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Abstract. By coding the input testing image as a sparse linear combi-
nation of the training samples via l1-norm minimization, sparse represen-
tation based classification (SRC) has been recently successfully used for
face recognition (FR). Particularly, by introducing an identity occlusion
dictionary to sparsely code the occluded portions in face images, SRC can
lead to robust FR results against occlusion. However, the large amount
of atoms in the occlusion dictionary makes the sparse coding computa-
tionally very expensive. In this paper, the image Gabor-features are used
for SRC. The use of Gabor kernels makes the occlusion dictionary com-
pressible, and a Gabor occlusion dictionary computing algorithm is then
presented. The number of atoms is significantly reduced in the computed
Gabor occlusion dictionary, which greatly reduces the computational cost
in coding the occluded face images while improving greatly the SRC ac-
curacy. Experiments on representative face databases with variations of
lighting, expression, pose and occlusion demonstrated the effectiveness
of the proposed Gabor-feature based SRC (GSRC) scheme.

1 Introduction

Automatic face recognition (FR) is one of the most visible and challenging re-
search topics in computer vision, machine learning and biometrics [1], [2], [3].
Although facial images have a high dimensionality, they usually lie on a lower
dimensional subspace or sub-manifold. Therefore, subspace learning and mani-
fold learning methods have been dominantly and successfully used in appearance
based FR [4], [5], [6], [7], [8], [9], [10], [11]. The classical Eigenface and Fisherface
[4], [5], [6] algorithms consider only the global scatter of training samples and
they fail to reveal the essential data structures nonlinearly embedded in high
dimensional space. The manifold learning methods have been proposed to over-
come this limitation [7], [8], and the representative manifold learning methods
include locality preserving projection (LPP) [9], local discriminant embedding
(LDE) [10], unsupervised discriminant projection (UDP) [11], etc.

The success of manifold learning implies that the high dimensional face im-
ages can be sparsely represented or coded by the representative samples on the
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manifold. Very recently, an interesting work was reported by Wright et al. [12],
where the sparse representation (SR) technique is employed for robust FR. In
Wright et al.’s pioneer work, the training face images are used as the dictionary
to code an input testing image as a sparse linear combination of them via l1-norm
minimization. The SR based classification (SRC) of face images is conducted by
evaluating which class of training samples could result in the minimum recon-
struction error of the input testing image with the sparse coding coefficients.
To make the l1-norm sparse coding computationally feasible, in general the di-
mensionality of the training and testing face images should be reduced. In other
words, a set of features could be extracted from the original image for SRC. In
the case of FR without occlusion, Wright et al. tested different types of features,
including Eigenface, Randomface and Fisherface, for SRC, and they claimed that
SRC is insensitive to feature types when the feature dimension is large enough.
To solve the problem of FR with occlusion or corruption, an occlusion dictio-
nary was introduced to code the occluded or corrupted components [12]. Since
the occluded face image can be viewed as a summation of non-occluded face
image and the occlusion error, with the sparsity constrain the non-occluded part
is expected to be sparsely coded by the training face dictionary only, while the
occlusion part is expected to be coded by the occlusion dictionary only. Conse-
quently, the classification can be performed based on the reconstruction errors
using the SR coefficients over the training face dictionary. Such a novel idea has
shown to be very effective in overcoming the problem of face occlusion.

Although the SRC based FR scheme proposed in [12] is very creative and
effective, there are two issues to be further addressed. First, the features of
Eigenface, Randomface and Fisherface tested in [12] are all holistic features.
Since in practice the number of training samples is often limited, such holistic
features cannot effectively handle the variations of illumination, expression, pose
and local deformation. The claim made in [12] that feature extraction is not so
important to SRC actually holds only for holistic features. Second, the occlusion
matrix proposed in [12] is an orthogonal matrix, such as the identify matrix,
Fourier bases or Haar wavelet bases. However, the number of atoms required in
the orthogonal occlusion matrix is very high. For example, if the dimensionality
of features used in SRC is 3000, then a 3000× 3000 occlusion matrix is needed.
Such a big occlusion matrix makes the sparse coding process very computation-
ally expensive, and even prohibitive.

