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Abstract—The technique of scale multiplication is analyzed in the framework of

Canny edge detection. A scale multiplication function is defined as the product of

the responses of the detection filter at two scales. Edge maps are constructed as

the local maxima by thresholding the scale multiplication results. The detection and

localization criteria of the scale multiplication are derived. At a small loss in the

detection criterion, the localization criterion can be much improved by scale

multiplication. The product of the two criteria for scale multiplication is greater than

that for a single scale, which leads to better edge detection performance.

Experimental results are presented.

Index Terms—Edge detection, scale multiplication, multiscale analysis.
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1 INTRODUCTION

EDGES carry important information of an image. Numerous edge

detection techniques have been proposed [1], [2], [3], [4], [5], [6], [7],

[8], [9]. The common approach is to apply the first (or second)

derivative to the smoothed image and then find the localmaxima (or
zero-crossings). Canny [2] first presented the well-known three

criteria of edge detectors: good detection, good localization, and low

spurious response and showed that the optimal detector for an isolated

step edge shouldbe the first derivative ofGaussian (FDOG).Anerror in

Canny’s localization criterion was fixed by Tagare and de Figueiredo

[5] and by Koplowitz andGreco [6]. Recently, Demigny [4] analyzed

in detail the optimal detection filters in discrete domain.
An important issue in edge detection is the scale of detection

filter. Small-scaled filters are sensitive to edge signals but also prone

to noise, whereas large-scaled filters are robust to noise but could

filter out fine details. As suggested by Marr and Hildreth [1],

multiple scales could be employed to describe and synthesize the

varieties of edge structures. The idea of scalemultiplicationwas first

exploited by Rosenfeld in [3], where it is shown that the scale

products can improve the edge localization. Mallat [10] illustrated

mathematically that signals and noise have different singularities

and edge structures present observablemagnitudes along the scales,

while noise decreases rapidly. With this observation, Xu et al. [11]

proposed a wavelet-based spatially selective filtering technique by

multiplying the adjacent scales. Sadler and Swami [12] applied the

wavelet-multiscale-products to step detection and estimation and

Bao and Zhang [13] presented a denoising scheme by thresholding

the multiscale products.
Inspired by the work of Canny [2] and others [5], [6] on criteria of

edge detection filters, we define the detection and localization criteria

of the scale multiplication. We show that through scale multi-

plication the localization accuracy can be significantly improvedwith

only a small loss in the detection criterion and the product of the two

criteria for the scale multiplication is greater than that for a single

scale, leading to superior edge detection results. A simple but

efficient edge detector by scale multiplication is then proposed.

2 CRITERIA OF OPTIMAL EDGE DETECTION FILTERS

Suppose that an FIR filter fðxÞ supported in ½�T; T � is used as the

detector. The signal to be detected is a single step edge corrupted

by noise: WðxÞ ¼ GðxÞ þ nðxÞ, where nðxÞ � Nð0; �2Þ is Gaussian

white noise and GðxÞ is a step edge whose magnitude is A when

x � 0. The response of GðxÞ to fðxÞ is HGðxÞ ¼
R T

�T Gðx� tÞfðtÞdt
and that of nðxÞisHnðxÞ ¼

R T
�T nðx� tÞfðtÞdt and then the response

of W ðxÞ to fðxÞ is HW ðxÞ ¼ HGðxÞ þHnðxÞ. Considering the edges

as the local maxima of HW ðxÞ, Canny [2] generalized three criteria

to evaluate an edge detector:

1. Good detection. It is expected that at abscissa x ¼ 0, the
signal-to-noise ratio (SNR) should be as high as possible.
The criterion is:

