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ABSTRACT
The skyline operator was first proposed in 2001 for retrieving inter-
esting tuples from a dataset. Since then, 100+ skyline-related pa-
pers have been published; however, we discovered that one of the
most intuitive and practical type of skyline queries, namely, group-
by skyline queries remains unaddressed. Group-by skyline queries
find the skyline for each group of tuples. In this paper, we present a
comprehensive study on processing group-by skyline queries in the
context of relational engines. Specifically, we examine the compo-
sition of a query plan for a group-by skyline query and develop the
missing cost model for the BBS algorithm. Experimental results
show that our techniques are able to devise the best query plans for
a variety of group-by skyline queries. Our focus is on algorithms
that can be directly implemented in today’s commercial database
systems without the addition of new access methods (which would
require addressing the associated challenges of maintenance with
updates, concurrency control, etc.).

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—query processing, re-
lational databases

General Terms
Design, Performance

1. INTRODUCTION
The skyline operator, which returns a set of tuples not dominated

by any other tuple, is important for many multi-criteria decision
making applications. Since its introduction in [1], numerous vari-
ants of the operator have been proposed. Surprisingly, if we review
the original skyline specification [1] (see below), there is one very
important and basic part of the specification, hitherto unaddressed:

SELECT ... FROM ... WHERE ...
GROUP BY ... HAVING ...
SKYLINE OF d_1 [MIN|MAX], ..., d_m [MIN|MAX]
ORDER BY ...

Specifically, the processing of skyline queries with the GROUP BY
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clause, has not yet been well addressed in the database community.
This paper is devoted to studying this problem in relational engines.

The group-by skyline query problem can be formally defined as
follows. Let D be a relational table instance, with schema A =
(A1, A2, . . . , Ak). The notation t[Ai] represents the value of a
tuple t in the attributeAi. Given a set G ⊂ A of grouping attributes
and a group instance g of G, we define the set D(g) as the set of
tuples of D belonging to the group g:

D(g) = {t ∈ D | ∀ Ai ∈ G, t[Ai] = g[Ai]}

Given a set S ⊂ A of skyline attributes, a tuple t is said to
dominate another tuple t′, denoted by t �S t′, if:

(∃ Ai ∈ S, t[Ai] < t′[Ai]) ∧ (∀ Ai ∈ S, t[Ai] ≤ t′[Ai])

assuming that smaller values are preferable over larger ones. The
result set of a skyline query is defined as:

Ψ(D,S) = {t ∈ D | @t′ ∈ D, t′ �S t}

In other words, a tuple t belongs to the skyline result set if no other
tuple dominates it.

Given the sets G and S of attributes such that G ∩ S = ∅, the
group-by skyline query Q = (G,S) computes a skyline result set
Ψ(D(g),S) for each group instance g defined on G. We use Q(D)
to denote the overall result set of Q on the dataset D.

Table 1a shows an exemplary dataset D of the scores of students
in a school. Each tuple represents a student, with its ‘Grade’ and
‘Gender’, as well as the scores of subjects in ‘English’, ‘Math’, and
‘Science’. In the group-by skyline query:

SELECT Grade, Student, English, Math
FROM D
GROUP BY Grade
SKYLINE OF English MAX, Math MAX

a user (e.g., a teacher) specifies the grouping attributes as the set
G = {Grade}, and the skyline attributes as the set S = {English,
Math}. The keyword MAX indicates that higher values are preferred
to lower ones in those skyline attributes. Conceptually, the query
partitions the table D into groups according to G, and then com-
putes the skyline tuples of each group with respect to S.

Observe that a traditional skyline query without the GROUP BY
clause on the above dataset may not be meaningful because it is un-
fair to compare a student from grade 07 with a student from grade
08. On the other hand, the group-by skyline query computes the
outstanding students for each grade, providing a much more intu-
itive and meaningful result.

