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ABSTRACT
Online driving direction services offer fundamental functionality
to mobile users, and such services see substantial and increasing
loads as mobile access continues to proliferate. Cache servers can
be deployed in order to reduce the resulting network traffic. We
define so-called concise shortest paths that are equivalent to driving
instructions. A concise shortest path occupies much less space than
a shortest path; yet it provides sufficient navigation information to
mobile users. Then we propose techniques that enable the caching
of concise shortest paths in order to improve the cache hit ratio.

Interestingly, the use of concise shortest paths in caching has
two opposite effects on the cache hit ratio. The cache can accom-
modate a larger number of concise paths, but each individual con-
cise path contains fewer nodes and so may answer fewer shortest
path queries. The challenge is to strike a balance between these
two effects in order to maximize the overall cache hit ratio. In this
paper, we revisit two classes of caching methods and develop ef-
fective caching techniques for concise paths. Empirical results on
real trajectory-induced workloads confirm the effectiveness of the
proposed techniques.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—Spatial
databases and GIS

General Terms
Algorithms, Performance
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1. INTRODUCTION
Navigation services offer step-by-step navigation, which pro-

vide a driver with driving instructions1 based on the driver’s cur-
rent GPS location [7]. We illustrate such driving instructions in
1These instructions can be spoken or given visually.
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Figure 1. Suppose that the driver starts at node v1 and the tar-
get is node v10. First, a detailed model uses point-by-point in-
structions, which essentially form the shortest path: SP1,10 =
〈v1, v3, v4, v5, v7, v9, v10〉. In contrast, a concise model uses
turn-by-turn instructions that are necessary for navigation, e.g.,
〈v1,⇑v5, �90⇑v10〉. These instructions combine a sequence of
checkpoints (e.g., v1, v5, v10) and turn instructions (e.g., ⇑, �90).
After leaving v1, the user should continue (indicated by ⇑) until
reaching a checkpoint (v5). Finally, the user should make a right
turn (�90) and then continue (⇑) until reaching the target (v10).
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Shortest path (point-by-point): 〈v1, v3, v4, v5, v7, v9, v10〉
Driving instructions (turn-by-turn): 〈v1,⇑v5, �90⇑v10〉

Concise shortest path: 〈v1, v5, v7, v10〉
Generic concise shortest path: 〈v1,v4, v5, v7, v10〉

Figure 1: A road network, with a query from v1 to v10

Mobile users are increasingly using online driving direction ser-
vices (rather than offline navigation software) as they are free of
charge and do not require purchase and installation of up-to-date
map data on mobile devices. Examples of driving direction APIs
include Google Directions [1] and MapQuest Directions [2]. They
can provide users with both shortest paths and turn-by-turn driving
instructions.

The above services receive intensive workloads from mobile
users on a daily basis. They can deploy web cache servers in order
to reduce the network traffic [3, 19]. In our application context, we
propose to cache driving instructions at web cache servers. For the
sake of cache management, we represent concise driving instruc-
tions (with checkpoints and turn instructions) according to a unified
format called concise shortest path. By replacing turn instructions
by nodes, we obtain the following concise shortest path for our ex-
ample: CP1,10 = 〈v1, v5, v7, v10〉. The default driving instruction
is to go straight until reaching the next node in the concise short-
est path (e.g., from v1 to v5). Upon reaching such a node (v5),
the driver checks whether the next such node (v7) is adjacent; if
yes, the user makes a turn there. We elaborate on the construction
of and navigation using such paths in Section 4. Figure 2 shows
examples of a shortest path SP (crosses) and the corresponding
concise shortest path CP (dots).

The use of concise shortest paths in caching has two opposite ef-



Figure 2: Shortest path (crosses) and concise shortest path (cir-
cles), in New York

fects on the cache hit ratio. Clearly, the cache can accommodate a
larger number of concise paths than corresponding complete paths,
suggesting a higher cache hit ratio. However, a concise path con-
tains fewer nodes than its corresponding complete path and can an-
swer fewer shortest path queries than the complete path. Consider
the concise shortest path 〈v1, v5, v7, v10〉 in Figure 1. By the op-
timal subpath property [8], this path can answer any query whose
end node lies on the path. Thus, this path can answer Q5,10 (the
query from v5 to v10) but not Q4,10 (the query from v4 to v10).

Intuitively, if a query (say, Q4,10) is frequent, then it is desir-
able to include its query nodes into a concise path. We use the
term generic concise shortest path for a shortest path that extends
a concise shortest path to include such frequent nodes. An exam-
ple is the path 〈v1,v4, v5, v7, v10〉 as shown in Figure 1. Although
such a path is slightly less compact than CP , it can answer one
more frequent query (e.g., Q4,10) than CP . In general, there are
2|SP |−|CP | possible instances of generic shortest paths having the
same start and end nodes. Which of them should be cached? Our
key challenge is to select generic shortest paths such that the overall
cache hit ratio is maximized.

Our contributions are:

• We propose the notion of a generic concise shortest path that
enables a trade-off between the path size and the number of
queries answerable by the path.

• We present a statistics-driven model for selecting generic
concise paths in a static caching setting.

• We develop an adaptive technique for determining generic
concise paths in a dynamic caching setting.

The outline of the paper is as follows. Section 2 reviews related
work, and Section 3 describes the problem setting. Next, we intro-
duce concise shortest paths in Section 4, and we present caching
techniques for them in Sections 5 and 6. Then, we evaluate the
performance of our proposed techniques in Section 7. Finally, Sec-
tion 8 offers conclusions.

2. RELATED WORK

Compact representations of shortest paths.
We proceed to review existing work on compressing a shortest

path, i.e., representing it with few nodes.