SNR ¼ A

Z 0

�T

fðxÞdx
����

����
,

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ T

�T

f2ðxÞdx

s0
@

1
A: ð2:1Þ

2. Good localization. The detected edge should be as close to

location x ¼ 0 as possible. Denote by y the local maximum

position in HW ðxÞ. Canny approximated y � H 0
nðyÞ=H 00

Gð0Þ
and defined the criterion as the reciprocal of the standard

deviation of y. He computed E½H 02
n ðyÞ� ¼ �2

R T

�T f 02ðxÞdx.
However, Tagare and Figueiredo [5] pointed out this

expression is correct only if H 0
nðxÞ is sampled at the same

position for all realizations ofHnðxÞ. But, the location y is not

constant. In [6], Koplowitz and Greco gave another

approximation of y:

y � �H 0
nð0Þ=

�
H 00

Gð0Þ þH 00
nð0Þ

�
: ð2:2Þ

Let & ¼ �H 0
nð0Þ and � ¼ H 00

Gð0Þ þH 00
nð0Þ. & and � are

independent Gaussian variables. Denote by �& and �� and

�2& and �2� the means and variances of them, respectively.

The pdf of y is [6]:

PrðyÞ ¼ 1

2��&��
� e

�c

a
1þ b

ffiffiffiffiffiffiffiffi
�=a

p
� eb2=a � erfðb=

ffiffiffi
a

p
Þ

� �
; ð2:3Þ

where erfðxÞ is the error function and a ¼ y2

2�2&
þ 1

2�2
�

, b ¼ �
�&y
2�2&

� ��

2�2
�

, and c ¼ �2
&

2�2&
þ �2

�

2�2
�

. Note that
R
y2 PrðyÞdy is infinite.

Limiting the edge location between interval ½�T; T �, we

compute the variance of y as E½y2� ¼
R T

�T y2 PrðyÞdy. Thus,
the good localization criterion is defined as

L ¼ 1

, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ T

�T

y2 PrðyÞdy

s
: ð2:4Þ

3. Low spurious response. Since the input is a single step, the
detector should not produce multiple maxima. Canny
defined by

xmaxðfÞ ¼ 2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ T

�T

f 02ðxÞdx

s ,Z T

�T

f 002ðxÞdx

the mean distance between two noise maxima and

expected xmaxðfÞ to be as big as possible.
In Canny’s view, the optimal edge detection filter

should maximize the product of detection and localization

criteria with the constraint in low spurious response.

However, Demigny [4] pointed out that the criterion of

low spurious response is not essential and he further proved

that the influence of this criterion is greatly reduced by

thresholding operation and a good filter can be determined

by only optimizing the detection-localization product.
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3 ANALYSIS OF SCALE MULTIPLICATION IN EDGE

DETECTION

3.1 Scale Multiplication

Denote by fsðxÞ ¼ fðx=sÞ=s the dilation of fðxÞ by scale s. The

support of fsðxÞ is ½�Ts; Ts�, where Ts ¼ sT . We denote the

response of WðxÞ to fsðxÞ as Hs
W ðxÞ ¼ Hs

GðxÞ þHs
nðxÞ, where

Hs
GðxÞ and Hs

nðxÞ are the responses of GðxÞ and nðxÞ, respectively.
In this paper, we take the FDOG fðxÞ ¼ �x � e�x2=2 as the edge

detection filter and then fsðxÞ ¼ �xe�x2=ð2s2Þ=s2. We use a small

scale s1 and a large scale s2 to detect the step edge. The responses

at the two scales are Hs1
W ðxÞ and Hs2

W ðxÞ. The scale multiplication is

defined as the product of Hs1
W ðxÞ and Hs2

W ðxÞ

PW ðxÞ ¼ Hs1
W ðxÞ �Hs2

W ðxÞ ð3:1Þ

Fig. 1 shows a noisy step edge WðxÞ, the edge detection

filters fs1 ðxÞ and fs2 ðxÞðs2 ¼ 2s1Þ, the responses at the two scales,

and their products PW ðxÞ. We see that with scale s1, the step edge is

more accurately localizedbut some false localmaximaareproduced;

with scale s2, fewer false edges are detected but traded off with a

decreasedaccuracy inedge location.PW ðxÞ combines the advantages

of the two scales. In PW ðxÞ, the step edge is much sharper compared

withHs2
W ðxÞ, while noise is better suppressed comparedwithHs1

W ðxÞ.
Intuitively,more robust detection results can beobtained if edges are

determined as the local maxima in PW ðxÞ after thresholding.

