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Abstract—Palmprint has proved to be one of the most unique and
stable biometric characteristics. Almost all the current palmprint
recognition techniques capture the 2-D image of the palm surface
and use it for feature extraction and matching. Although 2-D palm-
print recognition can achieve high accuracy, the 2-D palmprint im-
ages can be counterfeited easily and much 3-D depth information
is lost in the imaging process. This paper explores a 3-D palmprint
recognition approach by exploiting the 3-D structural information
of the palm surface. The structured light imaging is used to ac-
quire the 3-D palmprint data, from which several types of unique
features, including mean curvature image, Gaussian curvature im-
age, and surface type, are extracted. A fast feature matching and
score-level fusion strategy are proposed for palmprint matching
and classification. With the established 3-D palmprint database, a
series of verification and identification experiments is conducted to
evaluate the proposed method. The results demonstrate that 3-D
palmprint technique has high recognition performance. Although
its recognition rate is a little lower than 2-D palmprint recogni-
tion, 3-D palmprint recognition has higher anticounterfeiting ca-
pability and is more robust to illumination variations and serious
scrabbling in the palm surface. Meanwhile, by fusing the 2-D and
3-D palmprint information, much higher recognition rate can be
achieved.

Index Terms—Biometrics, 3-D palmprint recognition, feature
extraction, surface curvature.

I. INTRODUCTION

B IOMETRIC authentication is playing important roles in
applications of public security, access control, forensic,

banking, etc. [1]. The commonly used biometric characteristics
include fingerprint, face, iris, signature, gait, etc. In the past
decade, palmprint recognition has grown rapidly, starting from
the inked palmprint-based offline methods [2], [3] and develop-
ing to the charge-coupled device (CCD) camera-based online
methods [4]–[8]. Almost all the current palmprint-recognition
techniques and systems are based on the 2-D palm images (inked
images or CCD camera-captured images). Although 2-D palm-
print recognition techniques can achieve high accuracy, the 2-D
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palmprint can be counterfeited easily and much 3-D palm struc-
tural information is lost in the 2-D palmprint acquisition process.
In addition, strong illumination variations and serious scrabbling
in the palm may invalidate 2-D palmprint recognition. There-
fore, it is of high interest to explore new palmprint recognition
techniques to overcome these difficulties. Intuitively, 3-D palm-
print recognition is a good solution.

In the online 2-D palmprint recognition system, a CCD cam-
era is used to acquire the palmprint image. The main features in
2-D palmprint include principal lines and wrinkles [4]. Although
2-D palmprint recognition has proved to be efficient in terms of
verification rate, it has some inherent drawbacks. First, the palm
is not a pure plane and the 3-D depth information cannot be cap-
tured by using a single CCD camera. Second, the illumination
variations in the system will affect a lot of 2-D palmprint image
and may lead to false recognition. Third, although the area of
palm is large, too much contamination or too much scrabbling in
the palm can still make the recognition invalid. Fourth, the 2-D
palmprint image can be copied easily and counterfeited so that
the antiforgery ability of 2-D palmprint needs improvement.

Recently, 3-D techniques have been used in biometric au-
thentication, such as 3-D face [9]–[11] and 3-D ear recogni-
tion [12], [13]. Range data are usually used in these 3-D biomet-
ric applications. Most of the existing commercial 3-D scanners
use laser triangulation to acquire the 3-D depth information, for
example, the widely used Minolta VIVID Series [10], [12], [13].
Nonetheless, the laser-triangulation-based 3-D imaging tech-
nique has some shortcomings with respect to the biometric ap-
plication. For instance, the resolution of 3-D cloud point may
not be high enough for the requirement of accuracy in biometric
authentication; on the other hand, if we want to improve the
data resolution, the laser scanning speed must be decreased and
the real-time requirement in biometric authentication is hard to
meet. With the earlier considerations, we propose to use struc-
tured light imaging [14], [15], [20], [21] to establish the 3-D
palmprint acquisition system. The structured light imaging is
able to accurately measure the 3-D surface of an object while
using less time than laser scanning. Fig. 1 shows the 3-D palm-
print acquisition system developed by the Biometrics Research
Center, The Hong Kong Polytechnic University. There is a peg
in the developed device serving as a control point to fix the
hand. When the user puts his/her palm on the system, an LED
projector will generate structured light stripes and project them
to the palm. A series of gray-level images of the palm with the
stripes on it is captured by the CCD camera, and then the depth
information of the palm surface is reconstructed from the stripe
images.

Compared with other 3-D biometric characteristics, 3-D
palmprint has some desirable properties. For instance, com-
pared with 3-D ear recognition, the palmprint is much more
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Fig. 1. Developed 3-D palmprint authentication system with structured light imaging and an example of the use of the system.

convenient to collect and user-friendly; compared with 3-D face,
the users do not need to close or block their eyes, and project-
ing stripes (or emitting laser light) on palm has much higher
acceptability than that on face. In the data acquisition process,
the palm can be placed easily so that the collected data are very
stable. One disadvantage of 3-D palmprint may be that the palm
surface is relatively plane so that the depth information of palm
is more difficult to capture than that of face or ear. However, as
can be seen in this paper, the curvature features of palm can be
well captured by using the developed structured light imaging
system. With the proposed feature extraction and matching pro-
cedures, the whole 3-D palmprint recognition system can reach
very high performance in accuracy, speed, and anticounterfeit
capability.

