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Abstract 

 
Linear subspace learning (LSL) is a popular approach 

to image recognition and it aims to reveal the essential 
features of high dimensional data, e.g., facial images, in a 
lower dimensional space by linear projection. Most LSL 
methods compute directly the statistics of original training 
samples to learn the subspace. However, these methods do 
not effectively exploit the different contributions of different 
image components to image recognition. We propose a 
novel LSL approach by sparse coding and feature grouping. 
A dictionary is learned from the training dataset, and it is 
used to sparsely decompose the training samples. The 
decomposed image components are grouped into a more 
discriminative part (MDP) and a less discriminative part 
(LDP). An unsupervised criterion and a supervised 
criterion are then proposed to learn the desired subspace, 
where the MDP is preserved and the LDP is suppressed 
simultaneously. The experimental results on benchmark 
face image databases validated that the proposed methods 
outperform many state-of-the-art LSL schemes.   
 

1. Introduction 
As a popular dimensionality reduction and feature 

extraction technique, linear subspace learning (LSL) has 
been successfully used in various computer vision and 
pattern recognition applications, for example, appearance 
based face recognition (FR). Representative LSL methods 
include principal component analysis (PCA), e.g., 
Eigenface [1], Fisher linear discriminant analysis (FLDA) 
[2-4], the manifold learning [5-6] based locality preserving 
projection (LPP) [7], local discriminant embedding (LDE) 
[8], graph embedding [9], etc. According to if the class 
label information of the training samples is exploited, the 
LSL methods can be categorized into unsupervised 
methods (e.g., PCA and LPP) and supervised methods (e.g., 
FLDA [2], regularized LDA (RLDA) [4] and LDE). 

Generally speaking, LSL methods learn the desired 
subspace or projections by optimizing a certain criterion 
function. For example, PCA seeks for an optimal subspace 

in which the image variable vector is de-correlated, while 
FLDA seeks for an optimal subspace by maximizing the 
ratio of between-class scatter to within-class scatter. 
Considering the fact that high dimensional data often reside 
on a low dimensional manifold, the LSL methods such as 
LPP [7] learn the subspace by preserving the geometric 
graph of the original high dimensional data. 

One key step in LSL is the estimation of sample scatter 
matrices, with which the liner projections are computed. 
On the other hand, the learned projections decompose the 
training samples into different components, which have 
different contributions to recognition tasks. Most of the 
existing LSL methods estimate the scatter matrices directly 
from the original training samples. That is, the subspace is 
learned for image decomposition, or at most we could say 
that the subspace learning and image decomposition are 
accomplished simultaneously. However, the different 
contributions of different components to image recognition 
cannot be effectively exploited by these methods because 
the original training samples are used in statistics 
calculation. For example, the noise and trivial structures in 
face images should have little contribution to FR because 
they could not represent the intrinsic and stable features of 
the subject. Intuitively, why don’t we decompose the image 
first and then use the different image components to guide 
the subspace learning? It is of high interest and importance 
to investigate new LSL schemes by considering the 
characteristics of different image components.   

It has been found that natural images can be generally 
represented by a small number of basis functions chosen 
out of an over-complete code set [10]. With the 
development of l0- and l1-minimization techniques [11-12], 
in recent years the sparse coding (or sparse representation) 
methods have been well studied for solving the inverse 
problems in image reconstruction and separation, such as 
compressive signal recovery [11-12], morphological 
component analysis [13-14] and dictionary learning 
[15-16]. Suppose that x∈ℜn is the target signal to be coded, 
and Φ =[φ1,…, φm] is the given dictionary of atoms φi, the 
sparse coding of x over Φ is to find a sparse vector α (i.e., 
most of the coefficients in α are close to zero) such that 
x≈Φα. If l1-norm is used to measure the sparsity, the sparse 
coding problem can be formulated as minα||α||1 s.t. 
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2
ε− ≤x Φα , where ε is a constant. Alternatively, the 