3.2 The Detection Criterion

The detection criterion proposed by Canny [2] is based on the

linear property of convolution. In PW ðxÞ, however, nonlinearity is

introduced by the multiplication operation. Similar to Canny’s

definition, the detection criterion is considered as the SNR of

PW ðxÞ at x ¼ 0, where the step edge occurs. If the system input is a

noiseless signal GðxÞ, PW ð0Þ would be Hs1
G ð0Þ �Hs2

G ð0Þ and if the

input is noise nðxÞ, the output would be Hs1
n ð0Þ �Hs2

n ð0Þ. We define

the detection criterion as

SNRP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hs1

G ð0Þ �Hs2
G ð0Þ

�� ��q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½ Hs1

n ð0Þ �Hs2
n ð0Þj j�

p :

Note that, if s1 ¼ s2 (i.e., PW ðxÞ is the square of Hs1
W ðxÞ), SNRP is

the same as the SNR in (2.1) with fðxÞ ¼ fs1ðxÞ. Since Hs
Gð0Þ is

invariant with scale s and Hs
Gð0Þ ¼ A, we have SNRP ¼ A=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E½ Hs1
n ð0Þ �Hs2

n ð0Þj j�
p

. Hs1
n ð0Þ and Hs2

n ð0Þ are linear filtering outputs

of Gaussian noise nðxÞ and, thus, zero mean and jointly Gaussian

distributed:

Prðz1; z2Þ ¼
1

2��1�2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p exp � 1

2ð1� �2Þ
z21
�21

� 2�z1z2
�1�2

þ z22
�22

� �� �
;

where

�1 ¼ � �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
f2s1 ðtÞdt

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=ð4s21Þ

4

q
� � and

�2 ¼ � �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
f2s2 ðtÞdt

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=ð4s22Þ

4

q
� �

ð3:2Þ

and � is the correlation coefficient of Hs1
n ð0Þ and Hs2

n ð0Þ:

� ¼
R
fs1 ðtÞfs2 ðtÞdtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR

f2s1 ðtÞdt
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
f2s2ðtÞdt

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
23s31s

3
2

ðs21 þ s22Þ
3

s
: ð3:3Þ

Note that � is invariant with the ratio r ¼ s2=s1. The expectation of

Hs1
n ð0Þ �Hs2

n ð0Þ
�� �� is

E Hs1
n ð0Þ �Hs2

n ð0Þ
�� ��	 


¼ 2�1�2 cos�þ � sin�ð Þ=�; ð3:4Þ

where � is given by sin� ¼ �;��=2 < � � �=2. Then, we can

compute SNRP as

SNRP ¼ A

�
�

ffiffiffiffiffiffiffiffiffiffiffiffi
�s1s24

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos�þ � sin�

p : ð3:5Þ

When ratio r ¼ s2=s1 is fixed, � is a constant and � is fixed. If

A=� is also fixed, we see that SNRP is proportional to
ffiffiffiffiffi
s1

p
. This

observation is similar tp that on the detection criterion SNR in

(2.1). Substituting fsðxÞ ¼ �xe�x2=s2=s2 for fðxÞ in (2.1), we can

compute that SNR ¼
ffiffiffi
s

p
� ðA=�Þ �

ffiffiffiffiffiffiffiffi
4=�4

p
. Apparently, SNR is also

proportional to
ffiffiffi
s

p
.

3.3 The Localization Criterion

Denote by z the local maximum position of PW ðxÞ near x ¼ 0. The

derivative of PW ðxÞ at z is P 0
W ðzÞ ¼ H 0s1

W ðzÞ �Hs2
W ðzÞ þHs1

W ðzÞ �
H 0s2

W ðzÞ ¼ 0. By Taylor expansion of the derivatives of Hs
W ðzÞ and

H 0s
W ðzÞ about x ¼ 0 and neglecting the oðz2Þ terms, we have

z � �H 0s1
n ð0ÞHs2

W ð0Þ �H 0s2
n ð0ÞHs1

W ð0Þ
H 00s1

W ð0ÞHs2
W ð0Þ þH 00

Ws2ð0ÞHs1
W ð0Þ þ 2H

0s1
n ð0ÞH 0s2

n ð0Þ
: ð3:6Þ

We used H 0s
Gð0Þ ¼ 0 in deriving the above equation. For expression

convenience, we denote &i ¼ Hsi
W ð0Þ, �i ¼ H 0si

n ð0Þ, and �i ¼ H 00si
W ð0Þ,

i ¼ 1; 2 and then z � ��1&2��2&1
�1&2þ�2&1þ2�1�2

.

