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Characterization of Palmprints by Wavelet Signatures
via Directional Context Modeling

Lei Zhang and David Zhang

Abstract—The palmprint is one of the most reliable physio-
logical characteristics that can be used to distinguish between
individuals. Current palmprint-based systems are more user
friendly, more cost effective, and require fewer data signatures
than traditional fingerprint-based identification systems. The
principal lines and wrinkles captured in a low-resolution palm-
print image provide more than enough information to uniquely
identify an individual. This paper presents a palmprint identifica-
tion scheme that characterizes a palmprint using a set of statistical
signatures. The palmprint is first transformed into the wavelet
domain, and the directional context of each wavelet subband
is defined and computed in order to collect the predominant
coefficients of its principal lines and wrinkles. A set of statistical
signatures, which includes gravity center, density, spatial disper-
sivity and energy, is then defined to characterize the palmprint
with the selected directional context values. A classification and
identification scheme based on these signatures is subsequently
developed. This scheme exploits the features of principal lines
and prominent wrinkles sufficiently and achieves satisfactory
results. Compared with the line-segments-matching or inter-
esting-points-matching based palmprint verification schemes, the
proposed scheme uses a much smaller amount of data signatures.
It also provides a convenient classification strategy and more
accurate identification.

Index Terms—Biometrics, context modeling, feature extraction,
palmprints identification, wavelet transform.

1. INTRODUCTION

IOMETRICS, a robust technique for personal iden-
tification, is becoming more and more popular in an
increasingly automated world. Biometric approaches utilize
automated techniques for measuring and recognizing the
identity of a person with certain physiological characteristics
[1]-[3]. These characteristics include fingerprints [9], [10],
facial features [15], retina and iris patterns [13], speech patterns
[14], hand geometry [11], [12], and palmprints [4]-[8]. Based
on the intrinsic features of a human being, biometrics recogni-
tion has a unique merit: people may lose their keys or access
cards, or forget their passwords or PINs, but biometric “keys”
or “passwords” are always available for quick identification.
While a good biometric system should be reliable, low cost,
user friendly, and require small amounts of data, no single
biometric technique has yet met all of these prerequisites.
Fingerprint identification [9], [10] is the most well-known
and widespread biometric method. It is very reliable, but finger-
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print capturing devices are expensive and the stored data is large.
Furthermore, it can be difficult to extract some minutia features
from some hands, for example from the hands of manual la-
borers and elderly people, whose fingers are heavily worn down.
In some applications, several other methods may be better than
fingerprints, since they require fewer data signatures, are less
expensive and less intrusive, and avoid the stigma of finger-
printing, which makes people feel like criminals. In recent years,
iris-based verification has been successfully developed [13], but
it suffers from the discomfort of iris picture capturing that re-
quires users to put their eyes before a camera. Thus, there is a
demand for a new automatic personal identification system.

Recently, some works on palmprint-based personal identifi-
cation were reported [4]-[8]. Similar to fingerprint and iris ver-
ification, the palmprint is one of the most reliable means in per-
sonal identification because of its stability and uniqueness. In
fact, palmprints have been taken as a human identifier for a
long time. Using hand features as a base for identity verifica-
tion is relatively user-friendly and convenient. Some hand-ge-
ometry-based identification systems [12], [13] have also been
developed but the hand geometry features are not unique and
the systems are less accurate in a large database.

Palmprints-based identifiers are not only user friendly; they
use less data amount and can be operated using cheap electronic
imaging device. In the palmprint identification system devel-
oped by the Biometrics Research Centre, Hong Kong, a CCD
camera is used to capture a very low resolution (65 dpi) palm-
printimage. After processing, a palmprint is stored only by a few
bytes of data signatures. Fig. 1 shows a typical palmprint image
captured by the system. The black rectangle at the middle left of
the image is the palmprint fixture. The palm is the inner surface
of the hand between the wrist and the fingers. As illustrated in
the figure, the main patterns in a palmprint can be generalized
as principal lines, wrinkles and creases.

There are usually three principal lines in a palmprint: the heart
line, the head line, and the life line. These lines vary little over
time, and their shapes and locations on the palm are the most
important physiological features for individual identification.
Wrinkles are much thinner than the principal lines and much
more irregular. Creases are the relatively detailed features that
exist all over the palmprint, just like the ridges do in a finger-
print. Generally speaking, for identification tasks the features of
principal lines and wrinkles can be exploited and derived from
a low-resolution palmprint image. Although some crease-based
palmprint recognition methods [8] have been proposed, they re-
quire rather fine resolution imaging and consume a large amount
of data. Thus, for personal identification, creases are not as ro-
bust and persistent as principal lines.
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Fig. 1. The main patterns in a palmprint.

Some line-segment-matching and interesting-point-matching
based palmprint identification schemes have been presented.
The method of Zhang et al. [4] first determined some impor-
tant points and then attempted to extract some line segments
for point and line matching. You et al. [6] defined some global
features for coarse-level verification and locally extracted some
interesting points for image matching. The method in [5] is also
point-matching based, in which a set of feature points is ex-
tracted from the prominent lines and the matching score of the
point sets of two palmprints is computed. These schemes are
not entirely satisfying in some aspects. First, they are basically
off-line schemes in which a palmprint is taken with ink and
paper and then scanned by a scanner. The scanning resolution
is generally over 100 dpi to ensure the identification accuracy.
The second reason for dissatisfaction with these schemes is that
they lack an efficient classification strategy. This means that for
a given palmprint, it is necessary to search an entire database
to find the most similar templates. When searching a sizeable
database, this creates a heavy computational burden. The third
drawback of these schemes is that they do not characterize palm-
prints effectively.

The principal lines and wrinkles in a low-resolution palmprint
image have provided plenty of information for individual iden-
tification. Rather than directly representing and matching them
by using some important points and line segments, it would be
more efficient to represent these features using statistical signa-
tures. Such signatures will not only precisely record the unique-
ness of a palmprint, but also provide better classificatory param-
eters. Statistical signatures also require less storage space. With
the considerations mentioned above, in this paper we develop
an approach to characterize the palmprint by a set of statistical
signatures for palmprint identification.