The goal of this paper is to present the nuts and bolts for support-
ing group-by skyline queries in relational query engines. Given
that there is a wealth of solutions in skyline query processing, we



Table 1: Example
Student Grade Gender English Math Science
a 7 M 50 50 50
b 7 M 100 25 100
c 7 M 70 70 70
d 7 F 45 40 60
e 7 F 75 60 80
f 8 F 60 50 30
g 8 F 40 30 20

Grade Student English Math
07 b 100 25

c 70 70
e 75 60

08 f 60 50

(a) School Database (b) Group-by Skyline Result

emphasize that we are not going to duplicate those efforts. Instead,
we try to utilize the existing techniques whenever they are applica-
ble. However, if any issues remain open, we will provide technical
solutions in their respective sections.

In the relational engine setting, the query optimizer needs to per-
form cost estimation for different query plans and then select the
best one. A recent paper [2] follows this traditional cost-based
principle and provides cost estimation equations (i.e., skyline car-
dinality, I/O cost, and CPU cost) for two skyline algorithms, Block-
Nested-Loop (BNL) [1] and Sort-Filter-Skyline (SFS) [3]. We fol-
low this line and devise the cost model for the Branch and Bound
Skyline (BBS) algorithm [9], which turns out to be a useful com-
ponent for processing our group-by skyline query as well. In fact,
we are also aware of recent work on efficient skyline algorithms
(e.g., [6, 14]); however, in this paper, we first focus on algorithms
that can be directly implemented in today’s commercial database
systems without the addition of new access methods (which would
require addressing the associated challenges of maintenance with
updates, concurrency control, etc.).

2. COMPOSING A QUERY PLAN WITH
OPERATORS

The R-tree Group-by Skyline Algorithm (RGS) [9] is the only
group-by skyline algorithm to date. It operates on an R-tree which
is built on all the attributes (grouping and skyline attributes) of a
data set D. Unfortunately, the RGS algorithm has several deficien-
cies in processing group-by skyline queries such as: (i) huge main
memory consumption, (ii) inapplicability for ad-hoc queries, and
(iii) performance degradation due to additional dimensions in the
R-tree.

The first advantage of forming a query plan with operators over
using RGS is that after estimating the cost of each feasible query
plan, the query optimizer has the flexibility to choose the plan with
the lowest cost to execute [7]. Furthermore, memory thrashing sel-
dom occurs because only one group of tuples is retrieved from the
preceding grouping operator and it remains within main memory
for skyline processing.

To enable the query optimizer to decide which is the best group-
by skyline query plan, we provide a comprehensive cost analysis of
each implementation.

The traditional query evaluation method combines a grouping
operator followed by a skyline operator to form a so-called group-
by skyline evaluation plan.

For the grouping operator, we consider using recursive hashing
and sorting [4] when no index is available. Additionally, since no
index is available, we consider using the BNL algorithm [1] and the
SFS algorithm [3] for the skyline operator. In the case of indexed
data, we only consider the BBS algorithm [9] as it is I/O-optimal.

2.1 The Grouping Operation
We first review and reformulate the cost model for the grouping

operator. As the grouping operator is an I/O-bound operation [4,
11], we focus on its I/O cost (as disk pages).

2.1.1 No Index: Sorting
When the grouping operation is implemented by sorting, the I/O

cost (disk page accesses) is:

PASORT (N,B,M) =
N

B
·
„

1 + 2 · dlogM−1

N

B ·M e
«

(1)

where N denotes the number of data points, M the number of
memory pages, and B the number of tuples per disk page [4, 11].

2.1.2 No Index: Hashing
The I/O cost of recursive hashing depends on the number of dis-

tinct groups in a dataset. Let |G| be the number of grouping dimen-
sions and βi be the number of distinct values in the i-th grouping
dimension. The number of all possible groups is thus

Q|G|
i=1 βi.