Lagrangian formulation of the above minimization is often 
used: { }2

2 1
min λ− +α x Φα α , where constant λ is to 

balance the reconstruction error and the sparsity constraint.  
Sparse coding has also been used for pattern 

classification. In [17], a signal is coded over a set of 
redundant bases and is then classified based on its sparse 
coding vector. In [18], a sparse representation based 
classification (SRC) scheme is proposed for robust FR. The 
query face image is sparsely coded over the training 
samples, and then it is classified to the class which yields 
the least coding error. The SRC is improved in [19] by 
learning a dictionary from the original training samples. In 
[20], the l1-graph is established by sparsely coding one 
sample over the other samples for classification. In [21], an 
LSL scheme called sparsity-preserving projection (SPP) is 
proposed for FR. It aims to preserve the l1-graph after the 
linear dimension reduction. Compared with LPP, which 
aims to preserve the l2-graph of the training samples, SPP 
shows some superiority. However, very recently Zhang et 
al. [22] showed that it is not the l1-norm sparsity but the 
collaborative representation mechanism that truly helps FR 
in such sparsity based FR methods.  

Different from most of the existing LSL methods such as 
PCA, FLDA/RLDA, LPP and SPP, where the subspace is 
learned for image decomposition, in this paper we propose 
a new LSL framework, where the images are decomposed 
for subspace learning. The sparse coding is used as a tool 
for adaptive image decomposition in the learning stage. 
First, a patch based dictionary D is learned from the 
training samples. Suppose that D has k atoms. By coding 
each image patch over D (note that this process is actually 
accomplished in the dictionary learning stage), the whole 
training sample can be written as a linear combination of k 
components. We then group the k components into a more 
discriminative part (MDP) and a less discriminative part 
(LDP). Finally, we seek for a subspace where the MDP is 
preserved while the LDP is suppressed. Once the projection 
matrix P is trained, for a query image we only need to 
project it onto P for classification. The sparse coding is 
only employed in the learning stage.   

The rest of the paper is organized as follows. Section 2 
presents the methodology. Section 3 performs extensive 
experiments and Section 4 concludes the paper.  

2. Subspace learning via sparse coding 

2.1. Motivation and flowchart 
One important advantage of LSL methods is their 

efficiency and simplicity. With the learned projection 
matrix P, the dimensionality of training samples can be 

significantly reduced so that the storage space can be 
greatly reduced. Meanwhile, in the dimensionality reduced 
subspace, the main features of the images can be enhanced 
so that the recognition accuracy can be improved. Apart 
from the projection matrix P, the classifier is another 
important issue in practical FR systems. In this paper we 
prefer to use the simple nearest neighbor (NN) classifier for 
its efficiency. 

To preserve the discriminative features in the subspace 
defined by P, a step of feature grouping can be very helpful. 
In the case of unsupervised LSL, we could group the 
features into a more informative group and a less 
informative group, while in the case of supervised LSL, the 
Fisher criterion can be applied to group the features into a 
more discriminative group and a less discriminative group. 
The linear subspace can then be computed by preserving 
the more informative/discriminative components and 
suppressing the less informative/discriminative 
components simultaneously. In order for feature grouping, 
we use the dictionary learning and sparse coding technique 
to decompose the training samples over a set of adaptive 
and redundant bases so that there is more flexibility for 
image (feature) representation. The flowchart of the 
proposed LSL approach is shown in Fig. 1.  

    

 
 
Figure 1: The procedures of the proposed linear subspace 
learning approach.  

2.2. Dictionary learning and sparse coding 

Denote by [ ]1 2, ,..., n m
m

×= ∈ℜX x x x  the dataset of 

training samples. We’d like to decompose each training 
sample xi, i=1,2,…,m, into two parts, a part a

ix  formed by 
the more informative (discriminative) components and a 
part b

ix  formed by the less informative (discriminative) 
components. Then the dataset X can be written as X = Xa

 + 
Xb, where 1 2, ,...,a a a

a m⎡ ⎤= ⎣ ⎦X x x x  and 1 2, ,...,b b b
b m⎡ ⎤= ⎣ ⎦X x x x . 

