m

u
n

ic
a

ti
o

n
 F

re
q

u
e

n
c
y

speed (distance per time stamp)

800
900

800 600

1 1BASE
A

BASE
O

VA
MA

 0

 500

 1000

 1500

 2000

 20 30 50 100 200 500

C
o

m
m

u
n

ic
a

ti
o

n
 C

o
s
t

(k
b

y
te

s
)

speed (distance per time stamp)

BASE
A

BASE
O

VA
MA

 0

 0.05

 0.1

 0.15

 0.2

 20 30 50 100 200 500

S
e

rv
e

r
T

im
e

 (
s
e

c
)

speed (distance per time stamp)

BASE
A

BASE
O

VA
MA

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 20 30 50 100 200 500

C
lie

n
t

T
im

e
 (

s
e

c
)

speed (distance per time stamp)

BASE
A

BASE
O

VA
MA

(a) total comm. frequency (b) total comm. cost (Kbytes) (c) total server CPU time (sec) (d) total client CPU time (sec)
Fig. 11. Effect of query speed, on NA data

annotated with the corresponding optimal ∆k value found
by our manual tuning. When the query speed increases, a
BASEO client leaves its buffer region sooner so its com-
munication frequency increases and eventually reaches 100
(i.e., one query per timestamp). The communication frequency
of VA and MA rises slower than that of BASEO because
they apply the safe region and the VO reusing technique to
reduce the communication frequency. Thus, VA and MA incur
lower communication cost than BASEO (see Figure 10b).
Observe that, without knowing the optimal ∆k, the average
performance of BASEA is much worse than VA and MA.
VA has slightly better communication cost than MA in most
cases. MA’s server and client CPU costs are lower than VA
(see Figures 10c,d) because VA has to compute the order-k
Voronoi cell Vk(S,D) at the server-side but MA does not.
The client CPU cost depends on the number of comparisons
for checking whether a non-leaf entry e in VO intersects the
verification region C. MA has its C as a circle, so it needs
only one comparison to check if e intersects C. In contrast,
VA has its C as the union of 1 + |Ψ| circles, by Equation 1,
where Ψ is the number of vertices of Vk(S,D). It requires at
most 1 + |Ψ| distance comparisons.

The experimental results of varying query speed on NA
dataset are presented in Figure 11; results similar to the SF
data are observed.

Effect of k on real datasets
Figure 12 shows the effect of k on the performance of the
methods. When k increases, the communication frequency of
BASEO appears to be constant, but that is contributed by
giving it an increasing optimal ∆k found by our manually-
tuning. Since ∆k increases, the VO size increases, and thus
the communication cost of BASEO increases. The average
performance of BASEA is much worse than BASEO.

The communication cost of all methods rises when k
increases, as more points are included into VO when k
increases. Both VA and MA incur much lower communication

cost than BASEA and BASEO. According to our analysis, the
verification region C of VA and MA contains k + 3 and 7k
points, respectively. It justifies why the communication cost of
VA increases at a slower rate than MA. As explained before,
MA has its C as a circle but VA has its C as the union of
multiple circles. Therefore, the server and client CPU time of
VA rise at a faster rate than MA.

The experimental results of varying k on NA dataset are
presented in Figure 13; results similar to the SF data are
observed.

Effect of data size on (synthetic) SYN data
We then study the scalability of our methods, by using
synthetic uniform datasets. Figure 14 shows the performance
of the methods as a function of data size. When the data
size increases, the data density rises. Thus, the buffering
region in BASEA/BASEO and the area of a safe region
in VA/MA shrink. Therefore, the communication frequency
between the server and the client rises, causing increase in
the communication cost, server CPU time, and client CPU
time of all methods. Furthermore, the average performance of
BASEA is higher than MA and VA by 2.5 times and 4 times
respectively, in terms of the communication cost.