The K-skip shortest path [21] is a path that contains at least
one out of every K consecutive nodes in the corresponding short-
est path. In Figure 1, the 3-skip shortest path of SP1,10 is:
SKIP1,10 = 〈v1, v5, v10〉. Unfortunately, unlike concise short-
est paths, K-skip shortest paths are lossy and may provide ambigu-
ous driving instructions to the user. In practice, during driving,
only a small portion of the road network is within the driver’s eye-
sight. For example, when the user reaches v3, the above 3-skip
path SKIP1,10 does not contain sufficient information to decide
whether to go to v2 or to v4.

Batz et al. [6] develop a more effective compression method for
shortest paths by using a shortest path index. However, this method
requires the introduction of a shortest path index at the client side
in order to decode the compressed path correctly. Otherwise, the
client cannot obtain unambiguous driving instructions.

Semantic caching.
Caching has been studied extensively for database systems [17]

and web search engines [16]. In the traditional caching model,
each query requests a specific data item, and the cache only sup-
ports exact matches. On the other hand, in the semantic caching
model [12, 14, 22, 24], each cached query result (or result set) is
associated with a validity range, and it can be used to answer and
refine any query that intersects its validity range. Semantic caching
has been studied for spatial queries [12,14,24] and for shortest path
queries [22].

In previous work [22], we have studied the semantic caching of
shortest paths. By the optimal subpath property [8], a shortest path
SP can answer any shortest path query Qs,t whose source s and
target t both fall into SP . For example, in Figure 1, the shortest
path SP1,10 = 〈v1, v3, v4, v5, v7, v9, v10〉 can answer the shortest
path queryQ4,10 as path SP1,10 contains both v4 and v10. We have
also developed a caching policy for shortest paths. However, we
have not studied concise shortest paths. As we will detail in Sec-
tion 4.3, we propose the notion of a generic concise shortest path
that enables a trade-off between its size and the number of queries
it can answer. This characteristic enables new caching techniques
that require balancing between the lengths of paths and the hit ra-
tios of paths.

3. PROBLEM SETTING
We first provide definitions for our problem, and then we intro-

duce our objectives. Table 1 provides an overview of the notations
used throughout the paper.

Symbol Meaning
G(V,E,W ) a graph

vi a node in the node set V
(vi, vj) an edge in the edge set E
Qs,t a shortest path query from node vs to node vt
SPs,t a shortest path result of Qs,t
|SPs,t| the size of SPs,t (in number of nodes)
CP a concise shortest path
GCP a generic concise shortest path

Ψ the cache

Table 1: Table of symbols

DEFINITION 1 (GRAPH). LetG(V,E,W ) be a directed spa-
tial graph with a set V of nodes and a set E ⊆ V × V of edges.
Each node vi ∈ V models a road junction and has lat-long co-
ordinates. Each edge (vi, vj) ∈ E models a road segment, and
W :E → R assigns a positive weight to each edge.



DEFINITION 2 (QUERY AND RESULT). A shortest path
query, denoted by Qs,t, consists of a source and a target node,
vs and vt. The result of Qs,t, denoted by SPs,t, is a sequence
of nodes from vs to vt such that it has the smallest sum of edge
weights (among all paths from vs to vt in G).

By the optimal subpath property [8], any subpath of a shortest
path SP is also a shortest path. Thus, a queryQs,t can be answered
by SP if vs, vt ∈ SP and vs appears before vt in SP . We denote
this event by: Qs,t ⊂ SP . We proceed to define the concept of
cache hit.

DEFINITION 3 (CACHE HIT). Let a cache Ψ be a set of short-
est paths. A query Qs,t obtains a hit from Ψ if there exists some
SP ∈ Ψ such that vs, vt ∈ SP and vs appears before vt in SP .
We denote this event by: Qs,t ⊂ Ψ.

DEFINITION 4 (CACHE SIZE). Let |P | denote the size (num-
ber of nodes) of a path. The total size of the cache is defined as:
||Ψ|| =

∑
P∈Ψ |P |.

We illustrate the above definitions with the example in Fig-
ure 1. Suppose that a cache contains two shortest paths: Ψ =
{SP1,10, SP2,6}, where SP1,10 = 〈v1, v3, v4, v5, v7, v9, v10〉 and
SP2,6 = 〈v2, v5, v6〉. The cache size is: ||Ψ|| = |SP1,10| +
|SP2,6| = 7+3 = 10. Consider the queriesQ3,7 andQ1,2. Query
Q3,7 obtains a cache hit because the cached path SP1,10 contains
both query nodes v3 and v7. On the other hand, the query Q1,2

does not obtain a cache hit.
We adopt the standard client-server architecture shown in Fig-

ure 3 as the setting. A cache server is placed in-between the mo-
bile clients and an online shortest path service (e.g., Google Direc-
tions [1]). Upon receiving a shortest path query Qs,t, the cache
server checks whether there is a cache hit. If yes then it returns
the result. Otherwise, it forwards Qs,t to the online shortest path
service and eventually returns the result path Ps,t computed by the
service.

We assume that the dominant cost is that of the network traffic
between the cache server and the shortest path service. Thus, our
objective is to maximize the hit ratio of the cache server (subject
to a given cache capacity) [16, 17, 19]. While the shortest path
service may deploy a shortest path index [4, 11, 20, 26] for its own
performance reasons, the introduction of such an index does not
improve the cache hit ratio and is orthogonal to our work.

Cache server

Online shortest 

path service
Users

Figure 3: Client server architecture

Unlike previous work [22], this paper utilizes concise shortest
paths to improve the hit ratio of caching. We elaborate on concise
shortest paths and their operations in Section 4, and we present
caching methods for them in Sections 5 and 6.

As a remark, two issues are orthogonal to this paper. First, we
reuse existing data structures for the caching of shortest paths [22]
to reduce the CPU overhead for maintaining cache structures. Sec-
ond, we assume that the edge weights W (vi, vj) maintained at
the online shortest path service are independent of time. This

is the case for edge weights that model travel distances (e.g., in
MapQuest). If this is not the case, we may associate each cache
item (shortest path) with a expiry time [9].