In this paper, we propose to solve the above two problems by adopting Gabor
local features into SRC. The Gabor filter was first introduced by David Gabor in
1946 [13], and was later shown as models of simple cell receptive fields [14]. The
Gabor filters, which could effectively extract the image local directional features
at multiple scales, have been successfully and prevalently used in FR [15], [16],
leading to state-of-the-art results. Since the Gabor features are extracted in local
regions, they are less sensitive to variations of illumination, expression and pose
than the holistic features such as Eigenface and Randomface. As in other Gabor-
feature based FR works [15], [16], we will see that the Gabor-feature based SRC
(GSRC) improves much the FR accuracy over original SRC. More importantly,
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the use of Gabor filters in feature extraction makes it possible to obtain a much
more compact occlusion dictionary. A Gabor occlusion dictionary computing
algorithm is then presented. Compared with the occlusion dictionary used in
original SRC, the number of atoms is significantly reduced (often with a ratio
40:1 ∼ 50:1 in our experiments) in the computed Gabor occlusion dictionary. It
can not only greatly reduce the computational cost in coding the occluded face
images, but also greatly improve the SRC accuracy. Our experiments on bench-
mark face databases clearly validate the performance of the proposed GSRC
method.

The rest of the paper is organized as follows. Section 2 briefly reviews SRC
and Gabor filters. Section 3 presents the proposed GSRC algorithm. Section 4
conducts experiments and Section 5 concludes the paper.

2 Related Work

2.1 Sparse representation based classification for face recognition

Denote by Ai = [si,1, si,2, ..., si,ni ] ∈ Rm×ni the set of training samples of
the ith object class, where si,j , j = 1, 2, · · · , ni, is an m-dimensional vector
stretched by the jth sample of the ith class. For a test sample y0 ∈ Rm from
this class, intuitively, y0 could be well approximated by the linear combina-
tion of the samples within Ai, i.e. y0 =

∑ni

j=1 αi,jsi,j = Aiαi, where αi =

[αi,1, αi,2, ..., αi,ni ]
T ∈ Rni are the coefficients. Suppose we have K object classes,

and let A = [A1, A2, · · · , AK ] be the concatenation of the n training samples
from all the K classes, where n = n1 + n2 + · · ·+ nK , then the linear represen-
tation of y0 can be written in terms of all training samples as y0 = Aα, where
α = [α1; · · · ;αi; · · · ;αK ] = [0, · · · , 0, αi,1, αi,2, · · · , αi,ni , 0, · · · , 0]T [12].

In the case of occlusion or corruption, we can rewrite the test sample y as

y = y0 + e0 = Aα+ e0 = [A, Ae]

[
α
αe

]
.
= Bω (1)

where B = [A,Ae] ∈ Rm×(n+ne), and the clean face image y0 and the corruption
error e0 have sparse representations over the training sample dictionary A and
occlusion dictionary Ae ∈ Rm×ne , respectively. In [12], the occlusion dictionary
Ae was set as an orthogonal matrix, such as identity matrix, Fourier bases, Haar
wavelet bases, etc. The SRC algorithm [12] is summarized in Algorithm 1.

2.2 Gabor filters

The Gabor filters (kernels) with orientation µ and scale ν are defined as [15]:

ψµ,ν (z) =
∥kµ,ν∥2

σ2
e(−∥kµ,ν∥2∥z∥2/2σ2)

[
eikµ,νz − e−σ2/2

]
(6)

where z = (x, y) denotes the pixel, and the wave vector kµ,ν is defined as kµ,ν =
kνe

iϕµ with kv = kmax/f
v and ϕµ = πµ/8. kmax is the maximum frequency, and
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Algorithm 1 The SRC algorithm in [12]

1: Normalize the columns of A (in the case of non-occlusion) or B (in the case of
occlusion) to have unit l2-norm.