With a linear projection matrix P, there is PX = PXa + PXb, 
and we intend to make the features in Xa be preserved and 
the features in Xb be suppressed after the projection by P. 
Finally, when a testing face image y comes, we can directly 
project it onto P, and compute the distance between Py and 
PX to judge which class y belongs to according to the NN 
classification rule. 

One important issue in the proposed scheme is how to 
decompose the training sample images for grouping. There 
are many existing tools for image decomposition, such as 
Fourier transform, wavelet transform, etc. However, these 
transforms are universal to all types of images, and they 
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may not be most effective to face images. It is desired that a 
transformation which is adaptive to the face dataset X can 
be used. PCA is a kind of adaptive transformation, whose 
bases are adaptively calculated from X. Nonetheless, PCA 
is an orthogonal transform aiming to de-correlate X, and it 
concentrates most of the energy of X into only several 
major components. This makes the feature grouping of X in 
the PCA domain infeasible.   

Inspired by the success of sparse coding in image 
processing, we propose to learn an adaptive dictionary D 
from X and use it to represent X. Since the dimensionality 
of original face image xi is often very high, it is hard to 
learn a redundant dictionary directly for X under the sparse 
coding framework. As in [15-16], we learn a patch based 
dictionary. Each training sample xi is partitioned into q 
overlapped patches, and totally there are h=m×q patches. 
Suppose that the dimension of each patch vector tj, 
j=1,2,…,h, is l, then an l×h data matrix T=[t1, t2, …, th] is 
established. From T, we aim to learn a dictionary D = [d1, 
d2, …, dk] ∈ ℜl×k, where dz

Tdz=1, z=1,2,…,k, such that 

{ }2
, , 1

arg min
F

J λ= − +D Λ D Λ T DΛ Λ              (1) 

where Λ=[α1, α2, …, αh]∈ℜk×h and αj is the coding vector 
of tj over D, and λ is a scalar that balances the sparsity and 
reconstruction error. 

Eq. (1) is a joint optimization problem of the dictionary 
D and the coefficient matrix Λ. Although it is not jointly 
convex to D and Λ, it is convex with respect to each of them 
when the other one is fixed. Therefore, a local minimum of 
Eq. (1) can be obtained by optimizing D and Λ 
alternatively. In this paper, we adopted the dictionary 
learning algorithm in [19] to solve Eq. (1).  

In learning the dictionary D, the sparse coding matrix Λ 
is computed simultaneously. For each patch tj, we have 

tj ≈ Dαj =αj(1)⋅d1+αj(2)⋅d2+…+αj(k)⋅dk 
That is, each patch can be written as the summation of k 
components 

tj ≈ tj,1+ tj,2+…+ tj,k                           (2) 
where tj,z=αj(z)⋅dz. By combining all the patches, image xi 
can be written as the summation of k components: 

xi ≈ xi,1+ xi,2+…+ xi,k                        (3) 
where xi,z is just the concatenation of those tj,z belong to this 
image, and the overlapped pixels of the patches are simply 
averaged for xi,z.  

Fig. 2 shows an example of sparse coding. We set k=64 
in the dictionary learning. Fig. 2(a) is the original face 
image; Fig. 2(b) ~ Fig. 2(e) show the decomposed 
components xi,z corresponding to the 1st, 11th, 21th, and 41th 
atoms. We can see that the representations on different 
atoms are different, which implies that the discrimination 
ability of different components is different. This lays the 
foundation for feature grouping in next subsection. Please 
note that in our methods the sparse coding is used for image 

decomposition but not for local feature extraction. The LSL 
methods to be developed are holistic feature based, while 
they can be extended to local feature based methods. 

 

     
            (a)              (b)              (c)              (d)               (e)   
Figure 2: (a) A face image, and (b) ~ (e) some decomposed 
components of it via dictionary learning and sparse coding.    
 