All variables &i, �i, and �i are linear filtering outputs of noise

nðxÞ, so they are jointly Gaussian. Let X
*

¼ colf&1; &2; �1; �2; �1; �2g.
The mean vector and covariance matrix of X

*

are M
*

¼ E½X
*

� and
� ¼ E½ðX

*

�M
*

ÞðX
*

�M
*

ÞT �. The pdf of X
*

is [14]

PrðX
*

Þ ¼ 1

ð2�Þ3
ffiffiffiffiffiffiffi
�j j

p exp � 1

2
X
*

�M
*

ÞT��1X
*

�M
*

Þ
� �

; ð3:7Þ

where �j j is the determinant of matrix �. The elements of

M
*

¼ E½X
*

� are computed as E½&i� ¼ Hsi
G ð0Þ ¼ A, E½�i� ¼ 0, and

E½�i� ¼ H 00
Gsið0Þ ¼ �A=s2i . The elements of � are

covð&i; &jÞ ¼ �2
Z

fsi ðxÞfsj ðxÞdx

¼ �2 �
ffiffiffiffiffiffi
2�

p
sisj=ðs2i þ s2j Þ

1:5; i; j ¼ 1; 2

ð3:8aÞ
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Fig. 1. (a) Noisy step edge W ðxÞ. (b) The FDOG at scale s1. (c) The response of
fs1 ðxÞ toWðxÞ. (d) The FDOG at scale s2. (e) The response of fs2 ðxÞ toW ðxÞ. (f) The
responses product of scales s1 and s2.



covð�i; �jÞ ¼�2
Z

f 0si ðxÞf
0
sj
ðxÞdx¼�2 � 3

ffiffiffiffiffiffi
2�

p
sisj=ðs2i þs2j Þ

2:5; i; j ¼ 1; 2;

ð3:8bÞ

covð�i; �jÞ¼�2
Z
f 00si ðxÞf

00
sj
ðxÞdx¼�2 �15

ffiffiffiffiffiffi
2�

p
sisj=ðs2i þs2j Þ

3:5; i; j¼1; 2;

ð3:8cÞ

covð&i; �jÞ ¼ 0; covð&i; �jÞ ¼ 0; and covð�i; �jÞ ¼ 0; i; j ¼ 1; 2: ð3:8dÞ

In fact, we can write PrðX
*

Þ ¼ Prð&1; &2Þ � Prð�1; �2Þ � Prð�1; �2Þ be-

cause &i, �i, and �i are mutually independent, where Prð�; �Þ is the
bivariate Gaussian distribution.

We limit the local maximum of Hsi
W ðxÞ between ½�Tsi ; Tsi �.

Suppose s2 > s1, then Ts2 > Ts1 . Referring to Fig. 1, the edge is

enhanced in PW ðxÞ and we limit y, the local maximum of PW ðxÞ,
between ½�Ts1 ; Ts1 �. The variance of z can be computed by E½z2� ¼R Ts1

�Ts1
z2 PrðzÞdz if we know PrðzÞ, the pdf of z. However, z is a

complex function of &i, �i, and �i and it is hard to obtain the analytic

form of PrðzÞ. Instead, we compute numerically the variance of z by

using PrðX
*

Þ:

E½z2� ¼
ZZZZZZ

zj j�Ts1

z2 PrðX
*

Þd&1d&2d�1d�2d�1d�2: ð3:9Þ

Finally, similar to (2.4), we define the localization criterion of z as

LP ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffi
E½z2�

p
: ð3:10Þ

3.4 Numerical Comparison of SNRP , LP with SNR, L

SNRP is computed with (3.5) and SNR defined in (2.1) is

computed by SNR ¼ ffiffiffi
s

p � ðA=�Þ �
ffiffiffiffiffiffiffiffi
4=�4

p
. Localization criteria LP

in (3.10) and L in (2.4) are computed numerically. Since the

Gaussian function decays rapidly, we set the support of fðxÞ ¼
�x � e�x2=2 to �4; 4½ �. Thus, the support of fsðxÞ ¼ �xe�x2=s2=s2 is

