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ABSTRACT

A moving range query continuously reports the query result (e.g.,
restaurants) that are within radius r from a moving query point
(e.g., moving tourist). To minimize the communication cost with
the mobile clients, a service provider that evaluates moving range
queries also returns a safe region that bounds the validity of query
results. However, an untrustworthy service provider may report in-
correct safe regions to mobile clients. In this paper, we present effi-
cient techniques for authenticating the safe regions of moving range
queries. We theoretically proved that our methods for authenticat-
ing moving range queries can minimize the data sent between the
service provider and the mobile clients. Extensive experiments are
carried out using both real and synthetic datasets and results show
that our methods incur small communication costs and overhead.

Categories and Subject Descriptors

H.2.8 [Database Applications]: Spatial databases and GIS

General Terms

Algorithms, Performance
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1. INTRODUCTION
Moving spatial queries [33, 14] continuously report updated

query result to a mobile client and they have numerous mobile ap-
plications. For example, a moving range query continuously re-
ports all tourist attractions that are within 3 km from a moving car.

Location-based service providers (LBS) that offer moving query-
ing services return mobile users the query result and a correspond-
ing safe region [33, 14]. Given a moving query point q, its safe
region is a region where the result of q remains unchanged as long
as q moves within it. In other words, it allows a mobile user to issue
a new query to the LBS (to get the latest query result) only when
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the user leaves the safe region, Thus, safe region is a powerful op-
timization for significantly reducing the communication frequency
between the user and the service provider.

The query results and safe regions returned by LBS, however,
may not always be accurate. For instance, a hacker may infiltrate
the LBS’s servers [25] so that results of queries all include a partic-
ular location (e.g., the White House). Furthermore, the LBS may be
self-compromised and thus ranks sponsored facilities higher than
actual query result. The LBS may also return an overly large safe
region to the clients for the sake of saving computing resources and
communication bandwidth [22, 16, 30]. On the other hand, the LBS
may opt to return overly small safe regions so that the clients have
to request new safe regions more frequently, if the LBS charges fee
for each request, or if the LBS wishes to boost its request counts —
a figure that could influence its advertisement revenue.

Recently, techniques for authenticating query result have re-
ceived significant attentions, e.g., the authentication of relational
queries [15, 10, 27], data stream queries [11, 20], text similar-
ity queries [16], static spatial queries [28, 19], and shortest path
queries [30]. Most authentication techniques [10, 27, 11, 20, 28,
19, 16, 30] are based on Merkle tree [12], which is an authenti-

cated data structure (ADS) that is built on the dataset. Recently,
Yang et al. [28] developed an authenticated data structure called
Merkle R-tree (MR-tree) for authenticating spatial queries. The is-
sue of authenticating moving spatial queries, however, has not been
addressed yet. Existing techniques for authenticating static spatial
queries such as [28, 19, 6] cannot help in authenticating moving
spatial queries because their authentication target is the query re-

sult, which is a subset of the dataset, whereas the authentication
targets of moving queries include both the query result and the safe

region — the latter is a geometric entity that is dynamically com-
puted by the LBS at run-time and is not part of the dataset. Since
a safe region is defined based on both points in the query result as
well as points not in the query result, the missing of a non-result
point during the authentication process may also fail the authenti-
cation of the safe region.

This paper is devoted to the authentication of moving range
queries. The specific technical contributions include:

1. The design of verification objects VO specific for authenti-
cating the safe regions (and also the result) of moving range
queries. Note that the existing notion of verification ob-
jects [10, 28, 16, 30, 31] cannot be used to authenticate safe
regions of moving range queries. Algorithms for construct-
ing and verifying those verification objects during moving
range query processing are included in this paper as well.

2. Communication optimization techniques that allow a mo-
bile client to refresh its safe region without communicating



with the LBS even when the client leaves its current safe re-
gion. These techniques are useful to reduce the communica-
tion overhead during authentication-enabled moving spatial
query processing.

3. We introduce a new notion called VO-optimal, to describe
authentication techniques that put the minimum data points
and MR-tree entries into the VO. We show that our solutions
achieve such optimality.

4. An extensive experimental study on real data and synthetic
data to study the efficiency of our proposed methods.

The rest of this paper is organized as follows. We discuss re-
lated work in Section 2. We present the framework for authenti-
cating moving queries in Section 3. In Section 4, we present our
VO-optimal methods for authenticating moving range queries. The
experimental study is presented in Section 5. Finally, we conclude
this paper in Section 6.

2. RELATED WORK
Query authentication In the literature, most authentication tech-
niques [10, 27, 11, 20, 28, 19, 16, 30] are based on Merkle tree [12]
with the public key infrastructure [21]. Merkle tree is an authen-

ticated data structure (ADS) that is built on the dataset. Digests
of nodes in the tree are first recursively computed from the leaf
level to the root level.1 Then, the signature of the dataset is ob-
tained by signing the root digest using the data owner’s private key.
Signature aggregation [15, 17] is an alternative of Merkle tree. It
works by having a signature for each tuple in the dataset. Recently,
Yi et al. [29] propose a probabilistic approach for authenticating
aggregation queries; and Kundu et al. study the authentication of
trees [8] and graphs [9] without revealing any data objects beyond
the user’s access rights.

To authenticate spatial queries, Yang et al. [28] develops an au-
thenticated data structure (ADS) called Merkle R-tree (MR-tree)
based on R∗-tree [1] and Merkle tree [12]. Figure 1b shows an
MR-tree for the dataset shown in Figure 1a. A leaf entry pi stores
a data point. A non-leaf entry ei stores a rectangle ei.b and a digest
ei.α, where ei.b is the minimum bounding rectangle of its child
node, and ei.α is the digest of the concatenation (denoted by |) of
binary representation of all entries in its child node. For instance,
e1.α = h(p1|p2), e5.α = h(e1|e2), and eroot.α = h(e5|e6). The
root signature is generated by signing the digest of the root node
eroot.α using the data owner’s private key.