Statistical approaches are the most intensively studied and
used frameworks in the fields of pattern recognition and feature
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extraction [26]. These approaches represent patterns by a fea-
ture vector of n dimensions. The effectiveness of the method is
determined by how well the different patterns can be separated
by the representation vector. In the last decades, wavelet-based
statistical feature extraction approaches [27]-[32] have been re-
ported with good results. A wavelet transform (WT) [16]-[19]
is a time-frequency analysis and it endows the traditional feature
extraction methods with a multiresolution and multiscale frame-
work. As the orthogonal wavelet transform (OWT) is translation
variant, which is a limitation in texture analysis, in this paper
we employ the overcomplete wavelet expansion (OWE), which
is translation invariant. No subsampling occurs in the decompo-
sition of OWE and at each scale the wavelet coefficients are of
the same size.

A palmprint can be considered as an ordinary gray image to
which the traditional statistical feature analysis methods can be
applied. However, a palmprint has many particular character-
istics that set it apart from an ordinary image. The locations,
shapes, and distributions of the principal lines and wrinkles in a
palmprint convey redundant information that can uniquely iden-
tify a person. In this paper, we will describe how a set of statis-
tical signatures can be derived from these features and used to
characterize a palmprint. We decompose the palmprint into sev-
eral scales by OWE. At each scale and each subband, the pre-
dominant coefficients of the principal lines and wrinkles are col-
lected using context modeling. We then define some statistical
signatures, which include gravity center, density, spatial disper-
sivity, and energy, in order to measure the characteristics of the
input palmprint. Based on these signatures, we obtain a classi-
fication and identification scheme.

This paper is organized as follows. Section II introduces
briefly the structure of the employed over-complete wavelet
expansion. Section III describes the feature extraction method-
ology and defines a set of statistical signatures to characterize
the palmprints. Section IV describes the identification strategy
and gives the experimental results. Section V is the conclusion.

II. OWE

WT represents a function f as a linear combination of ele-
mentary atoms or building blocks. A detailed description of the
wavelet theory and its relationship with signal processing can be
found in Daubechies [16], Mallat et al. [17], [18], and Vetterli
et al. [19]. Denote by ), ,, the dyadic dilation and translation
of a mother wavelet ¢ with m,n € Z

Yo (t) = 27 24p(27™t — ) Q2.1
then f can be written as
F=" mn(Htbmn- 22)
For orthonormal wavelet bases, there is
o) = o) = [ FOBmnllt 23)

where (-,-) is the inner product in Lo(R). For biorthogonal
wavelet bases, we have

Cmn(f) = (s Pmon) (2.4)
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Fig. 2. One-stage decomposition of the 2-D o OWE. Filter G,;(H;) is
interpolated by putting (29~ — 1) zeros between each of the coefficients of
Go(Ho). G’ (H}) is the transpose filter of G ;(H ;). w!', w} , and w? are the
wavelet coefficients in the horizontal, vertical, and diagonal directions.

where 1/~Jmn is the dual wavelet of v, ,,. Except for the Haar
wavelet, all the compactly supported orthogonal wavelets are
not (anti-)symmetrical [16], which is a very important prop-
erty in signal processing. A compactly supported bi-orthogonal
wavelet trades the orthogonality for the symmetric property.

Due to the subsampling in the decomposition process, an
OWT is variant with the translation of the input signal. This
limits its efficiency in some signal processing applications, such
as denoising [24] and texture analysis [30], [31]. The feature ex-
traction scheme presented in this paper is implemented with the
OWE, the one-stage decomposition structure of which is shown
in Fig. 2. H; and G are the low-pass and high-pass analytic
filters. H ]’ and G;- are the transpose filters of them. H; is inter-
polated by putting (27! — 1) zeros between each of the coeffi-
cients of Hy, so does for G;. The output of the OWE is invariant
with the translation of the input signal. No subsampling occurs
in the decomposition but the analytic and synthetic filters vary at
each stage. For OWE, the bandwidth decrease is accomplished
by zeros padding of filters instead of subsampling of wavelet
coefficients. The high-pass wavelet coefficients of OWE are in
three directions: horizontal, vertical, and diagonal at each scale,
and they are denoted by wj’, w;", and w}’. Their size is the same
as that of the input image.

In our palmprint-based personal identification system, a
palmprint would undergo image acquisition, preprocessing,
feature extraction, data signatures storage and classification.
After capture by a CCD camera, a palmprint image would be
preprocessed to obtain a subimage for feature extraction. The
preprocessing procedure can be found in [7]. Preprocessing
also eliminates the translation and rotation variances of the
acquired palmprint images. The subimage we cut should
guarantee preservation of most of the features of the principal
lines and wrinkles. After preprocessing, each of the palmprints
of different size, translation, and rotation variances is aligned
with a comparable area, which is used for feature extraction in
subsequent processing.

Fig. 3(a) shows a preprocessed palmprint image, and
Fig. 3(b)-(c) shows the two-level OWE of the image. (For
visual convenience, the pixels’ magnitudes are rescaled.)
Fig. 3(b) shows the wavelet coefficients in the three directions
at the first scale and (d) shows them at the second scale.

III. CHARACTERIZATION OF PALMPRINT BY WAVELET
SIGNATURES: THE METHODOLOGY

Several palmprint-identification methods have previously
been proposed which were essentially based on line-segments
matching and interesting-point matching. Zhang et al. [4]
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Fig. 3. A preprocessed palmprint image and its OWE at the first two scales.
(a) Original palmprint image. (b) Wavelet coefficients in the three directions at
the first scale. (c) Wavelet coefficients in the three directions at the second scale.

verified an input palmprint by comparing its extracted datum
points and line segments with the database. The method in [5]
is a complete point-matching process. The scheme of You et
al. [6] is a half point-matching process. It uses some global
features of the palmprint for a coarse-level classification and
then uses the extracted interesting points for image matching.
These schemes do not characterize palmprints efficiently and
completely with the information for individual identification
conveyed by the principal lines and wrinkles.