4. CONCISE SHORTEST PATHS
For navigation purposes, it suffices for mobile users to know

driving instructions (e.g., going straight, making turns) instead of
complete shortest paths. As discussed in the introduction, the no-
tion of a concise shortest path is equivalent to driving instructions.

We first provide definitions for concise shortest paths. Then, we
propose a server-side algorithm for converting a shortest path into a
concise shortest path. Also, we present a client-side algorithm that
enables a user to navigate using a concise shortest path. Finally, we
introduce generic concise shortest paths.

4.1 Definition and Examples
We consider three possible driving instructions for mobile users,

as illustrated in Figure 4. Suppose that the user is reaching a current
node vc from a previous node vp. In each case in the figure, the
shortest path is indicated by bold arrows.

• Case I: The driving instruction is ‘continue’ to the next
node vn as this is the only option.

• Case II: There is more than one option (e.g., travel to
vn1 or to vn2). These options can be distinguished by
their deviation angles from the previous travel direction
(see Definition 5). In this figure, the deviation angles of
(vc, vn1) and (vc, vn2) are δp,c,n1 and δp,c,n2, respectively.
If the correct choice is the one with the smallest devi-
ation angle, like in this figure, the driving instruction is
‘go straight, by the smallest angle’.

• Case III: The correct choice is not the option
with the smallest deviation angle. In this case,
we must provide an explicit driving instruction:
‘turn clockwise/anticlockwise by Xo’,
where Xo is the deviation angle δp,c,n (see Definition 5).

The above driving instructions are not explicitly stored in a concise
shortest path. In Section 4.2, we provide a client-side algorithm to
reconstruct driving instructions from a concise shortest path, during
navigation.

DEFINITION 5 (DEVIATION ANGLE). Given two adjacent
edges (vp, vc) and (vc, vn), the deviation angle between them is:

δp,c,n = |180o − ]vpvcvn| (1)

vp

vc

vn1

vn2

δp,c,n2

δp,c,n1

(case I) continue (case III) make a turn(case II) go straight, 
by smallest deviation

vp

vc

vn

vp

vc

vn1

vn2

δp,c,n2

δp,c,n1

previous travel 
direction

previous travel 
direction

Figure 4: Possible driving instructions; the shortest path is in-
dicated by bold arrows

Based on the above driving instructions, we define a concise
shortest path as follows.



DEFINITION 6 (CONCISE SHORTEST PATH). Let a shortest
path SPs,t = 〈vρ(1), vρ(2), · · · , vρ(l)〉 be given, where vρ(i) is the
i-th node in SPs,t, s = ρ(1), and t = ρ(l). A concise shortest path
CPs,t is a subsequence of SPs,t such that: (i) CPs,t contains vs
and vt, and (ii)CPs,t contains vρ(i), vρ(i+1) if nodes vρ(i−1), vρ(i)
and, vρ(i+1) satisfy case III.

We illustrate a concise shortest path in Figure 5. Let the source
and target nodes be v1 and v11, respectively. The shortest path
SP1,11 = 〈v1, v2, v4, v5, v7, v8, v9, v11〉 is shown with bold edges.
According to Definition 6, the concise shortest path is: CP1,11 =
〈v1, v4, v5, v11〉. First, it must contain both the source and tar-
get nodes (v1 and v11). Since 〈v2,v4, v5〉 matches case III, v4

and the next node (v5) are in CP1,11. The remaining nodes either
match case I (e.g., v7, v8) or case II (e.g., v2, v9), so they are not in
CP1,11. Observe that a concise path describes the driving instruc-
tions for SPs,t unambiguously. Directions are given exactly when
it is necessary to change the travel direction.
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Concise shortest path: CP1,11 = 〈v1, v4, v5, v11〉

Generic concise shortest path: GCP1,11 = 〈v1,v2, v4, v5, v11〉

Figure 5: Concise shortest path

Concise shortest paths have the advantage that they consume less
space while still offering sufficient information for driving.

4.2 Operations
We study caching methods for concise shortest paths in Sec-

tions 5 and 6. Given a shortest path SP , the cache server can
execute Algorithm 1 to extract a concise shortest path from SP .

First, we specify the initial travel direction (in Lines 3–6). We
add the two first nodes of SP to CP if the first node has multiple
branches, i.e., deg(vρ(1)) > 1. Otherwise, there is only one option
so it suffices to add the first node of SP to CP .

For each subsequent node vρ(i) on SP , we compute the devia-
tion angle to each adjacent node and then take the smallest devia-
tion angle as δ∗. If the next node vρ(i+1) on SP does not have the
smallest deviation angle, we specify the travel direction by adding
the current and the next nodes (vρ(i), vρ(i+1)) of SP to SP . Fi-
nally, we add the last node of SP to CP .

Upon receiving a concise shortest path CP from the cache
server, the client can apply Algorithm 2 to navigate along CP .
Note that this algorithm also works correctly for extended versions
of CP , which we discuss below.