Consider the range query q with radius r in Figure 1. Its result is
p1. In order to let the client verify the correctness of the range re-
sults, the LBS utilizes the MR-tree (provided by the data owner) to
generate a verification object VO. First, it defines a circular verifi-
cation region ⊙(q, r) with center q and radius r. Then, it computes
the VO by a depth-first traversal of the MR-tree, with the following
conditions: (i) if a non-leaf entry e does not intersect ⊙(q, r), then
e is added to the VO (e.g., e2, e6) and its subtree will not be visited;
(ii) data points in any visited leaf node are added into the VO (e.g.,
p1, p2). In this example, we have VO = {{{p1, p2}, e2}, e6} ,
where { and } are tokens for marking the start and end of a node.

Upon receiving the VO, the client first checks the correctness of
the VO by reconstructing the digest of root of the MR-tree from the
VO and then verifying it against the root signature using the data
owner’s public key. If the verification is successful, the client next
finds the range result directly from the data points extracted from

1A secure-hash function is often used to compute a fix-length di-
gest.
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Figure 1: Authentication of range queries

the VO (ignoring the non-leaf entries). Then, the client defines the
verification region ⊙(q, r) and checks whether every non-leaf entry
in the VO satisfies e.b ∩ ⊙(q, r) = ∅. If so, the client can assure
that the computed range result is correct. The reason is that, if a
non-leaf entry e in the VO does not intersect ⊙(q, r), that means
all the points in e cannot become the range result of q.

In this paper, we use MR-tree because of its popularity and low
construction cost, and our concept of VO-optimality is also based
on MR-tree. MR*-tree is an extension of MR-tree [28], where each
node is embedded with a conceptual Merkle KD-tree defined on en-
tries in the node. If a query region intersects with only one side of
a split axis (in a KD-tree), then it skips inserting the entries on the
other side into the VO. This technique can reduce the number of
entries in the VO at the cost of higher construction and computation
time. Reference [13] discusses another spatial ADS called PMKd-
tree, which separates the query processing part and the VO con-
struction part in order to obtain better query efficiency and smaller
verification objects. To the best of our knowledge, we are the first to
study the authentication of moving range queries. Existing spatial
authentication techniques [28, 19, 6] cannot help in authenticating
moving queries because they focus on static queries, so that the au-
thentication targets (i.e., the query results) are part of the dataset.
In contrast, authentication of moving queries require authenticating
both the query results (part of the dataset) and the safe regions (not

part of the dataset).
Our recent work [31] examined how to authenticate the safe re-

gions of moving kNN queries. However, the safe regions for kNN
queries (e.g., convex polygons) are different from those for range
queries (e.g., set unions/differences of circles). This renders the
specific techniques in [31] inapplicable to our problem here. Also,
we will prove that our method is VO-optimal, in which [31] did not
introduce this notion yet.
Moving query processing In moving query processing, [24] com-
putes the nearest neighbors for each possible query point on a given
line segment, whereas [7] studies how to maintain the user’s future
kNN upon a change of the user’s velocity. Both [24] and [7] model
the user’s movement as a linear function. When the user’s future
movement is unknown, the buffering approach [23] and the safe re-
gion approach [33, 14] are more appropriate for efficient moving
query processing.

In the buffering approach [23], the LBS returns users the original
result points and some additional result points to constitute a buffer

region. While moving within the buffer region, the client’s latest
result can be recomputed locally from the result of the previous
query. However, it is not easy to tune the size of the buffer region
in practice, and that value actually influences the communication
frequency and the number of objects sent per communication.

In the safe region approach, the LBS reports a safe region [33,
14, 3] for the query result, such that the result remains unchanged
while the user moves within the safe region. Unlike the buffer-
ing approach, this approach does not require the client to compute



result locally. This approach reduces both the communication fre-
quency and the computational overhead for the user.

Finally, note that the solutions in [23, 24, 7, 14] focus on moving
kNN queries rather than moving range queries. The safe regions
of moving range queries were studied in [33, 3]: rectangular range
queries [33] and circular range queries [3].

3. BASELINE AND FRAMEWORK
Following [33, 14, 3], in this paper, we consider a generic prob-

lem setting in which q is a moving object whose future locations
cannot be predicted in advance. In a moving query environment,
the question is when and where the client should (re-)issue query
in order to get the most updated query range result as q moves.
Baselines for moving query authentication A brute-force
method is that the client periodically issues a query to the server
for every T time units. The correctness of the results can then be
authenticated using an MR-tree. However, there is no way to guar-
antee that result is always up-to-date even when a very small T is
used, rendering this method impractical.

To authenticate moving spatial queries, a baseline method uses
the buffering approach to compute the query result and then authen-
ticate the results by using an MR-tree. Specifically, a client issues
a range query with a range ∆r larger than the original query range
r. Again, let qlast be the last location sent to server. As long as the
current location of q moves within the buffer region ⊙(qlast,∆r),
the latest query result can be derived from the result of the last
query because any ranges that have center within ⊙(qlast,∆r) and
radius r are totally inside ⊙(qlast, r +∆r).

Although simple, the buffering approach requires finding
the optimal value of ∆r. A small ∆r leads to more frequent
communication, thereby increasing the communication cost. A
large ∆r, unfortunately, also increases the communication cost
because the size of the VO increases.

Our safe region approach The buffering approach is not a true
safe region approach because even when staying within the buffer
region the client is still required to recompute result locally. Our
approach is to return a safe region for the query result, such that
the result remains unchanged as long as the user’s location q stays
within the safe region. This approach helps reducing the commu-
nication frequency between the LBS and the client. However, for
the various reasons we mentioned in the introduction, the LBS may
return incorrect safe regions, rendering the user’s future result in-
correct. Our goal is thus to devise methods for the client to verify
the correctness of the safe region returned by LBS.
Framework for moving query authentication Figure 2 illus-
trates the framework for answering moving spatial queries that
supports query correctness verification. A map provider (e.g., the
government’s land department, NAVTEQ2 and TeleAtlas3) collects
points-of-interests into a spatial dataset. It builds the MR-tree [28]
of the dataset and signs the digest of the root node, before dis-
tributing/selling it to a service provider (i.e., LBS). Initially, a mo-
bile user downloads the root signature from the LBS and the map
provider’s public key from a certificate authority (e.g., VeriSign).
Afterwards, the user sends its location to the LBS, and obtains the
query result, the safe region, and the VO. The correctness of the
query result and the safe region can be verified at the client by using
the received VO, the root signature and the map provider’s public
key. The client needs to issue a query to the LBS again only when
it leaves its safe region.