            
(a)                 (b)                  (c) 

Figure 3: (a) A face image; and its (b) more informative part and 
(c) less informative part after unsupervised feature grouping.     

2.3. Unsupervised subspace learning 
After sparse coding, each face image xi is decomposed 

into k feature images xi,z. We can then group them for more 
effective subspace learning. Depending on whether or not 
the class labels of training samples are known, we have 
different grouping and learning criteria. In this subsection, 
we discuss the unsupervised learning, while the supervised 
learning is discussed in next subsection. 

 
2.3.1. Feature grouping. In unsupervised learning, we do 
not know the class label of each face image xi. Or we can 
view each image xi as a class. Hence if the feature xi,z has a 
bigger variance, we can think that this feature is more 
informative to separate the samples. Based on this heuristic, 
we can group those feature images into a more informative 
group and a less informative group. 

Denote by zx  the mean of feature images xi,z. The 
variance of feature image xi,z is  

( )2
1

,1

m
z i z zm i

σ
=

= −∑ x x                       (4) 

We want to put those feature images having larger σz into 
the more informative group, and the remaining into the less 
informative group. To this end, we re-order xi,z according to 
their variances σz  in descending order. Then the first τ⋅k 
feature images, where τ is a constant, are grouped into the 
more informative group, while the remaining images are 
grouped into the less informative group. 

For the convenience of expression, we suppose that 
features {xi,1, xi,2, …, xi,z1} fall into the more informative 
group and the remaining features {xi,z1+1, xi,z1+2, …, xi,k} fall 
into the less informative group. Then we define the more 
discriminative part (MDP) a

ix  and the less discriminative 
part (LDP) b

ix  of each image xi as  
a
ix =xi,1+ xi,2+ …+ xi,z1                    (5-a) 
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b
ix =xi,z1+1+xi,z1+2+…+xi,k                   (5-b) 

Fig. 3 shows the MDP and LDP of the face image in Fig. 2. 
We can see that the MDP image preserves the main 
appearance of the original face image. 
 
2.3.2. Subspace learning. After feature grouping, each 
training sample can be written as xi= a

ix + b
ix , and thus we 

have X = Xa
 + Xb. It is experimentally validated that Xa

  

could lead to much higher FR rate than Xb. However, if we 
learn the projection matrix P only based on Xa, the result 
cannot be very satisfying because Xb is also useful for 
determining the projection direction. To effectively exploit 
the information in both Xa

 and Xb, we propose to learn a 
subspace where the energy in Xa

 is well preserved and the 
energy in Xb is suppressed.  

Denote by x , ax  and bx  the mean vectors of X, Xa 
and Xb, respectively, and let i i= −x x x , a a a

i i= −x x x  

and b b b
i i= −x x x be the centralized image vectors. 

Accordingly we have the centralized datasets X ,  aX , and  

bX . Clearly, we have x = ax + bx , a b
i i i= +x x x  and 

a b
i i i= +Px Px Px . After projection, the average energy of 
a
iPx  is 

( ) ( )
( ){ } { }

2
1 1

1 12

1

Tm ma a a
a i i im mi i

T T T
a a amtr tr

Ε
= =

= =

= =

∑ ∑Px Px Px

P X X P PS P
         (6) 

where 1 T
a a am=S X X  is the total scatter matrix (i.e. the 

covariance matrix) of Xa, and “tr” is the matrix trace 
operator. Similarly, the average energy of b

iPx  is 

{ }2
1

1 2

m b T
b i bm i

trΕ
=

= =∑ Px PS P                  (7) 

where 1 T
b b bm=S X X  is the total scatter matrix of Xb. 