The iterative closest point (ICP) algorithm [16] is widely
used in many 3-D object recognition systems for matching.
The ICP schemes, however, are not suitable for 3-D palmprint
matching because the noise and variations of the palm may
have much impact on the matching score. In this paper, we
will extract the local curvature features of 3-D palmprint for
classification and matching. After the 3-D depth information
of palm is obtained, a subarea, called the region of interest
(ROI), of the 3-D palmprint image is extracted. Besides reducing
the data size for processing, the ROI extraction process also
serves to align the palmprints and normalize the area for feature
extraction. The mean curvature and Gaussian curvature features
of each cloud point in the ROI are then calculated. To save
storage space and speed up the matching process, we convert the
curvature features to gray-level images, i.e., the mean curvature
image (MCI) and Gaussian curvature image (GCI). The third
kind of 3-D feature, the surface types (STs), of the palmprint is
also defined and extracted. Finally, by fusing the MCI/GCI and
ST features, the input palm can be classified and recognized. We
established a 3-D palmprint database with 6000 samples from
260 people. Extensive experiments are conducted to evaluate the
performance of the proposed feature extraction and matching
schemes.

The rest of the paper is organized as follows. Section II de-
scribes the acquisition of 3-D palmprint data. Section III dis-
cusses the ROI region determination and the 3-D feature ex-

Fig. 2. Architecture of the developed 3-D palmprint data acquisition device:
1) CCD camera; 2) camera lens; 3) casting lens; 4) LCD panel; 5) LCD con-
troller; 6) back convergent lens; 7) front convergent lens; 8) white LED light
source; 9) signal and power control box; 10) box shell.

traction from ROI. The calculation of palm curvatures and the
generation of GCI, MCI, and ST features are described in detail.
Section IV presents the feature matching and fusion methods.
Section V shows the experimental results and Section VI con-
cludes the paper.

II. 3-D PALMPRINT DATA ACQUISITION

The commonly used 3-D imaging techniques include mul-
tiviewpoint reconstruction [17], [18], laser scanning [19], and
structured light scanning [14], [15], [20]–[24]. Roughly speak-
ing, multiviewpoint reconstruction is a low-cost but low-
accuracy method. It is suitable to measure objects that have obvi-
ous corner features. Another problem of multiviewpoint-based
3-D reconstruction is that it may be hard and time-consuming
to find the correspondence points in different viewpoint images.
Laser scanning is a popular 3-D scanning method and is able
to reach high resolution but at the cost of expensive instrument
and long collecting time. Particularly, for sweating palms, laser
scanning will be greatly affected by the palm surface reflec-
tion. Structured light imaging is a well-established 3-D scanning
technique. By using phase-shifting method, it can measure the
object surface with high accuracy and in a relatively short time.
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Fig. 3. 3-D palmprint data collection and processing process (red solid line arrows denote sending command, green arrows denote the data transport of collecting,
and the blue arrows denote data processing).

Considering the requirements of accuracy and speed in bio-
metric authentication, in the application of 3-D palmprint recog-
nition, we choose to use structured light scanning to acquire
the palm depth information. The use of structured light in ob-
ject surface measurement can be traced back to more than two
decades ago [14]. Since then, it has been widely used in many
applications, such as 3-D object measurement, 3-D shape recon-
struction, reverse engineering, etc., [20]–[22]. In structured light
imaging, a light source projects some structured light patterns
(stripes) onto the surface of the object. The reflected light is cap-
tured by a CCD camera and then a series of images is collected.
After some calculation, the 3-D surface depth information of
the object can be obtained. In earlier times, parallel light such
as laser [23] or point light array [24] were used. With the de-
velopment of the light source techniques, liquid crystal light
projectors have been successfully used as the light source [25].
In our developed system, a cost-effective gray liquid crystal dis-
play (LCD) projector with LED light source is employed, and
some shift light patterns are projected to the palm.

Fig. 2 shows the architecture of the developed 3-D palm-
print data acquisition device. It is mainly composed of a light
projecting unit and a data collection unit. The light projecting
unit mainly contains a white LED light source, an LCD panel,
and several convergent lenses. The data collection unit contains
a CCD camera and a camera lens. Fig. 3 illustrates the 3-D
palmprint data collection and processing process. The computer
controls a projector to project a series of 13 structured light
stripes to the palm inner surface and the CCD camera captures
the palm images with projected stripes on it. At the same time,
the computer sends a command to the data collection board
to store the images. The data collection costs about 2 s. From
these palm images, the depth information of each point on the
palm can be computed using phase transition and phase expan-
sion techniques [15]. These processing, which are marked using
blue arrows in Fig. 3, will cost about 0.5 s. So the total time for
3-D palmprint generation is about 2.5 s.