Under uniform distribution assumption of groups, the number of
distinct groups ω in the dataset is [10]:

ω =

|G|Y
i=1

βi

0@1−

 
1− 1Q|G|

i=1 βi

!N
1A (2)

To simplify our cost equations, we assume that βi is the same
(say, β) for all grouping dimension. We also assume that the dataset
is sufficiently large, i.e., N � β|G|, therefore we have:

ω ≈ β|G| (3)

As a remark, if the data is non-uniform, the number of distinct
groups ω can be estimated using the probabilistic counting tech-
nique of [10] using only a single pass of data. Substituting Equa-
tion 3 into the I/O cost equation of the recursive hashing algorithm
given in [11], we can obtain the I/O cost of recursive hashing as:

PAHASH(N,B,M) = 2 · N
B
· dlogM−1 ω − 1e (4)

2.1.3 With Index
In case a disk-based index (e.g., hash index, B+-tree, R-tree)

of the dataset on the attributes G is available, an online grouping
algorithm can be applied to separate the indexed tuples into groups.
This incurs an I/O cost of:

PAGROUP−INDEX =
N

B
(5)



2.2 The Skyline Computation
Skyline computation is a CPU intensive operation [1, 2], so we

consider not only its I/O cost but also its CPU cost (as number of
comparisons).

To process group-by skyline queries, we need to invoke a sky-
line algorithm over tuples within the same group, for each of the ω
groups returned by the preceding grouping operator. In the follow-
ing, we present the I/O cost and CPU cost of BBS [9]. The CPU
costs of BNL and SFS are studied by [2] already and are reformu-
lated for group-by skyline query processing in [7]. Additionally,
the I/O cost for BNL and SFS are also detailed in [7].

2.2.1 With Index: BBS
The BBS algorithm [8] is an R-tree-based skyline algorithm. It

performs in a similar way as the RGS algorithm but is I/O optimal.
BBS maintains a heap when traversing the R-tree such that it al-
ways evaluates and expands the entry that is closest to the origin
among all unvisited entries. Initially, it inserts the root of the R-
tree into the heap. Entries in the heap are organized according to
the mindist function such that entries that are closer to the origin
will be deheaped first. In each iteration, the top element e is de-
heaped and examined against the skyline computed so far. If e is
not dominated by any current skyline objects, either e is output as a
new skyline object (if e is an object) or the child entries of e are in-
serted into the heap (if e is an intermediate node). BBS terminates
when the heap is empty.

Now we develop the cost model of BBS. For group-by skyline
processing, it is necessary to build an R-tree on the attributes of S
for each group of tuples produced by the preceding grouping oper-
ator. This can be implemented by an R-tree bulk-loading algorithm
[5], which uses a space filling curve to sort the data points and then
sequentially pack them into the tree. This includes the cost of one
external sorting on the data set. As a result, for ω groups of tuples,
the R-tree bulk-loading algorithm incurs an I/O cost Rtree

load of:

Rtree
load = ω · PASORT (

N

ω
,B,M) (6)

Next, we need to estimate the I/O cost and CPU cost of BBS.
As each R-tree contains N/ω tuples, by [13], we derive the height
of the tree equal to: dlogf

N
ω
e, where f denotes the average R-

tree fanout. For the moment, we consider the nodes at the ith-level
(e.g., the leaf nodes are at the 0-th level). By applying the model of
[13], the number of nodes in the i-th level equals to N/(f i+1 · ω).
Let λi be the side length of a node in the i-th level. Since the
dimensionality of the tree is |S|, the volume of each node is λ|S|i .
Assuming that the nodes at the same level do not overlap, the total
volume of all nodes equals 1. Thus, we express λi as:

N

f i+1 · ω · λ
|S|
i = 1 =⇒ λi =

„
f i+1 · ω
N

« 1
|S|

(7)