2NAVTEQ Maps and Traffic. http://www.navteq.com
3TeleAtlas Digital Mapping. http://www.teleatlas.com

The spatial dataset is expected to have infrequent updates (e.g.,
monthly map updates). In case the user requires fresh results (i.e.,
obtained from the latest datasets), the map provider could follow
[10] to include a timestamp in the root signature of the tree.

Our adversary model is the same as in [28]. Except the data
owner’s private key, adversaries are assumed to know all other in-
formation, e.g., the data owner’s public key, the secure-hash func-
tion, the Merkle R-tree, its root signature, and our authentication
algorithms. The security is guaranteed by the Merkle R-tree [28].
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Figure 2: Moving query authentication

4. PROPOSED SOLUTION
There are two main types of range query, rectangular range

query [5, 6] and circular range query [4, 6]. The former speci-
fies the query range as a rectangle whereas the latter specifies the
query range as a circle. In this paper, we focus on the authentica-
tion of moving circular range queries. Hereinafter, we use the term
range query to denote circular range query. A summary of notation
used in this paper is given in Table 1.

In the following, we first introduce some basic definitions for our
problem. Then, we present our Arc-Based (AB) method for con-
structing VO for moving range query authentication (Section 4.2).
As we will elaborate later, the safe region for a moving range query
is constituted by a set of arcs. Hence, our AB method exploits this
property to construct a compact VO. Furthermore, we can prove
that our AB method is VO-optimal, i.e., it puts the minimum data
points and MR-tree entries into the VO (Section 4.3). Afterwards,
we analyze the size of the VO constructed by this method (Section
4.4). At the end, we present a method to further reduce the commu-
nication frequency (Section 4.5) by reusing the VO when the client
crosses a safe region.

4.1 Preliminary and Definitions
A (circular) range query is a circle ⊙(q, r), where q is a query

point and r is a radius (in Euclidean distance). A data point p is
in the result set S if its distance from q is less than or equal to r,
i.e., dist(q, p) ≤ r. In contrast, a data point p is not in the result
S if its distance from q is greater than r, i.e., dist(q, p) > r. In
Figure 3(a), the bold circle ⊙(q, r) is a circular range query with
center q and radius r. Data points g1, g2, g3, and p1 are inside
⊙(q, r), so they are result points and in S. Since g4 is outside
⊙(q, r), g4 is a not a result point and not in S.

When a client moves, its range query result may change. In or-
der to get the updated result, basically it has to submit a new query
to the LBS using its updated location q′. To minimize the com-
munication frequency and the communication cost, we adopt the
safe region approach. When the server receives a range query, it
returns the client a safe region SR in addition to the query result S.



Table 1: Summary of Frequently Used Symbols
Symbol Meaning

D the dataset
r radius

AB
⌢

arc AB
⊙(c, r) circular region with center c and radius r

S range query result
SR(S,D) safe region

gi a guard object
garci a border of safe region contributed by gi

A1

end
,A2

end
two ending points of garci

G a set of guard object
2(c, r) a sector with center c and radius r
rRV R query result verification region

GOV Rgi guard object verification region
GOEPCgi guard object end point circle
GOSDgi guard object sector difference

� circumference of
⋃

gi∈G GOV Rgi

rSRV R range safe region verification region
Π verification region

Therefore, the client does not need to issue a new query to the LBS
as long as it moves within SR. The safe region for moving range
queries [4] is stated below.

Definition 1. Safe Region of Range Query (Ref. [4])

The safe region SR(S,D) of a circular range query is defined as:

SR(S,D) =
⋂

pi∈S

⊙(pi, r)−
⋃

pj∈D−S

⊙(pj , r)

where S is the set of result points of range query ⊙(q, r) and D is
the dataset.

In Figure 3(a), the light grey region is the safe region SR(S,D)
for the range query result S = {g1, g2, g3, p1}. It is formed by
⊙(g1, r) ∩ ⊙(g2, r) ∩ ⊙(g3, r) ∩ ⊙(p1, r), excluding ⊙(g4, r).

Note that the safe region SR(S,D) is enclosed by four arcs:
ab
⌢

, bd
⌢

, dc
⌢

, and ca⌢, which are originated from circles ⊙(g1, r),
⊙(g4, r), ⊙(g2, r), and ⊙(g3, r), respectively. In other words,
⊙(p1, r) does not contribute to the final safe region SR(S,D) (in
fact SR(S,D) is completely inside ⊙(p1, r)). So, [4] distinguishes
the set of data points G that are necessary for representing the safe
region, which are called guard objects, from the others.

Definition 2. Guard Object (Ref. [4])

Given a point gi, gi is a guard object if part of ⊙(gi, r), which is
an arc garci , can contribute to the final safe region SR(S,D).

In Figure 3(a), points g1, g4, g2, and g3 are guard objects because
their corresponding arcs ab

⌢
, bd
⌢

, dc
⌢

, and ca⌢ form the safe region. In
contrast, point p1 is not a guard object.

The challenges of verifying the correctness of the safe region SR
can be explained using Figure 3(a). Assume that the LBS needs
to evaluate a range query ⊙(q, r) and its safe region (i.e., the light
grey region). By Definition 2, the LBS can represent the safe region
using four guard objects g1, g2, g3, and g4. Having these guard
objects, the client is able to construct the safe region.

Suppose that the LBS intentionally omits guard object g4 and
only sends guard objects g1, g2, and g3 to the client. In this case,
the client will get an incorrect (larger) safe region, which is the
union of the light grey region and the dark grey region. The chal-
lenge here is that the client cannot notice that one guard object (g4)
is missing. Note that all guard objects g1, g2, and g3 are originated
from the dataset D (thus they pass the data correctness checking).
However, the client cannot determine whether the set of guard ob-
jects provided by the LBS is complete. Similarly, the LBS may

also report a smaller safe region by returning fake objects as guard
objects. Again such case is easy to be detected by checking the root
signatures.