Fig. 4 illustrates the imaging principle of the structured light
technique [14]. Interested readers can refer to [14] for more
details about structured light imaging. In Fig. 4, there is a ref-
erence plane whose height is 0. By projecting light through
grating to the object surface, the relative height of a point D at

Fig. 4. Principle of structured light imaging.

spatial position (x, y) to the reference plane can be calculated
as follows [14]:

h(x, y) = BD =
AC tan θ0

1 + tan θ0/ tan θn
(1)

with

AC =
φC D

2π
P0 (2)

where P0 is the wavelength of the projected light on the reference
plane, θ0 is the projecting angle, θn is the angle between the
reference plane and the line that passes through the current point
and the CCD center, and φC D is the phase difference between
points C and D. Because the phase of point D on the 3-D object
is equal to the phase of point A on the reference plane, φC D can
be calculated as

φC D = φC A = φOC − φOA . (3)

By using (1) and the phase shifting and unwrapping technique
[15], we can retrieve the depth information of the object surface
by projecting a series of phase stripes on it (13 stripes are used
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Fig. 5. Sample patterns of the stripes on the palm.

Fig. 6. Example of captured 3-D palmprint image.

in our system). Some sample patterns of the stripes on the palm
are illustrated in Fig. 5.

With this processing, the relative height of each point h(x, y)
could be calculated. The range data of the palm surface can
then be obtained. In the developed system, the size of the 3-D
image is 768 × 576 with 150 dpi resolution, i.e., there are totally
442 368 cloud points to represent the 3-D palmprint information.
And the depth precision of the 3-D image is between 0.05 and
0.1 mm. Fig. 6 shows an example 3-D palmprint image captured
by the system. The gray level in Fig. 6 is related to the value of
h(x, y), and it is rendered by OpenGL automatically for better
visualization.

III. FEATURE EXTRACTION FROM 3-D PALMPRINT

A. ROI Extraction

From Fig. 6, we can see that in the 3-D palmprint image of
resolution 768 × 576, many cloud points, such as those in the
boundary area and those in the fingers, could not be used in
feature extraction and recognition. Most of the useful and stable
features are located in the center area of the palm. In addition,
at different times when the user puts his/her hand on the system,
there will be some relative displacements of the positions of the
palm, even if we impose some constraints on the users to place
their hands. Therefore, before feature extraction, it is necessary
to perform some preprocessing to align the palmprint and extract
the central area of it, which is called the ROI.

By using the developed structured-light-based 3-D imaging
system, the 2-D and 3-D palmprint images can be obtained
simultaneously, and there is a one-to-one correspondence be-

Fig. 7. ROI extraction of 3-D palmprint from its 2-D counterpart. (a) 2-D
palmprint image, the adaptively established coordinate system, and the ROI (i.e.,
the rectangle). (b) Extracted 2-D ROI. (c) 3-D palmprint image, whose cloud
points have a one-to-one correspondence to the pixels in the 2-D counterpart.
(d) Obtained 3-D ROI by grouping the cloud points corresponding to the pixels
in 2-D ROI. (Note that we change the viewpoint for better visualization.)

tween the 3-D cloud points and the 2-D pixels. Therefore, the
ROI extraction of the 3-D palmprint data can be easily imple-
mented via the 2-D palmprint ROI extraction procedure. In this
paper, we use the algorithm in [4] to extract the 2-D ROI. Once
the 2-D ROI is extracted, the 3-D ROI is obtained by grouping
the cloud points that are in correspondence to the pixels in the
2-D ROI. Fig. 7 illustrates the ROI extraction process. Fig. 7(a)
shows a 2-D palmprint image, the established local coordinate
system by using the algorithm in [4], and the ROI (i.e., the rect-
angle); Fig. 7(b) shows the extracted 2-D ROI; Fig. 7(c) shows
the 3-D palmprint image, and Fig. 7(d) shows the obtained 3-D
ROI by grouping the cloud points corresponding to the pix-
els in 2-D ROI. (Note that we change the viewpoint for better
visualization.)

By using the ROI extraction procedure, the 3-D palmprints
are aligned so that the small translation and rotation intro-
duced in the data acquisition process are corrected. In addition,
the data amount used in the following feature extraction and
matching process is significantly reduced. This will save much
computational cost. Fig. 8(a) shows the extracted 3-D ROIs of
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Fig. 8. (a) 3-D ROIs extracted from two palmprints of one person. (b) 3-D ROIs extracted from two palmprints of another person.

Fig. 9. Distributions of mean and Gaussian curvatures of 3-D palmprint images.

two palmprints from the same person. Fig. 8(b) shows another
example.