2: Solve the l1-minimization problem:

α̂1 = argmin
α

{
∥y0 −Aα∥22 + λ ∥α∥1

}
(2)

or

ω̂1 = argmin
ω

{
∥y −Bω∥22 + λ ∥ω∥1

}
(3)

where ω̂1 = [α̂1; α̂e1], and λ is a positive scalar number that balances the recon-
structed error and coefficients’ sparsity.

3: Compute the residuals:

ri (y0) = ∥y0 −Aδi (α̂1)∥2 , for i = 1, · · · , k. (4)

or

ri (y) = ∥y −Aeα̂e1 −Aδi (α̂1)∥2 , for i = 1, · · · , k. (5)

where δi (·) : Rn → Rn is the characteristic function which selects the coefficients
associated with the ith class.

4: Output that identity(y0) = argmin ri (y0) or identify(y) = argmin ri (y).

f is the spacing factor between kernels in the frequency domain. In addition, σ
determines the ratio of the Gaussian window width to wavelength.

The convolution of an image Img with a Gabor kernel ψµ,ν outputsGµ,ν (z) =
Img (z) ∗ ψµ,ν (z), where “∗” denotes the convolution operator. The Gabor
filtering coefficient Gµ,ν (z) is a complex number, which can be rewritten as
Gµ,ν (z) = Mµ,ν (z) · exp (iθµ,ν (z)) with Mµ,ν (z) being the magnitude and
θµ,ν (z) being the phase. It is known that magnitude information contains the
variation of local energy in the image. In [15], the augmented Gabor feature vec-
tor χ is defined via uniform down-sampling, normalization and concatenation of
the Gabor filtering coefficients:

χ =
(
a
(ρ)t

0,0 a
(ρ)t

0,1 · · · a(ρ)t

4,7

)t

(7)

where a
(ρ)
µ,ν is the concatenated column vector from down-sampled magnitude

matrix M
(ρ)
µ,ν by a factor of ρ, and t is the transpose operator.

3 Gabor-feature based SRC with Gabor occlusion
dictionary

3.1 Gabor-feature based SRC (GSRC)

Images from the same face, taken at (nearly) the same pose but under vary-
ing illumination, often lie in a low-dimensional linear subspace known as the
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harmonic plane or illumination cone [17], [18]. This implies that if there are
only variations of illumination, SRC can work very well. However, SRC with the
holistic image features is less efficient when there are local deformations of face
images, such as certain amount of variations of expressions and pose.

The augmented Gabor face feature vector χ, which is a local feature de-
scriptor, can not only enhance the face feature but also tolerate to image local
deformation to some extent. So we propose to use χ to replace the holistic face
features in the SRC framework, and the Gabor-feature based SR without face
occlusion is

χ (y0) = X (A1)α1 +X (A2)α2 + · · ·+X (AK)αK = X (A)α (8)

whereX (A) = [X (A1)X (A2) · · ·X (AK)] andX (Ai) = [χ (si,1) , · · · ,χ (si,ni)].
With Eq. (8) and replacing y0 and A in Eq. (2) and Eq. (4) by χ (y0) and X (A)
respectively, the Gabor-feature based SRC (GSRC) can be achieved.

When the query face image is occluded, similar to original SRC, an occlusion
dictionary will be introduced in the GSRC to code the occlusion components,
and the SR in Eq. (8) is modified to:

χ (y) = [X (A) , X (Ae)]

[
α
αe

]
.
= X (B)ω (9)

where X(Ae) is the Gabor-feature based occlusion dictionary, and αe is the
representation coefficient vector of the input Gabor feature vector χ (y) over
X(Ae). So in the case of occlusion, GSRC can be achieved by Algorithm 1
through replacing y, B, A and Ae in Eq. (3) and Eq. (5) by χ (y), X(B), X(A)
and X(Ae) respectively. Clearly, the remaining key problem is how to process
X(Ae) to make the GSRC more efficient.