Algorithm 1 Server:ExtractConcise( Shortest path SP )
1: let vρ(i) be the i-th node in SP
2: CP ← 〈〉 . the concise path
3: if deg(vρ(1)) > 1 then
4: append vρ(1), vρ(2) to CP
5: else
6: append vρ(1) to CP
7: for i from 2 to |SP | − 1 do
8: if deg(vρ(i)) > 2 then
9: δ∗ ← δρ(i−1),ρ(i),ρ(i+1) . deviation angle

10: for each node vj adjacent to vρ(i) do
11: if vj 6= vρ(i−1) and vj 6= vρ(i+1) then
12: δ∗ ← min{δ∗, δρ(i−1),ρ(i),j}
13: if δ∗ < δρ(i−1),ρ(i),ρ(i+1) then . include nodes
14: append vρ(i) to CP if it is not in CP
15: append vρ(i+1) to CP
16: append vρ(|SP |) to CP if it is not in CP . last node
17: Return CP

Algorithm 2 Client:NavigateConcise( Concise path CP )
1: let (vprev, vcur) be the edge being traversed by the client
2: while vcur 6= vt do . target not reached
3: if vcur is not in CP then . go straight
4: δ∗ ← 180o . the smallest deviation angle
5: for each node vj adjacent to vcur do
6: if vj 6= vprev then
7: if δ∗ > δprev,cur,j then
8: δ∗ ← δprev,cur,j
9: vnext ← vj . keep the best option

10: display "continue to vnext"
11: else . follow CP
12: let vnext be the next node of vcur in CP
13: display “turn to vnext”
14: wait until the client reaches vnext
15: (vprev, vcur)← (vcur, vnext)

4.3 Generic Concise Shortest Paths
Although a concise shortest path occupies less space than a cor-

responding (complete) shortest path, it covers fewer nodes and thus
it may answer a smaller number of queries. For example, suppose
that the query Q2,11 is a frequently-used query in Figure 5. Ob-
serve that the shortest path SP1,11 can answer Q2,11, while the
concise path CP1,11 cannot do so as it does not contain v2.

To address this issue, we consider generic versions of concise
shortest paths that include additional nodes:

DEFINITION 7 (GENERIC CONCISE SHORTEST PATH). A se-
quence GCPs,t is said to be a generic concise shortest path (from
node vs to node vt) if it is a subsequence of SPs,t and a superse-
quence of CPs,t.

As an example, consider the map in Figure 5. Table 2 illus-
trates all generic concise shortest paths from source v1 to target
v11. Note that the number of generic concise shortest paths is
2|SPs,t|−|CPs,t| = 28−4 = 16. In the next section, we discuss
how to select a generic concise shortest path in order to maximize
the cache hit ratio.

5. STATIC CACHING SETTING
Static caching focuses on caching the most popular data items [5,

16, 18]. It utilizes a query log that records past queries in order



CP1,11 〈v1, v4, v5, v11〉
〈v1, v2, v4, v5, v11〉 〈v1, v4, v5, v7, v11〉

other 〈v1, v4, v5, v8, v11〉 〈v1, v4, v5, v9, v11〉
generic 〈v1, v2, v4, v5, v7, v11〉 〈v1, v2, v4, v5, v8, v11〉
concise 〈v1, v2, v4, v5, v9, v11〉 〈v1, v4, v5, v7, v8, v11〉
paths 〈v1, v4, v5, v7, v9, v11〉 〈v1, v4, v5, v8, v9, v11〉

〈v1, v2, v4, v5, v7, v8, v11〉 〈v1, v2, v4, v5, v7, v9, v11〉
〈v1, v2, v4, v5, v8, v9, v11〉 〈v1, v4, v5, v7, v8, v9, v11〉

SP1,11 〈v1, v2, v4, v5, v7, v8, v9, v11〉

Table 2: Generic concise shortest paths (from v1 to v11)

to determine the access frequencies of data items. Static caching
incurs low overhead at runtime; however, it may not adapt well to
a varying query distribution.

We present a caching method for generic concise shortest paths
that applies an existing static caching policy for shortest paths [22].
The frequencies of queries in the query log are used to define a
‘benefit’ score that captures the ‘importance’ of a path in answering
queries. Our main challenge is to find generic concise paths that
have high ‘benefit’ scores.

In Section 5.1, we give a benefit score model for generic concise
paths. Then, in Section 5.2, we present a method for computing a
generic concise path with a high benefit score. Finally, we propose
an efficient implementation in Section 5.3.

5.1 Benefit Model
We adopt the benefit model presented in previous work [22] to

quantify the importance of a path in answering queries. First, we
provide definitions of query log and query frequency.

DEFINITION 8 (QUERY LOG AND FREQUENCY).
A query log QL is a collection of shortest path queries that have
been issued by users in the past.
The query frequency χs,t of a query Qs,t is defined as the number
of occurrences of Qs,t in the query logQL.

χs,t = |{Qs,t ∈ QL}| (2)

Table 3 illustrates the values of χs,t derived from an example
query log for the map in Figure 5. For simplicity, since we assume
χs,t = χt,s.

χs,t v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

v1 / 0 10 50 0 0 0 16 0 0 0
v2 / 0 0 0 0 35 0 0 0 12
v3 / 0 20 0 0 0 0 0 0
v4 / 2 0 0 0 0 0 20
v5 / 0 5 0 0 18 0
v6 / 0 0 0 0 0
v7 / 0 0 0 0
v8 / 0 0 30
v9 / 0 0
v10 / 0
v11 /

Table 3: Example of χs,t values for the graph, with χs,t = χt,s

Given a generic concise shortest path P , we define its benefit
Υ(P ) as:

Υ(P ) =
∑

vi,vj∈P, Qi,j⊂P

χi,j (3)

The benefit is the number of queries (in QL) that can be answered
byP . As a remark, a simple (nested-loop) implementation for com-
puting Υ(P ) would take O(|P |2) time.