B. Curvature Calculation

With the obtained ROI, stable and unique features are ex-
pected to be extracted for the following pattern matching and
recognition. The depth information in the acquired 3-D palm-
print reflects the relative distance between the reference plane
and each point in the object (referring to Fig. 4). As can be seen
in Fig. 1, most of the palm region, which will be captured by
the system for personal recognition, will not touch the device.
Therefore, there is little pressure on the palm. In data acqui-
sition, the users are asked to put their hands naturally on the
device. Thus, the pressure-caused deformation of the palmprint
image is actually very small. The z-values of the 3-D cloud
points are mainly affected by noise and the pose change of hand
in scanning. The ROI extraction process can only correct the ro-
tation and translation displacements in the x–y plane but not the
z-axis. The noise and variations in the 3-D palmprint cloud
points make the well-known ICP algorithms [16] not suitable
for 3-D palmprint recognition. Instead, the local invariant fea-
tures, such as the curvatures [26] of the principal lines and
strong wrinkles in the palm surface, will be much more stable
in representing the characteristics of 3-D palmprint.

Let p be a point on the surface S. Consider all curves Ci

on S passing through the point p. Each curve Ci will have an
associated curvature Ki at p. Among those curvatures Ki , at
least one is characterized as maximal k1 and one as minimal k2 ,
and these two curvatures k1 and k2 are known as the principal
curvatures of point p on the surface [26]. The mean curvature

H and the Gaussian curvature K of p are defined as follows:

H =
1
2
(k1 + k2) K = k1 ∗ k2 . (4)

The mean and Gaussian curvatures are intrinsic measures of
a surface, i.e., they depend only on the surface shape but not on
the way how the surface is placed in the 3-D space [26]. Thus,
such curvature features are robust to the rotation, translation, and
even some deformation of the palm. The captured 3-D palmprint
data are organized range data. We adopt the algorithm in [27]
for its simplicity and effectiveness in estimating the mean and
Gaussian curvatures. For more information, refer to [27].

C. MCI and GCI

With the method in [27], the mean and Gaussian curvatures
of a 3-D palmprint image can be calculated. Fig. 9 shows the
distribution of the mean and Gaussian curvatures of 100 3-D
palmprint images.

For better visualization and more efficient computation, we
convert the original curvature images into gray-level integer
images according to the distributions. We first transform the
curvature image C (Gaussian curvature K or mean curvature
H) into C̄ as follows:

C̄(i, j) = 0.5
C(i, j) − µ

4δ
+ 0.5 (5)

where µ is the mean of the curvature image. With (5), most of
the curvature values will be normalized into the interval [0, 1].
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Fig. 10. 3-D ROI images (first row) of three different palmprints and their
MCI (second row) and GCI (third row) images. From left to right, each column
shows the images of one palm.

We then map C̄(i, j) to an 8-bit gray-level image G(i, j)

G(i, j) =




0, C̄(i, j) ≤ 0

round
(
255 × C̄(i, j)

)
, 0 < C̄(i, j) < 1

255, C̄(i, j) ≥ 1.

(6)

We call images G(i, j) the MCI and GCI, respectively for
mean and Gaussian curvatures. Fig. 10 illustrates the MCI and
GCI images of three different palms and Fig. 11 depicts the MCI
and GCI images of a palm at different acquisition times. We can
see that the 2-D MCI and GCI images can well preserve the 3-D
palm surface features. Not only the principal lines, which are
the most important texture features in palmprint recognition, are
clearly enhanced in MCI/GCI, but also the depth information
of different shape structures is well preserved. The MCI/GCI
feature images provide us a good basis for further processing
and pattern matching.

D. Points Classification Using STs

Since the palm is a continuous surface with different convex
and concave structures, we can classify the points in the palm
into different groups based on their local surface characteristics.
Such kind of 3-D feature is called ST, and it can be determined
by the signs of mean and Gaussian curvature values [28]. In
[27], eight fundamental STs were defined. Fig. 12 illustrates the
shapes of the eight STs and Table I lists the definition of them
based on the corresponding mean curvature H and Gaussian
curvature K. In total, nine STs can be defined, including the
eight fundamental STs in Fig. 12 and another special case for
H = 0 and K > 0. Using STs, the points in the 3-D palmprints
can be intuitively classified into nine classes. For example, the

Fig. 11. 3-D ROI images (first row) of the same palmprint but collected at
different times and their MCI (second row) and GCI (third row) images. From
left to right, each column shows the images for each time.

Fig. 12. Eight fundamental STs defined by their different convex and concave
structures [27].

GCI images in Figs. 10 and 11 have some white pixels, which
implies K > 0; meanwhile, the corresponding points in the MCI
images are black, which implies H < 0. From Table I, we know
that these points belong to the PEAK ST (ST = 1).

We need to quantize the values of H and K to fix the intervals
that make H = 0 or K = 0. This can be simply implemented
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TABLE I
ST LABELS FROM CURVATURE SIGNS

Fig. 13. STs 1–9 of a palm using binary representation. (a) ST = 1. (b) ST =
2. (c) ST = 3. (d) ST = 4. (e) ST = 5. (f) ST = 6. (g) ST = 7. (h) ST = 8.
(i) ST = 9.

by using two thresholding parameters εH and εK

{
H(i, j) = 0, if |H(i, j)| < εH

K(i, j) = 0, if |K(i, j)| < εK .
(7)

The thresholds εH and εK should be adaptive to different
palms. To this end, we normalize the mean or Gaussian curvature
C(i, j) by its standard deviation as

Cs(i, j) =
C(i, j)

2δ
. (8)

Using (8), most curvature values will fall into the interval
[−1, 1] without changing their signs. Then, we can easily set
the thresholds εH and εK around zero in (7).