3.2 Discussions on occlusion dictionary

SRC is successful in solving the problem of face occlusion by introducing an
occlusion dictionary Ae to code the occluded face components; however, one fa-
tal drawback of SRC is that the number of atoms in the occlusion dictionary
is very big. Specifically, the orthogonal occlusion dictionary, such as the iden-
tity matrix, was employed in [12] so that the number of atoms equals to the
dimensionality of the image feature vector. For example, if the feature vector
has a dimensionality of 3000, then the occlusion dictionary is of size 3000×3000.
Such a high dimensional dictionary makes the sparse coding very expensive, and
even computationally prohibitive. The empirical complexity of the commonly
used l1-regularized sparse coding methods (such as l1 ls [19], l1 magic [20],
PDCO-LSQR [21] and PDCO-CHOL [21]) to solve Eq. (2) is O (nε) with ε ≈ 2
[19]. So if the number of atoms (i.e. n) in the occlusion dictionary is too big, the
computational cost will be huge.

By using Gabor-feature based SR, the face image dictionary A and the oc-
clusion dictionary Ae in Eq. (1) will be transformed into the Gabor feature
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dictionary X(A) and the Gabor-feature based occlusion dictionary X(Ae) in
Eq. (9). Fortunately, X(Ae) is compressible, as can be illustrated by Fig. 1.

After the band-pass Gabor filtering of the face images, a uniform down-
sampling with a factor ρ is conducted to form the augmented Gabor feature
vector χ, as indicated by the red pixels in Fig. 1. The spatial down-sampling
is performed for all the Gabor filtering outputs along different orientations and
at different scales. Therefore, the number of (spatial) pixels in the augmented
Gabor feature vector χ is 1/ρ times that of the original face image; meanwhile,
at each position, e.g. P1 or P2 in Fig. 1, it contains a set of directional and
scale features extracted by Gabor filtering in the neighborhood (e.g. the circles
centered on P1 and P2). Certainly, the directional and scale features at the
same spatial location are in general correlated. In addition, there are often some
overlaps between the supports of Gabor filters, which makes the Gabor features
at neighboring positions also have some redundancies.

Fig. 1. The uniform down-sampling of Gabor feature extraction after Gabor
filtering.
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Fig. 2. The eigenvalues (left: all the eigenvalues, right:the first 60 eigenvalues)
of Gabor feature-based occlusion matrx.

Considering that “occlusion” is a phenomenon of spatial domain, a spatial
down-sampling of the Gabor features with a factor of ρ implies that we can
use approximately 1/ρ times the occlusion bases to code the Gabor features
of the occluded face image. In other words, the Gabor-feature based occlusion
dictionary X(Ae) can be compressed because the Gabor features are redundant
as we discussed above. To validate this conclusion, we suppose that the image
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size is 50×50, and in the original SRC the occlusion dictionary is an identity
matrix Ae = I ∈ R2500×2500. Then the Gabor-feature based occlusion matrix
X (Ae) ∈ R2560×2500, where we set ρ=36, µ = {0, · · · , 7}, ν = {0, · · · , 4}. Fig. 2
shows the eigenvalues of X(Ae). Though all the basis vectors of identity matrix
I (i.e. Ae) have equal importance, only a few (i.e. 60, with energy proportion of
99.67 % ) eigenvectors of X(Ae) have significant eigenvalues, as shown in Fig. 2.
This implies that X(Ae) can be much more compactly represented by using only
a few atoms generated from X(Ae), often with a compression ratio slightly over
ρ:1. For example, in this experiment we have 2500/60=41.7 ≈ ρ=36. Next we
present an algorithm to compute a compact Gabor occlusion dictionary under
the framework of SRC.

3.3 Gabor occlusion dictionary computing

Now that X(Ae) is compressible, we propose to compute a compact occlusion
dictionary from it with the sparsity constraint required by sparse coding. We call
this compact occlusion dictionary the Gabor occlusion dictionary and denote it
as Γ . Then we could replace X(Ae) by Γ in the GSRC based FR.