Then, we define the benefit of a cache Ψ as follows:

Υ(Ψ) =
∑

vi,vj∈V, Qi,j⊂Ψ

χi,j (4)

As an example, consider the cache content in Table 4 and the map
in Figure 5. The path CP1,11 has benefit: Υ(CP1,11) = χ1,4 +
χ1,5+χ1,11+χ4,5+χ4,11+χ5,11 = 50+0+0+2+20+0 = 72.
The benefit of the cache Ψ is: Υ(Ψ) = χ1,4+χ4,5+χ4,11+χ3,5 =
50 + 2 + 20 + 20 = 92. Observe that Equation 4 avoids duplicate
counting. For example, the term χ4,5 appears only once in the
equation of Υ(Ψ), despite that the query Q4,5 can be answered by
paths CP1,11, CP3,8, and CP4,9.

concise path CP
CP1,11 〈v1, v4, v5, v11〉
CP3,8 〈v3, v4, v5, v8〉
CP4,9 〈v4, v5, v9〉

Table 4: A cache Ψ of concise shortest paths

With the above benefit model, we formulate our static caching
problem as follows:

PROBLEM 1 (STATIC CACHING PROBLEM). Select a set of
generic concise shortest paths Ψ = {Ps,t} such that: (i) the ben-
efit Υ(Ψ) is maximized, and (ii) the cache size ||Ψ|| is bounded by
a given cache capacity value.

In previous work [22], we require each Ps,t to be a shortest path.
Here, we consider a much larger search space and allow each Ps,t
to be a generic concise shortest path.

5.2 Benefit-Based Generic Concise Path
Given a shortest path SPs,t, we want to construct a generic con-

cise path GCPs,t such that it has a high benefit and a small size.
Given the paths present in the cache Ψ, we define the marginal

benefit of a path P with respect to Ψ as:

Υm(P \Ψ) = Υ(Ψ ∪ {P})−Υ(Ψ) (5)

=
∑

vi,vj∈P, Qi,j∈P, Qi,j 6⊂Ψ

χi,j

This notion captures the total frequencies of queries (in QL) that
can be answered by P but not by paths in Ψ. Intuitively, it is de-
sirable to cache a path P if the benefit Υm(P \Ψ) is high and the
size |P | is small. Thus, we define the normalized benefit of a path
P as: Υm(P \Ψ) = Υm(P\Ψ)

|P | .
A brute-force approach is to enumerate all possible generic con-

cise shortest paths (like in Table 2) and then find the one with the
highest Υm value. However, as discussed in Section 4.3, the num-
ber of possible generic concise shortest paths is exponential in the
path size.

In the following, we present a greedy heuristic solution to solve
this problem in polynomial time. Algorithm 3 is the pseudo-code
of this solution. It takes a shortest path SPs,t and its corresponding
concise path CPs,t as input. We denote BP as the path with the
highest Υm value found so far. It is initialized to CPs,t. The set
S contains the possible nodes that can be added to BP . In each
iteration, we compute the benefit of the pathBP ∪{vc} for each vc
(Lines 5–9), and find the node (say vbest) with the highest benefit.
If the normalized benefit ofBP∪{vbest} is higher than that ofBP ,
we add vbest to BP and repeat the loop. Otherwise, the algorithm
terminates.

We illustrate the working of algorithm 3 in Table 5. Here, we are
given a shortest path SP1,11 = 〈v1, v2, v4, v5, v7, v8, v9, v11〉 and



Algorithm 3 Static-Greedy ( Shortest path SP , Concise shortest
path CP , Cache Ψ )
1: BP ← CP . the best path found so far
2: S ← the set of nodes in SP − CP
3: γcur ← Υm(BP \Ψ)
4: while S 6= ∅ do
5: γbest ← 0 . the best score in this iteration
6: for each vc ∈ S do
7: γc ← Υm((BP ∪ {vc}) \Ψ)
8: if γc > γbest then
9: γbest ← γc; vbest ← vc

10: if γcur
|BP | <

γbest
|BP |+1

then
11: remove vbest from S
12: insert vbest into BP (by the order in SP )
13: γcur ← γbest
14: else
15: Return BP

its corresponding concise shortest path CP1,11 = 〈v1, v4, v5, v11〉.
Note that Table 5a shows only the rows and columns whose nodes
fall into path SP1,11. Table 5b, shows the running steps of the
algorithm. First, we initialize BP to CP1,11 and the set S to
{v2, v7, v8, v9}. Those χs,t entries that contribute to the benefit
of BP are shaded light-gray (see Table 5a). In iteration 1, we add
the best node v8 to BP because its normalized benefit is higher
than that ofBP . Those χs,t entries that contribute to the additional
benefit of BP are shaded medium-gray. In iteration 2, even for the
best node v2, the normalized benefit of BP ∪ {v2} is smaller than
that of BP . Thus, the algorithm terminates and returns the path
〈v1, v4, v5, v8, v11〉.

χs,t v1 v2 v4 v5 v7 v8 v9 v11

v1 / 0 50 0 0 16 0 0
v2 / 0 0 35 0 0 12
v4 / 2 0 0 0 20
v5 / 5 0 0 0
v7 / 0 0 0
v8 / 0 30
v9 / 0
v11 /

(a) relevant entries of χs,t

Iteration Steps Path
Initialization CP = 〈v1, v4, v5, v11〉 〈v1, v4, v5, v11〉

S = {v2, v7, v8, v9} Υm=72/4=18
(1) v2: (72+12)/5

v7: (72+5)/5
v8: (72+16+30)/5
v9: (72+0)/5

Highest: 23.6 > 18 Add v8

〈v1, v4, v5, v8, v11〉
Υm=118/5=23.6

(2) v2: (118+12)/6
v7: (118+5)/6
v9: (118+0)/6

Highest: 21.67 < 23.6 STOP
〈v1, v4, v5, v8, v11〉

(b) running steps

Table 5: Finding the best generic concise shortest path, for
SP1,11 = 〈v1, v2, v4, v5, v7, v8, v9, v11〉 and
CP1,11 = 〈v1, v4, v5, v11〉

As a remark, the above algorithm may not always return the op-
timal result (i.e., the generic concise path with the highest normal-
ized benefit). Suppose that we add the nodes v2, v7, v8 to CP1,11

to form a generic concise path: P ∗ = 〈v1, v2, v4, v5, v7, v8, v11〉.
According to Table 5a, the normalized benefit of P ∗ is: (118 +
35 + 12 + 5)/7 = 24.28, which is higher than the algorithm’s
result (23.6).