In this paper, we will record a palmprint by a set of statistical
signatures, instead of line segments or interesting points. Sta-
tistical approaches have been widely used in the applications of
pattern recognition for a long time [26] and wavelet-based sta-
tistical feature extraction approaches [27]-[32] have been used
with good results, providing the traditional methods with a mul-
tiscale framework. Unlike an ordinary image, a palmprint has
many particular characteristics, such as the location, shape and
distribution of principal lines and wrinkles. These characteris-
tics are important in uniquely identifying a person. In the fol-
lowing sections, a set of wavelet-based statistical signatures will
be derived to measure these features of the input palmprint, and,
based on these signatures, we subsequently obtain an efficient
hierarchical classification and identification scheme.

A. Directional Context Modeling of the Wavelet Coefficients

From Fig. 3, we can see that the principal lines and the
thicker wrinkles are enhanced in the wavelet coefficients.
Roughly speaking, the horizontal edges are detected in ij ,

and the vertical and diagonal edges are detected in w]V and w]D .
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Fig. 4. Zoomed-in images of the edge structures in the three directions of the wavelet coefficients. (a) Horizontal edge structure. (b) Vertical edge structure. (c)
Diagonal edge structure in the same position of that in (a). (d) Diagonal structure in the same position of that in (b).

However, the distribution of these edges is rather dispersed.
In each subband, it is expected that we could collect the inter-
ested edges with similar structures, group the most important
horizontally distributed edges in w!’, and the vertically and
diagonally distributed edges in w} and w}’.

The context modeling technique, which was widely used
in coding [21], [22] and denoising [20] to differentiate and to
gather pixels with some similarities (although not necessarily
spatially adjacent), is a good choice for classification. The
context value of a given coefficient is defined as a function
of its neighbors. The weighted average of its adjacent pixels
is often employed. By computing the context of each wavelet
coefficient, it is possible to collect the pixels with similar
characteristics, whose context values fall into a specified field.

The widths of the principal lines and some heavy wrinkles
are much greater than those of other features in a palmprint.
Fig. 4(a)—(d) illustrates zoomed-in images of the typical edge
structures of the principal lines in horizontal, vertical, and diag-
onal directions. The edges in Fig. 4(a) are of considerable width
across the horizontal pixels, while the edges in Fig. 4(b) pos-
sess a sizable width across vertical pixels. The diagonal edges
in Fig. 4(c) and (d) are narrower than those in Fig. 5(a) and (b),
while they propagate consecutively in the diagonal direction.
These properties can be exploited to determine the interesting
feature structures in the associated subband.

We denote by w} (n,m),* = H,V, D the coefficient located
at the nth row and mth column in wavelet subband w7 . It is ob-
served that if a horizontal edge point, which is produced by prin-
cipal lines or heavy wrinkles, occurs at wf[ (n,m), its left and
right neighborhoods are also likely to be horizontal edge points.
Similarly, if a vertical edge point produced by principal lines
or heavy wrinkles occurs at wj‘»/ (n,m), its upside and downside
neighborhoods are also likely to be vertical edge points. As for
the diagonal edges in subband w]-D, if the palmprint image is
captured from a right hand, the diagonal edge directions of the
principal lines are basically along —m /4 ; if the palmprint is of
a left hand, the diagonal edges produced by the principal lines
are basically along 7 /4. We then define the directional context
of w7, and identify the interested edges by their context values.
Referring to Fig. 5(a)-(d), for each wavelet coefficient
*(n,m) in a subband, denote by w;f,(nymf(l)—w;f’(n’m)(él) the

w
J
absolute values of its neighborhood four elements. Define

%
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Fig. 5. The employed four neighborhoods (black points) in the calculation of
the directional context values. (a) Horizontal direction. (b) Vertical direction.
(c) Diagonal direction for right-hand palmprint. (d) Diagonal direction for left
hand palmprint.

as the associated vector of w} (n, m). The absolute values rather
than the original values are used in the context calculation be-
cause the orthogonal wavelet coefficients are weakly correlated,
but the absolute values of neighboring coefficients are correlated
[25]. Thus, the average of absolute values would yield more
meaningful information than the original values. The parent co-
efficient wj 41(n, m) at the adjacent coarse scale is also intro-
*

duced in the vector u j.(n,m) since the wavelet coefficient de-
pendencies do not only exist within each scale, but also between
scales [23]. If w7 (n, m) is a significant coefficient at a scale, its
parent coefficients at the coarser scales are much likely to be
significant too.

Similar to the context definition used in coding [21], [22]
and denoising [20], the directional context value of wj}(n,m)
is Seﬁned here as the weighted average of its associated vector

U, (n,m)

N —x

c; (m,n) = Uj (nm) h;

(3.2)
where h; is a 5 x 1 weighted vector. It should be noted that
because th*e absolute values of the wavelet coefficients are

used in wj; ,, . the context vililes are mostly positive. To

determine the weighted vector h ;, the least-square estimate
is used. ¢}(m,n) is first approximated by the absolute value

—ak

of w}(n,m) and then the least-square estimation of h ; is
computed by

= (U U™ (U)"Y| a3
where
E;;(l,l) wi(1,1)
U= w02 | and Y,= wi(12) (3.4)
i w"f(]\‘f, M)

U (N,M) J
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4]

(a)—(c) The 200 most significant wavelet coefficients in wi?, w)’, and wP, respectively. (d)—(f) The 200 most significant context coefficients in ¢i?, ¢},

and cP, respectively. It is seen that by directional context modeling, the edge structures in the corresponding direction are collected much more concentratively

and the minor wrinkle features are eliminated.

where N and )/ are the number of total rows and columns of
subband w. U isa N -M x 5 matrixand Y'; isa N - M length
column vector.

By using context modeling, the coefficients of similar natures
can be well collected. Similar structures have approximate con-
text values, and by sorting the context values ¢ in ascending
order, the wavelet coefficients w7 (n, m) could be classified into
several groups. Since the interested horizontal edge structures
produced by the principal lines or heavy wrinkles have high
magnitudes, their directional context values are predominant
in ¢j. We collect the most significant L; coefficients in ¢} as
the edge points in the associated direction. The edge structures
will be enhanced as the scale number increases, the number L ;
should be increased proportionally. We set it to be proportional

to the scale parameter j
Lj = L x J
where L is a constant preset number.
By the above directional context modeling, the horizontal,
vertical, and diagonal edge structures can be more accurately
determined than directly thresholding the wavelet coefficients
w3 (n,m). In Fig. 6(a)~(c), the most significant 200 points
of the wavelet subband wi w}’, and wP in Fig. 3(b) are
shown respectively, and the greatest 200 coefficients in the
corresponding context matrix ¢, ¢}, and cP are illustrated in
Fig. 6(d)—(f) respectively. Obviously, the edges in Fig. 6(d)—(f)
are more concentrated around the principal lines, while
the edges in Fig. 6(a)—(c) are a little more dispersed. Too
much information on minor wrinkle features is preserved in

Fig. 6(a)—(c) while being eliminated in Fig. 6(d)—(f).