For the convenience of expression, we denote by Z = X(Ae) = [z1, · · · , zne ] ∈
Rmρ×ne the uncompressed Gabor-feature based occlusion matrix, with each col-
umn zi being the augmented Gabor-feature vector generated from each atom
of the original occlusion dictionary Ae. The compact occlusion dictionary to
be computed is denoted by Γ = [d1,d2, ...,dp] ∈ Rmρ×p, where p can be set
as slightly less than ne/ρ in practice. It is required that each occlusion basis
dj , j = 1, 2, · · · , p, is a unit column vector, i.e. dT

j dj = 1. Since we want to
replace Z by Γ , it is expected that the original dictionary Z can be well rep-
resented by Γ , while the representation being as sparse as possible. With such
consideration, our objective function in determining Γ is defined as:

JΓ,Λ = argmin
Γ,Λ

{
∥Z − ΓΛ∥2F + ζ ∥Λ∥1

}
s.t. dT

j dj = 1,∀j (10)

where Λ is the representation matrix of Z over dictionary Γ , and ζ is a positive
scalar that balances the F -norm term and the l1-norm term.

Eq. (10) is a joint optimization problem of the occlusion dictionary Γ and the
representation matrix Λ. Like in many multi-variable optimization problems, we
solve Eq. (10) by optimizing Γ and Λ alternatively. The optimization procedures
are described in the following Algorithm 2.

It is straightforward that the proposed Gabor occlusion dictionary computing
algorithm converges because in each iteration JΓ,Λ will decrease, as illustrated
in Fig. 3. Consequently, in GSRC we use Γ to replace the X(Ae) in Eq. (9).
Finally, the sparse coding problem in GSRC with face occlusion is

yΓ = BΓωΓ , where yΓ = χ (y) , BΓ = [X (A) , Γ ] , ωΓ = [α;αΓ ] (18)

Since the number of atoms in Γ is significantly reduced, the number of vari-
ables to be solved in ωΓ is much decreased, and thus the computational cost in
solving Eq. (18) is greatly reduced compared with the original SRC.
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Algorithm 2 Algorithm of Gabor occlusion dictionary computing

1: Initialize Γ .
We initialize each column of Γ (i.e. each occlusion basis) as a random vector

with unit l2-norm.
2: Fix Γ and solve Λ.

By fixing Γ , the objective function in Eq. (10) is reduced to

JΛ = argmin
Λ

{
∥Z − ΓΛ∥2F + ζ ∥Λ∥1

}
(11)

The minimization of Eq. (11) can be achieved by some standard convex optimiza-
tion technique. In this paper, we use the algorithm in [19].

3: Fix Λ and update Γ .
Now the objective function is reduced to

JΓ = argmin
Γ

{
∥Z − ΓΛ∥2F

}
s.t. dT

j dj = 1, ∀j (12)

We can write matrix Λ as Λ =
[
β1;β2; · · · ;βp

]
, where βj , j = 1, 2, · · · , p, is the

row vector of Λ. We update dj one by one. When updating dj , all the other columns
of Γ , i.e. dl, l ̸= j, are fixed. Then JΓ in Eq. (12) is converted into

Jdj = argmin
dj

∥∥∥∥∥∥Z −
∑
l̸=j

dlβl − djβj

∥∥∥∥∥∥
2

F

s.t. dT
j dj = 1 (13)

Let Y = Z −
∑
l̸=j

dlβl, Eq. (13) can be written as

Jdj = argmin
dj

∥∥Y − djβj

∥∥2

F
s.t. dT

j dj = 1 (14)

Using Langrage multiplier, Jdj is equivalent to

Jdj ,γ = argmin
dj

tr
(
−Y βT

j d
T
j − dj · βjY

T + dj · (βjβ
T
j − γ)dT

j + γ
)

(15)

where γ is a scalar variable. Differentiating Jdj ,γ with respect to dj , and let it be
0, we have

dj = Y βT
j

(
βjβ

T
j − γ

)−1

(16)

Since
(
βjβ

T
j − γ

)
is a scalar and γ is a variable, the solution of Eq. (16) under

constrain dT
j dj = 1 is

dj = Y βT
j

/∥∥∥Y βT
j

∥∥∥
2

(17)

Using the above procedures, we can update all the vectors dj , and hence the
whole set Γ is updated.