�4s; 4s½ �, i.e., Ts ¼ 4s. Parameters �& , �� , �& , and �� in probability

function PrðyÞ (2.3) are computed as

�& ¼ E½H 0
nð0Þ� ¼ 0;

�& ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½H 02

n ð0Þ�
q

¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ Ts

�Ts

f 02s ðxÞdx

s
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

ffiffiffi
�

p
=ð4s3Þ

q
;

�� ¼ E½H 00
Gð0Þ� ¼ Af 0sð0Þ ¼ �A=s2;

�� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½H 002

n ð0Þ�
q

¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ Ts

�Ts

f 002s ðxÞdx

s
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15

ffiffiffi
�

p
=ð8s5Þ

q
:

Denote by �1 and �2 the SNR values of fs1 ðxÞ and fs2 ðxÞ and by

�1 and �2 the L values of them. The corresponding values of

criteria SNRP and LP are denoted by �P , �P . In the sequel, we set

s2 ¼ 2 � s1 and compute �1, �2, �1, �2, �P , and �P versus A=�.
Fig. 2a plots the curves of �1, �2, and �P versus A=� when

s1 ¼ 20. Fig. 2b plots the corresponding curves of�1,�2, and�P , and

Fig. 2c plots the products�1 	 �1,�2 	 �2, and�P 	 �P . Figs. 3a, 3b,

and 3c plot these curves for s1 ¼ 21. Similar observations are made

on other values of s1. We see that �P is much greater than �1 and is

only slightly less than �2. At the same time, �P is not only much

higher than �2, but also slightly higher than �1. Finally, �P 	 �P is

much higher than �1 	 �1 and �2 	 �2, meaning that scale multi-

plication significantly improves edge detection results.

3.5 Thresholding

In first-derivative-based edge detection, the gradient image should
be thresholded to eliminate false edges produced by noise. With a
single threshold t, some false edges may appear if t is too small and
some true edges may be missed if t is too large. In [2], Canny
proposed a double thresholding algorithm. After nonmaxima
suppression, a low threshold tl and a high threshold th � 2tl are
applied to obtain double thresholded edge maps, Il and Ih. The
algorithm selects edges in Il that link to the edges in Ih. The double
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Fig. 2. When s1 ¼ 20 and s2 ¼ 21. (a) The curves �1 (dotted), �2 (dashed), and �P (solid). (b) The curves �1 (dotted), �2 (dashed), and �P (solid). (c) The curves �1 	 �1

(dotted), �2 	 �2 (dashed), and �P 	 �P (solid).

Fig. 3. When s1 ¼ 21 and s2 ¼ 22. (a) The curves �1 (dotted), �2 (dashed), and �P (solid). (b) The curves �1 (dotted), �2 (dashed), and �P (solid). (c) The curves �1 	 �1

(dotted), �2 	 �2 (dashed), and �P 	 �P (solid).



thresholding algorithm can also be applied to our scheme.
Considering that edges and noise can be better distinguished in
the scale products than in a single scale, however, we adopt the
simple single thresholding strategy.

The edges are detected as the local maxima in PW ðxÞ. A
significant edge at abscissa x0 will occur at both the scales and the
signs ofHs1

W ðx0Þ andHs2
W ðx0Þwill be the same, so that PW ðx0Þwill be

nonnegative. If PW ðxÞ < 0, the point is considered as noise and
filtered out. Suppose the input is pure noise nðxÞ and then the
products function is PnðxÞ ¼ Hs1

n ðxÞ �Hs2
n ðxÞ. Variables Hs1

n ðxÞ and
Hs2

n ðxÞ are jointly Gaussian with standard deviations �1 and �2,
respectively, and correlation coefficient �. The pdf of their product,
PnðxÞ, is [14, p. 42]