By Definition 1, SR(S,D) is constructed by all data points in
D. So, a brute-force solution is to return the whole dataset D to
the client so that the client is guaranteed to compute SR(S,D)
correctly. Our goal is to design efficient methods to construct veri-
fication objects VO for verifying the correctness of the safe region,
yet the size of VO should be as small as possible.
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4.2 Arc-Based Method
Our Arc-Based method constructs a compact VO for authenti-

cating a moving range query. Its idea is to exploit the arcs of a safe
region to construct a VO with minimal size. The method consists
of a server algorithm and a client algorithm. At the server side, ev-
erything that is necessary for verifying the range query result and
the safe region is put into VO and sent to the client. At the client
side, the correctness of the query result and the safe region is veri-
fied based on the data stored in the VO.

Algorithm 1 Arc-Based Method (Server)

Receive from client: (Query point q, Integer r)
Using MR-tree TD (on dataset D)

1: S := compute the result points of q from the tree TD

2: compute SR(S,D) from the tree TD (using the method of [4])
3: rRV R := ⊙(q, r)
4: G := set of guard objects gi
5: GOV Rgi := (2(gi, 2r)− 2(gi, r)) ∪ ⊙(p1e, r) ∪ ⊙(p2e, r)
6: rSRV R :=

⋃

gi∈G GOV Rgi− �

7: Π := rRV R ∪ rSRV R
8: VO := DepthFirstRangeSearch(TD .root, Π)
9: send VO to the client

4.2.1 Server Algorithm

Algorithm 1 is the pseudo-code of the server algorithm. Upon
receiving the user location q and the radius r, the server computes
the result points from an MR-tree TD (Line 1). Then, it computes
the safe region by using safe region computation method in [4]
efficiently (Line 2).

Next, it defines a verification region Π so as to identify data
points that are useful for verifying the range query result and the
safe region and put them into V O. More specifically, the verifica-
tion region Π is defined as the union of (i) the range query result

verification region (rRV R) and (ii) the range query safe region

verification region (rSRV R).

Definition 3. Range query result verification region (rRV R).

The range query result verification region (rRV R) is defined as
the circular region ⊙(q, r) at the current query location q with ra-
dius r.



In Figure 3(a), the bold circle ⊙(q, r) is rRV R.
The definition of the range query safe region verification region

rSRV R is quite complicated. Therefore, we first state some pre-
liminary definitions.

Definition 4. Guard object end points circles (GOEPCgi )

Given a guard object gi, the guard object end points circles of gi
(GOEPCgi ) is the union of ⊙(A1

end, r) and ⊙(A2

end, r), where
A1

end and A2

end are two end points of garci , an arc that contributes
to the final safe region SR(S,D).

Definition 5. Guard object sector difference (GOSDgi )

Given a guard object gi, the guard object sector difference of gi
(GOSDgi ) is the difference between a sector 2(gi, 2r) with center
gi and radius 2r, and a sector 2(gi, r) with the same center gi but
with radius r. The angle subtended by the sectors are determined
by the end points A1

end and A2

end described in Definition 4.

In Figure 3(b), given a guard object g3, and assume that garc3

is the arc that contributes to the final safe region SR(S,D). The
two end points of garc3 are a and b. So, the guard object end points
circles of g3 , i.e., GOEPCg3 , is the union of circles ⊙(a, r) and
⊙(b, r). Note that GOSDg3 is the dark grey region abef .

With the definitions of guard object end points circles and guard
object sector difference, we now define the verification region of a
guard object as follows.

Definition 6. Guard object verification region (GOV Rgi )

GOV Rgi = GOEPCgi ∪GOSDgi

Figure 3(b) shows the verification region of guard object g3,
which is the union of the light grey region and the dark grey re-
gion.

Now, we define range query safe region verification region
(rSRV R) as follows.

Definition 7. Range query safe region verification region

(rSRV R)

The range query safe region verification region (rSRV R) is de-
fined as the union of the GOV Rgi of each guard object gi in G,
except its circumference �:

rSRV R =
⋃

gi∈G

GOV Rgi− �

where G is the set of guard objects and � is the circumference
of

⋃
gi∈G GOV Rgi , i.e., �= {z ∈ R

2|∃ location l on garci ,

dist(l, z) = r, ∀ locations l′ on garci , dist(l′, z) ≥ r}

Finally, the verification region Π for authenticating (moving)
range query is defined as the union of the range query result verifi-
cation region (rRV R) and the range query safe region verification
region (rSRV R).

Definition 8. Verification region Π

Π = rRV R ∪ rSRV R

With the verification region Π for a moving range query clearly
defined, the VO can be constructed by a depth-first traversal of the
MR-tree (Line 8 in Algorithm 1). Points inside Π are put in the VO
and the rest are put in the VO as some non-leaf entries.

We now prove that any point p∗ outside the verification region
Π cannot alter the range query result S and its corresponding
safe region SR(S,D) and thus it is safe to exclude them in the VO.

THEOREM 1. [Points p∗ outside Π cannot alter the query re-

sult and the safe region SR(S,D)]

PROOF: To prove the theorem, we prove that (i) any point p∗ out-
side rRV R cannot be range query result (Lemma 1), and (ii) any
point p∗ outside rSRV R cannot alter the safe region (Lemma 2).
Since the verification region Π is the union of rRV R and rSRV R,
the theorem is proved if Lemma 1 and Lemma 2 hold.

LEMMA 1. [Points outside rRV R are not range query re-

sult] We have ∀ p∗ outside rRV R, p∗ /∈ S, where S is the range

query result set.

Proof: If p∗ is outside rRV R, then p∗ is not inside the query range.
Thus, p∗ /∈ S.

LEMMA 2. [Points outside rSRV R cannot alter safe re-

gion SR(S,D)] If p∗ is outside rSRV R, then SR(S,D) =
SR(S,D\{p∗}).

Proof: Recall that the safe region SR(S,D) is enclosed by a set
of arcs garci . Therefore, if p∗ is outside GOV Rgi for all gi ∈ G,
Lemma 3 from [4] implies that ⊙(p∗, r) does not intersect any arc
garci and thus ⊙(p∗, r) does not overlap the safe region SR(S,D).
With that, Lemma 2 is proven.