Figure 1 illustrates the R-tree nodes at the i-th level. The side
length of each node is λi. According to the search order of BBS,
the white node will be visited first. The white node contains at
least one skyline point, which is guaranteed to dominate any point
in any dark-gray node. In other words, all dark-gray nodes will be
pruned. However, the light-gray nodes cannot be pruned as they
may contain some skyline point. As a result, the BBS algorithm
accesses only the white node and light-gray nodes at the level i.
Since the dimensionality of the tree is |S|, the fraction of node
accesses is equal to: 1 − (1 − λi)

|S|. By summing the above cost

S
2

λ
i

S
1

1-λ
i

Figure 1: Node Accesses of BBS algorithm over an R-tree

for all tree levels, for all ω trees, we derive the I/O cost of BBS as:

PABBS(N, f,S, ω) (8)

= Rtree
load +

dlogf
N
ω
e−1X

i=0

ω ·
„

N

f i+1 · ω

«h
1− (1− λi)

|S|
i

= Rtree
load +

dlogf
N
ω
e−1X

i=0

N

f i+1
·

2641−

0@1−
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N
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1A|S|
375

We continue to study the computation cost of BBS, in terms of
the number of dominance comparisons. BBS performs dominance
comparisons between the currently examined entry e and the set of
skyline points seen so far. The entry e can either be a non-leaf entry
or a data point. Since the total number of data points is far greater
than that of non-leaf entries, we ignore the dominance comparisons
contributed by non-leaf entries.

When the entry e is a data point, it suffices to find the number
of dominance comparisons for tuples in the same group. The min-
heap H in the BBS algorithm essentially rearranges the data points
in a sorted order, so BBS behaves similarly to SFS. The only dif-
ference is that, in BBS, the tuple of each pruned leaf node will not
be compared with the tuples of any pruned leaf node. According
to our previous discussion, the fraction of pruned nodes equals to:
(1 − λ0)|S|. Therefore, the number CPBBS of dominance opera-
tions in BBS can be approximated as:

CPBBS(N,S, ω) (9)

≈ CPSFS(ω,N, |S|)− CPSFS(ω,N ·
 

1−
„
fω

N

« 1
|S|
!|S|

, |S|)

The number CPSFS of dominance comparisons of SFS can be
estimated by the proposal of [2], which requires skyline cardinality
estimation [2][8].

3. EXPERIMENTS
In this section, we first present the settings of our experiments.

Then, we present the results of our techniques for processing group-
by skyline queries.

3.1 Experimental Settings
All the experiments where conducted on an Intel Core 2 Duo 2.4

GHz PC with 2GB of memory. As real database systems seldom
have all its memory allocated to a single query, we set the amount
of main memory available to a query as at most 10% of the size of
the input. The page size is set to 4K Bytes. For all the R-tree based
methods (e.g., BBS), the fanout is set to 81.



Table 2: Experimental Results
Varying N Actual Estimated

Ind Anti Corr Ind Anti Corr
I/O winner IDX-BNL IDX-BNL IDX-BNL IDX-BNL IDX-BNL IDX-BNL
I/O loser SRT-SFS SRT-SFS SRT-SFS SRT-SFS SRT-SFS SRT-SFS

CPU winner *BBS *SFS *BBS *BBS *BBS *BBS
CPU loser *BNL *BNL *BNL *BNL *BNL *BNL

Varying |S| Actual Estimated
Ind Anti Corr Ind Anti Corr

I/O winner IDX-BNL IDX-BNL IDX-BNL IDX-BNL IDX-BNL IDX-BNL
I/O loser SRT-SFS SRT-SFS SRT-SFS SRT-SFS SRT-BBS SRT-SFS

CPU winner *BBS *SFS *BBS *BBS *SFS *BBS
CPU loser *BNL *BNL *BNL *BNL *BNL *BNL

(a) Winners and losers of plans on synthetic data; varying N from 100K to
500K tuples; fixing |G|=2, |S|=3