PrðzÞ ¼ 1

��ð1=2Þ�1�2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p exp
�z

ð1� �2Þ�1�2

� �
K0

zj j
ð1� �2Þ�1�2

� �
;

ð3:11Þ

where �ðtÞ ¼
R1
0 e�uut�1du is the Gamma function and K0 is the

modified Bessel function of the second kind with order zero. The
standard deviation of PnðxÞ is

� ¼
ffiffiffiffiffiffiffiffiffiffiffi
E z2½ �

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E u2v2½ �

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�2

p
� �1�2: ð3:12Þ

A threshold t ¼ c � � can suppress most of the PnðxÞ values by
increasing c. In real applications, the input is the combination of

noise and signal. The noise will be dominant in the filter response
except for the significant edge structures. We find that setting

tP ¼ c � �, c > 5 leads to satisfactory results, i.e., suppressing most
of the noise while well preserving the edges.

3.6 Two Dimensions

In 2D images, two scale product functions are needed. Denote by
fxs ðx; yÞandfys ðx; yÞthetwodetectionfiltersinxandydirections.Their

responses to image I areHs
xðx; yÞ andHs

yðx; yÞ. Theproduct functions
are defined as Px

I ðx; yÞ ¼ Hs1
x ðx; yÞ �Hs2

x ðx; yÞ and Py
I ðx; yÞ ¼ Hs1

y

ðx; yÞ �Hs2
y ðx; yÞ. For an edge point x0; y0ð Þ, Hs

xðx0; y0Þ, or Hs
yðx0; y0Þ

will have the same sign at adjacent scales s1 and s2 so both Px
I ðx0; y0Þ

andPy
I ðx0; y0Þwill be nonnegative and the orientation information of

the edge is lost, which should be recovered from Hs1
x ðx0; y0Þ and

Hs1
y ðx0; y0Þ. Setting the points with Px

I ðx; yÞ < 0 (or Py
I ðx; yÞ < 0) to 0,

themodulus and angle of point x; yð Þ are defined as

MIðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Px
I ðx; yÞ þ Py

I ðx; yÞ
q

and

Aðx; yÞ ¼ arctan
sgn Hs1

y ðx; yÞ
� �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Py
I ðx; yÞ

p
sgn Hs1

x ðx; yÞð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Px
I ðx; yÞ

p
0
@

1
A:

ð3:13Þ

As in the Canny edge detector, an edge point is asserted wherever

MIðx; yÞ has a local maximum in the direction given byAIðx; yÞ. The
modulus map MIðx; yÞ should be thresholded to remove noise.

Referring to Section 3.5, the threshold applied to Px
I ðx; yÞ is

txP ¼ c � �x, c > 5. The threshold tyP applied to Py
I ðx; yÞ is obtained

similarly. We set the threshold toMIðx; yÞ as tP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
txP þ tyP

p
.

4 EXPERIMENTAL RESULTS

We experimented the proposed technique on a synthetic image and
two natural images. The synthetic image, inwhich the true edges are
known, is used to test the edge detection performance by some
quantitative measurement. With the scale multiplication strategy,
we choose the larger scale big enough to keep the false edge rate low,
while achieving high edge location accuracy by multiplying a small
scale. Let s2 ¼ r � s1 with r > 1. Too small an rwould not incorporate
sufficient information of two different scales, whereas too large an r

would reduce the correlation of the two scales. r ¼ 2 is a good choice
and it is convenient to discrete implementation. Suppose at scale s1
the discrete filter length is l1, then at scale s2 ¼ 2s1 the filter length is
l2 ¼ 2l1 þ 2. At the finest scale, s ¼ 20, we discretize the FDOG filter
to be f1 ¼ ½�1; 1�, and at the second scale s ¼ 21, the filter is
f2 ¼ ½�1;�3;�2; 2; 3; 1�=4, etc. The proposed edge detector (we
denote it as SMED) is compared with the Canny edge detector (CED)
and the recently proposed anisotropic diffusion edge detector (ADED)
byBlack et al. [8]. The source code ofmethodADED is obtained from