To preserve the MDP Xa while suppressing the LDP Xb, 
we seek for a projection matrix P to maximize the energy Εa 
while minimizing the energy Εb by solving the following 
optimization problem: 

( )
( )

arg max arg max
T

aa
T

b b

tr
J

tr
Ε
Ε

= =P P P

PS P

PS P
          (8) 

An equivalent form of Eq. (8) is  
( )arg max T

aJ tr=P P
PS P  s.t. T

b =PS P I         (9) 

Apparently, the desired P can be computed by using 
generalized eigenvalue decomposition, i.e., matrix P is 
composed of the generalized eigenvectors of Saw=λSbw 
corresponding to the p largest eigenvalues. We can see that 
the conventional PCA method is a special case of the 
proposed method without applying sparse coding and 
feature grouping to the training images. In this case the 
scatter matrix Sb does not exist and the scatter matrix Sa 

becomes the total scatter matrix S of all training samples. 
Therefore, the objective function in Eq. (9) reduces to 

( )arg max TJ tr=P P
PSP  s.t. T =PSP I , which is exactly 

the objective function of PCA.   

2.4. Supervised subspace learning 
2.4.1. Feature grouping. In supervised learning, the class 
label of xi is available. In this case, the Fisher ratio can be 
utilized to evaluate features. If the feature xi,z has a bigger 
Fisher ratio, this feature is more discriminative to separate 
the samples. Based on this heuristic, we can group the 
feature images xi,z into  a more discriminative group and a 
less discriminative group. 

We denote by Xc the set of samples of the cth class, by 
zx  the mean of feature images xi,z and by ,z cx the mean of 

feature images xi,z that belong to class c, c=1,2,…,C.  The 
fisher ratio fz of feature images xi,z is  

2
,1

21
, ,1

( )

( )
c i c

C
z z cb c

z C
w i z z cmc

f σ
σ

=

= ∈

−
= =

−
∑

∑ ∑ x X

x x

x x
     (10)                   

where mc is the number of samples belong to the cth class. 
Similar to unsupervised LSL, those feature images 

which have larger fz are added up for the MDP image a
ix , 

and the remaining features are added up for the LDP image 
b
ix .  Fig. 4 shows the MDP and LDP images of the face 

image in Fig. 2.  
 
 

             
(a)                   (b)                 (c) 

Figure 4: (a) A face image; and its (b) more discriminative part 
and (c) less discriminative part after supervised feature grouping.   
   
 
2.4.2. Subspace learning. After supervised feature 
grouping, each training sample can be written as xi= a

ix + b
ix , 

and we have X = Xa
 + Xb. Our goal is still to train a 

projection matrix P so that for a query image y we can use 
Py as the feature for classification. Denote by a

cx  the mean 
vector of the MDP images in the cth class, and denote by 

ax  the mean vector of the MDP images in all classes. We 
can construct the between-class and within-class scatter 
matrices of MDP images as follows 

( )( )1
1

TCa a a a a
B c c cm c

m
=

= − −∑S x x x x            (11) 

( )( )1
1 i c

TCa a a
W i c i cm c= ∈
= − −∑ ∑ x X

S x x x x         (12) 

Denote by bx  the mean vector of the LDP images in all 
classes. The total LDP scatter matrix is  
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( )( )1
1 i c

TCb b b
i im c X= ∈

= − −∑ ∑ x
S x x x x          (13) 

The LDP scatter matrix Sb should be minimized in the 
subspace, i.e., the desired P should minimize tr{PSbPT}. 
Meanwhile, to better separate the different classes in the 
subspace, the MDP between-class scatter matrix should be 
maximized while the MDP within-class scatter matrix 
should be minimized, i.e., maximize tr{PS a 

B PT} and 
minimize tr{PS a 

W PT}. In total, the supervised subspace 
learning criterion can be defined as follows:  

{ }arg max
{ } (1 ) { }

a T
B

a T T
W b

trJ
tr trα α

=
⋅ + −P P

PS P
PS P PS P

 

where scalar α is used to balance the MDP within-class 
scatter and the LDP total scatter. The above criterion is 
equivalent to 

( ){ }
{ }arg max

(1 )

a T
B

a T
W b

trJ
tr α α

=
+ −

P P

PS P
P S S P

        (14) 

Clearly, the row vector of desired P can be chosen as the 
p generalized eigenvectors of [ (1 ) ]a a

B W bλ α α= + −S w S S w  
corresponding to the first p largest eigenvalues. It is not 
difficult to see that the conventional FLDA is a special case 
of Eq. (14) without applying sparse coding and feature 
grouping to the training images and let α=0.  