(3.5)

B. Characterizing the Palmprint Using Context-Based
Wavelet Signatures

Various wavelet signatures have been proposed in [27]-[32],
and the popularly used ones are energy, histogram, and co-oc-

currence signatures. As for palmprint identification, these sig-
natures neither completely exploit the existed features nor suf-
ficiently characterize the palmprints. In this section, we will de-
fine a set of context-based statistical signatures to adequately
characterize a palmprint.

We denote by ¢7 the Lj;th great value in the context value
matrix ¢} of each subband w7, = H,V, D. Define

ci(n,m)

cjtnm) = {

if ¢i(n,m) >
if ¢;(n,m) <t

<

(3.6)

*

’ J
We call ¢ the interested directional context matrix (IDCM) of
wj. Fig. 7 shows some typical palmprints and their IDCMs at
the second scale, ¢35, = H,V, D.

1) The Average Gravity Center Signature: 1f we view ¢} as
an object and the magnitude of each point ¢} (n,m) as the local
mass in the position, then there exists a gravity center of ¢}
which could measure globally the distribution of its mass. De-
note (x;" yj) as the gravity center of ¢j. The components of the
pair is defined as

| MM
V= Y Y gm)
1] n;l 'rr}\?l (37)
y;‘ = G* Z Zn -E;f(n,m)
J n=1m=1
where G;f is the mass of E;-
N M
G =Y c(nm) (3.8)

The shapes of the IDCMs are similar to each other across
scales in a fixed direction (horizontal, vertical, or diagonal), and
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Original image Horizontal IDCM

Vertical IDCM

(a) Palmprint 1

"B

Original image Horizontal IDCM

Vertical IDCM

(b) Palmprint 2

A

Horizontal IDCM
(c) Palmprint 3

Original image

Fig. 7.
(b) palmprint 2, and (c) palmprint 3.

the gravity centers of ¢; are of close values along different scales
with some variations. The signature of the average gravity center
(SAGV) of a IDCM ¢, denoted by (Z*,y*), is defined as the
mean of gravity center sequences (z} --- «%)and (yf --- y%)

L
j=1
7
7 1
=g
J=1

(3.9)

<

where .J is the total number of wavelet decomposition level.

2) The Density Signature: In the palmprints with deep, con-
centrative principal lines and weak wrinkles (for example, the
first palmprint in Fig. 7), the points in the associated IDCMs
are mostly concentrated around the principal lines. In the palm-
prints with shallow, sparse principal lines and relatively strong
wrinkles, the points in the associated IDCMs are more sparsely
distributed. Fig. 7 shows that, intuitively, the IDCM of the first
palmprint is more compact, and the IDCMs of the other palm-
prints are looser.

A signature of density (SD) of an IDCM could be defined
to characterize the above-mentioned feature of a palmprint. For
the ith nonzero coefficient in ¢}, denote it as ¢} (%), and let A’E(i)

J
be a square window centered at c; () and with a proper size [.

Vertical IDCM Diagonal IDCM

Some typical palmprint images and their IDCM at the second wavelet scale in the horizontal, vertical, and diagonal directions for (a) palmprint 1,

Denote by KJ* ) the number of nonzero points in A;" (i)’ and
then the SD of IDCM &; is defined as '

L.
* 1 - £ 3
Dj = I > K (3.10)
1=1

The density signature is proportional to the compactness of
the point in the IDCM. For example, suppose [ to be 5, the values
of D7 of the first palmprint in Fig. 7 are calculated to be 8, 10,
and 6, respectively, in the horizontal, vertical, and diagonal di-
rections. Those of the second palmprint are 5.7, 6, and 3, respec-
tively.

3) The Spatial Dispersivity Signature: The SD defined in
Section III-B-2 measures the compactness of the points in an
IDCM, but it does not exploit the spatial distribution of the
points. From Fig. 7, we can see that although the last two IDCMs
are both similarly compact, they are very different in the spatial
distribution of their points.

The heart line of a typical palmprint is vertical while the life
line is horizontal, and the head line is diagonal. This is also well
reflected in the IDCMs. Referring to Fig. 7, suppose we project
the vertical IDCM of the first palmprint into y-coordinate, it can
be imagined that the resulted projection will concentrate mainly
in two local areas. But it can be imagined that if the vertical
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IDCM of the last palmprint were projected into the y-coordi-
nate, the projection would be more evenly distributed.

We first assign an associated projection vector (APV) to each
IDCM. For the horizontal IDCM Ef , which is projected into the
x -coordinate, the APV is defined as

N

_H

P, (771):2:751(71,771)7 m=1,2,...,M. (3.11)
n=1

The vertical IDCM E}/
APV is defined as

is projected into the y-coordinate, and its

5y ()= & (n.m),

m=1

n=12,...,N. (3.12)

The diagonal IDCM EJD should be projected along the direction
of —m /4 for the right hand, and along the direction of 7 /4 for the
left hand. Here, we consider the right hand and the result of the
left hand can be derived similarly. The APV of E]D , denoted by

D
p,; (k) willhave K elements, where K = N+ M —1. Suppose

_D

M > N, p; (k) is defined as (the result when M < N can be
derived similarly) in (3.13), shown at the bottom of the page.
The APV is then normalized as

s D (k)

Pj(k) = 27* (3.14)
2P (i)

We call ; ; the normalized associated projection vector (NAPV)

of ¢}. The signature of spatial disperse (SSD) is defined as the

reciprocal of the standard deviation of p j

s = — (3.15)
VESL, (56 - )2
where

(3.16)

NI'i

is the mean of the NAPV ; i

The NAPVs 5: of the IDCMs ¢} in Fig. 7 are plotted in Fig. 8.
Evenness in the distribution of an NAPV can be reflected in
the SSD. If an NAPV is very unevenly distributed, its standard
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deviation will be high and the value of the SSD will be small and
vice versa. The SSDs of the three horizontal NAPVs in Fig. 8
are 71.7, 109.3, and 75.5. The SSDs of the the vertical NAPVs
are 82.8, 86.0 and 102.8 and the SSDs of the diagonal NAPVs
are 100, 110.4, and 131.5.