(b) Winners and losers of plans on synthetic data; varying |S| from 2 to 5;
fixing |G|=2, N=100K tuples

We have carried out experiments on both real data and synthetic
data. The real data is the NBA players’ technical statistics from
1946 to 2007. It contains 20,788 tuples in total, where each tu-
ple stores the statistics of a player in a season, containing: two
attributes for group-by, and eight attributes for skyline. : games
played (gp), points (pt), rebounds (reb), assists (ast), steals (stl),
blocks (blk), free throws (ftm), three-point shots (tpm). We con-
sidered queries on the following attributes (for synthetic datasets):
Ind (independent attributes), Corr (correlated attributes), and Anti
(anti-correlated attributes). Unless stated otherwise, each dataset
contains N = 100000 tuples, with a total of 20 attributes (a1,
a2, . . ., a20): attributes a1 . . . a5 are for grouping (with domain
size β = 5), attributes a6 . . . a20 are for skyline (with domain size
θ = 10000). Specifically, a6 . . . a10 are generated independently,
a11 . . . a15 are correlated to a6, and a16 . . . a20 are anti-correlated
to a6. By default, each query has |G| = 2 group-by attributes and
|S| = 3 skyline attributes.

3.2 Cost Model Evaluation
From the results in all our experiments, RGS was found to incur

an extremely high number of I/Os because it demanded an R-tree to
be built for all 20 attributes of the dataset and the prohibitive num-
ber of entries/data points forced the min-heap to be placed on disk
rather in the memory. In the case of anti-correlated datasets, RGS
could not terminate within hours. Due to RGS’s impracticability,
we omit RGS from the subsequent discussion.

In the following, a plan is said to be a winner (or loser) if it incurs
the lowest (or highest) cost for the majority of tested cases. Sim-
ilarly, we compute the estimated cost of each plan, and determine
the winners/losers according to the estimation.

Effect of the Data Size N . As the CPU cost is independent of the
group-by formation, we use *BBS to represent all plans involving
BBS (asterisk being a wildcard). Table 2a shows that the estimation
is able to predict the winners/losers correctly in 11 out of 12 cases.

Although BBS is I/O-optimal for computing skyline, it does not
excel above BNL in the context of group-by skyline query pro-
cessing because it requires building R-trees at query-time. How-
ever, BBS-related plans are effective in pruning because they are
the CPU winners in most cases. For anti-correlated data, *BBS is
not able to prune R-tree nodes effectively so its actual CPU cost is
very close to *SFS.

Effect of the Number of Skyline Attributes |S|. In Table 2b,
we see that the estimated winners/losers are almost identical to the
actual winners/losers. In the case of I/O cost in anti-correlated data,
the actual costs of SRT-SFS and SRT-BBS are quite small at large
|S|. Thus, the incorrect prediction is not a problem in this case.

Effect of the Number of Group-by Attributes |G|. Our tech-
nique is able to estimate winners/losers correctly in all tested cases.

Results on Real Data. We then investigate the effect of group-
by and skyline attributes on the NBA dataset. Our experiments

show that the estimated winners/losers on I/O cost and CPU cost
all match with the actual ones. In fact, the correctness of prediction
is robust in all cases. The above results confirm that it is practical
to apply the estimation model even on real datasets.

4. CONCLUSIONS
This paper studies the processing of group-by skyline queries

in relational databases. We show that processing group-by skyline
queries by composing relational evaluation plans is much more effi-
cient than using a single holistic algorithm. We further provide cost
estimation techniques for implementing group-by skyline queries
in relational engines.

Experimental results on both real and synthetic data suggest that
we are able to, in most cases, predict the winner/loser query plans
for group-by skyline queries.

As future work, we will upgrade our estimation models using the
kernel-based skyline cardinality estimation techniques from [15].
There are other algorithms such as [6, 12, 14] that use specialized
data structures. We leave the consideration of those algorithms as
future work.
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