4: Go back to step 2 until the values of JΓ,Λ in adjacent iterations are close enough,
or the maximum number of iterations is reached. Finally, output Γ .
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Fig. 3. Illustration of the convergence of Algorithm 2. A Gabor occlusion dictio-
nary with 100 atoms is computed from the original Gabor-feature based occlusion
matrix with 4980 columns. The compression ratio is nearly 50:1.

4 Experimental Results

In this section, we perform experiments on benchmark face databases to demon-
strate the improvement of GSRC over SRC. To evaluate more comprehensively
the performance of GSRC, in section 4.1 we first test FR without occlusion, and
then in section 4.2 we demonstrate the robustness and efficiency of GSRC in FR
with block occlusion. Finally in section 4.3 we test FR against disguise occlusion.
In our implementation of Gabor filters, the parameters are set as Kmax = π/2,
f =

√
2, σ = π, µ = {0, · · · , 7}, ν = {0, · · · , 4} by our experimental experiences

and fixed for all the experiments below. Here we should also note that the reg-
ularization parameters in sparse coding are also tuned by experience (Actually,
how to adaptively set the regularizatin parameters is still an open problem).
In addition, all the face images are cropped and aligned by using the location
of eyes, which is provided by the face databases. The code of our method is
available at http://www4.comp.polyu.edu.hk/~cslzhang/code.htm.

4.1 Face recognition without occlusion

We evaluated the performance of the proposed algorithm on three representative
facial image databases: Extended Yale B [22], [18], AR [23] and FERET [24].
In both the original SRC and the proposed GSRC, we used PCA to reduce the
feature dimension. The dictionary size is set according to the image variability
and the size of database. Some discussions on the dictionary size with respect
to image variability are given using FERET database.

1) Extended Yale B Database: As the experiment on Extended Yale B database
[22], [18] in [12], for each subject, we randomly selected half of the images for
training (i.e. 32 images per subject), and used the other half for testing. The
images are normalized to 192×168, and the dimension of the augmented Ga-
bor feature vector of each image is 19760. PCA is then applied to reduce their
dimensionality for classification in SRC and GSRC. In our experiments, we set
λ=0.001 (refer to Eq. (2)) in GSRC. The results of SRC are from the original
paper [12]. Fig. 4(a) shows the recognition rates of GSRC versus feature dimen-
sion in comparison with those of SRC. It can be seen that GSRC is much better
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than SRC in all the dimensions. On this database, the maximal recognition rate
of GSRC is 99.17%, while that of SRC is 96.77%.
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Fig. 4. Recognition rates by SRC and GSRC versus feature dimension on (a)
Extended Yale B and (b) AR database.

2) AR database: As [12], we chose a subset (only with illumination changes
and expressions) of AR dataset [23] consisting of 50 male subjects and 50 female
subjects. For each subject, the seven images from Session 1 were used for training,
with other seven images from Session 2 for testing. The size of original face image
is 165×120, and the Gabor-feature vector is of dimension 12000. We set λ=0.001
in GSRC. The results of SRC are from the original paper [12]. The comparison
of GSRC and SRC is shown in Fig. 4(b). Again we can see that GSRC performs
much better than SRC under all the dimensions. On this database, the maximal
recognition rate of GSRC and SRC are 97.14% and 91.19%, respectively.

The improvement brought by GSRC on AR database is bigger than that on
Extended Yale B database. This is because in Extended Yale B, mostly there
are only illumination variations between training images and testing images, and
dictionary size (i.e. 32 atoms per subject) is big. Thus the original SRC works
very well on it. However, the training and testing samples of the AR database
have much more variations of expression, time and illumination, and dictionary
size (i.e. 7 atoms per subject) is much smaller. Therefore, the local feature based
GSRC is much more robust than global feature based SRC in this case.