4) The Energy Signature: The energy signature is one of the
most popularly used wavelet signatures. In many publications
[27]1-[29], [31], the energy signature has been successfully ap-
plied to texture classification. Chang et al. [27] characterized a
class of middle frequency dominated textures only by their en-
ergy signatures with a tree-structured wavelet packet transform.
In [31], it is shown that better performance can be achieved
by combing the wavelet energy signature with the wavelet his-
togram and the co-occurrence signatures.

Traditionally, the energy signature is defined as the global
power of each wavelet subband w}

(3.17)

Since the wavelet coefficients within each subband are well
modeled by the GGD, which is zero mean, the energy signature
e;f is truly the variance of the wavelet coefficients, and the se-
quence { e’;} j=1,2,..., reflects the distribution of energy along
the frequency axis over scales for a fixed direction. However,
the energy signature defined above represents the variation of
the global palmprint image, but not the structures in which we

are interested.

Define
w}(n,m)

_ Jwi(n,m), ifci(n,m)>1; .

- {0, if ¢f(n,m) <t; ~ *=H,V.D. (3.18)
Then u‘);* is called the associated wavelet coefficients matrix

(AWCM) of IDCM ¢ . Instead of computing the total power of
wj, we define the signature of energy (SE) as

(3.19)

N M
S ()
—_— w,\n,m
L
n=1m=1
Like w7, w} is also nearly zero-mean, so SE €7 is approximately
the variance of the nonzero elements in ;. &; more accurately

reflects the variation of the interested structures than does e;f as
defined in (3.17).

( k
ED N —k+m,m),
m=1
D _
p, (k)= Z e?(N = k+m,m),
m=k—N+1
M
E?(N—k—f—m,m)./
\ m=k—N+1

k=1,2,...,N
k=N+1,...,M (3.13)

k=M+1,... . K
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Fig. 8. The NAPV of the ICDMs in Fig. 7. The horizontal, vertical, and diagonal NAPVs for (a) palmprint 1, (b) palmprint 2, and (c) palmprint 3.

IV. EXPERIMENTS

A. The Identification Strategy

Table I summarizes the context-based statistical signatures
defined in the last section. Suppose the palmprint images are de-
composed into .J wavelet scales. Each palmprint image would
have three pairs of SGAC signatures, 3 - J SD signatures, 3 - .J
SSD signatures and 3 - J SE signatures. These statistical sig-
natures can approximately describe a palmprint accurately and
then can be used to uniquely identify a person. Compared with
the line segments or interesting points based palmprint verifica-
tion schemes, the proposed approach is particularly lower in the
data storage. In pattern recognition, it is often expected that the
database can be grouped into several classes for faster retrieval
or other analytical purposes. These statistical signatures can also
provide a classification scheme of palmprints conveniently. The
flowchart in Fig. 9 illustrates the classification and identification
scheme used in this paper. The SAGC signatures are employed
to group the palmprints in the database into several classes. (In

the experiments of next subsection, 50 palmprints were classi-
fied into eight classes using SAGC signatures.) When the data-
base is growing large, the SE signatures can be used for more
detailed classification. Once an input palmprint is identified as
belonging to a class, it is matched with all the palmprints in that
class to determine if it is among them.

Since different signatures have different metrical units, so
their compared errors could not be added up directly. We com-
puted the relative errors in the identification process. For ex-
pression convenience, we denote by ©; the vector containing
all the SAGC signatures over directions, and by O, the vector
containing all the SD signatures over scales and directions, and
by ©3 and ©4 those for SSD and SE signatures respectively.
Denote by ©F i = 1,2,...,4, these vectors of the kth palm-
print in the database. The total relative error (TRE) of an input
©; with the stored ©F, denoted by Eff (iy» 1 computed as

0:(1) ~ Ok()
2|~ e

1 2

Ek() 4.1)
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TABLE 1
SUMMARY OF THE WAVELET SIGNATURES DEFINED FOR A PALMPRINT, WHERE J IS THE TOTAL DECOMPOSITION SCALE OF THE WT
. Total .
Signature number Description
Signature of average The average of the gravity centers of the interested directional context
gravity center 3 pairs matrices (IDCM) over all scales. They measure the global position of the

(SAGC)

interested structures of principle lines and heavy wrinkles in a palmprint.

Signature of density
(SD)

The average number of the nonzero elements that exist in the square
3J window centered at a nonzero element in an IDCM. They measure the
compactness of the points in an IDCM.

Signature of spatial
disperse (SSD)

The reciprocal of the standard deviation of the normalized associated
3J projection vector (NAPV) of an IDCM. They measure the spatial
distribution of an IDCM in the corresponding direction.

Signature of energy

The mean energy of the nonzero elements in the associated wavelet
coefficients matrix (AWCM) of an IDCM. An SE measures the variance of

(SE) 37 the interested structures in an AWCM, and a sequence of SEs reflects the
distribution of energy along the frequency axis over wavelet scales.
Input palmprint image Signatures calculation equal to D,,. Otherwise, the input palmprint is judged as being

!

Compared with the database by the
SAGC signatures

Palmprint is not found
in the database

Belongs to a class?

Yes

Compared within the class through the weighted
distance by all the signatures

Output the
found
palmprint
in the database

The minimum
distance is less than the
preset threshold?

Yes

Fig. 9. Identification strategy of the input palmprint.