LEMMA 3. If p∗ is outside GOV Rgi , then ⊙(p∗, r) does not

intersect arc garci . (Ref. [4])

g3

p1

αβ
p2

a

b

p

f

e

g3

arc

GOEPCg3

GOSDg3

r

r

f

e

r

Figure 4: Example for Lemma 3

Now, with Lemma 1 and Lemma 2, Theorem 1 is proven.

The shape of verification region Π here is irregular (not a simple
shape like circle). For efficient implementation, the server actually
does not render the complex shape of the verification region Π.
Instead, we can check whether the following condition holds during
the tree traversal (Line 8 in Algorithm 1), and if it does not, we add
e into the VO:

(mindist(e, q) ≤ r) ∨
∨

A1

end
∈garc

i

(

mindist(e,A1

end) < r
)

∨
∨

A2

end
∈garc

i

(

mindist(e,A2

end) < r
)

∨
∨

gi∈G

overlap(GOSDgi , e)

(1)

The first term of Equation 1 checks whether the minimum dis-
tance from non-leaf entry e to q is smaller than or equal to r. If
the distance is smaller than or equal to r, e overlaps or touches
rRV R. The second and third terms check whether the minimum
distance from e to every end points A1

end and A2

end of arc garci

is smaller than r. If the distance is smaller than r, e overlaps
with GOEPCgi . The last term checks whether e overlaps any
GOSDgi .



4.2.2 Client Algorithm

Algorithm 2 is the pseudo-code of the client algorithm. Upon
receiving the VO, the client first reconstructs the root digest from
the VO (Line 1) and verifies it against the MR-tree root signature
signed by the data owner (Line 2). If the verification is successful,
the VO is guaranteed to contain only entries from the original MR-
tree (Line 3). After that, it proceeds to verify the correctness of
result points and the safe region provided by the VO. It extracts
from the VO (i) a set D′ of data points, and (ii) a set R′ of non-leaf
entries, (Line 4-5) and then computes the result point set S′ from
D′ (Line 6).

S′ is correct if every non-leaf entry of R′ does not intersect
rRV R (Lines 7–8). If the result points are correct, the client can
proceed to check the safe region. The client next computes the safe
region SR(S′, D′) from D′ (Line 9). The client can ensure that
SR(S′, D′) is correct if every non-leaf entry does not intersect Π
(Lines 10–14). If so, the client can treat the result points and the
safe region as correct (Line 15).

Algorithm 2 Arc-Based Method (Client)

Receive from server: (Verification Object VO)
1: h′

root := reconstruct the root digest from VO
2: verify h′

root against the MR-tree root signature
3: if h′

root is correct then
4: D′ := the set of data points extracted from VO
5: R′ := the set of non-leaf entries extracted from VO
6: S′ := compute the result points of q from D′

7: rRV R := ⊙(q, r)
8: if ∀ e ∈ R′, e ∩ rRV R = ∅ then ⊲ authenticate query result
9: V:=compute SR(S′, D′) ⊲ authenticate safe region

10: G := set of guard objects gi
11: GOV Rgi := (2(gi, 2r)− 2(gi, r)) ∪ ⊙(A1

end
, r) ∪

⊙(A2

end
, r)

12: rSRV R :=
⋃

gi∈G GOV Rgi− �

13: Π := rRV R ∪ rSRV R
14: if ∀ e ∈ R′, e ∩Π = ∅ then
15: return range query result S′ and safe region SR
16: return authentication failed

Up to now, we have introduced the server algorithm and the
client algorithm of the Arc-Based (AB) method. Now, we prove
that the client can verify the range query result and the safe region
by using the VO constructed by this method.

LEMMA 4. [Client can verify the correctness of range re-

sult]

Proof: Direct results from [28].

LEMMA 5. [Client can verify the correctness of safe region]

Following the Arc-Based (AB) method, a client can verify that the

constructed safe region SR(S′, D′) equals to the correct safe re-

gion SR(S,D), i.e., SR(S′, D′) = SR(S,D).

Proof: First, from Lemma 4, we know S′ = S.−−− (�)
Next, line 1 and line 2 of Algorithm 2 ensure that all data

points p ∈ D′ and all non-leaf entries e ∈ R′ in the VO are
originated from the data owner [28]. Then, the client algorithm
checks whether any non-leaf entry e ∈ R′ intersect rSRV R,
and if no, it regards the safe region SR(S′, D′) as correct, i.e.,
SR(S′, D′) = SR(S,D). We prove its correctness by contradic-
tion.

Assume the client regards SR(S′, D′) = SR(S,D) even when
a non-leaf entry e ∈ R′ in VO intersects rSRV R. When e inter-
sects rSRV R, it is possible that ∃p′ ∈ e inside rSRV R.

Let P ′ be the set of p′ ∈ e that is inside rSRV R and P ∗ be
the set of p∗ ∈ e that is outside rSRV R. By Lemma 2, p′ ∈ P ′

may (or may not) alter the safe region. Since e covers points in
P ′ ∪ P ∗, a point p in e may (or may not) alter the safe region, i.e.,
it is possible that SR(S,D\{P ′∪P ∗}) 6= SR(S,D).−−− (⋆)

In our AB-method, the client computes the safe region from D′

(the set of data points in VO), as points in P ′ ∪ P ∗ are repre-
sented by a non-leaf entry e, they are not in D′, therefore, we
have D′ = D\{P ′ ∪ P ∗}. And hence, we have SR(S′, D′) =
SR(S′, D\{P ′ ∪ P ∗}).

By (�), we get SR(S′, D′) = SR(S′, D\{P ′ ∪ P ∗}) =
SR(S,D\(P ′ ∪ P ∗). Combining this with (⋆), we obtain that
SR(S′, D′) may not equal to SR(S,D), i.e., it possible that
SR(S′, D′) 6= SR(S,D), which contradicts with the assump-
tion.

4.3 VO-optimality
In this section, we prove that the Arc-Based (AB) method is

VO-optimal, i.e., it puts the minimum data points and MR-tree
entries into the VO.