3) FERET pose database: Here we used the pose subset of the FERET
database [24], which includes 1400 images from 198 subjects (about 7 each).
This subset is composed of the images marked with ’ba’, ’bd ’, ’be’, ’bf ’, ’bg ’, ’bj ’,
and ’bk ’. In our experiment, each image has the size of 80×80. Some sample
images of one person are shown in the Fig. 5(a).

Five tests with different pose angles were performed. In test 1 (pose angle
is zero degree), images marked with ’ba’ and ’bj ’ were used as training set,
and images marked with ’bk ’ were used as testing set. In all the other four
tests, we used images marked with ’ba’, ’bj ’ and ’bk ’ as gallery, and used the
images with ’bg ’, ’bf ’, ’be’ and ’bd ’ as probes. Fig. 5(b) compares GSRC (λ=0.005
for best results) with SRC (λ=0.05 for best results) for different poses. The
feature dimension in both methods is 350. Obviously, we can see that GSRC has
much higher recognition rates than SRC. Especially, when the pose variation is
moderate (0o and ±15o), GSRC’s recognition rates are 98.5%, 89.5% and 96%,
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respectively, about 20% higher than those of the SRC algorithm (83.5%, 57.5%
and 70.5%, respectively). The results also show that good performance can be
achieved with a small dictionary size when image variability is small (i.e. test
1). Meanwhile, with the same dictionary size, the performance drops as image
variability increases (i.e. test 2 ∼ 5). It is undeniable that GSRC’s performance
also degrades much as pose variation becomes large (e.g. ±25o). Nevertheless,
GSRC can much improve the robustness to moderate pose variation.
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Fig. 5. Samples and results on the FERET pose database. (a). Samples of one
subject. (b). Recognition rates of SRC and GSRC versus pose variation.

4.2 Recognition against block occlusion

In this sub-section, we test the robustness of GSRC to the block occlusion using a
subset of Extended Yale B face database. We chose Subsets 1 and 2 (717 images,
normal-to-moderate lighting conditions) for training, and Subset 3 (453 images,
more extreme lighting conditions) for testing. In accordance to the experiments
in [12], the images were resized to 96×84, and the occlusion dictionary Ae in
SRC is set to an identity matrix.
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Fig. 6. An example of face recognition with block occlusion. (a). A 30% occluded
test face image y from Extended Yale B. (b). Uniformly down-sampled Gabor
features χ (y) of the test image. (c). Estimated residuals ri (y) , i = 1, 2, · · · , 38.
(d). One sample of the class to which the test image is classified.

With the above settings, in SRC the size of matrix B in Eq. (1) is 8064×8781.
In the proposed GSRC, the dimension of augmented Gabor-feature vector is 8960
(ρ ≈ 40). The Gabor occlusion dictionary Γ is then computed using Algorithm
2. In the experiment, we compress the number of atoms in Γ to 200 (i.e. p=200,
with compression ratio about 40:1), and hence the size of dictionary BΓ in Eq.
(18) is 8960×917. Compared with the original SRC, the computational cost
is reduced from about O(η2) with η=8781 to about O(κ2) with κ=917. Here
the time consumption of Gabor feature extraction (about 0.26 second) could
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be negligible, compared with that of l1-norm minimization, which is about 90
seconds as reported in [12].

As in [12], we simulated various levels of contiguous occlusion, form 0% to
50%, by replacing a randomly located square block in each test image with
an irrelevant image, whose size is determined by the occlusion percentage. The
location of occlusion was randomly chosen for each test image and is unknown
to the computer. We tested the performance of GSRC with λ=0.0005, and Fig. 6
illustrates the classification process by using an example. Fig. 6(a) shows a test
image with 30% randomly located occlusion; Fig. 6(b) shows the argumented
Gabor features of the test image. The residuals of GSRC are plotted in Fig.
6(c), and a template image of the identified subject is shown in Fig. 6(d). The
detailed recognition rates of GSRC and SRC are listed in the Table 1, where the
results of SRC are from the original paper [12]. We see that GSRC can correctly
classify all the test images when the occlusion percentage is less than or equal
to 30%. When the occlusion percentage becomes larger, the advantage of GSRC
over SRC is getting higher. Especially, GSRC can still have a recognition rate of
87.4% when half of image is occluded, while SRC only achieves a rate of 65.3%.