The WD between the input palmprint and the kth palmprint
in the class is calculated by using the TREs of each kind of
signature

4
Dk = Z NEE o 4.2)
i=1
where {\;}i=1,2,...4 is a preset weight sequence, which is de-
termined by the reliability and stability of the signatures. In our
experience, the SGAC and SE signatures are more reliable and
stable than the SD and SSD signatures. It is appropriate to assign
SGAC and SE with a greater weight than SD and SSD. Partic-
ularly, by normalizing A; and A4 to be 1, A2 and A3 can be set
around 0.6. The experimental results are insensitive to the vari-
ations of A\ and 3.
Denote

min DF

D, = .
Y =12,

(4.3)

If D,, < T, where T is the preset threshold, the input palmprint
is verified as the one whose WD from the input palmprint is

out of the database.

The preset 1" is determined as follows. If the input palmprint
is in the database, its relative error with the same person’s palm-
print in the database is assumed to be less than 10% with re-
spect to each signature. 7' can thus be calculated by summing
up all the relative errors, which are supposed to be 0.1, taking
the weighted value into consideration. Since there are six SAGC
signatures and 3 - J SD, SSD, and SE signatures, we have

4
T=01- )\1-6+3J~Z)\i

=2

“4.4)

It is well known that in the pattern recognition a low threshold 7'
produces a low false-identification rate (FIR) but a high false-re-
jection rate (FRR), while a high threshold 7" produces a low FRR
but a high FIR. T is thus a tradeoff between FIR and FRR. In-
terestingly, the experiments in the next subsection demonstrate
that the presented scheme works particularly well at reducing
the FIR even when 7' is high. In practice, it is possible to assign
a value to T that produces a low FRR yet nonetheless maintains
a low FIR.

B. Experimental Results

We captured 200 palmprint samples from 50 persons. Four
samples were captured for each person, at different times by
CCD at resolution 65 dpi. Of the 200 palmprints, 50 samples
were used to form the database and the other 150 samples were
used for performing the identification experiments. The size of
the palmprint images after preprocessing is 150 x 150 and the
wavelet employed in the experiments is biorthogonal wavelet
CDEF(1, 3) constructed in [15]. The constant L [referring to
(3.5)] is set as 200.

The 50 persons were grouped into eight classes using the
SAGC signatures. The distribution of the 50 pairs of SAGCs in
Euclidean space is shown in Fig. 10 (the total wavelet decom-
position scale is set as J = 3). In the horizontal, vertical, and
diagonal directions, the palmprints were divided into two cate-
gories according to the positions of their gravity centers (the two
categories should have some overlap near the boundary, which
is illustrated in Fig. 10). Finally, the 50 palmprints were classi-
fied into 23 = 8 classes. Table II lists the number of palmprints
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Fig. 10. The spatial distribution of the signatures of average gravity center (SAGC) of the 50 palmprints in our database. (a) Horizontal direction. (b) Vertical
direction. (c) Diagonal direction. For each of the three directions, the palmprints are divided into two categories, which have some overlap near the boundary.
Finally, the 50 palmprints are classified into eight classes, and the number of palmprints in each class is listed in Table II.
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0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 15

Fig. 11.
{1,0.6,0.6,1}.

in each class. The total number of palmprints is greater than 50
because there are some overlaps across some classes.

After an input palmprint is adjudged to belong to a class, it is
compared with all the palmprints in the class by computing WD
in order to determine if it is among them. Figs. 11 and 12 illus-
trate the experimental results of the proposed scheme using dif-
ferent wavelet decomposition scales and weight sequences. We
plotted the curves of corrected identification rate (CIR), FIR,
and FRR versus threshold 7'. Since the wavelet energy signa-
tures [referring to (3.17)] have been successfully used in texture
analysis [27]-[31] applications such as fingerprint recognition
[32], we plotted in Fig. 13 the palmprint identification results
only using the energy signatures. The identification strategy is
similar to that in Section IV-A.

Fig. 13 shows that the palmprint identification result was not
satisfied using only the energy signatures. The CIR is not suffi-
ciently high and the FIR is high when increasing the threshold.
Figs. 11 and 12 show that the proposed scheme gives much
better results. Particularly, it has a very low FIR, even when the
threshold 7' is high. That s to say, we could assign a proper value
with T to suppress FRR without worrying about FIR increasing
too much. It is also observed that the proposed method still pro-
duces acceptable results when a small wavelet decomposition

P
09} e
o
08| -t 1
o O CR
07} e * FRR
o + FR
06|
05}
04|
L 4\
0.3 e
T
02}
01
—+
0 . " e -
13 14 15 16 17 18 19 2 2.1
T

(b)

Experimental results when wavelet decomposition scale is 7 = 2. (a) With weight sequence {A;} = {1,0,0, 1}; (b) With weight sequence {\;} =

TABLE 11
NUMBER OF PALMPRINTS OF THE EIGHT CLASSES GROUPED
BY SAGC SIGNATURES

Class 1 2 3 4 5 6 7 8

number 5

number is used. In contrast with .J = 3, the CIR, FIR, and FRR
results degenerate only slightly when J = 2. However, the iden-
tification results by only energy signatures are very poor when
the total decomposition scale number .J is small. This implies
that the signatures of our scheme offer a good characterization
of palmprint features. In Figs. 11(a) and 12(a), the weights Ao
and A3 were set as 0.6, and in Fig. 11(b) and 12(b) they were set
as 0, i.e., SD and SSD were not used in identification. We can
see that although SAGC and SE signatures lead to good results,
SD and SSD signatures are very helpful in improving the iden-
tification accuracy.

Table III lists the palmprint identification results reported in
the line-segment matching and half interesting-point matching
methods of papers [4] and [6]. It should be noted that in those
line or point based methods [4]-[6], the palmprint images are
first inked in a paper, and then the paper palmprints are scanned
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Fig. 12. Experimental results when wavelet decomposition scale is J = 3.
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Fig. 13. Experimental results by the traditional wavelet energy signatures. (a) With wavelet decomposition scale J = 2. (b) With wavelet decomposition scale

J = 3. (c) With wavelet decomposition scale J = 4.

by a scanner. They are basically designed for off-line analysis.
In [4], 60 palmprints, which were collected by scanning at a

resolution of 100 dpi, were used for experiments. In [6], 200
palmprints were collected from 100 persons by scanning at a
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Fig. 14. Performance of the proposed method at rejecting the palmprints not in the database. (a) FIR versus threshold T" when J = 2. (b) FIR versus threshold
T when J = 3. It is seen that the FIR is very low when T is around the value computed by (4.4).