THEOREM 2. [The AB method is VO-optimal]

PROOF: To prove the theorem, we need to prove that (i) Points
inside Π are sufficient for the client to verify the correctness of the
query result and the safe region (Lemma 6). (ii) Points inside Π
are necessary for the client to verify the correctness of the query
result and the safe region (Lemma 7). Since the establishment of
(i) shows that all points in Π are sufficient and the establishment
of (ii) shows that all points in Π are necessary, the VO contains
the minimum data points. Furthermore, since the MR-tree is being
visited from the root node, and traversed until we find a non-leaf
entry e that does not intersect Π, so the number of non-leaf entries
that put into VO is also minimum.

LEMMA 6. [Points p inside Π are sufficient for client to ver-

ify the correctness of range query result and its safe region]

Proof: Lemma 4 implies that points p inside rRV R are sufficient
for the client to verify the correctness of the query result. Lemma 5
implies that points p inside rSRV R are sufficient for the client
to verify the correctness of the safe region. Since Π is the union
of rRV R and rSRV R, points p inside Π are sufficient for client
to verify the correctness of the range query result and the safe re-
gion.

LEMMA 7. [Points p inside Π are necessary for client to ver-

ify the correctness of range query result and its safe region]

Proof: First, we prove that all points inside rRV R are necessary
for the client to verify the correctness of query result. − − −(�)
Since all points inside rRV R are the query result, they must be
returned to the client. Hence all points inside rRV R are necessary.

Next, we prove that all points p inside rSRV R − rRV R
are necessary for the client to verify the correctness of the safe
region.−−−(⋆)

We prove this by contradiction. Suppose there exists non-
result point p′ inside rSRV R − rRV R such that SR(S′, D′) =
SR(S′, D′\{p′}). By definition of rSRV R (Definition 7), we
know that there exists a location l inside SR(S′, D′\{p′}) such
that dist(p′, l) ≤ r. Therefore, we have

SR(S′, D′\{p′}) ∩ ⊙(p′, r) 6= ∅

By this, we can conclude that:



SR(S′, D′\{p′})−⊙(p′, r) 6= SR(S′, D′\{p′}) (2)

By the definition of safe region (Definition 1), we know

SR(S′, D′\{p′})−⊙(p′, r) = SR(S′, D′) (3)

Combining (2) and (3), we can conclude that SR(S′, D′) =
SR(S′, D′\{p′})−⊙(p′, r) 6= SR(S′, D′\{p′}). This leads to a
contradiction.

Finally, since rRV R ∪ (rSRV R − rRV R) = rRV R ∪
rSRV R, and Π is the union of rRV R and rSRV R, by (�) and
(⋆), all points p inside Π are necessary for client to verify the
correctness of the query result and the safe region.

4.4 VO Size Analysis
Next, we provide a theoretical analysis on the size of the VO

constructed by our AB-method. Given a region, the size of the VO
can be estimated by the cost formula in [28]. So, here we focus on
estimating the size of the verification region Π.

For simplicity, we assume that data points are uniformly dis-
tributed. Let dmax be the maximum distance between query point
q and any point in the safe region. Hence, the circular region
⊙(q, dmax) can completely cover the safe region. If a circular re-
gion with radius r and center outside ⊙(q, r + dmax), it cannot
overlap with ⊙(q, dmax) and thus it cannot overlap with the safe
region. Therefore, ⊙(q, r + dmax) is a valid verification region.
Since Π is VO-optimal and ⊙(q, r + dmax) is a valid verification
region, Π is completely covered by ⊙(q, r + dmax). In [4], the
upper bound of the expected distance mup that a point can move
straightly within a safe region is estimated as 0.33

rn
, where n is the

number of data points in D. Here, we use mup to approximate
dmax. Therefore, the size of the VO is estimated by substituting
the area π(r + 0.33

rn
)2 into the MR-tree VO size analysis in [28].

4.5 Communication Optimization
Our Arc-Based method computes safe regions in order to mini-

mize the communication frequency between the mobile client and
the server. In this section, we discuss how the client can reuse
the previously received verification object VO in order to further
reduce the communication frequency between the server and the
client even when the client leaves the safe region.

Let us consider the example in Figure 5. In Figure 5a, a client is
located at qnow and its previous location was at qlast. At qlast,
the range query result set was {g1, g2, g3} and its safe region
SR({g1, g2, g3}, D

′) was the region abdc. The verification region
Πlast was the light grey region. Since Πlast intersected the non-
leaf entries e1, e2, their leaf nodes were visited and their data points
were inserted into the verification object VOlast. Πlast did not in-
tersect e3 so e3 was inserted into VOlast, and the subtree of e3 was
not visited. Thus, VOlast = {g1, g2, g3, g4, e3}.

Later on, the client moves to a new location qnow, which
is outside the safe region. Before sending a new query to the
server, the client can run Algorithm 2 again using the previous
VOlast and its current client location qnow as inputs. First, the
client finds the query result set of qnow from VOlast and the re-
sults are {g1, g2, g3, g4}. Then, the corresponding safe region
SR({g1, g2, g3, g4}, D

′) is computed as the region bdf and the
corresponding verification region Πnow is computed as the dark
grey region shown in Figure 5b. Observe that Πnow does not in-
tersect any non-leaf entries in VOlast (e.g., e3), the client actually
can compute the results and the safe region without any data points
from e3. Therefore, it does not issue a new query to the server. This

example illustrates how the client is able to refresh the safe region
without issuing a new query to the server. By using this technique,
the client needs to send a new query to the server only when the new
verification region Πnow intersects some non-leaf entry in VOlast.

g2 

c 
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Π last 
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(a) verification region Πlast for qlast (b) verification region Πnow for qnow