With the aforementioned procedures, each point in the 3-D
palmprint can be classified into one of the nine STs. Fig. 13
shows the classification results of a palm sample using binary
images, i.e., a white pixel in an ST image means that it belongs
to the corresponding ST. These features can be used separately
or jointly in the matching process.

Fig. 14. Binarized (first row) MCI images and (second row) GCI images.

IV. FEATURE MATCHING AND FUSION

Using the techniques developed in Section III, the MCI, GCI,
and ST features of the 3-D palmprint can be extracted. The
different palmprints can then be matched based on those fea-
tures and the recognition can be accomplished according to the
matching score. In this section, we discuss the matching strat-
egy of different features and their fusion. We will then discuss
the fusion of 2-D and 3-D palmprint information for higher
recognition rates.

A. MCI/GCI Feature Matching

The extracted MCI/GCI features (referring to (6)) are 8-bit
gray-level images. The variations of the local curvatures are
mainly caused by acquisition noise and the pose changes of the
hand. To reduce such variations and extract the stable and in-
trinsic curvature features, we binarize the MCI and GCI maps in
the following processing. The principal lines and strong wrin-
kles are the most stable and significant features in the palmprint.
After the binarization, they could be well preserved in the MCI
and GCI maps, while the noise-caused small variations are re-
moved. In addition, the binarization of the MCI and GCI maps
can make feature matching very fast. Here, we simply convert
the MCI/GCI into binary images by using adaptive thresholding

B(i, j) =
{

1, G(i, j) < c × µG

0, others
(9)

where c is a constant and µG is the mean value of G(i, j). With
our experimental experience, we set c = 0.7 in the experiments.
Fig. 14 shows the binarized versions of the MCI/GCI images in
Fig. 11.

We use the AND operation to calculate the matching score of
MCI/GCI features. Let Bd denote the binarized MCI/GCI image
in the database, and by Bt , the input MCI/GCI binary image.
Suppose the image size is n × m. The matching score between
Bd and Bt is defined as

RC =
2
∑n

i=1
∑m

j=1 Bd(i, j) ⊕ Bt(i, j)∑n
i=1

∑m
j=1 Bd(i, j) +

∑n
i=1

∑m
j=1 Bt(i, j)

(10)
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Fig. 15. Illustration of the 2-D and 3-D feature-level fusion. (a) 2D ROI. (b) 3D ROI. (c) MCI. (d) Energy image of MCI. (e) Enhanced 2D ROI.

where symbol “⊕” means the AND logic operation. If the two
MCI/GCI binary feature images Bd and Bt are the same, then
we have Rc = 1; the minimum value of Rc is 0, which means
that the two binary images have no overlap “1” pixel.

Since there may still be some displacements between the two
palmprint images even after ROI extraction, when calculating
the matching score by (10), we will shift two, four, six, and eight
pixels of the test image along eight directions: right, left, up,
down, left-up, left-down, right-up, and right-down, respectively.
Thus, we will have 8 × 4 + 1 = 33 matching scores and the
maximum one is selected.

B. ST Feature Matching

For each 3-D palmprint, we have nine binary ST images,
representing different STs of the points in it. Let STd

k , k =
1, 2, . . ., 9, be the ST images in the database and denote by
STt

k the test ST images. Different from the matching score of
MCI/GCI features, here we use the absolute value of difference
to measure the distance between the two palmprints

RST = 1 −
∑9

k=1
∑n

i=1
∑m

j=1

∣∣STd
k (i, j) − STt

k (i, j)
∣∣

2 × m × n
.

(11)
If the ST features of two palmprints are identical, we have

the maximum matching score RST = 1; on the contrary, if the
ST features are extremely different, the ST matching score will
be RST = 0.

C. Matching Score Fusion of MCI, GCI, and ST

Using (10) and (11), three matching scores (two Rc scores
for MCI and GCI, respectively, and one RST score for ST) can
be calculated fast. Each one of them can be used to make a
decision and the three decisions can be fused so as to reach a
final decision. Another way is to fuse the three matching scores
first, and then the decision is made based on the fused matching
score. Here, we adopt the second strategy.

Suppose there are n matching scores and we denote
them by Ri , i = 1, 2, . . . , n. The commonly used score-
level fusion techniques include Min-Score(MIN) RMIN =
min(R1 , R2 , . . . , Rn ), Max-Score(MAX) RMAX = max(R1 ,
R2 , . . . , Rn ), Summation (SUM) RSUM = (1/n)

∑n
i=1 Ri ,

and weighted average (WA) methods [29], [30]. We can see
that the mean curvature contains more useful information than

Gaussian curvature so that the MCI feature can lead to better
matching result than GCI (referring to Section V-C). Therefore,
we should assign a greater weight to MCI than to GCI. Because
the equal error rate (EER) is an important index of the matching
result and it can be estimated by test database, the weights can
be determined according to the corresponding EER values.