3. Experimental results 
We denote the proposed unsupervised LSL method via 

sparse coding as USCP (unsupervised sparse coding based 
projection), and the supervised version as SSCP 
(supervised sparse coding based projection).The 
performance of USCP and SSCP is evaluated on three 
representative facial image databases: the AR database, the 
extended Yale B database and the Multi-PIE database. The 
representative LSL methods, including PCA (Eigenface), 
LPP (Laplacianface) [7], FLDA (Fisherface) [2], RLDA [4] 
and SPP [21], are used for comparison. The code of the 
proposed USCP and SSCP methods can be downloaded at 
http://www4.comp.polyu.edu.hk/~cslzhang/code.htm.  

In all the experiments, the size of face images is resized 
to 32×32. In dictionary learning, the size of each patch is 
8×8 and the overlap between two neighboring patches is 4 
pixels. The number of atoms, i.e., k, in the dictionary is 64. 
The NN classifier with Euclidean distance is employed for 
classification. The parameter α in Eq. (14) for SSCP is 
chosen by 10-fold cross-validation on training set. As to the 
parameter τ  in feature grouping, it is set as 0.8 for both 
USCP and SSCP. On each database, the program is run for 
100 times and the average results are reported.   

Since the dimension of the image vector space is much 
larger than the number of training samples, all the methods 
(except for PCA) involve a PCA (or KL transform) phase 
on the three databases.  

3.1. Experiments on the extended Yale B database 
 

     
(a) Training samples 

     
(b) Testing samples 

Figure 5: Some randomly selected training and testing images of 
a subject in the Extended Yale B database.  

 

10 20 30 40 50 60 70 80 90 100
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Dimension

R
ec

og
ni

tio
n 

ra
te

 

 

USCP
PCA
LPP
SPP

 
Figure 6:  Recognition rates of PCA, LLP, SPP and USCP versus 
dimensions on the Extended Yale B database. 
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Figure 7:  Recognition rates of FLDA, RLDA and SSCP versus 
dimensions on the Extended Yale B database. 

 
The extended Yale B face database [25] contains 38 

human subjects under 9 poses and 64 illumination 
conditions. The 64 images of a subject in a particular pose 
were acquired at a rate of 30 frames/second so that there are 
only small changes in head pose and facial expression. All 
frontal-face images marked with P00 were used in our 
experiment. Each image is resized and pre-processed by 
histogram equalization. In each of the 100 runs, we 
randomly selected 5 images from the first 32 images per 
subject for training, and 5 images from the remaining 32 
images for testing. Fig. 5 shows some example training and 
testing samples. In the PCA phase of methods FLDA, LPP, 
etc, we selected the number of principal axes as 100. The 
K-nearest neighborhood parameter K is chosen as 1 in LPP 
method.  

The average recognition rates (over 100 runs) versus 
dimensions are illustrated in Fig. 6 and Fig. 7. We can see 
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that the recognition rate of USCP is much higher than PCA 
and LPP and is higher than SPP, while SSCP performs 
better than FLDA and RLDA. 

3.2. Experiments on the Multi-PIE database 
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Figure 8: Recognition rates of all competing methods versus 
dimensions on the Multi-PIE database. 
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Figure 9: Recognition rates of the supervised methods SSCP, 
FLDA and RLDA versus dimensions on the Multi-PIE database. 

 
The Multi-PIE database [24] contains 337 subjects, 

captured under 15 viewpoints and 19 illumination 
conditions in four recording sessions for a total of more 
than 750,000 images. We selected a subset that contains 
images from 249 individuals from session 1, each 
providing 11 different images. In the experiment, we 
randomly selected three images of each class for training 
and the remaining eight images for testing. In the PCA 
phase of methods FLDA, LPP, etc, we selected the number 
of principal axes as 200. The average recognition rates 
versus the variation of dimensions are illustrated in Fig. 8 
and Fig. 9. We can see that the performances of USCP and 
SSCP are very competitive.  