Figure 5: Reusing VO for moving range query authentication

5. EXPERIMENTAL STUDY
We evaluate our methods using both synthetic and real datasets.

We implemented all methods in C++ with the cryptographic func-
tions in the Crypto++ library4. All experiments were run on a 2.5
GHz Intel PC running Ubuntu with 8 GB of RAM. The page size
of MR-trees is set to 4 Kbytes.
Datasets and query trajectories The real datasets are NA (North
America, 175K points), ARG (Argentina, 85K points), CHINA
(China, 32K points) 5. These datasets have also been used in [18,
30] to model points-of-interests in different countries. We also
generated UNI (synthetic uniform) and GAU (synthetic Gaussian)
datasets for the scalability experiments. We followed [2, 32, 26]
to generate each GAU dataset such that it contains 100 Gaussian
bells of equal size and every Gaussian bell has a standard deviation
as 2.5% of the domain space length. The query workload contains
trajectories of 50 moving objects generated by trajectory generator
in [14]. Each trajectory simulates an object running in Euclidean
space (directional movement) and has a location record at every
timestamp; there are 10,000 timestamps in total and the time be-
tween adjacent timestamps is 1 second. Therefore, each object’s
journey is about 10,000 seconds (i.e., about 2.7 hours). We try to
simulate the scenario of a car (default speed 50km/hr) moving at
the country level (i.e., on CHINA, ARG, and NA datasets).

Table 2 shows the building time of MR-trees on the real datasets
and synthetic datasets (50K data points to 1000K data points). The
time of building MR-trees scales well with the data size.6

Table 2: MR-Tree building time
Dataset Building Time (seconds)

MR-tree

CHINA 21.75
ARG 62.71
NA 124.05

50,000—UNI/GAU 30.11 / 35.4
100,000—UNI/GAU 63.11 / 74.78
200,000—UNI/GAU 128.80 / 151.03
500,000—UNI/GAU 334.30 / 396.82

1,000,000—UNI/GAU 732.92 / 885.07

Performance measure Following [14], we measure the cumula-
tive total cost for each object’s trajectory. In our experiments, we

4Crypto++ library: http://www.cryptopp.com/
5Downloaded from http://www.maproom.psu.edu/dcw/ and
http://www.dis.uniroma1.it/∼challenge9/download.shtml
6We have repeated the whole experimental study using MR*-tree.
The experimental results are similar and not described here.
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Figure 6: Effect of query speed (on various real datasets)

report the communication cost (in kilobytes) as the total size of VO
per object. This is the most important measure in this paper and we
hope to minimize it. We also report the communication frequency,
which is the number of clients’ queries received by the server, per
object. In addition, we report the server and client CPU time (in
seconds), per object journey.
Competitors We now report the experimental results of moving
range queries. The default query range r is 5 km for a moving client
(i.e., on CHINA, NA, and ARG datasets). We compare our AB-
method with the baseline buffering method (rBASE) mentioned in
Section 3. Again, rBASE’s performance depends on the ∆r value,
which in turns depends on various factors such as the query range,
query speed, data size, and data distribution. The optimal ∆r for a
particular setting cannot be found unless we exhaustively try every
possible ∆r value. However, for comparison purpose, we also car-
ried out such a manual tuning process for rBASE in all our experi-
ments. We use rBASEO to denote the best performance of rBASE
that uses the optimal ∆r value. We use rBASEA to represent the
average performance of rBASE over every ∆r value.

5.1 Effect of Query Speed
We study the effect of moving query speed on the performance

of our AB-method, rBASEA, and rBASEO . Figure 6 shows (a) the
total communication frequency, (b) the total communication cost,
(c) the total server CPU time, and (d) the total client CPU time, of
each moving object, with respect to different query speeds, in its
2.7-hour journey, on the three datasets.

In Figure 6a, the communication frequency of rBASEO is an-
notated with the corresponding optimal ∆r value (in km) found
by our manual tuning process. When the query speed increases, a
client using the baseline methods leaves its buffer region easier, so
its communication frequency increases. The communication fre-

quency of our AB-method rises slowly because our method reuses
the VO whenever applicable. Together with the fact that our VO-
optimal method constructs very compact VO, this explains why the
communication cost of our AB-method is much smaller than that
of the baseline methods in Figure 6b.

The server computation overhead of our AB-method is very
small (Figure 6c). That is because the communication frequency
of AB-method is small and also computing safe regions for mov-
ing range queries is not expensive.

The client CPU times of all methods are shown in Figure 6d.
We can see that all methods incur almost negligible computational
overhead on the client side, which is less than 0.01 CPU seconds
for a 2.7-hour journey.

5.2 Effect of the Query Range r

Figure 7 shows the effect of the query range r. In Figure 7a, we
can see that the communication frequencies of the baseline meth-
ods are quite stable when r increases. That is because the optimal
∆r values for the baseline methods do not vary when r increases,
so all buffering regions have the same size. Since the speed of
the client is constant in this experiment, with constant size buffer-
ing regions, the communication frequencies of the baseline meth-
ods remain unchanged. The communication frequency of our AB-
method increases slowly when r increases. That is because the
number of result points increases when r increases. As the safe
region of moving range query is defined as the intersection of re-
sult points excluding the union of non-result points, the increase
of result points results in a smaller safe region. This explains the
increase of communication frequency with r. However, the com-
munication cost of our AB-method is much lower than the baseline
methods (Figure 7b) because our method is VO-optimal and thus
is able to construct very compact VO. When r increases, the query
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Figure 7: Effect of r (on various real datasets)
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Figure 8: Effect of data size (UNIFORM)
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Figure 9: Effect of data size (GAUSSIAN)

results are larger and thus the VOs are larger. Therefore, the com-
putation overhead of our AB-method on both the server side and
the client side increase but still stays low (Figure 7c and d).

5.3 Effect of Data Size
We proceed to study the scalability of our methods, by using

synthetic data of different sizes. Figure 8 shows the performance
of the methods under uniform datasets of different sizes. When
the data size increases, the data density rises. Therefore, the query

results as well as the VO-size generally would increase, leading
to a higher communication cost. Nonetheless, we remark that the
communication cost of our AB-method increases mildly because
of the compact VO constructed as well as the reuse of the VO.
Similar observations could be found on the Gaussian datasets (see
Figure 9).