Table 1. The recognition rates of GSRC and SRC under different levels of block
occlusion.

Occlusion percentage 0% 10% 20% 30% 40% 50%

Recognition rate of GSRC 1 1 1 1 0.965 0.874
Recognition rate of SRC 1 1 0.998 0.985 0.903 0.653

Table 2. Recognition rates of GSRC and SRC on the AR database with disguise
occlusion (’-p’: partitioned, ’-sg’: sunglasses, and ’-sc’: scarves).

Algorithms GSRC SRC GSRC-p SRC-p

Recognition rate-sg 93.0% 87% 100% 97.5%
Recognition rate-sc 79% 59.5% 99% 93.5%

4.3 Recognition against disguise

A subset from the AR database consists of 1399 images from 100 subjects (14
samples each class except for a corrupted image w-027-14.bmp), 50 male and 50
female. 799 images (about 8 samples per subject) of non-occluded frontal views
with various facial expressions were used for training, while the others for testing.
The images are resized to 83×60. So in the original SRC, the size of matrix B in
Eq. (1) is 4980×5779. In the proposed GSRC, the dimension of Gabor-feature
vectors is 5200 (ρ ≈ 38), and 100 atoms (with compression ratio about 50:1)
are computed to form the Gabor occlusion dictionary by Algorithm 2. Thus the
size of dictionary BΓ in Eq. (18) is 5200×899, and the computational cost is
roughly reduced from about O(η2) with η=5779 to about O(κ2) with κ=899,
where Gabor feature extraction consumes very little time (about 0.19 second).
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We consider two separate test sets of 200 images (1 sample each session
and each subject, with neutral expression). The first one contains images of
the subjects wearing sunglasses, which occlude roughly 20% of the image. The
second one is composed of images of the subjects wearing a scarf, which occlude
roughly 40% of the images. The results by GSRC (λ=0.0005) and SRC are listed
in Table 2 (where the results of SRC are from the original paper [12]). We see
that on faces occluded by sunglasses, GSRC achieves a recognition rate of 93.0%,
over 5% higher than that of SRC, while for occlusion by scarves, the proposed
GSRC achieves a recognition rate 79%, about 20% higher than that of SRC.

In [12], the authors partitioned image into blocks for face classification by
assuming the occlusion is connected. Such an SRC scheme is denoted by SRC-p.
Here, after partitioning the image into several blocks, we calculate the Gabor
features of each block and then use GSRC to classify each block image. The final
classification result is obtained by voting. We denote the GSRC with partitioning
as GSRC-p. In experiments, we partitioned the images into eight (4×2) blocks
of size 20×30. The Gabor-feature vector of each block is of dimension 800, and
the number of atoms in the computed Gabor occlusion dictionary Γ is set to 20.
Thus the dictionary B in SRC is of size 600×1379, while the dictionary BΓ in
GSRC is of size 800×819. The recognition rates of SRC-p and GSRC-p are also
listed in Table 2. We see that with partitioning, GSRC can lead to recognition
rates of 100% on sunglasses and 99% on scarves, also better than SRC.

5 Conclusion

In this paper, we proposed a Gabor-feature based SRC (GSRC) scheme, which
uses the image local Gabor features for SRC, and proposed an associated Ga-
bor occlusion dictionary computing algorithm to handle the occluded face im-
ages. Apart from the improved face recognition rate, one important advantage
of GSRC is its compact occlusion dictionary, which has much less atoms than
that of the original SRC scheme. This greatly reduces the computational cost
of sparse coding. We evaluated the proposed method on different conditions, in-
cluding variations of illumination, expression and pose, as well as block occlusion
and disguise. The experimental results clearly demonstrated that the proposed
GSRC has much better performance than SRC, leading to much higher recog-
nition rates while spending much less computational cost. This makes it much
more practicable to use than SRC in real world face recognition.
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