VI. CONCLUSION

In this paper, we have presented a framework with two
efficient methods (VA and MA) for authenticating moving
kNN queries using the safe region approach. We also develop
an optimization technique for reducing the communication
frequency when the client leaves a safe region. Experimental
results show that our methods efficiently authenticate moving
kNN queries using a small communication cost and out-
perform the baseline method by a wide margin. In general,
VA has a better communication efficiency and MA has a
better computation efficiency. Our future work is to study the
authentication of other moving queries such as moving range
queries.

 0

 10

 20

 30

 40

 50

 1 5 10 15 20 25

C
o

m
m

u
n

ic
a

ti
o

n
 F

re
q

u
e

n
c
y

k

600 700 700 800 800 900

BASE
A

BASE
O

VA

MA
 0

 200

 400

 600

 800

 1000

 1200

 1 5 10 15 20 25

C
o
m

m
u
n
ic

a
ti
o
n
 C

o
s
t
(k

b
y
te

s
)

k

BASE
A

BASE
O

VA

MA

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 1 5 10 15 20 25

S
e

rv
e

r
T

im
e

 (
s
e

c
)

k

BASE
A

BASE
O

VA

MA

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 1 5 10 15 20 25

C
lie

n
t

T
im

e
 (

s
e

c
)

k

BASE
A

BASE
O

VA

MA

(a) total comm. frequency (b) total comm. cost (Kbytes) (c) total server CPU time (sec) (d) total client CPU time (sec)
Fig. 12. Effect of k, on SF data

 0

 10

 20

 30

 40

 50

 1 5 10 15 20 25

C
o

m
m

u
n

ic
a

ti
o

n
 F

re
q

u
e

n
c
y

k

600 600 600
700 800 700

BASE
A

BASE
O

VA

MA

 0

 100

 200

 300

 400

 500

 600

 700

 800

 1 5 10 15 20 25

C
o

m
m

u
n

ic
a

ti
o

n
 C

o
s
t

(k
b

y
te

s
)

k

BASE
A

BASE
O

VA

MA

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 1 5 10 15 20 25

S
e

rv
e

r
T

im
e

 (
s
e

c
)

k

BASE
A

BASE
O

VA

MA

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 1 5 10 15 20 25

C
lie

n
t

T
im

e
 (

s
e

c
)

k

BASE
A

BASE
O

VA

MA

(a) total comm. frequency (b) total comm. cost (Kbytes) (c) total server CPU time (sec) (d) total client CPU time (sec)
Fig. 13. Effect of k, on NA data

 0

 10

 20

 30

 40

 50

 60

 0 200 400 600 800 1000

C
o

m
m

u
n

ic
a

ti
o

n
 F

re
q

u
e

n
c
y

data size (x 1000 points)

400
500

400

900

500

BASE
A

BASE
O

VA
MA

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000

C
o

m
m

u
n

ic
a

ti
o

n
 C

o
s
t

(k
b

y
te

s
)

data size (x 1000 points)

BASE
A

BASE
O

VA
MA

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 200 400 600 800 1000

S
e

rv
e

r
T

im
e

 (
s
e

c
)

data size (x 1000 points)

BASE
A

BASE
O

VA
MA

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 200 400 600 800 1000

C
lie

n
t

T
im

e
 (

s
e

c
)

data size (x 1000 points)

BASE
A

BASE
O

VA
MA

(a) total comm. frequency (b) total comm. cost (Kbytes) (c) total server CPU time (sec) (d) total client CPU time (sec)
Fig. 14. Effect of data size, on synthetic data

ACKNOWLEDGMENT

This work was supported by grant PolyU 5333/10E from
Hong Kong RGC.

REFERENCES

[1] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R*-tree:
An Efficient and Robust Access Method for Points and Rectangles. In
SIGMOD, 1990.

[2] T. Brinkhoff. A Framework for Generating Network-Based Moving
Objects. GeoInformatica, 6(2):153–180, 2002.