Time Complexity Analysis.
Let n be the number of nodes in SP . Note that both the sizes of

S and BP are upper-bounded by n.
In the while-loop (Lines 4–15), we remove a node vbest from S

in each iteration, so it has at most n iterations. The for loop (Lines
6–9) has at most n iterations because S contains at most n nodes.
In Line 7, each call to Υm((BP ∪ {vc}) \ Ψ) takes O(n2) time
as the path size is at most n. By combining the above, the total
running time of the while-loop is O(n4).

Before the while-loop, Lines 1–2 take O(n) time and Line 3
takes O(n2) time. Thus, the time complexity of the algorithm is
O(n4).

The computational cost is high, even though the typical path size
n is in the order of hundreds on real road networks.

5.3 Efficient Implementation
We proceed to present a more efficient implementation of Algo-

rithm 3. The idea is to identify shared expressions in the calculation
and compute such expressions only once, regardless of the path size
n (n = |SP |).

Recall that it takes O(n2) time to compute Υm(P \ Ψ), where
P is a subsequence of SP . Consider the scenario that we need the
updated γ value after adding a node vc into P . Fortunately, we can
apply Equation 6 to derive Υm((P ∪{vc}) \Ψ) from Υm(P \Ψ)
incrementally. This derivation requires only O(n) time to compute∑
vj∈P, Qc,j 6⊂Ψ χc,j because we have one node for vc and at most

n nodes in P .

Υm((P ∪ {vc}) \Ψ) (6)

=
∑

vi,vj∈P∪{vc}, Qi,j 6⊂Ψ

χi,j

=
∑

vi∈P∪{vc}

∑
vj∈P∪{vc}, Qi,j 6⊂Ψ

χi,j

=

 ∑
vi∈P

∑
vj∈P, Qi,j 6⊂Ψ

+
∑

vi∈P, Qi,c 6⊂Ψ

+
∑

vj∈P, Qc,j 6⊂Ψ

 χi,j

= Υm(P \Ψ) + 2 ·
∑

vj∈P, Qc,j 6⊂Ψ

χc,j

We propose an efficient implementation in Algorithm 4. For each
node vc in S, we maintain its benefit Υm((P ∪ {vc}) \ Ψ) in
an attribute vc.γ. We first compute Υm(BP \ Ψ) at Line 3, then
derive vc.γ for each node vc ∈ S incrementally.

The while-loop (Lines 6–21) repeats until S becomes empty or
the benefit ofBP cannot be improved further. In each iteration, we
simply find the node (vbest) with the highest γ. If the normalized
benefit Υm of BP ∪ {vbest} is better than that of BP , we insert
vbest into BP . Also, we need to update the value vc.γ for each
remaining node vc ∈ S (Lines 13–17). By using the idea in Equa-
tion 6, we can derive a shared expression for updates (Line 13). We
can compute it once before using it to update each vc.γ.

Time Complexity Analysis.
We proceed as in the time complexity analysis in Section 5.2.

Let n be the number of nodes in SP . Again, both the sizes of S
and BP are upper-bounded by n.



Algorithm 4 Static-FastGreedy ( Shortest path SP , Concise
shortest path CP , Cache Ψ )
1: BP ← CP . the result
2: S ← the set of nodes in SP − CP
3: γcur ← Υm(BP \Ψ)
4: for each vc ∈ S do
5: vc.γ ← γcur + 2 ·

∑
j∈BP, Qc,j 6⊂Ψ χc,j

6: while S 6= ∅ do
7: γbest ← 0
8: for each vc ∈ S do . find the best vc
9: if vc.γ > γbest then

10: γbest ← vc.γ; vbest ← vc

11: if γcur
|BP | <

γbest
|BP |+1

then . compare Υm

12: remove vbest from S
13: ∆γ ← 2 ·

∑
j∈BP, Qbest,j 6⊂Ψ χbest,j . shared part

14: for each vc ∈ S do . update vc.γ
15: vc.γ ← vc.γ + ∆γ
16: if Qbest,c 6⊂ Ψ then
17: vc.γ ← vc.γ + 2 · χbest,c
18: insert vbest into BP (by the order in SP )
19: γcur ← γbest
20: else
21: Return BP

The while-loop (Lines 6–21) has at most n iterations. Within
the while-loop, the first for loop (Lines 8–10) takes O(n) time,
the summation (Line 13) takes O(n) time, and the second for loop
(Lines 14–17) takes O(n) time. Thus, the time complexity of the
while-loop is O(n2).

Before the while-loop, Lines 1–2 take O(n) time, and Lines 3–
4 take O(n2) time. Thus, the time complexity of the algorithm is
O(n2).

6. DYNAMIC CACHING SETTING
We have examined the static caching approach in Section 5. In

this section, we adopt the dynamic caching [10, 15, 16] approach,
which intends to cache the most recently accessed data items.
When a cache miss occurs and the cache is full, these policies de-
cide which data item to evict from the cache. For instance, the
Least-Recently-Used (LRU) policy evicts the least recently used
item in the cache. These policies allow the cache to adapt dynami-
cally to the query workload. However, they incur runtime overhead
in maintaining the cache.

In this section, we present a dynamic caching method for generic
concise shortest paths. It adopts the LRU policy. When we obtain
a shortest path SP (after a cache miss), our main problem is how
to compute a short generic shortest path that will be able to answer
many queries (in the future). To tackle this problem, we employ
two lightweight data structures for maintaining query statistics: (i)
a sliding window W that keeps the most recent Wsize queries, and
(ii) an array µ that records the frequencies of the query nodes in W.