In [29], a WA scheme, called matcher weighting (MW), is
proposed

RMW =
n∑

i=1

wiRi, wi =
1/ei∑n

j=1 1/ei
, i = 1, 2, . . . , n

(12)
where wi is the weight of Ri , and ei is the corresponding
EER. The MW scheme assigns smaller weights to those fea-
tures with higher EER values. In [29], a user weighting (UW)
fusion scheme was also proposed. The idea comes from the
wolf–lamb concept introduced by Doddington [31]. The UW
method assigns different weights to different users of different
matchers according to the user’s inimitable property. The user
who can be imitated easily is called as lamb and will be assigned
with lower weight. However, in practice, whether the user is a
lamb or not highly depends on the database, which limits the
application of UW. In our experiments in Section V, we will test
the MIN, MAX, SUM, and MW fusion methods.

D. Fusion of 2-D and 3-D Palmprint Information

Intuitively, the 2-D and 3-D palmprint information can be
fused for better recognition accuracy. The fusion can be per-
formed on either matching score level or feature level. For
score-level fusion, we regard each pair of 2-D and 3-D matching
scores as a 2-D vector, and then use the linear SVM method [33]
to classify the genuine and impostor. Besides score-level fusion,
feature-level fusion is also applicable to 2-D and 3-D palmprint
to improve the matching performance. The main features in 2-D
palmprint are principal lines and wrinkles [4], and these features
can also be represented by 3-D palmprint. Sometimes the key
features in 2-D image may not be well captured (e.g., overillumi-
nation), but these critical discriminant features can be enhanced
by fusing with the 3-D information. Here, we use an example
shown in Fig. 15 to illustrate the proposed feature-level fusion
scheme. Fig. 15(a) is a 2-D ROI that is overilluminated; (b) is
the corresponding 3-D ROI; (c) is the MCI feature extracted
from the 3-D ROI; (d) is the energy image of the MCI; and (e)
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Fig. 16. Example line structure templates used in this paper.

Fig. 17. Anticounterfeiting test of printed palm using 2-D palmprint recognition.

Fig. 18. Anticounterfeiting test of printed palm using 3-D palmprint recognition.

Fig. 19. 3-D plaster palmprint.
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Fig. 20. Anticounterfeiting test of plaster palm using 2-D palmprint recognition.

Fig. 21 Anticounterfeiting test of plaster palm using 3-D palmprint recognition.

Fig. 22. Counterfeiting palm made by olefin. From left to right: the counter-
feiting palm, 3-D ROI, and the MCI of the counterfeiting palm.

is the enhanced 2-D ROI by the 3-D MCI energy image. Here,
we use the method in [32] to calculate the energy image of the
MCI map.

Let H denote the m × n MCI map. Then, the energy image
of H , denoted by E, is calculated as

E(i, j) = min
{
e1
i,j , . . . , e

k
i,j , . . . , e

K
i,j

}
,

i = 1, . . . ,m, j = 1, . . . , n (13)

with

ek
i,j =

∑
(u,v )∈Lk

i , j

H(u, v) (14)

where Lk
i,j is a predefined template centered at (i, j) and K is

the total number of templates. Some templates used in this paper
are given in Fig. 16. They are basically the templates to model
the line structures of different orientations. After calculating the
energy image E, we enhance the 2-D ROI, denoted by F , as

follows:

FE (i, j) = F (i, j) − α × E(i, j) (15)

where α is a parameter to control the fusion and we set α =
0.3 in our experiments. In Fig. 15(e), we can see that the line
features are much improved after fusing with the MCI map.
They will be well extracted in the following 2-D palmprint
feature extraction process and will lead to more robust matching
results. Our experimental results in Section V-C validate this.

V. EXPERIMENTAL RESULTS

A. Anticounterfeiting Test

The proposed 3-D palmprint recognition system uses the
structured light technique to capture the palm surface depth
information. One clear advantage of 3-D palmprint recogni-
tion over 2-D palmprint is that it has higher anticounterfeit-
ing capability because a 3-D palm is much harder to forge. In
this section, we made anticounterfeiting tests by using printed
2-D palms and 3-D palms made of plaster and olefin. A user is
registered in both the 2-D palmprint and 3-D palmprint systems.

We first printed out a 2-D palmprint image of this user on a
piece of paper using a high-quality laser printer (HP LaserJet
1020plus, 1200 dpi). Then, we put this paper on the two systems
as input palm to see if it can pass the systems. Figs. 17 and 18
illustrate the test and the recognition results. For 2-D system,
we used the competitive coding method [5]. In Fig. 17, we can
see that because the printed palm is a pure paper plane and the
real palm is a curved surface, the captured palmprint images
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Fig. 23. Sample images in the robustness test database. From top to bottom: 2-D ROI, 3-D ROI, and the 3-D MCI map. From left to right are the five test cases:
normal, severe underillumination, severe overillumination, scrabbling, and dirty.