TABLE 1II
PALMPRINT IDENTIFICATION RESULTS OF PAPERS [4] AND [6], IN WHICH THE
METHODS ARE LINE-SEGMENT MATCHING AND HALF INTERESTING-POINT
MATCHING BASED, AND THE PROPOSED METHOD

Methods CIR FIR FRR
In [4] 93.3% - -
In [6] 95% - -

Proposed 98% 2% 0%

resolution of 125 dpi. (In point matching method [5], 30 palm-
prints of three persons were collected and the scanning reso-
lution is 200 dpi. The point extraction and matching perfor-
mance was analyzed but the CIR result was not shown in that
paper.) The palmprints used in this paper were captured with
a CCD at a resolution of 65 dpi. The result of the proposed
method listed in Table III is obtained subject to the conditions
that J = 3,{\;} = {1,0.6,0.6,1} and T" = 2.7. Unlike the
schemes in [4]-[6], the proposed scheme is intended to allow
on-line access control. The implementation speed is reasonable.
The whole identification process of an input palmprint can be
completed within 3 s by running our nonoptimized Matlab code
in the PC of Intel P4 1.7-GHZ CPU and 512-MB RAM. The
speed will be much faster when we embed the algorithm into
the real system by C code. One of the problems in line- or
point-based methods is the disturbance of redundant wrinkle
and crease features in determining the line segments and inter-
esting points of principal lines. The proposed statistical signa-
tures are global measurements of the palmprint image, and they
are more robust to noise and the variations of minor features.
To test how well the proposed method rejects the palmprints
not in the database, we compared each one of the 50 persons’
palmprints with the other 49 persons’ palmprints, seeking
false identifications. We performed the experiments with total
wavelet decomposition scale number J = 2 and J = 3. The
weights were {\;} = {1,0.6,0.6,1}. Since the threshold
calculated with (4.4)is T' = 1.92 for .J = 2 and T' = 2.58 for
J = 3, we carried out the experiments by taking 7" in interval
[1.8,2.7] for J = 2 and interval [2.4, 3.3] for J = 3. Generally,

the FIR is low when threshold 7" is small and it increases with
as T increases. Fig. 14 compares the curves of FIR versus 7.
The FIR is very low when T is around the value calculated by
(4.4). This result shows that the proposed method is able to
reject palmprints not in the database.

V. CONCLUSION

This paper presents a statistical approach to palmprint
identification that uses low-resolution images. We transform
the palmprints into the wavelet domain and then identify the
predominant structures using context modeling according
to the appearances of the principal lines in each subband.
By using the interested context image, we characterize an
input palmprint with a set of statistical signatures. Some of
the signatures are used to classify the palmprints, and all
the signatures are used to calculate the WDs between the
palmprints and the database. The proposed scheme provides an
adequate statistical description of the principal lines and heavy
wrinkles, which convey considerable information for purposes
of individual identification. The experiments were performed
using two hundreds palmprint images from fifty persons.
The 50 individuals were classified into eight categories. The
corrected recognition rate was as high as 98%. The proposed
scheme works very well at suppressing the false identification
rate and robust to the threshold. These results are encouraging
and the scheme will be tested on a much larger database. The
main limitation of the approach is that the used signatures are
global measurements, and the signatures of some palmprints
are very similar. It is to be hoped that some local signatures
(that is to say, the signatures are computed at different spatial
locations of the palmprint) can be defined in the future work to
identify the highly similar palmprints.

REFERENCES

[1] B. Miller, “Vital signs of identity,” IEEE Spectrum, vol. 32, pp. 22-30,
Feb. 1994.

[2] A.K.Jain, R. Bolle, and S. Pankanti, Eds., Biometrics: Personal Identi-
fication in Networked Society. Norwell, MA: Kluwer, 1999.



ZHANG AND ZHANG: CHARACTERIZATION OF PALMPRINTS BY WAVELET SIGNATURES

31
(4]

[3]
(6]

(71

(8]
(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

D. Zhang, Automated Biometrics—Technologies and Systems, A. K.
Jain, Ed. Norwell, MA: Kluwer, 2000.

D. Zhang and W. Shu, “Two novel characteristics in Palmprint veri-
fication: Datum point invariance and line feature matching,” Pattern
Recognit., vol. 32, pp. 691-702, 1999.

N.Duta, A. K. Jain, and K. V. Mardia, “Matching of palmprints,” Pattern
Recognit. Lett., vol. 23, pp. 477-485, Apr. 2002.

J. You, W. Li, and D. Zhang, “Hierarchical pamlprint identification via
multiple feature extraction,” Pattern Recognit., vol. 35, pp. 847-859,
Apr. 2002.

W. K. Kong and D. Zhang, “Palmprint texture analysis based on low-
resolution images for personal identification,” in Proc. ICPR 2002, QC,
Canada, pp. 807-810.

J. Chen, C. Zhang, and G. Rong, “Palmprint recognition using crease,”
in Proc. Int. Conf. Image Processing, Oct. 2001, pp. 234-237.

A. K. Jain, L. Hong, S. Pankanti, and R. Bolle, “An identity-authenti-
cation system using fingerprints,” Proc. IEEE, vol. 85, pp. 1365-1388,
Sept. 1997.

A. K. Jain, S. Prabhakar, and L. Hong, “A multichannel approach to
fingerprint classification,” IEEE Trans. Pattern Anal. Machine Intell.,
vol. 21, pp. 348-359, Apr. 1999.

R. Sanchez-Reillo, C. Sanchez-Avila, and A. Gonzalez-Marcos,
“Biometric identification through hand geometry measurements,” IEEE
Trans. Pattern Anal. Machine Intell., vol. 22, pp. 1168-1171, Oct. 2000.
R. Zunkel, “Hand geometry based authentication,” in Biometrics:
Personal Identification in Networked Society, A. Jain, R. Bolle, and S.
Pankanti, Eds. Norwell, MA: Kluwer, 1999.