Algorithm 5 shows the pseudo code for our dynamic caching
method. It is invoked when there is a cache miss for a query Qs,t.
First, we calculate the shortest path SP forQs,t, and then compute
a concise shortest path GCP for it. Then, for each node vi in SP ,
we add it into the DGCP if vi is in CP or its frequency in µ is non-
zero. Next, we remove the oldest query from the sliding window W
and insert the newest query into W. Then, we update the frequency
array µ accordingly. Finally, we apply the LRU policy to update
the cache Ψ with the generic concise shortest path.

Algorithm 5 Dynamic-GCP ( Query Qs,t, Cache Ψ )
Global structures:
W: a sliding window for the most recent Wsize queries
µ: the frequencies of query nodes in W

1: SP ← calculate the shortest path from Qs,t
2: CP ← calculate the concise shortest path of SP
3: for each vi ∈ SP do . calculate dynamic GCP path
4: if vi ∈ CP or µi > 0 then
5: add vi to DGCP
6: if W is full then . remove old query
7: dequeue Qs′,t′ from W
8: µs′ ← µs′ − 1; µt′ ← µt′ − 1

9: enqueue Qs,t into W . insert new query
10: µs ← µs + 1; µt ← µt + 1
11: apply LRU policy to update Ψ by DGCP . update cache

Query Shortest Path
Q8,9 〈v8, v5, v7, v9〉
Q1,4 〈v1, v3, v4〉
Q1,10 〈v1, v3, v4, v5, v7, v9, v10〉
Q2,10 〈v2, v5, v7, v9, v10〉

(a) shortest paths of queries

Time t Query ∆L µ DGCP Path
0 N.A. N.A. 1,3,5,6,7,10: 1 N.A.
1 (8,9) −(1, 6) 1,3,5,6,7,10: 1 〈v8, v5,v7, v9〉

+(8, 9)
2 (1,4) −(3, 5) 3,5,7,8,9,10: 1 〈v1,v3, v4〉

+(1, 4)
3 (1,10) −(7, 10) 1,4,7,8,9,10: 1 〈v1, v5, v7,v9, v10〉

+(1, 10)
4 (2,10) −(8, 9) 1: 2; 4,8,9,10: 1 〈v2, v5, v7,v9, v10〉

+(2, 10)
(b) running steps

Table 6: Running steps of dynamic caching, Lsize = 3, for the
road network in Figure 1

We proceed to illustrate the running steps of the algorithm. Ta-
ble 6a shows a list of queries and their shortest paths. Table 6b
depicts the running steps. ∆L shows which query will be added
and removed from W at each timestamp. Array µ shows the fre-
quency of query nodes in the sliding window. In this example, the
extra node(s) are added to the CP path (shown in bold) in order to
obtain the DGCP path. At time t = 1, we receive the query (8,9)
and calculate its DGCP path. Since calculation of DGCP paths hap-
pen before updating µ, the content of µ does not change from the
initial state. Then, we remove (1,6) and add (8,9) to W. At time
t = 2, the query from t = 1 affects the content of µ. Window W is
updated as before. Similarly, the running steps at t = 3 and t = 4
are shown in the table.

7. EXPERIMENTAL STUDY
Section 7.1 covers the methods considered in the experiments.

Section 7.2 covers the experimental settings. Section 7.3 covers
experiments on real trajectory induced workload, while Section 7.4
covers the experiments on synthetic workloads.

7.1 Methods Considered
We evaluate the hit ratios of our caching methods and competi-

tors on a machine running Debian. Table 7 lists all the methods
used in our experiments. In the static caching setting, all meth-
ods use an existing caching policy for shortest paths [22]. In the



dynamic caching setting, all methods use LRU for cache replace-
ment.

Our proposed methods are: (i) CP, caching concise paths as de-
fined in Section 4, (ii) GCP, the static caching method for generic
concise paths in Section 5, and (iii) DGCP, the dynamic caching
method for generic concise paths in Section 6.

As discussed in related work, K-Skip [21] is a lossy shortest path
compression method, so we do not compare with it. We compare
our methods with two competitors: (i) full shortest path (SP), and
(ii) concise path skip (CP-Skip). CP-Skip is a variant of K-Skip that
includes all nodes of CP and every k-th node of SP. Since CP-Skip
contains CP, it is a lossless shortest path method.

Method Static caching policy Dynamic caching policy
CP [22] LRU

GCP [22] N.A.
DGCP N.A. LRU

SP [22] LRU
CP-Skip [22] LRU

Table 7: Methods used in experiments

7.2 Experimental Setting

Datasets and Workloads
Table 8 shows information on the road networks used in the exper-
iments. Although a real query log for online direction services [23]
exist, service providers do not make their query logs publicly avail-
able. Thus, we generate query logs that each contains 300,000
queries.

We use real trajectories from the Aalborg [13] and Beijing [25]
road networks. From each trajectory, we extract the start and end
locations as the source and target nodes of a shortest path query in
a query log. Since the trajectory datasets for Aalborg and Beijing
are small (4.3k and 13k trajectories, respectively), we enlarge the
trajectory dataset (to 300,000 trajectories) by sampling trajectories
in the log and deviating their coordinates within a given radius (de-
fault value: 0.5 km).

For each of the two larger road networks (Colorado and New
York), we generate a query log as follows. In the real world, drivers
start from a dense region (e.g., a residential region) and travel to-
wards another dense region (e.g., an industrial region). To simulate
such behavior, we randomly choose a set of cluster centers with a
given radius to form a set of clusters. Next, we randomly pick a pair
of nodes from any 2 clusters to form a shortest path. By default, we
use 10 clusters, and the radius is 8 km.

Following an existing experimental methodology [22], we divide
the query log into two equal parts: (i) a query log QL, for extract-
ing query statistics and training the cache, and (ii) a query workload
WL used for measuring the hit ratios of the methods.