[3] G. S. Iwerks, H. Samet, and K. P. Smith. Maintenance of K-nn and
Spatial Join Queries on Continuously Moving Points. ACM TODS,
31(2):485–536, 2006.

[4] A. Kundu and E. Bertino. Structural Signatures for Tree Data Structures.
PVLDB, 1(1):138–150, 2008.

[5] A. Kundu and E. Bertino. How to Authenticate Graphs without Leaking.
In EDBT, pages 609–620, 2010.

[6] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin. Dynamic
Authenticated Index Structures for Outsourced Databases. In SIGMOD,
pages 121–132, 2006.

[7] F. Li, K. Yi, M. Hadjieleftheriou, and G. Kollios. Proof-Infused Streams:
Enabling Authentication of Sliding Window Queries On Streams. In
VLDB, pages 147–158, 2007.

[8] R. C. Merkle. A Certified Digital Signature. In CRYPTO, 1989.
[9] S. Nutanong, R. Zhang, E. Tanin, and L. Kulik. The V*-Diagram:

A Query-dependent Approach to Moving KNN Queries. PVLDB,
1(1):1095–1106, 2008.

[10] A. Okabe, B. Boots, K. Sugihara, and S. Chiu. Spatial Tessellations:
Concepts and Applications of Voronoi Diagrams. Wiley, second edition,
2000.

[11] H. Pang, A. Jain, K. Ramamritham, and K.-L. Tan. Verifying Com-
pleteness of Relational Query Results in Data Publishing. In SIGMOD,
2005.

[12] H. Pang and K. Mouratidis. Authenticating the Query Results of Text
Search Engines. PVLDB, 1(1):126–137, 2008.

[13] H. Pang, J. Zhang, and K. Mouratidis. Scalable Verification for
Outsourced Dynamic Databases. PVLDB, 2(1):802–813, 2009.

[14] S. Papadopoulos, Y. Yang, S. Bakiras, and D. Papadias. Continuous
Spatial Authentication. In SSTD, pages 62–79, 2009.

[15] S. Papadopoulos, Y. Yang, and D. Papadias. CADS: Continuous
Authentication on Data Streams. In VLDB, pages 135–146, 2007.

[16] M. Sharifzadeh and C. Shahabi. Vor-tree: R-trees with voronoi diagrams
for efficient processing of spatial nearest neighbor queries. PVLDB,
3(1):1231–1242, 2010.

[17] R. Sion. Query execution assurance for outsourced databases. In VLDB,
pages 601–612, 2005.

[18] Z. Song and N. Roussopoulos. K-Nearest Neighbor Search for Moving
Query Point. In SSTD, pages 79–96, 2001.

[19] Y. Tao, D. Papadias, and Q. Shen. Continuous Nearest Neighbor Search.
In VLDB, pages 287–298, 2002.

[20] L. Wang, S. Noel, and S. Jajodia. Minimum-Cost Network Hardening
using Attack Graphs. Computer Communications, 29(18):3812–3824,
2006.

[21] Y. Yang, D. Papadias, S. Papadopoulos, and P. Kalnis. Authenticated
Join Processing in Outsourced Databases. In SIGMOD, 2009.

[22] Y. Yang, S. Papadopoulos, D. Papadias, and G. Kollios. Authenticated
Indexing for Outsourced Spatial Databases. VLDB J., 18(3):631–648,
2009.

[23] K. Yi, F. Li, G. Cormode, M. Hadjieleftheriou, G. Kollios, and D. Sri-
vastava. Small Synopses for Group-by Query Verification on Outsourced
Data Streams. ACM TODS, 34(3), 2009.

[24] M. L. Yiu, Y. Lin, and K. Mouratidis. Efficient Verification of Shortest
Path Search via Authenticated Hints. In ICDE, pages 237–248, 2010.

[25] J. Zhang, M. Zhu, D. Papadias, Y. Tao, and D. L. Lee. Location-based
Spatial Queries. In SIGMOD, pages 443–454, 2003.