the Web site ftp://figment.csee.usf.edu/pub/Edge_Comparison/
source_code/anisotropic.tar.gz. In ADED, there is one parameter,
threshold t. We set scale s1 ¼ 22 and scale s2 ¼ 23 in implementing
the SMED andCED in the following experiments. In CED,we fix the
low threshold to be half of the high one and set the high threshold as
tj ¼ 	�j at scale sj,where�j (referring to (3.2)) is thenoise level at that
scale and constant 	 is used to control the threshold. In the following
experimental results of CED and ADED, we adjusted the threshold
until a visually best edge map is obtained.
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Fig. 4. (a) Noisy synthetic image. (b) Edge map by CED at a small scale s1. (c) Edge map by CED at a large scale s2. (d) Edge map by ADED. (e) Edge map by the

proposed SMED with s1 and s2.



Fig. 4a shows a noisy synthetic image with one square, two

circles, and twoneighboring step edges in it. The addednoise level is

� ¼ 35. Figs. 4b and 4c illustrate the edgemaps generated by CED at

the two scales. The constant 	 is set to 2.4 and 2.0, respectively, at the

two scales. We see that, at the small scale there are many false edges

caused by noise, while at the large scale the edge localization

accuracy is decreased as a tradeoff of low false-edge-rate. Note that

the distance between the two neighboring step edges in Fig. 4c is

mistakenly amplified due to the interference of adjacent edge

structures when detector scale is increased. Fig. 4d shows the ADED

results. The threshold is t ¼ 1. It is seen that ADED does not

suppress noise well. Fig. 4e is the edge map detected by SMEDwith

c ¼ 6. We see that the results remove most of the false edges and

achieve very high edge localization performance. The shapes of the

objects are precisely detected.

To objectively compare the edge detection results for this

synthetic image, the measurement figure of merit F proposed by

Pratt [15] is used to evaluate the performance quantitatively:

F ¼ 1

max NI;NAf g
XNA

k¼1

1

1þ �d2ðkÞ; ð4:1Þ

whereNI is the number of the actual edges andNA is the number of

the detected edges. dðkÞ denotes the distance from the kth actual

edge to the corresponding detected edge. � is a scaling constant set

to 1/9 as in Pratt’s work. The greater the F , the better the detection

results. In Table 1, the values of F for the edge maps in Figs. 4b, 4c,

4d, and 4e are listed.
In Fig. 5, the experimental results on a 256	 256 noisy House

image (added noise level is � ¼ 25) by the three schemes are shown.

The constant 	 in CED is 2.6 and 2.0, respectively, at the two scales.

The threshold inADED is t ¼ 0:8. The threshold constant in SMED is

c ¼ 6. The last experiment is on a naturally noisy image. The image

Flower taken by a digital camera is corrupted by background noise in

the acquisition process. The noise level is estimated as � ¼ 11. Fig. 6

showed the edge maps. The constant 	 in CED is 2.5 and 2.1,

respectively. The threshold in ADED is t ¼ 1:8. The constant in

SMED is set to c ¼ 7. It can be seen that the proposed scheme

achieved very good results with few false edges and high

localization accuracies.
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Fig. 5. (a) Noisy image House. (b) Edge map by CED at a small scale s1. (c) Edge

map by CED at a large scale s2. (d) Edge map by ADED. (e) Edge map by the

proposed SMED with s1 and s2.

Fig. 6. (a) Image Flower. (b) Edge map by CED at a small scale s1. (c) Edge map

by CED at a large scale s2. (d) Edge map by ADED. (e) Edge map by the proposed

SMED with s1 and s2.

TABLE 1
The Figure of Merit Values of the Edge Maps in Fig. 4



5 CONCLUSION

We developed a scale multiplication-based scheme to improve the
performance of traditional Canny edge detector. Taking the
advantage of similarities in the filter’s responses at adjacent scales,
the new schememultiplies the responses to enhance edge structures
while diluting noise and detect the edges as the local maxima in the
scale products. Our theoretical analyses show that scale multi-
plication can improve the edge localization accuracy and then yield
better edge detection results. Experiments on synthetic and natural
images were made to test the proposed method.
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