Road network Map size (km2) Road network
Aalborg 60x60 download.cloudmade.com

129k nodes, 137k edges
Beijing 60x60 download.cloudmade.com

76k nodes, 85k edges
Colorado 1000x1000 www.dis.uniroma1.it/challenge9

435k nodes, 1,057k edges
New York 6000x4000 www.dis.uniroma1.it/challenge9

264k nodes, 733k edges

Table 8: Characteristics of datasets

Parameters and Default Values
Table 9 lists the parameters and their default values. The first two
entries show the default radiuses for the different road networks.
Since different road networks have different sizes, we use 0.5 km
as the default radius for the Aalborg and Beijing road networks,
and we use 8 km as the default radius for the Colorado and New
York road networks. The number of clusters denotes the number of
clusters used for generating the synthetic workload (for Colorado
and New York). The cache capacity (ratio) expresses the cache
space as a percentage of the space needed for storing the entire
road network. Thus, the absolute cache space for the different road
networks are different. The last two are parameters for specific to
CP-Skip and DGCP. Path size ratio is used by CP-Skip to define
the ratio of the CP-Skip path length to the full shortest path length.
Window size is used by DGCP to define the size of the sliding win-
dow.

Parameter Default value
Radius (for Aalborg, Beijing) 0.5 km
Radius (for Colorado, New York) 8 km
Number of clusters (for Colorado, New York) 10
Cache capacity (ratio) 50%
Path size ratio (for CP-Skip) 50%
Window size (for DGCP) 1000 queries

Table 9: Default parameters

7.3 Real Trajectory Induced Workloads
We proceed to report on experiments using real trajectory in-

duced workloads (on the Aalborg and Beijing road networks).
First, we examine the average lengths (i.e., number of nodes) of

paths in the cache for the different methods, see Table 10. Observe
that full shortest paths (SP) are much longer than concise shortest
paths (CP). Generic concise shortest paths (GCP/DGCP) are only
slightly longer than concise shortest paths (CP). This means that SP
paths contain many intermediate nodes that do not intersect query
nodes in the workload. Note that the average path lengths of the
methods (e.g., SP and CP) are similar in the static and dynamic
settings.

Road Static Dynamic
Network SP CP GCP SP CP DGCP
Aalborg 338.5 38.7 48.1 315.6 37.3 41.3
Beijing 166.1 26.4 35.6 129.8 23.1 26.1

Colorado 874.8 98.3 115.7 887.3 96.9 106.1
New York 501.9 71.3 73.3 514.7 70.4 72.0

Table 10: Average path length (in nodes)

Next, we study the effect of the path size ratio on the perfor-
mance of CP-Skip, see Figure 6. The other methods (SP, CP, GCP)
are included for reference only; they do not take the path size ra-
tio as a parameter. Clearly, GCP outperforms CP-Skip in all cases.
The results for dynamic caching are similar, so we omit them.

Next, we investigate the effect of the window size parameter on
the hit ratio of the DGCP method (in the dynamic caching setting).
Figure 7 plots the hit ratio of DGCP with respect to the window
size. The hit ratio increases until the window size reaches 10,000.
Observe that we can achieve a high hit ratio when the window size
is sufficiently large.

Figure 8 shows the hit ratios of the methods as a function of the
cache capacity, Again, GCP outperforms the other methods signif-
icantly, in both the static and dynamic settings. Since CP-Skip and
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SP have similar hit ratios, we exclude CP-Skip from subsequent
experiments.
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Figure 8: Hit ratio vs. cache capacity

Figure 9 shows the hit ratios of the methods for various cluster
radius values. Observe that a smaller radius leads to a higher hit
ratio. This happens because smaller clusters result in fewer possible
unique queries.

7.4 Synthetic Workload
We proceed to report on experiments using synethetic workload

(on the Colorado and New York road networks).
We plot the average path length of the methods, as shown in

Table 10. In general, the results are similar to those for the real
trajectory induced workloads.

Figure 10 shows the hit ratios of the methods with respect to the
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Figure 10: Hit ratio vs. cache capacity

cache capacty. In the static (dynamic) caching setting, GCP/DGCP
can achieve a hit ratio of 84.28% (99.75%) and 39.70% (94.13%)
for Colorado and New York, respectively. Observe that, in the dy-
namic caching setting, we can achieve a very high cache hit ratio
with a small cache capacity. In the remaining experiments, we do
not include the results for CP-Skip as CP-Skip and SP have similar
hit ratios.

Figure 11 shows the impact of the cluster radius on the hit ratios
of the methods. Observe that a smaller radius leads to a higher hit
ratio. This is expected as a smaller radius implies that there are
fewer unique query pairs in the workload.

In the static caching setting, GCP always outperforms its com-
petitors, and CP is the second best, followed by CP-Skip and SP in
the last tier. In the dynamic caching setting, DGCP clearly outper-
forms its competitors.

Figure 12 shows the impact of the number of clusters on the
cache hit ratio. GCP/DGCP consistently outperforms the competi-
tors, with a lead to the next-best competitor by at least 20%.
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Figure 11: Hit ratio vs. cluster radius
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Figure 12: Hit ratio vs. number of clusters

8. CONCLUSIONS
In this paper, we exploit concise shortest paths to boost the cache

hit ratio of shortest path queries in cache servers. First, we propose
the notion of a generic concise shortest path that enables a trade-
off between the path size and the number of queries that can be
answered by the path. Then we develop static and dynamic caching
techniques for generic concise shortest paths.

Experimental results show that the hit ratios of our best methods
(GCP and DGCP) are 10%–40% higher than that of competitors.
Our methods are more robust with respect to the cache capacity.

As for the future work, we will study the maintenance of cache
content with respect to dynamic traffic updates.
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