TABLE II
COLLECTING CONDITIONS OF THE FIVE TEST CASES

TABLE III
EER OF 2-D AND 3-D PALMPRINT VERIFICATION ON THE ROBUSTNESS

TEST DATABASE

from printed palm and real palm will have some differences in
the illumination level. However, the features (principal lines,
wrinkles, etc.) of the two images are identical and the system
will successfully match the printed palm with the palmprints in
the database because the 2-D palmprint recognition algorithms
can deal with the illumination variations to some extent. As ex-
pected, it can be seen in Fig. 18 that the 3-D palmprint technique
can easily tell the counterfeited palm because there is no depth
variation information in the printed paper and the captured 3-D
palmprint image from the printed 2-D palmprint is just a noise
image.

We made two kinds of 3-D counterfeiting palms by plas-
ter and olefin, respectively, to test whether they can break the
3-D palmprint system. For the plaster counterfeiting palm, we
first press a real palm on plasticine to record the palm depth
information, and then mold the liquid plaster into the plasticine
model to make the 3-D palmprint counterfeit, which is shown in
Fig. 19. The anticounterfeit test on this plaster palm is illustrated
in Figs. 20 and 21. We can see that both the 2-D and 3-D systems
reject the plaster palm. The 2-D system rejects the fake palm
because the line features captured in the 2-D image are weak, as

shown in Fig. 20. The 3-D system also rejects the fake palm. This
is because there is some deformation on the palm surface in the
making of the plaster palm. Therefore, the extracted curvature
features of the plaster palmprint are very different from those
of the real palmprint, as illustrated in Fig. 21. Similar results
have been obtained for the counterfeiting test on the olefin palm
because it is hard to counterfeit the detailed 3-D information of
the real palm. Fig. 22 shows the olefin counterfeiting palm and
its 3-D ROI and MCI map. From these tests, we can see that the
3-D system is hard to be spoofed. Certainly, people can make a
more “real” 3-D palm to break the system, but the cost will be
much higher.

B. Robustness Test: Illumination, Scrabbling, and Dirty

It is necessary to test the robustness of the proposed 3-D palm-
print technique to the variations of illumination, scrabbling, and
dirty in the palm. For example, the palm of labor workers may
be seriously contaminated when working. Sometimes, one may
write down some information on the palm when no paper is at
hand. It has been reported that in 2-D palmprint recognition,
light- to medium-level illumination variation and palm scrab-
bling will not affect the recognition accuracy too much [4].
However, when the illumination varies too much or the palm is
seriously scrabbled, we can imagine that the 2-D palmprint will
not work anymore because the 2-D palmprint features (principal
lines, wrinkles, etc.) are hard to capture.

Due to the different imaging principles, the 3-D palmprint
technique has clear advantages over its 2-D counterparts in re-
ducing the interference of illumination, scrabbling, and dirty.
To prove this declaration, we build a robustness test database
that contains 400 samples of both 3-D and 2-D palmprints col-
lected from 40 palms of 20 individuals. For each palm, ten
samples were collected: two normal samples, two severely un-
derilluminated samples, two severely overilluminated samples,
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Fig. 24. Genuine and imposter distributions on the robustness test database. (a) 2-D score distribution. (b) 3-D score distribution.

two scrabbling samples, and two dirty samples. We simulate the
illumination variations by changing the aperture value of the
camera lens. Fig. 23 shows examples of the 2-D ROI, 3-D ROI,
and 3-D MCI of one palm under the five different cases and
Table II lists the collecting conditions of the five cases.

Then, verification experiments were performed on this
database. Each 3-D/2-D sample was matched with all the other
3-D/2-D samples in the database. A successful matching is
called intraclass matching or genuine if the two samples are
from the same class. Otherwise, the unsuccessful matching is
called interclass matching or impostor. Using the established
database, there are 79,800 matchings in total. The 3-D match-
ing score is obtained by fusing the MCI, GCI, and ST at score
level (referring to Section IV-C). The 2-D matching score is cal-
culated by using the competitive coding method [5]. Table III
lists the EER values of 2-D and 3-D palmprint verification.
Fig. 24 shows the distributions of 2-D and 3-D matching scores,
and Fig. 25 shows the receiver operating characteristic (ROC)
curves. We can see that 3-D information is much more ro-
bust to illumination variation, scrabbling, and dirty than 2-D
information.

C. Database Establishment and Recognition Results

A 3-D palmprint database has been established by using the
developed 3-D palmprint imaging device. The database contains
6000 samples from 260 volunteers, including 182 males and
78 females. The 3-D palmprint samples were collected in two
separated sessions, and in each session, about six samples were
collected from each subject. The average time interval between
the two sessions is two weeks. The original spatial resolution
of the data is 768 × 576. After ROI extraction, the central part
(256 × 256) is used for feature extraction and recognition. The
z-value resolution of the data is 32 bits.