3.3. Experiments on the AR database 
The AR face database [23] contains over 4,000 color 

face images of 126 people (70 men and 56 women), 
including frontal views of faces with different facial 
expressions, lighting conditions and occlusions. The 
pictures of most people were taken in two sessions 
(separated by two weeks). Each session contains 14 color 
images and 120 individuals (65 men and 55 women) 
participated in both sessions. The images of these 120 
persons were selected in our experiment. Only the full 

facial images were considered here (no attempt was made 
to handle occluded face recognition in each session). We 
manually cropped the face portion and normalized it to 
32×32 pixels. The normalized images of one person are 
shown in Fig. 10, where (a)~(g) are from Session 1, and 
(n)~(t) are from Session 2. The details of the images are: (a) 
neutral expression, (b) smile, (c) anger, (d) scream, (e) left 
light on; (f) right light on; (g) all sides light on; and (n)~(t) 
were taken under the same conditions as (a)~(g). 

 

 
            (a)        (b)         (c)        (d)        (e)        (f)         (g) 

 
    (n)        (o)         (p)        (q)        (r)         (s)        (t) 

Figure 10: Sample images for one subject of the AR database. 
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Figure 11:  Recognition rates of all competing methods versus 
dimensions on the AR database. 
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Figure 12: Recognition rates of supervised methods SSCP, 
FLDA and RLDA versus dimensions on the AR database. 

 
In the experiment, we randomly selected two images 

from Section 1 and the corresponding two images from 
Section 2 for training. The remaining ten images were used 
for testing. In the PCA phase, we selected the number of 
principal axes as 200. The K-nearest neighborhood 
parameter K is chosen as 3 in the LPP method. From Fig. 
11 and Fig. 12, we can see that SSCP consistently 
outperforms other methods, and USCP performs better than 
the unsupervised methods. 

Table 1 summarizes the top average recognition rates of 
all competing methods on the three databases. We can 
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conclude that USCP and SSCP work stably across all the 
databases. The top average recognition rates of USCP are 
much higher than LPP and PCA, comparable to SSP, and 
even better than the supervised FLDA and RLDA methods 
on some databases. As to the supervised method SSCP, it 
consistently outperforms all the competing methods on all 
the databases, validating that the proposed subspace 
learning methods via sparse coding is effective. 

 
Table 1: The top average recognition rates (%) and the associated 
dimensionality of different methods. 
 

Method Yale B MPIE AR 

PCA 67.5±17.2 57.9±10.1 80.2±13.6 
100 150 115 

LLP 76.2±16.6 71.9±7.3 91.8±3.5 
100 150 115 

SSP 79.9±17.7 79.2±7.3 93.2±2.8 
95 150 115 

USCP 81.2±16.8 74.5±8.8 94.0±4.4 
100 150 115 

FLDA 
86.3±12.8 80.7±8.8 93.7±8.6 

36 130 115 

RLDA 86.4±12.9 81.5±9.5 93.1±9.2 
36 150 115 

SSCP 87.0±13.5 82.4±11.6 96.2±3.2 
36 150 115 

4. Conclusion 
In this paper, we proposed a novel linear subspace 

learning (LSL) method via sparse coding and feature 
grouping. A patch based dictionary with k atoms was first 
learned from the training set. Then each training image can 
be decomposed as a linear combination of k components. 
These components were grouped into two parts: a more 
discriminative part (MDP) and a less discriminative part 
(LDP). Finally, a desired linear subspace was sought by 
preserving the MDP component while weakening the LDP 
component. The experimental results on benchmark face 
databases showed that the proposed sparse coding induced 
LSL methods outperform many representative and state-of- 
the-art LSL methods. 
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