5.4 Validation of VO Size Analysis
Finally, we validate the theoretical analysis about the size of VO



in moving range query authentication. Our analysis has made cer-
tain simplifying assumptions like uniform data distribution. Thus,
the following validation is conducted on uniform data only. Fig-
ure 10 shows the actual number of points covered by the verifica-
tion region Π and the estimated number based on the equations in
Section 4.4 during moving range query authentication. The results
show that our theoretical analysis is quite robust as it well captures
the trend and the error is below 0.18 on uniform datasets.
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Figure 10: VO analysis (UNIFORM)

6. CONCLUSION
In this paper, we presented a framework with efficient methods to

authenticate moving range queries. We proved that our methods are
VO-optimal, i.e., the size of the verification object (VO) required
to carry out authentication is minimal in size. We also presented
optimization techniques that can further reduce the communication
frequency between a moving client and the service provider. Ex-
perimental results show that our methods efficiently authenticate
moving range queries using a small communication cost and com-
putational overhead. As for future work, we plan to extend our
methods to use other orthogonal ADS (e.g., PMKd-tree [13]) and
establish the corresponding VO-optimality.

7. REFERENCES
[1] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger.

The R*-tree: An Efficient and Robust Access Method for
Points and Rectangles. In SIGMOD, 1990.

[2] N. Bruno, S. Chaudhuri, and L. Gravano. Stholes: A
multidimensional workload-aware histogram. In SIGMOD,
2001.

[3] M. A. Cheema, L. Brankovic, X. Lin, W. Zhang, and
W. Wang. Continuous monitoring of distance based range
queries. TKDE, 2010.

[4] M. A. Cheema, L. Brankovic, X. Lin, W. Zhang, and
W. Wang. Multi-Guarded Safe Zone: An Effective Technique
to Monitor Moving Circular Range Queries. In ICDE, 2010.

[5] D. Gunopulos, G. Kollios, V.J.Tsotras, and C.Domeniconi.
Selectivity estimators for multidimensional range queries
over real attributes. VLDB J, 2003.

[6] L. Hu, W.-S. Ku, S. Bakiras, and C. Shahabi. Verifying
spatial queries using voronoi neighbors. In GIS, 2010.

[7] G. S. Iwerks, H. Samet, and K. P. Smith. Maintenance of
K-nn and Spatial Join Queries on Continuously Moving
Points. ACM TODS, 31(2):485–536, 2006.

[8] A. Kundu and E. Bertino. Structural Signatures for Tree Data
Structures. PVLDB, 1(1):138–150, 2008.

[9] A. Kundu and E. Bertino. How to Authenticate Graphs
without Leaking. In EDBT, 2010.

[10] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin.
Dynamic Authenticated Index Structures for Outsourced
Databases. In SIGMOD, 2006.

[11] F. Li, K. Yi, M. Hadjieleftheriou, and G. Kollios.
Proof-Infused Streams: Enabling Authentication of Sliding
Window Queries On Streams. In VLDB, 2007.

[12] R. C. Merkle. A Certified Digital Signature. In CRYPTO,
1989.

[13] K. Mouratidis, D. Sacharidis, and H. Pang. Partially
materialized digest scheme: An efficient verification method
for outsourced databases. VLDB J, 18(1):363–381, 2009.

[14] S. Nutanong, R. Zhang, E. Tanin, and L. Kulik. The
V*-Diagram: A Query-dependent Approach to Moving
KNN Queries. PVLDB, 1(1):1095–1106, 2008.

[15] H. Pang, A. Jain, K. Ramamritham, and K.-L. Tan. Verifying
Completeness of Relational Query Results in Data
Publishing. In SIGMOD, 2005.

[16] H. Pang and K. Mouratidis. Authenticating the Query Results
of Text Search Engines. PVLDB, 1(1):126–137, 2008.

[17] H. Pang, J. Zhang, and K. Mouratidis. Scalable Verification
for Outsourced Dynamic Databases. PVLDB, 2(1):802–813,
2009.

[18] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao. Query
processing in spatial network databases. In VLDB, 2003.

[19] S. Papadopoulos, Y. Yang, S. Bakiras, and D. Papadias.
Continuous Spatial Authentication. In SSTD, 2009.

[20] S. Papadopoulos, Y. Yang, and D. Papadias. CADS:
Continuous Authentication on Data Streams. In VLDB, 2007.

[21] R. L. Rivest, A. Shamir, and L. Adleman. A Method for
Obtaining Digital Signatures and Public-key Cryptosystems.
Commun. ACM, 21(2):120–126, 1978.

[22] R. Sion. Query execution assurance for outsourced
databases. In VLDB, 2005.

[23] Z. Song and N. Roussopoulos. K-Nearest Neighbor Search
for Moving Query Point. In SSTD, 2001.

[24] Y. Tao, D. Papadias, and Q. Shen. Continuous Nearest
Neighbor Search. In VLDB, 2002.

[25] L. Wang, S. Noel, and S. Jajodia. Minimum-Cost Network
Hardening using Attack Graphs. Computer Communications,
29(18):3812–3824, 2006.

[26] X. Xiong, M. F. Mokbel, and W. G. Aref. Lugrid:
Update-tolerant grid-based indexing for moving objects. In
MDM, 2006.

[27] Y. Yang, D. Papadias, S. Papadopoulos, and P. Kalnis.
Authenticated Join Processing in Outsourced Databases. In
SIGMOD, 2009.

[28] Y. Yang, S. Papadopoulos, D. Papadias, and G. Kollios.
Authenticated Indexing for Outsourced Spatial Databases.
VLDB J., 18(3):631–648, 2009.

[29] K. Yi, F. Li, G. Cormode, M. Hadjieleftheriou, G. Kollios,
and D. Srivastava. Small Synopses for Group-by Query
Verification on Outsourced Data Streams. ACM TODS,
34(3), 2009.

[30] M. L. Yiu, Y. Lin, and K. Mouratidis. Efficient Verification
of Shortest Path Search via Authenticated Hints. In ICDE,
2010.

[31] M. L. Yiu, E. Lo, and D. Yung. Authentication of Moving
kNN Queries. In ICDE, 2011.

[32] M. L. Yiu and N. Mamoulis. Clustering objects on a spatial
network. In SIGMOD, 2004.

[33] J. Zhang, M. Zhu, D. Papadias, Y. Tao, and D. L. Lee.
Location-based Spatial Queries. In SIGMOD, 2003.