R. P. Wildes, “Iris recognition: An emerging biometric technology,”
Proc. IEEE, vol. 85, pp. 1348-1363, Sept. 1997.

W. Chou, “Discriminant-function-based minimum recognition error rate
pattern-recognition approach to speech recognition,” Proc. IEEE, vol.
88, pp. 1201-1223, Aug. 2000.

C. Liu and H. Wechsler, “A shape- and texture-based enhanced Fisher
classifier for face recognition,” IEEE Trans. Image Processing, vol. 10,
pp. 598-608, Apr. 2001.

I. Daubechies, Ten Lectures on Wavelets.
1992.

S. Mallat, “A theory for multiresolution signal decomposition: The
wavelet representation,” IEEE Trans. Pattern Anal. Machine Intell.,
vol. 11, pp. 674-693, July 1989.

S. Mallat and S. Zhong, “Characterization of signals from multiscale
edges,” IEEE Trans. Pattern Anal. Machine Intell., vol. 14, pp. 710-732,
July 1992.

M. Vetterli and C. Herley, “Wavelet and filter banks: Theory and design,”
IEEE Trans. Signal Processing, vol. 40, pp. 2207-2232, Sept. 1992.

S. G. Chang, B. Yu, and M. Vetterli, “Spatially adaptive wavelet thresh-
olding with context modeling for image denoising,” IEEE Trans. Image
Processing, vol. 9, pp. 1522-1531, Sept. 2000.

X. Wu, “Lossless Compression of continuous-tone images via context
selection, quantization, and modeling,” IEEE Trans. Image Processing,
vol. 6, pp. 656-664, May 1997.

Y. Yoo, A. Ortega, and B. Yu, “Image subband coding using context-
based classification and adaptive quantization,” IEEE Trans. Image Pro-
cessing, vol. 8, pp. 1702-1715, Dec. 1999.

J. Liu and P. Moulin, “Information-theoretic analysis of interscale and
intrascale dependencies between image wavelet coefficients,” IEEE
Trans. Image Processing, vol. 10, pp. 1647-1658, Nov. 2001.

R. R. Coifman and D. L. Donoho, “Translation-invariant de-noising,” in
Wavelet and Statistics, A. Antoniadis and G. Oppenheim, Eds, Berlin,
Germany: Springer-Verlag, 1995.

J. M. Shapiro, “Embedded image coding using zerostrees of wavelet
coefficients,” IEEE Trans. Signal Processing, vol. 41, pp. 3445-3462,
Dec. 1993.

A. K. Jain, R. P. W. Duin, and J. Mao, “Statistical pattern recognition:
A review,” IEEE Trans. Pattern Anal. Machine Intell., vol. 22, pp. 4-37,
Jan. 2000.

Philadelphia, PA: SIAM,

1347

[27] T. Chang and C.-C. J. Kuo, “Texture analysis and classification with
tree-structured wavelet transform,” IEEE Trans. Image Processing, vol.
2, pp. 429-441, Oct. 1993.

S. Pittner and S. V. Kamarthi, “Feature extration from wavelet coeffi-
cients for pattern recognition tasks,” IEEE Trans. Pattern Anal. Machine
Intell., vol. 21, pp. 83-88, Jan. 1999.

A. Laine and J. Fan, “Texture classification by wavelet packet sig-
nitures,” IEEE Trans. Pattern Anal. Machine Intell., vol. 15, pp.
1186-1191, Nov. 1993.

M. Unser, “Texture classification and segmentation using wavelet
frames,” IEEE Trans. Image Processing, vol. 4, pp. 1549-1560, Nov.
1995.

G. V. de Wouwer, P. Scheunders, and D. V. Dyck, “Statistical texture
characterization from discrete wavelet representation,” IEEE Trans.
Image Processing, vol. 8, pp. 592-598, Apr. 1999.

M. Tico, P. Kuosmanen, and J. Saarinen, “Wavelet domain features for
fingerprint recognition,” Electron. Lett., vol. 37, pp. 21-22, Jan. 2001.

[28]

[29]

[30]

[31]

[32]

Lei Zhang received the B.S. degree in 1995 from
Shenyang Institute of Aeronautic Engineering,
Shenyang, China, and the M.S. and Ph.D. degrees
in electrical and engineering from Northwestern
Polytechnical University, Xi’an, China, in 1998 and
2001, respectively.

From 2001 to 2002, he was a Research Associate
in the Department of Computing, The Hong Kong
Polytechnic University, Kowloon. Currently, he is a
Postdoctoral Researcher in the Department of Elec-
trical and Computer Engineering, McMaster Univer-

sity, Hamilton, ON, Canada. His research interests include digital signal and
image processing, pattern recognition, optimal estimation theory, and wavelet
transforms.

David Zhang graduated in computer science from
Peking University, Peking, China, in 1974. He
received the M.Sc. and Ph.D. degrees in computer
science and engineering from the Harbin Institute
of Technology (HIT), Harbin, China, in 1983 and
1985, respectively. In 1994, he received the Ph.D.
degree in electrical and computer engineering from
] the University of Waterloo, ON, Canada.
From 1986 to 1988, he was a Postdoctoral Fellow
. at Tsinghua University and then became an Associate
Professor at Academia Sinica, Beijing, China. Cur-
rently, he is a Professor with the Hong Kong Polytechnic University, Kowloon.
He is Founder and Director of the Biometrics Technology Centre supported by
the Government of the Hong Kong SAR (UGC/CRC). He is also an Adjunct Pro-
fessor at Tsinghua University, Shanghai Jiao Tong University, Harbin Institute
of Technology, and the University of Waterloo. His research interests include
automated biometrics-based authentication, pattern recognition, and biometric
technology and systems. He has published over 120 journal papers, 20 book
chapters, and nine books.

Dr. Zhang is an Associate Editor for over ten international journals, including
the IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS (Parts A and
C) and the IEEE TRANSACTIONS ON PATTERN RECOGNITION. He is Founder
and Editor-in-Chief of the International Journal of Image and Graphics (1JIG),
Book Editor for the Kluwer International Series on Biometrics (KISB), and Pro-
gram Chair for the First International Conference on Biometrics Authentication
(ICBA). He has received several awards since 1980 for his work on biometrics
projects.

-
A
’?
P

——y