We performed two types of experiments on the established
database: verification and identification. The experiments were
performed by using the MCI, GCI, and ST features, as well as
their score and feature-level fusion. In addition, to validate the
3-D palmprint recognition technique, we also compared it with
the 2-D palmprint recognition method by using the 2-D palm-
print images simultaneously collected in the 3-D palmprint ac-
quisition process. The 2-D palmprint verification was performed

Fig. 25. ROC curves on the robustness test database.

by using the competitive coding method [5]. As we can see later
in the experimental results, by fusing the 2-D and 3-D palmprint
features, the highest recognition rate can be obtained.

Fig. 26 illustrates the genuine and imposter distributions of
the verification results by 3-D palmprint recognition. Fig. 26(a)–
(c) shows the curves by MCI, GCI, and ST features, respectively.
Fig. 26(d) shows the curves by using their WM score-level fu-
sion. The ROC curves by using the MCI, GCI, and ST features
and their fusions (MAX, MIN, SUM, and MW) are shown in
Fig. 27. The EER values, which are important indexes of the
verification performance, are listed in Table IV, where the fea-
ture extraction and matching time by using different features are
also listed.1 We see that the WM fusion achieves the smallest
EER among all the schemes. From Fig. 27 and Table IV, we
can see that all the fusion methods, except MIN, can achieve
much better result than single feature matching. This is reason-
able because more information usually leads to more accurate
recognition.

Table IV also lists the EER of 2-D palmprint verification
by using the competitive coding method [5]. We can see that
2-D palmprint recognition achieves much lower EER than 3-D

1The experiments were performed using Visual C++ 6.0 on a PC with
Windows XP Professional, Pentium 4 CPU of 2.66 GHz and 1GB RAM.
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Fig. 26. Genuine and imposter distributions by MCI, GCI, ST features, and their WM fusion. (a) MCI. (b) GCI. (c) ST. (d) WM fusion.

Fig. 27. ROC curves by different matching methods.

palmprint. This is mainly because the quality of 3-D palmprint
data is not as good as that of 2-D palmprint. There is much cor-
rupted noise in the data acquisition process and z-value accuracy
needs further improvement. However, as shown in Sections V-A
and V-B, the 3-D palmprint technique has higher antispoof ca-
pability and is more robust to illumination variations and scrab-
bling. There is much space to improve the 3-D palmprint data
acquisition precision and the performance of feature extraction
and matching algorithms. The 3-D palmprint recognition has
great potential.

TABLE IV
EER VALUES, FEATURE EXTRACTION TIME, AND MATCHING TIME BY

DIFFERENT METHODS

The 2-D and 3-D palmprints can be fused for higher accu-
racy. In Section IV-C, we have described the score-level fusion
and feature-level fusion methods. After 2-D + 3-D feature-level
fusion, we use the competitive coding method to extract the fea-
tures from the enhanced 2-D ROI for matching. From Table IV,
we see that the EERs valued by fusing 2-D and 3-D palmprint
are much improved. The ROC curves by using 2-D features,
2-D + 3-D score-level fusion, and 2-D + 3-D feature-level fu-
sion are plotted in Fig. 28. It is clearly seen that 2-D and 3-D
fusion achieves the best accuracy.

The experiments of identification were also conducted on the
3-D palmprint database. In identification, we do not know the
class of the input palmprint but want to identify which class it
belongs to. In the experiments, we let the first sample of each
class in the database be the template and use the other samples
as probes. Therefore, there are 5480 probes and 520 templates.
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Fig. 28. ROC curves by 2-D palmprint and 2-D + 3-D palmprint.

Fig. 29. CMC curves by different matching methods in identification.

TABLE V
CUMULATIVE MATCHING PERFORMANCE BY DIFFERENT TYPES OF FEATURES

The probes were matched with all the template models, and for
each probe, the matching results were ordered according to the
matching scores. Then, we can get the cumulative match curves,
as shown in Fig. 29. The cumulative matching performance,
rank-one recognition rate, and lowest rank of perfect recognition
(i.e., the lowest rank when the recognition rate reaches 100%),
are listed in Table V. From Fig. 29, we see that the performance
of MW fusion is much better than the other schemes.

VI. CONCLUSION

In this paper, we explored a new technique for palmprint-
based biometrics: 3-D palmprint recognition. A structured-light-
imaging-based 3-D palmprint data acquisition system was de-
veloped. After the 3-D palmprint image is captured, the ROI is

extracted to roughly align the palm and remove the unnecessary
cloud points. We then proposed the curvature-based feature ex-
traction algorithms to extract the MCI, GCI, and ST features. A
fast feature matching method and score-level and feature-level
fusion strategies were used to classify the palmprints. A 3-D
palmprint database with 6000 samples from 260 individuals
was established, on which extensive verification and identifi-
cation experiments were performed. The experimental results
show that the 3-D palmprint technique can not only achieve
high recognition rate, but also have high anticounterfeit capa-
bility and high robustness to illumination variations and serious
scrabbling in the palm surface. In the future, more advanced and
powerful feature extraction and matching techniques are to be
developed for a better recognition performance.
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